Type Square

(In lack of a better name.)

1 Intent

Provide a design that lets you define new types of objects and their properties at runtime.

Type Square is a compound pattern that composes the following patterns:

· Type Object,

· Property List,

· Value Holder,

· Association Object,

· Composite.

(A compound pattern is a pattern that is best described as a recurring composition of other patterns [??]. I originally called them “composite patterns”, but John Vlissides made a convincing argument to rename them “compound components” [??]).

2 Motivation

You are developing a banking system for handling customer accounts like checking or savings account. You first think about a nice class hierarchy of account classes, starting with a root class Account. However, your domain experience tells you that banks provide many different types of accounts. It is not uncommon for a large bank to provide more than 500 types of accounts as products to their clients. Many of these accounts vary only by a few parameters, but they are still distinct enough to require modeling these distinctions.

You quickly give up modeling 500 Account classes. Remembering the Type Object pattern [??] you decide to introduce a class AccountType whose instances represent a specific type of account, and a class Account whose instances represent a specific account of a customer. Instances of AccountType serve as type objects for instances of Account. All properties that are the same for a specific type of account go into the class AccountType (name of this type of account, interest rate for this type of account, etc.). All properties that may vary within instances of the same AccountType go into the Account class (account number, current balance, etc.).

[image: image1.wmf]fInstances

Account

String fAccountNumber;

Money fBalance;

1

0..*

fType

AccountType

String fTypeName;

float fInterestRate;

...

After a short time, your Account and AccountType classes get bloated with fields and methods that represent and access the different properties all types of Accounts may have. After all, the class interfaces represents the union of some 500 account types! Remembering the Property List and Value Holder patterns [??, ??], you decide to model the properties an Account instance may have using a list of property objects. Properties of Account like name of owner or balance now become instances of a generic Property class. The Property class is a value holder for any type of object.

However, the problem is not going away. You still have to check every access to an Account property for validity. After all, you don’t want that a programming mistake sets the ‘balance’ property a value like “John Doe”. Effectively, you need to check access to a property. This brings us back to the Type Object pattern. You decide to introduce a PropertyType class that checks whether a value for a Property is valid. Hence you link Property to a PropertyType object that can carry out these checks.

Also, you need to define whether a certain type of Property is acceptable for an Account in the first place. For example, a Swiss number account may not have set an owner name. Hence it does not know a property ‘owner name’ and must not be set one. Thus, you use Property List again and define a collection of PropertyType objects for AccountType so that an Account instance can check with its AccountType type object whether a specific Property is acceptable.

[image: image2.wmf]Object

fInstances

Account

...

1

0..*

fType

Property

...

fType

PropertyType

String fTypeName;

Class fValueType;

...

fProperties

0..*

fPropertyTypes

0..*

1

fValue

AccountType

String fTypeName;

...

Still, you feel you are not there yet. What if you want to introduce a NumberAccount that has no ‘owner name’ property but a ‘password’ property? You can simply create another instance of AccountType, for sure. But imagining to do this for the other 498 types of accounts makes you worry what to do in terms of systemic changes. What to do if the account numbering scheme changes? It would be best if you would define the AccountNumber property once and for all. After all, every type of account has an account number, and if this were regular object-oriented modeling, this account number conveniently would have been put into the Account root class.

Your experience with object orientation lets you solve that one easily. Use inheritance! But not with classes this time, but rather with instances of AccountType. You decide to add a supertype reference from one AccountType instance to another.

[image: image3.wmf]fInstances

Account

...

1

0..*

fType

AccountType

String fTypeName;

...

fSuperType

0..1

Any decision of an AccountType must now make use of the full type hierarchy. If an Account instance asks its AccountType type object whether a property called “OwnerName” is acceptable, the type object must traverse the full type hierarchy and check the fPropertyTypes collection of each supertype. (We can do more efficient implementations later.) We can now model our orginal 500-class Account class hierarchy using AccountType instances!

The banking people like your design. They think it’s great that they can define new Account types on the fly and have a short time-to-market. Until someone remarks: “Hey, but what we actually sell to customers aren’t single account products, but rather aggregates of accounts. We want to sell a salary account with a depot with a savings account in one bundle!”

After the first shock is gone, you figure that this isn’t too difficult after all. Nothing in your design is specific to Accounts. (Please note: this is a simplification. You first need to remove the fields from AccountType. This is done by recursively applying the model to itself. See Advanced Issues section.)

Renaming your Account classes to be more general Product classes is possible and trivial. Also, you already introduced a subtyping relationship between AccountTypes, so why shouldn’t you introduce an aggregation relationship between the new Product and ProductTypes classes as well?

Pattern: Composite.

[image: image4.wmf]fInstances

Product

...

1

0..*

fType

ProductType

String fTypeName;

...

fSuperType

0..1

fSubparts

0..*

fSubparts

fPartTypes

0..*

...

Introduce relationship objects.

Pattern: Association Object.

[image: image5.wmf]fInstances

Component

Type

String fTypeName;

...

Component

...

1

0..*

fType

fSubparts

0..*

fSuperType

0..1

Relationship

int cardinality;

boolean isDependent;

...

fPartType

fPartTypes

0..*

...

Promote to more general Component level. (Rather than just products.)

...

[image: image6.wmf]Object

fInstances

Component

Type

String fTypeName;

...

Component

...

1

0..*

fType

fSubparts

0..*

Property

...

fType

PropertyType

String fTypeName;

Class fValueType;

...

fSuperType

0..1

fProperties

0..*

fPropertyTypes

0..*

1

fValue

Relationship

int cardinality;

boolean isDependent;

...

fPartType

fPartTypes

0..*

instance

level

type

level

So much for now.

What needs to be said about the design? First, we can distinguish a type level from an instance level. On the left of each figure, we can see the type objects, and on the right, we can see the instance objects. Fowler also calls the type level the “knowledge level” and the instance level the “operational level”. Effectively, the type level is a model (to the left of the diagrams) of what makes up valid instances of the model (on the right of the diagrams).

...

3 Advanced Issues

This final design does the job. Still, there are further possibilities of extension.

...

We can generalize the relationships that instances of ComponentType have with each other. Right now, we model two relationships (subtyping and aggregation) and we model them in different ways (through a direct link and through Relationship objects). We can make Relationship a general class and introduce three subclasses InheritanceRelationship, AggregationRelationship, and AssociationRelationship to model the three most common relationships between ComponentTypes. For new types of relationships like RolePlaying, we can introduce further subclasses of Relationship.

...

Also, we can make the creation of new types of ComponentTypes as easy as we make the introduction of new types of Components. We achieve this by recursively applying the model to itself. For this, we make ComponentType a subclass of Component. Every ComponentType instance now receives a type object and may introduce new Properties for itself according to the specification of that type object. Because this type object of a ComponentType is an instance of ComponentType, it can be extended to cover all kinds of new ComponentType instances.

...

So far, we have discussed structure only. What about dynamic runtime behavior? There are many way of doing it, for example, using Strategies or Visitors. However, to keep the document short, we focus on structure, and leave behavior to other documents.

4 Fragments

Satisfied with your design, you envision a runtime structure of a regular checking account and a number account.

[image: image7.wmf]fInstances

fType

checkingAccountType

: AccountType

"CheckingAccount": fTypeName

aCheckingAccount

: Account

fPropertyTypes

accountNumberType

: PropertyType

java.math.BigInteger: fClass

...

ownerNameType

: PropertyType

java.lang.String: fClass

...

anAccountNumber

: Property

anOwnerName

: Property

fProperties

fType

fType

"J. Doe"

135791

Lots of objects but highly flexible. And because you need the flexibility, you accept the object proliferation.

[image: image8.wmf]accountType

: AccountType

numberAccountType

: AccountType

savingsAccount

: AccountType

checkingAccountType

: AccountType

corporateAccountType

: AccountType

salaryAccountType

: AccountType

fPropertyTypes

fPropertyTypes

fPropertyTypes

fPropertyTypes

fPropertyTypes

fPropertyTypes

Dirk Riehle. 12/13/99 15:22
E:\TEMP\type-square.doc
7

_1006249345.doc

Account

String fTypeName;

...

fType

...

AccountType

fSuperType

0..1

fInstances

0..*

1

_1006252100.doc

Account

String fTypeName;

float fInterestRate;

...

fType

String fAccountNumber;

Money fBalance;

AccountType

fInstances

0..*

1

_1006249451.doc

0..1

Component

String fTypeName;

...

fSuperType

fType

...

Component�Type

0..*

0..*

fPartTypes

fPartType

int cardinality;

boolean isDependent;

...

Relationship

fInstances

0..*

1

fSubparts

_1006248967.doc

Account

String fTypeName;

...

fProperties

fType

...

...

Property

AccountType

String fTypeName;

Class fValueType;

...

Object

PropertyType

fInstances

0..*

1

fValue

1

0..*

fPropertyTypes

0..*

fType

_1006249326.doc

0..*

Product

String fTypeName;

...

0..*

fSubparts

fType

...

ProductType

fSuperType

0..1

fInstances

0..*

1

fPartTypes

fSubparts

_1006189979.doc

accountType�: AccountType

fPropertyTypes

fPropertyTypes

fPropertyTypes

fPropertyTypes

corporateAccountType�: AccountType

checkingAccountType�: AccountType

savingsAccount�: AccountType

fPropertyTypes

fPropertyTypes

numberAccountType�: AccountType

salaryAccountType�: AccountType

_1006248330.doc

0..1

Component

String fTypeName;

...

fProperties

fSuperType

fType

...

...

Property

Component�Type

type

level

String fTypeName;

Class fValueType;

...

Object

PropertyType

instance

level

0..*

0..*

fPartTypes

fPartType

int cardinality;

boolean isDependent;

...

Relationship

fInstances

0..*

1

fValue

1

0..*

fPropertyTypes

0..*

fSubparts

fType

_1006188627.doc

checkingAccountType�: AccountType

fInstances

fProperties

anOwnerName�: Property

anAccountNumber�: Property

fType

java.lang.String: fClass

...

ownerNameType

: PropertyType

fPropertyTypes

accountNumberType

: PropertyType

java.math.BigInteger: fClass

...

"CheckingAccount": fTypeName

aCheckingAccount�: Account

135791

"J. Doe"

fType

fType

