
1

 Preface . 7

Chapter 1 Extreme Programming 9
Extreme Programming is a discipline of software develop-
ment with values of simplicity, communication, feedback
and courage. We focus on the roles of customer, manager,
and programer and accord key rights and responsibilities to
those in those roles.

 Forward . 23

Chapter 2 Circle of Life . 27
An XP project succeeds when the customers select business
value to be implemented, based on the team’s measured
ability to deliver functionality over time.

Chapter 3 On-site Customer 31
An XP project needs a full-time customer to provide guid-
ance. Here’s a summary of why ...

Chapter 4 User Stories . 37
Define requirements with stories, written on cards.

Chapter 5 Acceptance Tests 45
Surely you aren’t going to assume you’re getting what you
need. Prove that it works! Acceptance tests allow the custom-
er to know when the system works, and tell the programmers
what needs to be done.

Sidebar - Chapter 5 Acceptance Test Samples 49
At first it can be difficult figuring out how to do acceptance
tests. With a little practice it becomes easy.

Chapter 6 Story Estimation . 51
Customers need to know how much stories will cost, in order
to choose which ones to do and which to defer. Programmers
evaluate stories to provide that information. Here’s how.

2

 Sense of Completion .61
XP’s nested planning and programming cycles keep the
project on track, and provide a healthy sense of accomplish-
ment at frequent intervals.

Chapter 7 Small Releases .65
The outermost XP cycle is the release. Small and frequent re-
leases provide early benefit to the customer while providing
early feedback to the programmers. Here are some thoughts
on how to make it happen.

Chapter 8 Customer Defines Release 71
In each release cycle, the customer controls scope, deciding
what to do and what to defer, to provide the best possible re-
lease by the due date. Work fits into the calendar, based on
business value, difficulty, and the team’s implementation
velocity.

Chapter 9 Iteration Planning 79
Inside each release, an Extreme team plans just a few weeks
at a time, with clear objectives and solid estimates.

Chapter 10 Quick Design Session 87
Within each iteration, programmers don’t stand alone.
Here’s a technique to help programmers move forward with
courage. Make it part of your team’s ritual.

Chapter 11 Programming .89
It’s called Extreme Programming, after all. Here’s how we
do the programming part of things.
Integration is a bear. We can’t put it off forever. Let’s do it
all the time instead.

Sidebar - Chapter 11 Code Quality 103
A little more detail on something close to our hearts:
simplicity.

Chapter 12 Pair Programming107

3

On an Extreme Programming team, two programmers sit-
ting together at the same machine write all production
code.

Chapter 13 Unit Tests . 113
Extreme Programmers test everything that could possibly
break, using automated tests that must run perfectly all the
time.

Sidebar - Chapter 13 xUnit 127
Use the world’s lightest testing tool.

Chapter 14 Test-first, by Intention 129
Code what you want, not how to do it. Chet and Ron do a
small task test first, trying always to express intention in the
code rather than algorithm.

Chapter 15 Releasing Changes 145
Using collective code ownership and comprehensive unit
tests, an XP team releases changes rapidly and reliably.

Chapter 16 Do or Do Not 151
We’ve now covered most of the programming aspects of XP.
Here’s a summary of things we do — and things we don’t.

Chapter 17 Experience improves estimates 155
Each iteration we gain experience. Experience with stories
helps us estimate future stories more easily and more accu-
rately.

Chapter 18 Resources, Scope, Quality, Time 157
Who’s doing what? How much is finished? How good is it?
When will we be done? What metrics should we keep?

Chapter 19 Steering . 171
The estimates are wrong. Your priorities will change. You
must steer.

Chapter 20 Steering the Iteration 173

4

To steer each iteration, you need to track stories getting
done, and how well the task estimates are holding up.

Chapter 21 Steering the Release179
To steer the release, you need to track what’s done, how fast
you are going, and how well the system works.

Chapter 22 Handling Defects183
Report ’em, schedule ’em, test and fix ’em, avoid ’em. Just
don’t call ’em bugs.

Sidebar - Chapter 22 Advanced Issue:
Bug Databases .187

Sidebar - Chapter 22 Advanced Practice:
Tests as Database191

Sidebar - Chapter 22 Test to show a defect 193
When a defect is detected, begin with a test.

Chapter 23 Conclusion .195

Section I Bonus Tracks .205
Here are some things we’ve paid a lot to learn. Since you
bought the album, we wanted to give you a little something
extra. Thank you, and we hope we passed the audition.

Chapter 24 We’ll Try .207
“We’ll try” can be the saddest words a programmer has ever
spoken, and most of us have spoken them more than once.
We’ve covered this material in other forms already, but it
bears repeating here.

Chapter 25 How to estimate anything 217
Sometimes estimating stories seems scary. Keep your heads,

5

stick together, and break the story down into small parts.
You’ll be surprised what you can do.

Chapter 26 Infrastructure . 219
What about that database you need to build first? What
about that framework? What about that syntax-directed
command compiler? Get over it!

Chapter 27 It’s Chet’s Fault 223
Are you looking for someone to blame? This chapter explains
how to know whose fault it is. Now move on and solve your
problems.

Chapter 28 Balancing Hopes and Fears 225

Chapter 29 Testing Improves Code 227
An example showing how writing some tests can cause you
to improve the code.

Chapter 30 XPer Tries Java 231
After the C3 project ended most of the team was transferred
to work on the human resources intranet. I found how they
were using the principles of XP to improve their lives on a
new project heartening. What follows is a description of how
Rich Garzaniti, exC3er and devoted XPer is introducing
testing and modern development tools into an environment
where none existed.

Chapter 31 A Java Perspective 241
We would like to thank Bill Wake for allowing us to use his
article. It is the second in a series entitled "The Test/Code
Cycle in XP". His website http://users.vnet.net/wwake
contains the entire series plus a whole lot more.

Chapter 32 A True Story . 257
Ron Jeffries [re]learns something about simplicity.

6

Chapter 33 Estimates and Promises 261
We estimate how long the project will take. We promise to
tell the truth about how we’re doing.

Chapter 34 Everything that could possibly break . . .265
Test everything that could possibly break. What does this
mean? How is it possible?

7

Preface

How much would you pay for a software development team that would do
what you want? Wait, don’t answer yet — what if they could also tell you
how much it would cost, so that you could decide what to do and what to
defer, on your way to your deadline? You also get quality software, a
robust array of tests that support the project through its entire lifecycle,
and an up to date, clear view of project status. Best of all, you get the abil-
ity to change your mind about what you want, at any time.

There aren’t any silver bullets in software development, and there
probably never will be. However, Extreme Programming is a simple set
of common-sense practices that, when used together, really can give
you most of what you just read in the paragraph above. In this book,
we tell you what the XP practices are, and how to install them in your
project.

If you are a software developer, a programming manager, or an indi-
vidual who needs software written, this book will be of use to you.
Everyone with a stake in the success of a software development effort
has the ability to impact the effort for better or worse. XP, based as it is
on values of simplicity, communication, feedback, and courage, helps
stakeholders understand their roles, and offers them specific tech-
niques to help the project succeed.

This book follows the chronology of a typical project, describing the
XP practices that apply at each stage. In the introduction, Extreme Pro-
gramming (page 9), you’ll find an overview of XP and of the book.
Begin there, and let that chapter serve as your road map.

We became enthusiastic about XP, based on real experience on real
projects. Dig into Extreme Programming Installed. It’s no panacea, but
the XP practices, installed in your team, can improve your projects as
they have ours.

Preface

8

9

Chapter 1

Extreme Programming

Extreme Programming is a discipline of software develop-
ment with values of simplicity, communication, feedback
and courage. We focus on the roles of customer, manager,
and programer and accord key rights and responsibilities
to those in those roles.

We are software developers. We have been involved in many successful
projects, and even in some that “weren’t so successful”. The successful
ones were a lot more fun, for us, and for our customers. The unsuc-
cessful ones have taught us a great deal about software development.

We have had the privilege of working on a great project, with a great
teacher, Kent Beck. We were part of the shaping of the software pro-
cess named Extreme Programming, XP for short. Since then, we have
been helping everyone who will listen to learn from our experience.

The first book in the Extreme Programming series, Extreme Program-
ming Explained, covers the reasoning behind the XP process. Based on
our experience on the original XP project and the others we have
helped with, this book describes what makes XP work, day to day and
month to month.

Successful software development is a team effort — not just the devel-
opment team, but the larger team consisting of customer, management
and developers. Extreme Programming is a simple process that brings
these people together and helps them to succeed together. XP is aimed
primarily at object-oriented projects using teams of a dozen or fewer

Extreme Programming

10

programmers in one location. We would use XP for both in-house
development and development of shrink-wrapped software. The prin-
ciples of XP apply to any moderately-sized project that needs to deliver
quality software rapidly and flexibly.

Customers — those who have software that needs to be developed —
will learn simple, effective ways to communicate what they need, to be
sure that they are getting what they need, and to steer the project to
success. You will learn that you can change your mind, and still get
what you need, on time.

Programmers — those who, on an XP project, define the architecture,
design the system, write the tests and the code that supports them —
will learn how to deliver business value quickly, how to deal with
changing requirements, and how to build customer confidence and
support. You will learn to build for tomorrow by building only what
you need today.

Managers — those who control the project resources — will learn how
to measure project progress, how to measure quality, and how to
answer the all-important question “When will you be done?”. You will
learn an important truth of management - to use the programmers’
actual performance to predict completion.

Customers, programmers, managers, all working together to build the
system that’s needed. Let’s take a more comprehensive look at those
three roles.

The customer role

The people in the Customer role choose what will deliver
business value, choose what to do first and what to defer,
and define the tests to show that the system does what it
needs to.

Every software project needs to deliver business value. To be success-
ful, the team needs to build the right things, in the right order, and to
be sure that what they build actually works. Of course this can’t be

Extreme Programming

11

done without programmers, but in fact the customer’s role is critical in
steering that process to success.

The customer role on an XP project can be filled by one person, or by
several. The team will be most effective if the customer is on-site,
present with the team, full time. We’ll discuss some details in On-site
Customer (page 31). Here, we’ll talk in more general terms about what
the customer does. If you’re the XP customer, we’re talking to you.

Note that we say “the customer”, not “the customers”. Whether they
are one or many people, the XP customer always speaks with one voice.
The determination of what will have business value, and the order of
building that value, rests solely with the customer. (Don’t worry, you
get lots of help and advice. But ultimately, you get to make the call.)

An XP team plans and builds software in terms of “stories”. Stories are
just that — individual stories about how the system needs to work.
Each story describes one thing that the system needs to do. Each story
must be understood well enough that the programmers can estimate
its difficulty. And each story must be testable.

As the customer, you express what must be done in terms of stories.
For a project spanning a few months, there may be 50 or 100 stories.
Larger projects of course have more stories. We’ll talk more about the
details in User Stories (page 37).

You probably have a delivery date in mind, though some projects have
a fixed feature list rather than a fixed date. We are not content to imag-
ine that everything that you can think of will be done by a given date
Neither should you be. Instead, the XP process lets the team predict,
more and more accurately, how much work can be done in any given
time period. Using this information, you manage project scope —
choosing what to do now and what to defer until later — to ensure
successful delivery.

You, the customer, have the critical responsibility to choose the stories
that will provide the most valuable features, the highest business value,
by the desired delivery date. The XP development process lets you

Extreme Programming

12

choose among the stories with great flexibility. There’s not much limi-
tation on what can be done first and what second. This is by design: if
you are to choose the stories for successful on-time release, you must
have the flexibility to make the choice as independently as possible.
Read more about this process in Customer Defines Release (page 71)
and Iteration Planning (page 79).

Finally, you specify tests that show whether the stories have been cor-
rectly implemented. These Acceptance Tests (page 45), whether built
by the programmers, by an independent tester, or by you yourselves,
provide confidence that the system really does what it needs to do.

Define business value, decide what to do and what to defer, and define
the tests to show that the system works. These are your key responsi-
bilities as the XP customer.

The programmer role

The people in the Programmer role analyze, design, test,
program, and integrate the system. The programmers esti-
mate the difficulty of all stories, and track the pace at
which they can deliver stories to the customer.

If the project is to deliver business value, each story must be under-
stood. Software must be designed, tested, and built to implement that
story, and all the software must be brought together into a coherent
whole. That is the job of those in XP’s programmer role. If you’re a
programmer on an XP project, we’re talking to you.

In Extreme Programming, the emphasis is on programming. Every-
thing we do looks like programming and is focused on the most critical
artifact of software development, the program.

Build the system in small releases, so that the customer benefit is maxi-
mized and you get the best possible feedback on how you’re doing.
We talk about this in Small Releases (page 65), Customer Defines
Release (page 71), and Iteration Planning (page 79).

Extreme Programming

13

Base the program on simple, clear design. This lets you produce qual-
ity software quickly. There’s more discussion of this in Code Quality
(page 103), and A True Story (page 257). As you learn more about
what the design wants to be, improve the design using Refactoring
(page 95).

XP isn’t slash and burn programming, not code and fix, not at all.
Extreme Programming is about careful and continuous design, rapid
feedback from extensive testing, and the maintenance of relentlessly
clear and high-quality code.

Keep the system integrated at all times, so there’s always a good ver-
sion to look at. Keeping integrated lets you go rapidly without
stepping on each others’ toes. See Continuous Integration (page 96).

Share the ownership of all the code, so no one has to wait and every-
one feels able to make everything better. See Collective Code Ownership
(page 93), andReleasing Changes (page 145). Share a single Coding
Standard (page 97) as well, whether you evolve your own or adopt
one from elsewhere. Make everyone’s code look alike—it helps with
communication and team focus. Express your individuality in the way
you wear your XP ball cap.

Make sure that the system always works, using comprehensive unit
tests of your own making, as well as the customer’s acceptance tests.
These tests allow rapid change, and support collective code ownership
by keeping change from introducing mistakes. See Unit Tests
(page 113), Acceptance Tests (page 45), Everything that could possibly
break (page 265), and Test-first, by Intention (page 129).

Write all production code in pairs, for maximum speed and cross-train-
ing, in support of shared code ownership and rapid progress, as
described in Pair Programming (page 107).

Extreme Programming is an approach to software development that
lets programmers do what they do best — program — while giving the
customers what they need most — business value. It’s a win-win
approach and fun too.

Extreme Programming

14

The manager role

The person in the management role brings the customer
and developers together and helps them meld into a
smoothly operating team. You don’t do the process — you
make the process smoother.

If you’re the manager of an XP project, we’re talking to you. The XP
process specifies how the team does certain things that conventional
managers sometimes do. But don’t worry — there’s plenty for the XP
project manager to do. On an XP project, your role is key, and it is very
much focused on management per se.

The first and last job of a good manager is to get things out of the way
of the people who are doing the work. Look for things that are slowing
the team, and use your special powers to resolve them. Expedite pur-
chase, make sure the workspace is arranged effectively, keep the
computers up to date, lean on the LAN guys to fix problems, and so
on. You’ll be most successful if you remove everything from the team’s
path that doesn’t contribute to the objective of delivering good soft-
ware on time.

When it comes to the day to day process of planning, designing, test-
ing, coding, releasing, managers don’t do any of these things directly.
However, you do something more important: you cause these things
to be done, coordinate their doing, and report the results.

It may seem that the entire team just magically appears at the planning
table when it’s time for the next release plan. If the manager does a
good job, that is.

As manager, you cause that meeting, and you coordinate it into exist-
ence. At a stand-up meeting a bit before release planning time,
mention the need for the meeting and suggest a date. If there’s general
agreement, go ahead. If there are scheduling conflicts, go around to
the team members and find a suitable date and time. You might even
have to encourage someone to change a conflicting appointment.

Extreme Programming

15

When the date is chosen, prepare the ground. Arrange a room, send
out the invitations, order the refreshments — or cause these things to
be done if you have administrative help.

Before any planning meeting, check with the customers, reminding
them to be ready and to bring any new stories, and so on. If they need
help, provide it.

During each meeting, you may wish to coordinate or facilitate — or
designate someone to do so. Help to keep the team on process, make
notes on the proceedings, offer to get special resource people if they’re
needed, and so on.

After each meeting, if reporting needs to be done, you should do it or
cause it to be done. (Internal reporting generally is not needed. The
plan is on the white board and in the minds of the team. But some
stakeholders outside the room may need to be kept up to date.)

During the iteration, it’s the same: cause the right things to happen,
coordinate the activities, report results — and always remove obstacles.

The project manager usually has the personnel responsibility, and this
is a very important one. Even on the best teams, there are differences
between individuals, and sometimes there can be temporary or perma-
nent people problems.

When people get in conflict, you need to fix it. If someone’s behavior
is harming the team, you have to address the problem. If the individual
cannot or will not correct the behavior, you must remove them from
the team. This should not be done lightly or precipitously, but some-
times it must be done, and it is the project manager’s responsibility.

There can sometimes be political problems that impact the team.
These are major obstacles and the manager leaps in to resolve them. A
stakeholder may have difficulty allowing the customer to schedule the
stories, or may put pressure on the programmers to adjust their esti-
mates. Watch for outside forces that can impact your team. That’s
when you need to step in, firmly and productively.

Extreme Programming

16

On the good side, the project manager gets to give rewards. There is
the annual rating and salary adjustment ritual. We can’t tell you how to
do this — extreme teams are all over the map on compensation policy.
It’s the manager’s responsibility to have fair and consistent assessments
of the staff, and to have compensation fairly reflect those assessments.

And think about small rewards as well. Recognition is important. New
toys or tokens for the team. A round of Laser Tag, a round of beers, a
night at the opera. A little time off from work, and off the books. And
don’t forget the families.

This only scratches the surface. The project manager’s role is very
important to the project. If done creatively and effectively, it can
greatly ensure the team’s success.

Cause, coordinate, report, reward. And always: remove obstacles.

Rights / Responsibilities

Extreme Programming tries to provide certain benefits to
the managers, customers, and developers involved in a
project. We express these as rights because they are very
important to the success of the project, and to the team
members.

Editor’s note: we need these two rights tables in little boxes, like cards.
If they aren’t, it’s because I didn’t figure out how to do it yet. Please
help.

Manager and Customer Rights
1. You have the right to an overall plan, to know what can be accom-

plished, when, and at what cost.

2. You have the right to get the most possible value out of every pro-
gramming week.

3. You have the right to see progress in a running system, proven to

Extreme Programming

17

work by passing repeatable tests that you specify.

4. You have the right to change your mind, to substitute functionality,
and to change priorities without paying exorbitant costs.

5. You have the right to be informed of schedule changes, in time to
choose how to reduce scope to restore the original date. You can
cancel at any time and be left with a useful working system reflect-
ing investment to date.

Programmer Rights
1. You have the right to know what is needed, with clear declarations

of priority.

2. You have the right to produce quality work at all times.

3. You have the right to ask for and receive help from peers, superiors,
and customers.

4. You have the right to make and update your own estimates.

5. You have the right to accept your responsibilities instead of having
them assigned to you.

This book is about helping your project deliver these rights. Here’s a
bit of discussion about why each of these proposed rights is beneficial
to a successful software project, and how XP helps to provide that
benefit.

You have the right to an overall plan, to know what can
be accomplished, when, and at what cost.

For the project to be guided to success, it’s necessary to know overall
what is needed and what you can accomplish within the time and
money available. User Stories (page 37) describes how we use stories to
define the product. Small Releases (page 65) ensures that you can learn
what you need to know before time runs out. Customer Defines Release
(page 71) describes how you build and maintain an overall view of the
project.

Extreme Programming

18

You have the right to get the most possible value out of
every programming week.

Having a plan isn’t everything, but planning is. Project time is short,
and you need to be sure that the right things are happening every
week. Iteration Planning, page 79, describes XP’s short-range plan-
ning component.

You have the right to see progress in a running system,
proven to work by passing repeatable tests that you spec-
ify.

Real management comes from having concrete information. In addi-
tion to delivering frequently with Small Releases, an XP project keeps
the system built at all times (Continuous Integration, page 96), and
uses tests provided by the customer to show the customer that the sys-
tem really works (Acceptance Tests, page 45).

You have the right to change your mind, to substitute
functionality, and to change priorities without paying
exorbitant costs.

Things change. Market requirements change, business requirements
change. An XP project thrives on change, through simple design, kept
simple through Refactoring (page 95). By allowing for change, we give
the customer the best chance to guide the project to success.

You have the right to be informed of schedule changes,
in time to choose how to reduce scope to restore the
original date. You can cancel at any time and be left with
a useful working system reflecting investment to date.

Too often, projects get to “ninety percent done” and stay there with
no real information coming out. Then there’s a sudden huge slip near
the end. XP works to be sure that everyone knows just what is really
happening, with clear and honest reporting (Resources, Scope, Quality,

Extreme Programming

19

Time, page 157), as well as the public Acceptance Tests. Because an XP
project implements business value first, and because of Small Releases
(page 65) and Continuous Integration (page 96), the product can be
kept always ready for release.

You have the right to know what is needed, with clear
declarations of priority.

Programmers want to implement what is really needed, but things get
in the way. Sometimes they don’t understand what is needed — user
stories, described in User Stories, help with that. And sometimes they
don’t understand what is really important to the business. XP pro-
grammers work on business value, as directed by the customers,
described in Customer Defines Release and Iteration Planning.

You have the right to produce quality work at all times.

Programmers want to do good work. XP practices ensure good work
while delivering business value. Contributing topics include Unit Tests
(page 113), as well as Refactoring and simple design. Another XP core
practice, Pair Programming (page 107), improves quality, improves
time to delivery, and even provides cross-training among the staff.

You have the right to ask for and receive help from
peers, superiors, and customers.

Sometimes programmers get buried in the complexity of their work.
Help from colleagues and managers can speed things up and get things
back on track. In XP, we recommend an On-site Customer (page 31) to
be sure that requirements are understood. We use Pair Programming
to provide constant help. We offer some additional support techniques
when we discuss the The manager role (page 14). But the fundamental
rule is this: no one can refuse to help a team member who needs it,
ever.

You have the right to make and update your own esti-

Extreme Programming

20

mates.

The most critical factor in the success of your project is knowing when
you are going to be done. By knowing how long it will really take —
not just how long you hope it will take — you can guide the project to
success by managing what is worked on. XP’s Customer Defines Release
and Iteration Planning allow you to do that management. Having the
programmers do Story Estimation (page 51) gives you the information
you need to steer the planning.

You have the right to accept your responsibilities instead
of having them assigned to you.

We all work most effectively when we have accepted our responsibili-
ties instead of having them thrust upon us. Part of the ritual of the XP
Iteration Planning is that the programmers sign up for what they will
work on. At that time they choose to do the work, and put their name
down for what they will accomplish. This small act of commitment
engages the individual’s own honor as a necessary part of the team.

Project flow

The rest of the book follows the chronological flow of an XP project.
We’ve pointed to many of the chapters earlier in this introduction. An
XP project begins with an on-site customer, who provides the stories
that define the system and the acceptance tests that prove the system
works. We focus on small releases, each one defined by the customer.
We work in short iterations, again working on the customer’s stories of
highest business value.

Programmers follow a number of important practices, including Simple
Design (page 93), Refactoring (page 95), Collective Code Ownership
(page 93), and Pair Programming (page 107). They write their code
including extensive Unit Tests (page 113), ensuring consistent progress
and high quality.

Extreme Programming

21

Based on the early iterations, the team uses Experience improves esti-
mates (page 155) to predict future performance, which sets the project
up for success through constant informed Steering (page 171).

There will be a few defects (no one is perfect) and we’ll tell you how to
deal with them in Handling Defects (page 183).

Finally, we include some Bonus Tracks (page 205), essays and ideas we
couldn’t bear to leave out even though they don’t fit exactly in the
chronological flow. We paid a lot to learn those things, and wanted to
share them with you. So dive in and check out Extreme Programming
Installed!

Extreme Programming

22

23

Forward
--Dan Rawsthorne

I have been looking at XP for a while, and have talked to a lot of peo-
ple (including Ron Jeffries and Kent Beck) about it. And I think that a
lot of us are missing the point of why XP works. Quite simply, I think
that XP works because it is Validation-centric rather than Product-cen-
tric. "Huh?" you say.

First, what do I mean be Validation and Production? Well, Production
is the act of actually constructing some Product, and Validation is the
act of assuring that this Product actually does what it is supposed to
do.

Typically, Validation means that somebody other than the producer
analyzes the Product and assures that it satisfies its purpose. Now, on
with the discussion.

When developing any software system there are two questions to
answer:

• Are we developing the right software?

• Are we developing the software right?

Essentially, the first question is about Analysis (what is it supposed to
do?) and Validation (does it actually do it?) and the second question is
about Design and Construction (is this the right architecture? does it
satisfy the "ilities"?). Can you say Inception/Transition versus Elabo-
ration/Construction - I knew you could...

We also know that the first question is much more important than the
second, as developing the wrong software right is useless. So, because
XP does everything to extremes, we would expect it to focus on the
first question to the exclusion of the second. Almost, but not quite...

Forward

24

So, what does XP do to address the first question? IMHO, everything
except Refactoring (and only half of that...). This is because the
essence of Validation is communication, and almost everything about
XP is to facilitate communication: between the Customer and Devel-
oper and between Developers.

And because XP is extreme, the only kind of communication it wants is
face-to-face: PairProgramming, PlanningGame, and so on. And it
insists on a second pair of eyes on everything - it's all about Validating
everything that is done, all the time...

As far as I can tell, the main thing about XP that is not all about either
easing communications or developing the right system is Refactoring
(although Refactoring is partly about clearer communications of what
the code does). It is clear that Refactoring is a good thing to do and,
since XP is extreme, if a little Refactoring is good, XP insists on total
Refactoring. Refactoring is the thing that allows Architecture to
emerge from the code, and this emergent architecture is what allows
ease of maintenance, extensibility, and so on - that is, it allows us to
answer the second question.

So, I hear you ask "so what, Dan... is this a useful message you're giv-
ing me, or just random ramblings?"

Good question. A little of both, I think. Let's compare XP to what we
usually do. In most processes we have a list of products (models, docu-
ments, code, etc) to produce, and processes to use to Produce and
Validate them. So far, so good. In the crunch, unfortunately, our focus
always becomes the production of them rather than the validation of
them. This is because most processes are product-centric, and I believe
this is because management can measure production, but not
validation...

XP won't allow this to happen. If you're not Validating everything all
the time, you're not doing XP. Period. BTW, this is why the concepts
of XP are so tantalizing to me. It is not the lack of ceremony, it is not
how happy the Developers are, it is that everything is validated all the
time. Very cool.

Forward

25

My belief is that XP is the first popular process with this focus on Vali-
dation built in. It won't be last... I hope.

Dan Rawsthorne, PhD
Director of Program Management & Development Practices
ACCESS, a communications company
DrDan@dsign.com - <http://www.dsign.com/>

Forward

26

27

Chapter 2

Circle of Life

An XP project succeeds when the customers select business
value to be implemented, based on the team’s measured
ability to deliver functionality over time.

Steering a project to success all comes down to what we call the “circle
of life”. The customer’s basic job is to define what has value, and the
programmer’s job is to build it.

On an XP project, the customer defines business value by writing sto-
ries, and the programmer implements those stories, building business
value. But there’s an important caveat: on an XP project, the program-
mers do what the customer asks them to do!

Figure 2.1 Customer defines, programmer builds.

Customer

Programmer

define valuebuild value

Circle of Life

28

Business value depends on what you get, but also on when you get it
and how much it costs. To decide what to do, and when, the custom-
ers need to know the cost of what they ask for. The programmers,
based on experience, provide this information. Then the customers
choose what they want, and the programmers build it. Now the pic-
ture looks like this.

Figure 2.2 Programmer estimates, customer chooses.

Customer

Customer

ProgrammerProgrammer

define value

estimate costchoose value

build value

Circle of Life

29

Every time we go around the circle, we learn. Customers learn how
valuable their proposed features really are, while programmers learn
how difficult features really are. We all learn how long it really takes to
build the features we need.

We hate to be the one to break this to you, but some things are proba-
bly going to take longer than you’d like. The good news is that you
can inform yourself about how fast you’re going, and you can use that
information to choose the best mix of features for each release. By
managing scope, you can schedule good, solid releases for the dates
you need.

The best way to get a good release by a given date is to know how fast
the programmers are delivering features, and to use that knowledge to
choose the best mix of features possible by your chosen date. You must
manage the scope of your project.

It’s tempting to put pressure on the programmers, to “hold their feet
to the fire”, in hopes of getting more done. If you want your software
written by people who are under stress because their feet are on fire, do
this. If you want quality to take a back seat, do this. To get the best
possibile combination of features, with the quality you need, you must
manage scope.

Figure 2.3 Improve estimates of value and cost.

Customer

Customer

ProgrammerProgrammer

define value

estimate costchoose value

build value
learn

Circle of Life

30

It’s tempting to believe your own wishes, or your own press releases,
and schedule more work than measurement says you will do. If you
want to ship late, do this. If you want to ship on time, but with a ran-
dom collection of buggy features, do this. For a predictable delivery,
with the quality you need, you must manage scope.

The circle of life is profoundly important. When customers and pro-
grammers recognize that they depend on each other, the team can
steer the project so that there’s always the most business value imple-
mented at any given moment. The upcoming chapters will show you
how to get the stories that define the product, estimate story cost with
increasing precision, track how you’re doing, and select the stories for
a successful release.

If what you want to do is manage your project to the most successful
conclusion, then follow the circle of life: define, estimate, choose,
build.

31

Chapter 3

On-site Customer

An XP project needs a full-time customer to provide guid-
ance. Here’s a summary of why ...

Programmers, we all know, will program anything. The trick is to tell
them what’s needed. In general, what’s needed is called “require-
ments”, probably to make it sound more important. In XP, we
communicate what’s needed using User Stories (page 37). User stories,
written on cards, are the core of the XP planning process (the Planning
Game), and they belong to the people with the requirements. We call
these people the Customer — and we ask them to be with the project
all the time. Before you read about creating user stories, here’s why we
want you to show up.

The essence of what makes an XP project successful was described in
Circle of Life (page 27). The project is steered to success by the cus-
tomer and programmers working in concert. An XP team wants to go
as fast as possible, and the XP value of simplicity contributes strongly
to that goal. Written specifications take a long time to write, and they
don’t communicate very well. It’s much more effective to have conver-
sations about what is needed, as the project goes on.

Not every project can afford this, and other projects’ members fear
that they can’t. But the plain truth is that the more time customer and
programmers spend together, the better things go. That doesn’t mean
that the customer is holding the programmers’ hands, but it does
mean that being immediately available to answer questions is of
immense value.

On-site Customer

32

There are many studies that show that communication is reduced
hugely by separation. Moving coworkers one floor down reduces com-
munication almost as much as moving them across the world.
Communication, of course, is another of the XP values. You want your
project to be successful, so of course you want everyone communicat-
ing. The programmers will communicate with each other, primarily
through Pair Programming (page 107). Communication between cus-
tomer and programmer occurs during Customer Defines Release
(page 71), and Iteration Planning (page 79). but frankly we need
more. The planning process works efficiently through writing user sto-
ries on cards and using those cards in planning. The stories, though,
are promissory notes, redeemable for conversations about the details of
the requirements.

A simple story may need backup details that can be provided on paper.
But for the programmers to implement it quickly and well, they need
to build up a sense of how it fits in. That sense is provided by the cus-
tomer, in many discussions, over the course of the project. Here’s an
example:

Union dues vary by union, and are taken only in the first pay
period of the month. The system computes the deduction automati-
cally. The amount is shown in the attached table.

Attached to this story, the programmer might find a small spreadsheet
showing the various unions and their dues. She notices that there are
two line items for members of UPGWA (you-PIG-wa), the United
Plant Guard Workers of America. The items are labelled “Tier 1" and
“Tier 2". She goes to the customer:

“What’s the deal on plant guards, tier one and tier two?”

“The agreement with the union divides plant guards into two
groups”, the customer replies, “called Tier One and Tier Two.
The two tiers get different dues rates and benefits.”

“How do I tell them apart?”

“It’s all by date of hire. All plant guards hired after September
1995 are Tier Two.”

On-site Customer

33

“OK, got it. By the way, are those dues figures you gave us solid
for all time?”

“No way”, laughs the customer. “Next time there’s a union
negotiation, those figures will all change. There’s a story com-
ing up giving us the ability to change them. For now, just put
them in that way.”

“OK, thanks”, says the programmer, and returns to her desk in
less time than it took to read this.

Now yes, that same exchange could have been held via email, or writ-
ten down in a detailed spec. But that would have taken more time, and
quite likely wouldn’t have completely quelled the programmer’s con-
cern the way the conversation did. You might also be concerned that
this important information about the requirements will get lost some-
where, but remember that you will have specified acceptance tests, and
they will surely cover the two tiers of plant guards.

You could perhaps get this much certainty by writing more down. But
you would have to write lots more, which would slow the project and
still not obviate the need for conversation. With an on-site customer,
you save time and trees, and build a rapport between customer and
programmers that serves to help you over any tough times that may
come along.

How important is it to have the customer right there? Here’s an exam-
ple. Ron has been coaching a project whose customers have a private
office right in the development area. A couple of times every day, while
the programmers are working, one of them will ask a question and no
one will know the answer. The programmer generally gets right up and
goes to ask Pam, the customer. In a couple of minutes, he’s back,
shares the answer (because now everyone is curious), and gets back to
work.

One day on Ron’s last visit, the customers had to go to another work
site for machine access. They told the programmers where they were
(two floors down and a few offices over), left their phone number and
beeper number. Sure enough, in the afternoon, someone had one of

On-site Customer

34

those questions. But the programmer knew Pam wasn’t there. He
didn’t call her – instead, he made a guess in the code and wrote a note
to ask her later.

How many guesses do you want in your code? How many times do
you want programmers working on lower priority work while they wait
for an answer on what you have set as the highest priority? Where pos-
sible, keep a customer with the programmers. You’ll be glad you did.

On-site customers do real work

Sometimes you can’t afford to have the customer not doing real cus-
tomer-related work. That’s fine – Pam and her partner Robin have real
jobs too. They’re set up with computer access in the programming
area, and one or the other of them is usually there. They mostly do
their regular work and answer a few questions. Those questions make
the relocation worth while.

If the customer can’t be there

Sometimes the customer really is too valuable to be on-site. Stock trad-
ers are thought to fall into this group. Sometimes the customer is in a
different city from the programmers. This happens in many companies,
and there’s no way either customers or programmers are moving. Well,
you’re going to pay a price, but here are some tips on what to do.

First, try hard to get someone to represent the customer locally. This
could be a non-programming project manager, a trainer, a tracker, or
just someone in the company who is expert in the area. Let them han-
dle the bulk of the interruptions, then get with the real customer
offline to double-check. If the customer and this pseudo-customer can
get on the same wavelength, this works quite well.

Second, at least try to get the real customer on site for planning meet-
ings. In those meetings there is lots of discussion about priorities, and
it’s really best if the real customer makes those trade-offs. This is also a

On-site Customer

35

good chance for the pseudo-customer to get re synchronized with the
real one.

Third, visit the customer. Send the programmers — all of them, if you
can — to visit the customer as often as possible. Ask questions, discuss
the application, build rapport.

Fourth, release code very frequently to the real customer. If they can’t
see you, make sure that they see the system. You’ll be releasing rapidly
anyway, being an XP team, but the need for this is higher if your cus-
tomer isn’t around, and the frequency should go up.

Fifth, expect misunderstandings and plan for them. The written and
email communications you’ll fall back on are error-prone, not because
you are bad people but because that’s how it is with the written word.
Plan frequent phone conferences and meetings, both to settle issues
and to remind everyone that even though they aren’t together, they’re
all part of the same team.

Summary

Having your customer with you is really valuable. It’s possible to sur-
vive without it – many projects do – but you’ll go faster and more
smoothly by being together. It’s the difference between being in the
car when it’s time to turn or just writing a note that says “Don’t forget
to turn at 34th Street.” When 34th is blocked and you’re in the car,
you can tell the driver how to recover. The note can’t help.

Somewhere along the way in your project, 34th street will be blocked,
and having the customer there will bring the project back on line so
smoothly it’ll be as if it never happened. And every day, the small con-
versations will add up to a lot of trust and communication between
customers and programmers. That, of course, leads to success.

On-site Customer

36

37

Chapter 4

User Stories

Define requirements with stories, written on cards.

Customers have the right to get the most possible value out of every
programming moment, by asking for small atomic bits of functionality.
Programmers have the right to know what is needed. These two rights
come together in the User Story.

Each user story is a short description of the behavior of the system,
from the point of view of the user of the system. In XP, the system is
specified entirely through stories.

Analysis can be loosely described as the process of finding out what the
customer wants. Analysis can be done very formally, with objects and
diagrams, or it can be done very informally. XP, no surprise, chooses
informal analysis: we ask the customer.

It should also be no surprise that we don't limit analysis to the begin-
ning of the project - what we call “drive-by analysis”. In XP, you do
analysis all the time. The user story is the medium of analysis — the
medium of communication between the customer and the
programmer.

XP recognizes that the customer will be learning what is needed, based
on what has been done so far. By keeping stories small, releasing often,
and bringing customer and programmer together, the XP approach to
analysis ensures that what is learned can be fed back into the develop-

User Stories

38

ment process, making the final result as close as possible to what is
really needed.

Starting with stories

Your XP analysis kit is a pack of blank cards. 4x6 or 5x8 unlined cards
are about right. Experiment a little, but you’ll probably wind up want-
ing to use only one size card for throughout your project. They're
easier to handle in bulk if they're all the same size. And get lots — we
use them for everything, and we like to tear them up.

You’ll need a comfortable space where a couple of customers and a
couple of programmers can sit at a table and work. Use your planning
table or any other convenient spot. Customer and programmer sitting
side by side, not across the table, works best.

Unwrap the cards. They’re hard to use in the plastic wrap. And the
unwrapping is the hardest part of the process. Whew, glad that’s over.

Now, hand everyone some cards, and let’s all take one card to test our
pen on. We each scribble something on our card. Now — we each tear
up our card!1 This gets us all in the frame of mind to touch the cards,
to write on them, and to be flexible, ripping up and replacing cards
whenever they need it.

The first few story cards are a bit difficult. But don't worry, you've got
lots of blank cards to work with. Customer, tell a story about how the
system will be used. Programmers, listen, and ask questions for under-
standing. Try to stay away from implementation questions. Now,
customer, write the story, in your own words, on a single card. If the
whole story is too big, write the essential core.

1. Thanks to Erik Meade for this technique! Sometimes you’ll have a player who resists tear-
ing up his card. Watch for other signs of inflexibility, and find ways to help him relax into
the process. But don’t touch his cards!

User Stories

39

As you go through this process, especially with helpful questions,
you’ll often decide that a story you’ve written isn’t quite right. That’s
great. Tear that card up and make a new one.

This is very important: Analysis on cards is flexible. It's not just OK to
tear up a card and start a new one - it's the best thing that can happen!
Tear up cards early and often, so that everyone gets good at it.

Sample Stories

Here are some sample stories. Each one is backed up with conversation
(see Stories are promises for conversation (page 41)), and perhaps with
some related detailed information. Each one is simple enough that the
programmers could understand it, and could see how to implement it
in a week or so.

Typesetter: put each of these italicized paragraphs in a separate box, to
look as if written on a card. Consider using a handwriting or script font
- they want to look WRITTEN. Thanks!

Union dues vary by union, and are taken only in the first pay
period of the month. The system computes the deduction automati-
cally. The amount is shown in the attached table.

When a transaction causes a customer’s account to go into over-
draft, transfer money from the overdraft protection account, if
any.

When a transaction causes a customer’s account to go into over-
draft, send an email showing the transaction and balance to the
customer. If overdraft protection is in effect, show the overdraft
transaction and the resulting account balances in the email.

For each account, compute the balance by adding up all the depos-
its and subtracting all the deductions.

Produce a statement for each account, showing transaction date,

User Stories

40

number, payee, and amount. A sample statement is attached —
make the report look approximately like the sample.

Each employee may be subject to one or more legally-mandated
wage attachments. The KBS application WageAttach accepts
on-line inquiries on whether an EE has an attachment, and if so,
the payee and amount. Make each deduction, and send a message
to the Attachment Payment System authorizing the transfer to the
payee. (Programmer note: don’t know enough to estimate — we
need to do an experiment. Story may need splitting.)

When the GPS has contact with two or fewer satellites for more
than 60 seconds, it should display the message “Poor satellite con-
tact”, and wait for confirmation from the user. If contact
improves before confirmation, clear the message automatically.

If the station currently playing carries digital information, the
information is displayed in the radio’s LCD display. If there is no
digital information available, display the station frequency.

Allow the user to add new service types to the system’s initial list.
For example, he may wish to add a special entry for getting the car
washed at the high school’s “free” wash. Include the standard fields
amount and date, plus allow the user to add any additional text
or numeric fields. Reports should automatically sum any numeric
fields. (Programmer note: story needs splitting. Please separate
text and numeric fields into two stories, plus one for the sum-
ming.)

(Split 1) Allow the user to add new service types, including the
standard fields plus any additional text fields desired.

(Split 2) Allow the user to add numeric fields to user defined ser-
vice types.

(Split 3) In all reports, show totals of all numeric fields, not just
the standard gallons and dollar amount fields.

User Stories

41

For most of the stories above, the programmers (your authors) could
see how to implement them in a week or less. As such, we felt that we
understood the stories and could implement them. In the case of the
last story, we felt that adding special numeric fields might be difficult,
and that updating all the reports to include them was a separate effort
and might take a long time. We asked that the customer split the story,
and the customer agreed.

Note that we’d really get the story split in a conversation with the cus-
tomer explaining what was up — not just with a note on the card. We
put the note in the text because we can’t have a conversation with you.
In a real XP project, use conversation wherever you can.

Stories are promises for conversation2

User stories are made up of two components. First there is the written
document. We recommend writing the story in just a couple of sen-
tences on a card and pointing to any supporting documentation. The
second component, and by far the most important, is the series of con-
versations that will take place between the customer and the
programmers over the life of the story. These conversations will be cap-
tured as additional documentation that will be attached to the story,
will be acted out during CRC design sessions and better yet, as accep-
tance tests and application code.

Each story card is carried through the project, serving as a token for
planning and implementing whatever it requests. As such, the pro-
grammers need to be able to make a decent estimate of how difficult
each story is, usually in small numbers of weeks of effort. Just how big
a story can be varies from project to project. The best way to begin is
just to write a few stories and ask the programmers if they are the right
size and detail.

Do programmers ever write stories?

2. Alistair Cockburn gave us this elegant description of story as promise for conversation.
Buy his book!

User Stories How many stories do you need?

42

It’s better if programmers don’t write stories. We want all the stories to
belong to the customer, not just in name but in their heart. There are
some times when the programmers may help the customer write the
stories. For example, if the customer doesn’t know how to write sto-
ries, the programmers may need to work with her to find out what the
system needs to do. These conversations become the stories. It may
seem that you know something the customer will want. Talk to them
about it, but resist the temptation to write the stories. XP depends on
the circle of life, with customer defining and programmer building.
Don’t break the circle.

It may seem that there is some large technical development that needs
to be scheduled and managed. Some teams do write these as “technical
stories”, but this too threatens the circle. Customers can’t prioritize
what they don’t understand, and all too often the technical bite is too
big to fit into a single iteration. Where possible — and it usually is —
you should solve this by relating the technical task back to a real cus-
tomer need.

How many stories do you need?

It depends on the complexity of the system. A more complex system
will need more stories; a simpler system will need fewer. There should
be at least one story for every major feature in the system. Here's a rule
of thumb: you'll probably need at least one story per programmer per
month. Two would be better. So if you have ten people for six months,
that’s between 60 and 120 stories. If you have fewer than that, stories
will probably need to be split. If you have more, that can be OK, this is
just a rule of thumb. The most important thing is to get as many of the
stories as soon as possible. Then we’ll estimate them as described in
Story Estimation (page 51).

Can stories be too big or too small?

For planning purposes, stories should encompass a week or two of pro-
grammer time. We pick that number to give the customer good
control over scope, but also because programmer estimates are pretty

How many stories do you need? User Stories

43

good over that range of time. When a programmer looks at a story,
rolls his eyes, and mumbles, “Uh, that might be a month, maybe six
weeks”, we are pretty sure he doesn’t really know how to do it. So we
ask the customer to split the story.

It’s usually easy to break a big story down into two or more smaller
ones. Often the story has a very important part and a less important
part: that’s a good place to split. Other times the story covers several
related cases: consider making each one a story. Customers, don’t
worry about not getting everything. You can select all of these stories
for implementation if you want to. We just need to break them down
into bite-sized chunks for estimation.

Other times, stories will be too small. When stories get estimates of
just a couple of days or less, they can gum up the planning process. It’s
best to clip related stories together and estimate them as a group. Use
your own judgment here, but if the planning seems to slow down, or
becomes very rote, it may be time to put some stories into a group.

What if you don’t have all the stories?

Don’t worry — you don’t have all the stories. Things will change and
new ideas will come to you. You can substitute stories at the beginning
of any iteration. Just get the programmers to estimate them, and stick
them into the planning process when their cost and value dictate. Grab
a few cards, write the new stories, and act like you had them all the
time. No one will ever notice.

What’s the next step with stories?

Thanks for asking. That’s the next chapter, Acceptance Tests.

User Stories How many stories do you need?

44

45

Chapter 5

Acceptance Tests

Surely you aren’t going to assume you’re getting what you
need. Prove that it works! Acceptance tests allow the cus-
tomer to know when the system works, and tell the program-
mers what needs to be done.

Customers, remember that you have the right to see progress in the
form of a working system, passing repeatable tests that you specify.
Well, here’s the responsibility part of that: specifying the acceptance
tests.

Every system undergoes testing to find out whether it works as
needed. Some don’t get this testing until they go into use and actual
users discover flaws for themselves. This leads to pain; pain leads to
hatred; hatred leads to suffering. Don’t do that — test before you ship.

Some systems put off overall testing until right before release. They
often eat into the testing time with schedule overruns, but even if they
allocate the full testing period, this slows things down. The reason is
simple: programmers forget what they did. If I write a program today
and test it a week from now, my recollection of how I wrote it will have
faded, in favor of whatever I’m working on then. So when I get the
defect indication, I won’t be able to guess quickly where the problem
is. This leads to long debugging sessions, and slows the project down.
Don’t do that — test right away.

XP values feedback, and there is no more important feedback than
early information on how well the program works. If it were possible

Acceptance Tests

46

to have the computer beep at the programmer one second after she
made a mistake, there’d be a lot fewer mistakes in the world today. We
can’t usually test the system’s function every second (but see Unit
Tests, page 113, for a discussion of how hard we try). With acceptance
tests, the sooner we get them, the sooner we can make them work.
The customer responsibility is to provide those acceptance tests as part
of each iteration. If you can get them to the programmers by the mid-
dle of each iteration, the project will go faster. You will get more
business value by the deadline. That’s a promise.

There are many different ways to implement the acceptance testing on
your project, and the programmers will pick one. We’ll talk about that
below. In any case, you need to specify the tests.

What must I test, you’re probably asking. The official XP answer is,
you only have to test the things that you want to have work. Let’s be
clear about that: if it’s worth having the programmers build it, it’s
worth knowing that they got it right.

Some projects have a legacy system they are replacing, and they can get
their test data from the legacy. In this case, your job will be to select
the legacy inputs and outputs you want tested. Some projects use
spreadsheets from the customer that provide the inputs and expected
outputs. Smart XP programmers will extract the information from the
spreadsheet automatically and read it into the system. Some projects
use manually-calculated values that are typed in by someone on the
team.

Some customers give input numbers to the programmers, and check
the output by just reading it. There is an important issue with this one
that has to be mentioned. This is an anti-pattern — a bad idea — called
Guru Checks Output. Checking the output of a computer is very
error-prone. It’s easy to look at the numbers and decide that they look
correct. It’s also easy to be wrong when you do that. Far better to have
the expected answers up front, even if they have to be hand-computed.

One more thing. The rights refer to repeatable tests. All tests in an XP
project must be automated. We give you the ability to move very rap-

Acceptance Tests

47

idly, and to change your requirements any time you need to. This
means that the code will be changing rapidly. The only way to move
rapidly with confidence is to have a strong network of tests, both unit
and acceptance, that ensure that changes to the system don’t break
things that already work. The acceptance tests must be automated:
insist on it as your right.

We aren’t much into dire warnings and predictions, but here’s one
that’s a sure thing: the defects in your system will occur where you
don’t test. Push your acceptance tests to the limit, in breadth and in
depth. You’ll be glad you did.

Automating the tests

The tests must be automated, or you won’t get your XP merit badges.
However, there are lots of ways this can be done. The specific choice is
up to your programmers. Here are some starting ideas:

• If the program is a batch program, reading inputs and producing
outputs, make a standard series of input files, run the program,
check the output manually (and carefully) once, then write simple
scripts that compare the test output to the known-good output.

• Use the above trick for reports and lists from any program, batch
or not.

• Build on the xUnit (page 127) testing framework. Write functional
tests as programs. Better yet, make a little scripting language that
the programmers can use. Then grow it and make it easier until the
customers can use it. Maybe provide a little GUI that displays more
detail than the red bar / green bar.

• Allow the customers to set up tests in their favorite spreadsheet,
then read in the test and execute it. Some teams read the spread-
sheet data from exported files. Some actually use the “automation”
feature of the spreadsheet to read the information. A few actually
export test results back to the spreadsheet! This isn’t as hard as it
sounds — take a look at it and see if it’s within your team’s ability.

• Build an input recorder into the product, let the customers exercise

Acceptance Tests

48

it once to define a test. Spill output to files and check them auto-
matically.

• Use simple file-based tools like grep and diff and Perl to check re-
sults. You can get a lot of testing automated very quickly with these
tools.

Always build your acceptance tests to be automatic, but build the auto-
mation simply and incrementally as you actually need it. It’s easy to get
sucked into investing in test automation instead of business value. Get
them automated, but don’t go overboard.

Timeliness

Acceptance tests really need to be available in the same iteration as the
story is scheduled. Think about it — you want to score the develop-
ment based on getting stories done, and the only way to know if they
are really done is to run the tests.

Programmers, you have the right to know what is needed. Insist on
this right in the form of automated functional tests. You’ll be glad you
did.

Customers, you have the right to see progress in a running system,
proven to work by automated tests that you specify. Insist on this right,
and do your part by providing the necessary information.

49

Sidebar - Chapter 5
Acceptance Test Samples

At first it can be difficult figuring out how to do accep-
tance tests. With a little practice it becomes easy.

Here are some of the sample stories from the story chapter, with sug-
gestions for how they might be tested.

Union dues vary by union, and are taken only in the first pay
period of the month. The system computes the deduction automati-
cally. The amount is shown in the attached table.

This is an easy one, of course: the test pays some employees from vari-
ous unions and checks whether they are charged the right dues, in the
first pay period. Another test checks the subsequent pay periods to
make sure dues are not taken.

When a transaction causes a customer’s account to go into over-
draft, transfer money from the overdraft protection account, if
any.

Also easy. Some sample customers, with and without overdraft protec-
tion. Test what happens if there isn’t enough money in the overdraft
account — note that the story is probably incomplete. If the customer
writes the test correctly, the programmers will see and deal with the
problem quickly enough.

When a transaction causes a customer’s account to go into over-
draft, send an email showing the transaction and balance to the
customer. If overdraft protection is in effect, show the overdraft
transaction and the resulting account balances in the email.

Acceptance Test Samples

50

Same as previous test, except that emails should be sent. Send them all
to a fixed account: have the programmers write code that reads them
and checks their formats, so the test can be automatic.

Produce a statement for each account, showing transaction date,
number, payee, and amount. A sample statement is attached —
make the report look approximately like the sample.

It’s tempting to look at the report manually. That way lies the dark
side. Check the report once, very carefully, then have the programmers
machine check it against the good one thereafter.

When the GPS has contact with two or fewer satellites for more
than 60 seconds, it should display the message “Poor satellite con-
tact”, and wait for confirmation from the user. If contact
improves before confirmation, clear the message automatically.

Functionally testing small hardware devices can be tricky. Do you have
a version of the hardware hooked up to testing equipment that can
read the display, provide fake satellite input, and so on? Depending on
your cost of testing and need for reliability, this might be valuable
enough to do.

Allow the user to add new service types to the system’s initial list.
For example, he may wish to add a special entry for getting the car
washed at the high school’s “free” wash. Include the standard fields
amount and date, plus allow the user to add any additional text
or numeric fields. Reports should automatically sum any numeric
fields. (Programmer note: story needs splitting. Please separate
text and numeric fields into two stories, plus one for the sum-
ming.)

This program, probably conceived as just an interactive GUI-based sys-
tem, clearly needs a programmatic interface. It’s not hard, given even a
somple interface, to have a little scripting language set up that simu-
lates GUI commands and checks report output. Remember to
compare the report file to a correct one rather than check it by hand.

51

Chapter 6 ‘

Story Estimation

Customers need to know how much stories will cost, in order
to choose which ones to do and which to defer. Programmers
evaluate stories to provide that information. Here’s how.

If all stories were the same size, it would be easy to steer the project.
We’d just do some of the most important stories, and make note of
how many we could do during an iteration. Then we’d just use that
number to set our expectations for next time, and to select what to do
by our preferred delivery date.

“Well, we’re doing about five stories per week, and there are
ten weeks till Comdex. We’ll probably get about fifty done.
Right now, it looks like these are the ones we’ll pick. To make
sure we’re always in the best possible shape, we’ll do the most
valuable ones first. Here are the best ten, let’s do those over the
next two weeks.”

After each iteration, we’d see how fast we were going, and adjust
accordingly. And if our priorities changed and we brought in ten
entirely different stories next time, that would be great. It would just
make the product even better.

How fantastic this is! If we know how fast development is actually
going, and how difficult the upcoming work is, we can have the best
possible outcome our time and money can produce!

Story Estimation

52

Well, all stories aren’t usually quite the same size, but as the team goes
along, you’ll get better and better at knowing how big they are. Some
may be worth one point, some may be worth two or three, some only
one half. If the team is doing five per week, it’s just as easy to pick the
most important ten points’ worth as the most important ten stories. As
the project progresses, estimates will get better and better, and your
ability to steer gets better too.

It’s not easy to know exactly how fast you will go at first, but it’s easy
to observe how fast you do go. Then, except for obvious adjustments
like vacations and holidays, it’s best to trust your actual speed and base
your planning on how fast you’re actually going.

Our mission here is to describe how to estimate stories. During the
course of the project, it’s best to do that comparatively. At the begin-
ning, when you have no direct experience, there are some tricks you
might want to use. We’ll start with comparison.

During project flow, estimate by comparison

For an ongoing project, the work all takes on a kind of familiarity. Part
of this is because one story is often just an elaboration of another
closely-related one. Plus, since you are keeping your objects clean and
clear, you become more and more familiar with how to use them, and
new requirements fall into place in familiar ways. During the flow of
the project, take advantage of these facts.

Look at the story. What stories already implemented is it like? Does it
access the database similarly to that one about the tax lookup? Does it
produce a report similar to the one about parking tickets? Does it seem
like a specialization of the purchasing business rules? As you think of
stories that seem similar, wait for that Aha! moment when you think,
“Why, it’s just like ...”. That’s the story to compare with.

There are a number of ways to handle the comparison once you have
it. The most accurate would seem to be to record how long each story
actually takes to implement, and then to estimate the new one the

Story Estimation

53

same way. But, it turns out, that doesn’t work. The actual time to
implement a story is made up of two components — how difficult the
story is, and how fast the team is going.

Back when you implemented the first story, perhaps support require-
ments were low and there weren’t other projects coming down. The
programmers spent most of their time programming, and they got the
story done in a week. But now, there are support requests coming in,
new projects to plan, and lots of meetings going on. That same story,
today, might take two weeks or more. Knowing that our new story is
the same as one that took a week is good, but it isn’t enough.

Here’s what to do. We’ll estimate story difficulty, using a simple point
system. Local naming rules for these points apply. Some teams call
them perfect engineering weeks, but other teams find this causes too
much pressure trying to fit perfect weeks back into the real weeks that
wind up being issued to us. Some projects call them Gummi Bears. No,
really. You might prefer Story Estimation Units, or Bucks. Ron’s favor-
ite name, this week, is just to call them points.

You’ll see in a bit that we recommend doing initial estimates by think-
ing in terms of time. Pass over that for now, and just accept that all the
stories you have worked on are all classified, in points, somehow. Then,
to estimate a new story, pick a completed one that is comparable. If it
seems the same, give it the same number of points. If it seems twice as
hard, give it twice as many. Half as hard, half. It’s simple, and it’s easy.
The conversations go like this:

Jill says, “I think this is just like that one a couple of iterations ago, the
historical report, where we had to connect to the database, but also
had to output those files.”

Jack replies, “Yes, except this one we have a lot more files. I think this
one is harder.”

“You’re right. Probably about fifty percent harder. How many points
was the historical report?”

Story Estimation

54

Jack, flipping through cards, finding the historical report, “It was a one
pointer. Let’s make this story one and a half.”

It really becomes that simple. A quick discussion about what old story
the new one is like, maybe a check of the old card to see how many
points the old one was, and you’ve got an estimate. The team is doing
many stories over many iterations, and gets very good at this.

It’s always best to estimate in pairs or groups — up to four works just
fine — because having someone to talk with makes it easier and more
accurate. The give and take helps a lot. We’ll talk more about this in
Customer Defines Release (page 71), and Customer Defines Release
(page 71). Let’s move on now to getting those initial estimates.

Early on, start with intuitive time estimates

You might want to express your estimates in a neutral term such as
points but the best way we know to start is with perfect engineering
weeks. Here’s how to do it.

Try to begin with a story that you can imagine how to do. If the story
is so new to you that you can’t imagine how to do it, then you need to
start with a Spike Solution, described on page 55. Basically a spike is
just an experiment, where you do enough work to get a good feeling
for how to implement the story.

If you do know approximately how to implement the story, chat with
your team members, and try to get into coffee-room mode. You know,
that frame of mind where you say, “I could implement that in a week if
they’d just leave me alone to do it”. That’s your intuition at work, tell-
ing you how big the story is, without worrying about how much time
you actually get just to program. That week, where you program per-
fectly all day every day, then go home and rest, and come in the next
day fresh and ready to code — that’s a perfect engineering week.

If you feel that you can do a story in one perfect week, give it one
point. If you feel you can do it in two, give it two. If it feels like three,

Story Estimation

55

OK, give it three points, but consider asking the customer to split the
story down into two or more. And our advice is that if you start think-
ing you could do it in a month, your intuition has become too fuzzy. If
your best estimate is four weeks or more, please have the customer
break the story down.

As soon as you have estimated the points for a few stories, start doing
it both ways. Ask your intuition about its difficulty, get the points that
way. Then compare the story to the others, asking yourselves which
ones it’s like in size. Check the points, see if you get the same answer.
For a new project, with fairly experienced programmers with reason-
able intuition about the application, a team can go over a hundred or
more stories in a day or two, and rate them by difficulty.

It usually turns out that your initial ratings will be pretty accurate. But
what’s more important, as you remember from your rights on page 17,
is that you can change those assessments at any time. When you learn
that something is easier or harder than you thought, you get to update
the ratings on cards that are similar. The majority of times, you’ll be
rating stories as easier than you feared — after all, the whole team is
learning, and for lots of stories, you’ll even have built little tools.
Sometimes, though, you may need to upgrade the story’s difficulty.
That’s not a bad thing, because the truth is never a bad thing. Know-
ing the cost of things is how an XP team steers the project to success.

Spike Solution

It really is easy to estimate the difficulty of stories compared to other
stories. Brainstorm what the tasks are a bit, then see what you’ve
already done that is about that size, or twice the size, or half, or
one-and-a-half, as we described above.

But what if you haven’t done anything like this story before? What if
it’s the beginning of the project and you haven’t done anything at all?

The answer is simple: do some experimenting. We call such an experi-
ment a “spike solution”, to remind us that the idea is just to drive

Story Estimation

56

through the entire problem in one blow, not to craft the perfect solu-
tion first time out. You need to know how long it will take to do
something. To know that, you need to know how you’ll go about it,
but you don’t really need to have done it all.

Here are some examples. None of these are made up — they are actual
descriptions of spike solutions that people have used to learn how hard
something was.

Balancing an account.
We are going to have accounts, like bank accounts, with trans-
actions in them. We will need to compute the account balance.

This example was actually done live, by Ward Cunningham and
Kent Beck, at an OOPSLA conference a few years ago. The first
spike solution was to take a collection of numbers and add them
up. Sounds dumb, doesn’t it? But that’s the essence of getting
the account balance: take the numbers and add them up.

We mention this one first because it is so primal and simple. By
doing this experiment you realize the fundamental simplicity of
getting the account balance: just add ’em up. It pulls away all
the separate issues of the Transaction class and the MonetaryA-
mount class and the ACID properties of the database, and lets
us see balancing for what it is: get all the stuff and add it up.

Naturally the spike doesn’t stop here. We might build a little
Transaction object with an amount in it, make a vector of them,
loop, add ’em up. We might even make a little Monetary
object, put it in the Transaction, make a vector, add ’em up. By
this time, we’re convinced: balancing an existing account will
take less time to code than this description took to write up.

Formatted reports
We are going to have a bunch of formatted reports. They will
have different columns, and they all have to be totalled and sub-
totalled. Maybe we don’t have a reporting tool — maybe we
do. In either case, we need to estimate these reports. So we

Story Estimation

57

spike.

The spike? Make a collection of record objects — objects with
data in them but no behavior. Give them a key field and a cou-
ple of values. Code the report, using whatever tools you have.
First just print ’em, to get a feel for the shape of the loop. Then
print a total at the bottom. Then print a subtotal on each
sequence break. This whole experience will probably take an
hour or two. So the basics of reporting are easy.

Now look at formatting. Use your tools to format some num-
bers and dates in a few quaint and curious ways. See how hard it
is to do.

Based on the report descriptions, number of fields and keys,
and the hassle of formatting, estimate doing a report. Multiply
by the number you have to do. (I’d assume the customer won’t
like any of the reports the first time and will change them an
average of once each.)

If there are a lot of reports and the cost seems too high, do an
experiment with a report generator or some table-driven thing,
so you can see whether the customers can do their own reports.
Keep it simple, no more than a day.

Database Access
While it runs, the system needs to access your SQL database to
find the details for each item it processes. You want to know
how long it will take to code this, and you also want to know
how it will perform, in case you have to do something special.

You need a sample database to access. Anything will do. Write a
simple SQL query that will return a few records. Test it in inter-
active mode. Code it into a program and send it across through
your database connection. Note what goes wrong. Probably
you won’t get it across for a while, then probably you won’t be
able to deal with what comes back. Might take a day or so to
get the first one working. If you’ve got experience and good
DB connection software, it might just be an hour. After an hour
or a day, you know what the code looks like to talk to the DB.

Story Estimation

58

To get a sense of performance, take the above code and put it in
a loop and time it. If you’re in the ballpark, stop. If you’re not,
you’ll have to do something special, like cache values. You’ve
just identified the risk and put a number to it. There will be
work to do, but you are already on the way to getting it caged.

What about the generated SQL? That could be tricky, couldn’t
it? Experiment with that separate from the connection. Gener-
ating the SQL is an exercise in string manipulation: we need to
create a string that substitutes specific values into the various
parts of the query. Maybe we need to make a list of the specific
fields we want back. Maybe we need to put in one or more
inquiry values. No big deal, just write code that formats that
string and checks it. Think of it as coding most of the SQL by
hand, then just plugging in the variable bits.

Automatic Email
The system has to email the support people when certain things
happen, so as to beep their beepers. How hard will this be? No
biggie to detect the error or format the message. We can esti-
mate that. But it could be awful to send the email, we’ve never
done that.

I just surfed the web, looking for “email protocol”. Item 22 on
my list is a Java applet that tells me about the SMTP protocol
and lets me type in example lines. Looks like it is all done with
text messages. Should be easy.

Write a little program to connect to the email API on your
machine, and send a simple email to yourself. It probably will
barf. Debug it. After an hour or so, or a day or so, you’ll get it
to work. Now you have the sketch of the code for doing email,
and you can estimate the story.

Spiking for estimation

Remember the essence of the spike: you don’t know enough about
solving some problem to be able to estimate it. Therefore, write some
sample code, so that you’ll learn enough to be able to estimate.

Story Estimation

59

In this case, you are not here to drain the swamp, you’re just here to
kill one alligator. As soon as that gator is dead, and you can estimate
how long the solution will take, move on

Estimation Summary

We programmers estimate stories in points, based on perfect engineer-
ing time, and we keep track of how many points we can do in each
iteration. That lets our customer steer us to success by choosing the
best combination of stories within the time and money available.

Except at the beginning, most stories are best estimated by comparing
them with other stories already completed, and giving them points
according to their relative size. It turns out, as you’ll find, that pro-
grammers are generally very good at making this comparison.
Sometimes, at any stage in the project, stories will come along that
you’re not ready to compare. In this case you do a Spike Solution, a
quick experiment that prepares you to estimate.

Even the strangest stories will yield to a little creative brainstorming.
For some whimisical evidence of this, check the bonus track How to
estimate anything on page 217.

At the beginning of the project, use your group intuition to get that “I
could do that in a week” feeling, then set the initial points based on
that intuition. We recommend giving the points a neutral term, rather
than weeks, just because it keeps the tension down a bit as you track
your implementation velocity. As soon as you begin to get experience
with the relative difficulty of the stories, you can, and should, update
the points for the remaining ones. This gives the customer the best
opportunity to steer you to success.

Story Estimation

60

61

Interlude

Sense of Completion

XP’s nested planning and programming cycles keep the
project on track, and provide a healthy sense of accomplish-
ment at frequent intervals.

Most projects go on for months; some go on for years. To keep from
going mad with the never-ending pounding out of code - even beauti-
ful well-crafted code - every project needs punctuation. The best
punctuation a programmer can get is a sense of completion. XP's plan-
ning cycles provide a rhythm of cycles within cycles, each with its own
moment of completion.

Running the tests successfully gives the programmer a sense of comple-
tion every few minutes. Share this small joy with your partner.

Finishing a task provides a sense of completion every few hours. Share
with the other programmers; take a break; maybe switch partners.

Completing a story is an important milestone. Each one provides a
sense of completion. Share with customers and programmers; maybe
have a small ritual.

Wrapping up an iteration completes several stories and opens the door
for the next accomplishments. Share with the whole team; consider
bringing in pizza or some other little celebration.

Each release provides a major sense of completion: new business value
is in the hands of the customer. This is a good day! Break out the
champagne!

Sense of Completion

62

These are important moments. They punctuate the work, give it a
sense of meaning and progress. Without these moments, the work
becomes drudgery, a never-ending death march.

Programmers set the rhythm

Programmers, every day you are responsible for creating your own
sense of completion. Work on one story at a time. Work on one task
from that story's tasks. Write a test that you need for that task. Run it,
just in case it already works. Code till it does work, running the tests
frequently. When the test you're working on runs, take a moment.
Tick it off in your mind - one more little bit of completion.

Writing the tests one at a time, test and code on the task until all the
necessary tests run. Take a moment. Task done! Let yourself feel that
little triumph. Cross the task off your list. Give it a little flourish. Task
done!

Is the code in good shape for release - not necessarily finished, but able
to run all the tests? Maybe it's a good time to run the tests and release
some code. Code released! Life is good.

Work on one story at a time. When all the tests for that whole story
run, take a moment. A whole story is done! That's very good. The cus-
tomer will get that card back marked complete. Life is very good.

When a story is done, it's definitely time to run all the tests and release
your code.

Have a little ritual that goes with code release. Maybe get one of those
little bells that you whack on the top when you want service at the
counter. Give it one whack whenever you successfully release. When
someone else gives the bell a whack, give them a little appreciation -
soft applause, quiet cheers of “Yaaay”.

Punctuate the project, enjoy those moments of completion.

Sense of Completion

63

At the end of the iteration, make a little production of handing the
completed stories back to the customer. “These are done.” Give your-
selves a little applause - this is good! If some stories didn't get done, so
be it. Consider announcing those first, so you can close the iteration
on an up note. “These stories didn't get done, explain explain.” Pause.
“Here,” handing over the stack, “are the stories we completed.” Take
a moment, congratulate yourselves.

Customers, you should feel this moment as well. Some of what you
asked for is complete. A bite has been taken out of your problem.
Enough bites and you'll have something of value, something you can
use.

Celebrate the moment. Programmers are like puppies, only not so
mature. We need constant encouragement to keep going. So tell us:
“Good programmers, good. Nice programmers.” Maybe toss us a
bone or a Programmer Treat like a package of red licorice.

Your project is going to go on for a long time. Sometimes it may seem
even longer. Work is fun and enjoyable when there's a feeling of
accomplishment, a sense of completion. Provide those moments, bask
in them. Succeed every day, and make sure that everyone knows you
are succeeding every day.

Sense of Completion

64

65

Chapter 7

Small Releases

The outermost XP cycle is the release. Small and frequent
releases provide early benefit to the customer while provid-
ing early feedback to the programmers. Here are some
thoughts on how to make it happen.

If your customer knows now just exactly what she wants, and if by the
time you’re done, she’s still going to want the same thing, it may be
the first time in software history that this has happened. Probably there
will be a prize for you somewhere. It’s much more likely that as you
steer the project, you’ll be changing direction, a little or a lot. As you
find out what’s easy to do and what’s more costly, you’ll be making
better and better decisions about what to do and when to do it.

One of the most important things you can do on an XP project is to
release early and release often. If possible, wait no more than two
months to release a version of the software, and release every couple of
months thereafter. And we don’t mean a demo version, we mean an
actual version that does something useful. Even though you don’t
really have to release for six months or a year, releasing every couple of
months can really pay off. You don’t want to pass up the chance to
learn what users really want. You don’t want to pass up the increasing
confidence that will come from showing people that you have done
something useful. And you don’t want to pass up the sheer thrill of
releasing useful software into the universe.

Even though you’d like to, we know that small releases ares impossible
in your situation. We accept that you just couldn’t do it. But just imag-

Small Releases

66

ine for a moment, that you could actually get some useful subset of the
software into the customers’ hands. Not something they’d demo and
comment on and set aside, but something they’d use every day. They
would learn a lot about what they really wanted, and you’d be that
much more capable of steering the project to success.

Even better, if the releases are actually useful, you’re delivering real
business value to the customer, which will keep them happy and keep
them coming back. It will build confidence and keep them supporting
the effort, even if once in a while things get rough.

OK, you’re convinced that it would be nice, but it just couldn’t hap-
pen with your product. Your product is all-or-nothing, just couldn’t
really be useful except when it’s really pretty done. Well, believe us, it’s
worth thinking about it. Of all the projects we’ve been involved with
that failed, almost all of them would have been successful had they
delivered a little functionality over time, instead of waiting and waiting
and waiting. So let’s take some examples of projects that couldn’t pos-
sibly deliver something early, and try to think of things we could
deliver early after all. You probably won’t be so lucky that we’ll pick
yours and solve it – fact is, you know more about your project than we
do – but practicing on ours may help you find your own small releases.

Payroll is all or nothing

Clearly you can’t release a payroll program incrementally. If it doesn’t
compute the paycheck correctly, it’s no use at all. What good would it
be to have a payroll program that could get your pay right but couldn’t
compute your taxes or take out your health insurance?

Well, setting aside the obvious value of a payroll that didn’t take out
your taxes, let’s think about this a bit.

If there’s already a legacy payroll program in place, maybe you could
replace the hours times rate part of it with the new one, allowing you
to stop using one of the old COBOL programs and get some good out
of the new improved calculations.

Small Releases

67

What about all those adjustment cards that have to be keypunched
from forms filled out by the payroll clerks? You’re going to have a new
GUI to put those adjustments right into the system. How about doing
that GUI first, and instead of putting data into the system (which
doesn’t exist yet), write them out to a file and feed them into the pay-
roll. You could save the keypunching expense, probably improve
reliability, and allow adjustments to be done further into the week
because of not waiting for the keypunchers. The clerks could offer bet-
ter service with the standalone GUI.

Is there some complex calculation that the old payroll can’t do quite
right, or that needs updating soon? How about replacing that part of
the legacy program with transactions generated by a little chunk of the
new program. The new program has to have that part written anyway,
and now you can save the cost of updating the legacy program.

Or, how about diverting employees from the legacy stream who are
capable of being paid by the new program and paying them there? The
new program would get exercised, and at least those individuals would
get the benefit of being in the new system. If a few pay cycles down,
more features let you divert more people in, great. And if someone’s
pay situation gets too complex for the evolving new program, just
divert them back to the legacy.

Now each of these schemes has a little extra cost associated with it, in
order to bring it on line. But the benefits would be immense in the
delivery of improved value, the feeling of accomplishment, the better
feedback and the better focus of the whole team on delivering value.

Personnel System

You’re replacing your personnel system with a new one. Obviously you
need an integrated database and can’t release the system until it does
everything the old one does, plus all the new things you’ve thought of.
There’s just no way you can release this incrementally.

Small Releases

68

This could turn into one of those horrible tail-chasing exercises where
there’s always just one more feature that you have to put into the new
system before it’s ready. Just don’t go there.

Instead, what if we made our database compatible with the old one,
but with new relational tables for new features that are needed, and
delivered some of those new features. We could produce new reports
that summarized the use of the new features, and we could produce
new versions of some of the old reports to show combined values.

Maybe we could do the GUI trick like from the payroll example, where
we gave the users a better way to input certain transactions. Maybe we
could even put up a little web interface and let employees enter their
own address changes and telephone numbers.

Tax Package

Here’s one we wish we had thought of a few years ago. A professional
tax package isn’t useful unless it does some minimum number of
forms, and the minimum is very large. So building a new Win-
dows-based professional tax package is a multi-year investment. And
there’s just no way to release just part of it.

Well, if your company already has a DOS-based package that’s very
comprehensive, how about putting a Windows GUI on top of it, and
use that calculation expertise until you get the more powerful
object-oriented incremental calculation engine working?

How about using individual forms calculations from the DOS program
and replacing them incrementally with the new engine?

How about using the existing forms print capability of the DOS ver-
sion, together with its non-WYSIWYG output display, until the screens
that look just like tax forms are done?

Distributed manufacturing control system

Small Releases

69

You are building a new micro-computer-based distributed factory con-
trol system. There will be these cool little micros at each station, all
networked together, cooperating to control the entire factory. You
need control modules and control programs for all the machines that
might be there in the factory. And you need a very sophisticated dis-
tributed object system to make sure it all works. There’s just no way
you can release anything early.

Well, how about releasing a single module that controls some specific
machine, and that plugs into the legacy system, emulating an old-fash-
ioned controller. Surely your micro-based system could raise and lower
a few electrical levels to make it look like the old modules, and even
respond to centralized signals telling it what to do.

Then do another kind of module, and another. Choose them so they
are likely to want to talk to each other. When a factory needs a couple
of these, let’s hook just those modules together in a distributed fash-
ion, letting the rest of the place run on centralized control.

It might be a bit tricky, and it would be wasteful in that when the last
distributed module went in, all that centralized control code would be
unnecessary. But in the years between the ability to release one little
controller, and the release of the last bit of the fully distributed system,
you could make so much money and learn so much!

Air traffic control system

Planes get handed off between control areas, and in times of emer-
gency, certain areas take over wider areas of control. So all these
systems have to talk to each other, and replacing the nation’s out-
moded control system with a new one is an immense task.

OK, we admit it, we don’t know anything about air traffic control. But
we do know that a current theory is that the planes should control
themselves, communicating with each other and adjusting their paths
the way that birds do, maintaining certain preferred distances, increas-
ing their desire to move away when they get too close, and so on. One

Small Releases

70

of the problems with this system is that not all planes would be smart
enough to do this, and what would happen if a plane lost its ability to
sense and be sensed by the others.

Would it be possible to dedicate certain altitudes and flight paths to the
new planes? Would it be possible to have on-ground control comput-
ers watching for planes that couldn’t communicate, and either
controlling them from the ground or handing them back to the exist-
ing legacy ATC?

Summary

We hope you’re getting the idea. Inside almost every large program
there are lots of little programs trying to get out. You might have to do
a little extra work around the edges to get these pieces useful on their
own, but it can be well worth your while. You’ll learn lots more, and
you will actually be delivering value. Would that be cool, or what?

So put all your thoughts behind this simple idea: release little bits, to
be used by real customers, very frequently. It will allow you to deliver
the most value in the shortest time, with great confidence and low
stress. We also think it will grow new hair on your head and help you
lose weight, but we’re not sure about those two. The rest – we’re sure.

71

Chapter 8

Customer Defines Release

In each release cycle, the customer controls scope, deciding
what to do and what to defer, to provide the best possible
release by the due date. Work fits into the calendar, based
on business value, difficulty, and the team’s implementa-
tion velocity.

As the XP customer, you have a right to an overall plan, to know what
can be accomplished, when and at what cost. You have the right to
change your mind, to substitute functionality, and to change priorities.
Not surprisingly, you also have corresponding responsibilities. The
most important of those responsibilities is to define software releases,
and to manage scope to get a quality release out on time. It’s best to
plan a series of Small Releases (page 65), but small or large, the releases
are up to you.

In XP, releases are made up of iterations, where each iteration imple-
ments stories, which are made up of tasks. Both releases and iterations
have three phases, exploration, commitment, and steering. Releases,
iterations, and the phases make up what we call the “planning game”,
and they are the subject of the next few chapters.

During the exploration phase of planning a release, you’ll be writing
stories, defining what the system needs to do. You’ll be thinking about
the business value of each story — is it essential, highly valuable, or just
a good idea. Your chief weapon is business value ...

Customer Defines Release

72

In that same exploration phase, the programmers will be experiment-
ing with ways of building the system, trying experiments that inform
them how costly the various stories and features will be.

Most teams remember to do the exploration part of writing the stories,
since it’s hard to proceed without them. But don’t forget the program-
ming part of exploration — take a week or so to experiment with the
application before trying to proceed to commitment.

The exploration activities culminate in the commitment phase of the
planning the release. It goes like this, and the tune is our own
invention:

You’ll hand your story cards over to the programmers for estimation.
Then you sit back and listen, and wait for questions. If the program-
mers want to know whether you want a Windows-specific GUI or one
that is web-based, you’ll answer them. (Sometimes you’ll have to get
them to explain their question first. That’s OK, keep after them until
they do.)

The programmers are trying to estimate the difficulty of each story
card you have given them. They’re doing that so that you can decide,
based on business value and implementation cost, what should go in
the next release.

Sometimes the programmers will find one of your stories too hard to
estimate. That doesn’t mean you can’t have it, it just means that it’s
got too much in it for them to make a valid single estimate. This is
important to you: you want the estimates to be as good as possible, so
that your selection of what to do and what to defer is as good as
possible.

Sometimes you just have to explain what you meant in the story. When
this happens, consider ripping that story up and writing a new one. It
feels good and shows the programmers how flexible you are.

Sometimes, the story is just too big. In XP, the programmers aren’t
allowed to estimate things in months of effort. We’ve learned that

Customer Defines Release

73

those estimates are too often wild guesses. So even if the programmers
are pretty sure about a big story, we don’t let them estimate it that way.
Instead, they’ll ask you to split a story. Often this will be obvious and
easy. You asked for a lot of things in one story. Just split the things out,
tearing up the old card (feels good, doesn’t it?) and writing new ones.
If, while you’re at it, you can keep things of like priority together, that
will help later. An easy way to do that is to choose the most important
thing, write it on a card, then the next, and so on. Don’t worry about
getting too many card. Too few is a problem, but if there are too many,
you can just clip them together.

Listen to the programmers as they estimate your stories. They’ll be
talking about technical things, but you’ll usually get the drift of what
they intend. That will tell you, in turn, whether they are understanding
what you want. You may hear, from time to time, things that make you
think maybe they don’t understand the story. If that happens, stop
them and inquire. If they’ve got it right, fine, but if not, give them the
straight story and let them carry on. You might want to tear up the
card and improve it, of course. Feel the power of change? Wonderful,
isn’t it?

After a while (and the first time around it could be a long time), the
programmers will have assigned a cost number to each story. Different
teams call this number different things: Difficulty Points, Perfect Engi-
neering Weeks, Bucks, even Gummi Bears. Whatever the name, these
numbers are the same thing: estimates of how difficult each story is to
build. With just one more fact, you’re ready to choose the stories for
the release plan.

To know what to schedule for the first release, you need to know how
fast the team can implement stories.

What?, you may be saying. I need all these things done by the release
date. I want it all. Well, as the song goes, you can’t always get what you
want, but if you try, you can get what you need. Here’s how you do
that.

Customer Defines Release

74

The programmers will tell you how many points they can do in a given
period of time. We call that number Project Velocity. If they’re estimat-
ing with perfect weeks as the basis, they’ll probably do one point per
programmer, every two or three calendar weeks. If they’re estimating
in perfect days, they’ll probably do one to three points per program-
mer per week. (Don’t get excited, those guys aren’t going faster,
they’re just measuring feet per minute instead of miles per hour.)

At the beginning of the first project of this kind for the team, this
number will be a pure guess. But as soon as you get experience doing
the stories, the team will measure the actual velocity. You can use that
experience-based number to steer the release. And that’s your job.

Once the stories are all estimated you have a bunch of story cards back
in your hands, with business value that you understand, and difficulty
points of one, two, or three. Sometimes one and a half, but don’t
worry, someone in the room probably has a calculator. The velocity is,
say, five points per two week iteration.

You know how many iterations there are between now and the sched-
uled release date. Suppose there are six. Then you should plan to get
about thirty points done by then, five times six. Go through your cards
and pick the ones with highest business value that add up to no more
than 30 points. That’s your plan.

Sounds easy, doesn’t it? Well, it is easy, except for one thing. You may
well wish you could have 35 points instead of 30. In fact, you surely
will wish that, since all things being equal, more features are generally
better than fewer.

Our advice is to go with the numbers. If the numbers say you can do
five points per week, and you could get your 35 total points if the team
could just do six, resist your temptation to plan for 6. Do work to get
the team’s velocity up. But plan based on your actual speed, not your
hopes. That keeps your plan closer to reality, and keeps you focused on
your most important role, steering the project to success.

Customer Defines Release

75

The team will go faster if it’s winning than if it’s falling short. Give the
team a chance to exceed their goals — they may surprise you. And your
own experience of the project will improve as you learn to guide it to
success.

As the customer, you define the release by selecting the best combina-
tion of stories that the team’s performance suggests can be
accomplished. As you learn more about performance, and more about
how the system is shaping up, you’ll adjust and tune the combination
of stories you request. An XP team will always adjust immediately, and
work on just the things you need to make the system as good as it can
be within your time and budget.

Release Planning Meeting

In its simplest form, the steps to a Release Plan are:

1. Write enough stories to define a successful product;

2. Do any necessary exploration;

3. Estimate the difficulty of implementing each story;

4. Estimate the speed of story implementation.

5. Choose stories for the first release, based on business value and dif-
ficulty.

The purpose of the release plan is to prime XP’s continuous planning
circle of life. No plan can predict the future perfectly, but planning can
help you steer the project to success. Think of it this way:

If you knew how long it would take to build each desired fea-
ture in your product, you could do a really good job of picking
the best mix of features given your time and money budget.

No one can tell you exactly, far in advance, just how long it will take to
build software. We’re just the only folks who admit it. What we can do,

Customer Defines Release

76

instead, is to teach your programmers how to estimate the difficulty of
each feature, and how to measure the speed of implementing features.

If you know how hard it is to build each piece of what you have in
mind, and you know how fast you can build things, you can estimate
very accurately what you can have by your due date — or when you
will have any batch of features done.

In Story Estimation (page 51), we describe how you get a story esti-
mate. Here’s how you use them.

The customer brings to the meeting all the stories she would like to
have for the first release. The programmers divide up into small
groups, and take batches of the cards, and pencil onto the card their
estimate of its difficulty. If they have questions about the story, they
ask and the customer answers. The programmers are quickly discussing
the tasks they’ll have to do for the story, and then they put down the
difficulty.

All the groups look at all the stories. The rule we use is that if a second
group thinks the story is easier, they’ll check with the first group and
ask how they got their answer. If they still think it’s easier, they can
reduce the number on the card. Formally, we only let folks reduce esti-
mates, but of course if the discussion identifies something forgotten,
the programmers can increase the difficulty rating.

Rate the easiest stories as one point. Rate the others as twos, threes,
and so on.

Soon (when you get good at this, you can do over a hundred stories in
a morning), all the stories have a difficulty estimate.

You give the stories back to the customer, and tell her what the antici-
pated velocity will be. This is a simple number: “We estimate that the
team will do 10 points in each iteration”.

Based on that estimate, and the due date, and the customer’s knowl-
edge of the value of each story, she can select the ones that will make

Customer Defines Release

77

for the best release by the date. That selection of stories makes up the
release plan.

Some teams find it interesting and comforting to lay the cards out
against the calendar — in the first iteration, we’ll probably do these 10
points, in the second these, and so on. Experienced teams don’t even
bother, because they know that the priorities will change and that
they’re completely comfortable working on whatever the customer
comes up with.

Either way, the main thing to remember is this: this is a plan, an esti-
mate, not a fact. What will happen isn’t just what you laid out here.
It’ll be a lot like that, but it’ll be somewhat better or somewhat worse
for most projects. Once in a while you’ll get really lucky and do lots
better, and sometimes you might not come close.

However it goes, the good news is that you don’t have to wait till the
end. Remember that in the iteration plan, every couple of weeks, you
have a chance to reassess where you are and how fast you are going. So
you have every opportunity to steer your project to success.

Customer Defines Release

78

79

Chapter 9

Iteration Planning

Inside each release, an Extreme team plans just a few weeks
at a time, with clear objectives and solid estimates.

As the XP customer, you have the right to get the highest possible
value out of every programming week. XP projects work in short “iter-
ations” of two or three weeks, and you select the work to be done in
each of those iterations. Your mission is to select work that will maxi-
mize the business value completed by the end of the iteration.

Supporting your customer rights, the programmers agree to work on
the stories that you define, in the order you request. For you to do the
best job of steering the project, you and the programers need to plan
the work in short chunks that we call iterations, including tighter esti-
mates of the work effort than were provided for release planning. The
process goes like this:

During release planning, discussed in Customer Defines Release
(page 71), you considered the business value of each story, while the
programmers assigned Difficulty Points to each story, and they told
you their estimated velocity, also in points. Perhaps your team has a
velocity of 30 points per iteration. To prepare for the iteration plan-
ning meeting, select from all your stories, your favorites, up to a total
of 30 points. Pick out a few extras, just in case. Many customers bring
all their story cards to the meeting, with the ones for this iteration on
top of the stack.

Iteration Planning

80

Your role in the meeting is to present and describe the stories one at a
time, while the programmers will quickly define programming tasks for
each story. When all the stories have been presented and tasked, the
programmers will sign up for work, and estimate the tasks. If there’s
too little or too much to do based on the stories you bring in, you get
to decide which ones to add or remove.

During iteration planning, therefore, the conversation swings back and
forth. You explain a story, with the programmers asking questions. As
they begin to understand the story, the programmers brainstorm the
tasks for it, and put them on the board. Then you go to the next story.

When all the stories have been explained and tasked, there is a brief
flurry of activity while the programmers sign up and estimate the work.
Usually at the end there is some balancing to be done. Programmers
with too much to do trade with those who don’t have enough. And
often, you will need to help out by removing some less important work
from the board. Occasionally you’ll even get to add more. In all cases,
it’s most effective to do the adjustment rather than try to cram just a
little more in. It is tempting to push the programmers to try a little
harder, and usually they’ll give in at the slightest push. But in the end,
their actual velocity, not their good wishes, are your best friend in
steering to success.

If you are planning to meet someone for dinner, in front of their hotel,
and it will take you a half-hour to get there, it won’t help to tell them
it’ll be fifteen minutes. They’ll just have fifteen anxious minutes of
waiting. It’s better to plan your dinners, and your projects, based on
your best measurements of actual performance.

The team won’t lay back. When they get things done early – and often
they will – they’ll ask you for more to do. When that’s the way you
work, everyone gets to feel good. And folks who feel good work
together better.

The planning meeting

Iteration Planning

81

There are three critical steps to Iteration Planning:

1. Customer presents User Stories;

2. Team brainstorms Engineering Tasks;

3. Programmer signs up for work and estimates.

Customer presents User Stories

The customer presents the user stories to ensure that the
team understands what is to be done. The most effective
way to understand a requirement is to discuss it.

This begins the exploration phase of the iteration plan: explaining and
understanding the stories to be done. The customer has selected the
stories to be implemented during this iteration. She reads each story
card, and the team asks any questions they have until they understand
the story. Each team member is responsible for having a good grasp of
what the story requires.

Team brainstorms Engineering Tasks

The team brainstorms the engineering tasks to build a
common picture of the system design, down to the detail
necessary to implement the stories. This step often allows the
customer to see places where the programmers don’t under-
stand the story after all. Observing the design process builds
common knowledge and confidence throughout the team.

Exploration continues by breaking the stories down into tasks. After a
story is understood, the programmers brainstorm the tasks necessary
to implement the story. Each team member is responsible for contrib-
uting as much as possible, and for getting a good understanding of
what will be done to implement the story.

Often, the approach will be clear to all, as the story will be a simple
extension of existing features. Other times, there will be two or more
possible approaches. Of these, the team picks the simplest that could

Iteration Planning

82

possibly work. Sometimes no solution presents itself immediately. In
this case, the team will decide to work on an experiment (Spike Solu-
tion) for the story. The best thing to do is to time-box the experiment
to a day or two. You’re trying to learn how to solve the problem, not
to solve it.

Programmer signs up for work and estimates

Programmers sign up for work to allow individuals or
pairs to accept the primary responsibility for completion of
specific work. The team does not force assignments on any-
one, although someone signing up may ask for help from
anyone, and will receive it.

Programmers estimate their own work to provide the most
accurate possible prediction of what will be accomplished.
In addition, programmers feel more commitment to work
which is scheduled for completion in a time they can believe
in.

Now we begin the commitment phase, signing up for work and esti-
mating it. After all the stories and tasks are presented, programmers
sign up for the work to be done. It’s possible to sign up for all the tasks
for a given story, or just for specific tasks. Each programmer signs up
for as much work as she believes she can accomplish during the itera-
tion, making estimates and keeping track as she goes along.

It is usually best to estimate at the task level, even if you are signing up
for the whole story. If you’re not clear on what a story or task entails,
ask other members of the team. You might even ask how long similar
things are taken, but try hard to use your own estimates, not to be
swayed by the opinions of the other programmers.

Sign up for stories

It’s certainly legal for programmers to mix and match tasks among sto-
ries. However, we think it’s preferable, wherever practical, that you

Iteration Planning

83

sign up for all the tasks on a story, rather than picking and choosing.
The reason is that it’ll help ensure that stories get fully completed.

Suppose that story A has 10 points worth of tasks in it, and I sign up
for seven of it and you sign up for three. Well, you might work on
other important tasks, especially if they add up to a story, and put the
three off. That could put story A in jeopardy. How would the team
notice this problem?

You could have programmers accept responsibility to watch stories,
even if they don’t sign up for all the tasks. Then the programmer who
owns the story might wander over and coordinate getting the three,
but not all programmers are assertive enough to do this. Instead,
they’ll wait, or work on something less important, rather than get their
story out.

You might get lucky. Someone else might notice the three tasks not
getting checked off the board and raise the issue, but if no one is “on
the hook” for the story, it may not get noticed.

If no one feels responsibility for the story, then only the tracker is likely
to notice problems. This puts a complex burden on tracker to notice,
and to cause tasks to be reallocated. This isn’t a good thing. Far better
to have a single programmer feeling responsibility for each story. The
simplest way to do that is to sign up for whole stories where possible,
and to have an individual feeling responsibility for the whole story even
if she hasn’t signed up for all the tasks. That’s what we recommend.

If there are tasks on the story that you just can’t do, then pair with the
person who can do them. That way you’ll learn something and will see
to it that you story gets done. If it’s physically impossible for you two
to work together, you have to fall back on far less effective approaches,
like following up, nagging, begging, and so on.

One more point on signing up for stories. What if the task brainstorm-
ing done by the team isn’t sufficient to complete the story? What if no
one remembered that you have to create an input record format? Well,

Iteration Planning

84

we hope someone will notice, but if there’s no one on the hook for the
whole story, chances are too good that no one will notice.

Notice also the connection to Collective Ownership. Normally if you
need something done, you and your partner just do it. When there’s
an artificial division between the things you can and can’t do, the
whole process slows down. Wherever possible, avoid having specialists.
They’ll just become bottlenecks. Turn them into partners and expert
helpers, instead.

An Iteration Planning Practice

Here’s one way to do iteration planning. It isn’t the only one, but it
has been used many times and works well. Perhaps you should try it
until you work out a scheme of your own.

The team gathers around a whiteboard for the iteration plan. It often
helps if someone acts as facilitator or director to keep things on track.

The customer stands at the whiteboard and writes the name of one
story on the board, then describes what the story means. The team
asks questions and the group discusses the story, until they’re sure they
get it, but no longer.

Then the team proceeds to brainstorm the tasks for that story, while it
is fresh in mind, writing short names for the tasks on the whiteboard,
right under the story name. It might look like this:

Process Union Dues Refunds
Create format for transaction
Add transaction to accepted transactions list
Create Union Dues Refund Station

Then the customer puts another story on the board, and the process
continues until enough stories are on the board. (See Project Velocity.)

Iteration Planning

85

Now it’s time to sign up. Programmers who are particularly interested
in some area jump up and put their initials on the board by the things
they want to do. In more civilized environments, you might ask for
volunteers, but it’s more fun to scramble. Other programmers who
don’t care what they work on this iteration will hang back and pick up
whatever is left over. If you’re a newer member, it’s usually a good idea
to sign up early, so you can balance your need to learn with what you
already know.

It is always appropriate to ask another programmer to help you if you
sign up for some particular thing. That programmer will always answer
yes – it’s a rule.

As programmers sign up, they estimate each thing they sign up for.
They stop signing up when their estimates reach their capacity for this
iteration. (See Project Velocity.)

If there is too much on the board, the customer decides what to take
off, and adjustments are made to signups. If there is too little, the cus-
tomer adds more stories as at the beginning. Continue until the board
is just right.

At this point, all the stories and tasks on the board are signed up and
estimated. Our original story and tasks might look like this, with Chet
signed up:

Process Union Dues Refunds
chet1.0Create format for transaction
chet 0.5Add transaction to accepted transactions list
chet1.0Create Union Dues Refund Station

Note that it isn’t necessary that a single programmer sign up for all the
tasks on a story, and sometimes there’s a good reason not to. In gen-
eral, though, it’s nice to have a single person responsible for making
sure the story gets done.

You may find another way of doing iteration planning that’s better
than this one. If you do, please let us know. Just remember the three

Iteration Planning

86

key parts: Customer presents stories, team brainstorms tasks, program-
mers sign up and estimate.

87

Chapter 10

Quick Design Session

Within each iteration, programmers don’t stand alone.
Here’s a technique to help programmers move forward
with courage. Make it part of your team’s ritual.

Truth is, once you have broken down a story into tasks, you often
already really know how to implement it. Often the best thing to do is
just to proceed to “Test-first programming”. But if you aren't clear on
just what to do, or if you would like a little reassurance, or if you
would like a few additional ideas, have a quick design session.

Get a few people together, and spend a few minutes sketching out the
design. Ten minutes is ideal - a half hour should be the most time
you'll spend to do this.

Do a CRC design with a few cards, or sketch some UML on the white-
board or a sheet of paper. The idea is to understand the objects
involved in what we're about to do, and to understand how to imple-
ment them, or change them, to accomplish the task.

It's important not to spend much time at this, because we'll do the
most learning in the first few minutes. After that, the best thing to do
is to let the code participate in the design session - move to the
machine and start typing in code. Proceed test-first if you can. Other-
wise perhaps work in a workspace or write some simple objects to get
the feel of the solution. Listen to what the code tells you about what it
wants to be. Then go for the real thing.

Quick Design Session

88

The purpose of such a design session is to eliminate our fear that we
might not know what to do. Truth is, we probably do know what to
do, though we'll certainly get some good ideas from our colleagues in
the session. Listen to those ideas, absorb them, then get to it.

Don't waste time arguing over different alternatives. Hear those alter-
natives - embrace each idea - make sure you understand it. Then pick
the simplest one that could possibly work, every time. If a couple of
ideas seem plausible, try them both for a few minutes, pick the simplest
one that could possibly work, and get to it.

89

Chapter 11

Programming

It’s called Extreme Programming, after all. Here’s how we
do the programming part of things.

In the iteration plan, the team received stories from the customer,
broke them down into tasks, and signed up to do them. Here’s how
that “doing” gets done.

An XP programmer works with a partner. All production code is writ-
ten by two people, sitting together at one machine. We call that Pair
Programming (page 107). Your partners vary over time: most XP
teams switch partners multiple times per day. But for some tasks, you
will probably work with just one primary partner, switching only to
address some particular problem, or when your partner is away. And of
course, sometimes you’ll be helping someone else on their task.

The pair work on just one task at a time. Programming is hard enough
without trying to do more than one thing at a time. After completing
each task, the pair will integrate it into the software already released,
then run all the unit tests in the entire system, making sure that they all
run at 100 percent, and they’ll then release the tests and code for their
task into the repository. Tasks are released one at a time because the
project goes best when everyone is working on the most current code
all the time. The best way to do that is to integrate often. We call that
Continuous Integration (page 96).

As the pair work, they’ll proceed by writing tests first, then “fixing”
them to work. Test a little, code a little. There’s a long example of this

Programming

90

in Test-first, by Intention on page 129. The basic idea is that we always
test whether the feature works, even when we know it doesn’t, then
make it work. This process has two great benefits. First of all, it makes
us focus on using the feature before we build it. Since we’ll build it
once and use it frequently, writing the test first makes us concentrate
on the interface design issue, not the algorithm. To testing first gives
us better design.

Testing first also gives us tests. Tests – called unit tests when written by
the programmers for the programmers – are what lets us go fast and
fearlessly. Every feature that XP programmers build must have Unit
Tests (page 113), and those tests must test Everything that could possibly
break (page 265). And every time we release any software, each and
every one of those unit tests must be run, and must score 100 percent.

As the pair works, they will write new classes, but of course they will
also be using existing classes. Often they’ll find that they need to add
features to those classes, in support of their task. When this happens,
the pair makes the necessary changes. We call this process Collective
Code Ownership (page 93). It just means that everyone owns every
class, so that anyone is authorized to improve it at any time. But wait,
you’re asking, why doesn’t that lead to chaos and unreliability, as peo-
ple who don’t know my class work on it? Well, read that section to find
out. Here’s a hint: think about how pair programming, unit tests at
100 percent, and continuous integration might work together.

As we code, we try hard to express our intention first, then the algo-
rithm. That idea, too, is demonstrated in Test-first, by Intention on
page 129, so be sure to check it out. The basic idea is this: when we
learned to program, we learned by solving specific problems, like go
through all the personnel and compute the total of their salaries. So we
thought immediately about the algorithm, ending up with something
like this:

Programming

91

totsal = 0.0;
for (i = 0; i < nPers; i++) {

pers = persons[i].
sal = pers.salary();
totsal += sal }

return totsal;

Now when you run across that chunk of code a few weeks later, it only
takes a few moments to figure out what it is, namely compute total sal-
ary. And if it’s expressed this way, it’s not much harder or much easier:

totsal = 0.0;
for (i = 0; i < nPers; i++) {

totsal += persons[i].salary() }
return totsal;

Programming by expressing intention just means that the code would
somehow express the idea of getting the total salary. Most likely in this
case, we’d make it a class method on the Person class and name it
something clever like totalSalary. Why do we do this? Our chief reason
is clarity. Clarity and speed. Our two chief reasons are clarity and
speed. Clarity, speed, and reduced documentation. Our three chief rea-
sons ...

Expressing intention makes the code clear the next time we, or other
programmers, pass by. Since we share the code ownership, the next
person passing through may well be new to the area. If the code says
things like “totalSalary”, they’ll get it more quickly, and they’ll be able
to change it more reliably. They’ll more readily notice that the code
exists, and will therefore reuse existing code instead of accidentally
duplicating the loop that they didn’t notice, buried somewhere else
strange. And if the meaning of the method is clear, we don’t need to
write a comment or a document about it, and if the method is where it
should be (like on the Person class), we won’t have to draw roadmaps
and do training for everyone. Want a method about persons? Look on
the Person. This makes everything go more smoothly and quickly. It’s
a good thing.

Programming

92

Working in pairs like we do, and sharing ownership of all the code, it’s
a good idea if we all program the same way. We need to name things
similarly, so we’ll all know where to look. We need to format things
similarly, so we’ll all see code that looks like we expect. We need to cre-
ate objects in standard ways, and so on. So every XP team needs to
have a Coding Standard (page 97). The team needs to agree on it, so
don’t worry too much. Having everything look the same helps every-
one go fast, so be reasonable about your favorite curly-bracket style
when it comes time to decide. You’ll quickly adapt to the new stan-
dard, so no stress, OK?

As we code, we always try to use Simple Design (page 93). We do this
in two key ways. First, when we are thinking how to do something
(having already expressed our intention to do it), we think about, and
generally do, the simplest thing that could possibly work. Will an array
do? Use an array. Will an if statement do? Use one? Will a case state-
ment do the job? Well, try to think of something simpler – there
usually is something. Then, when the tests are running, we look for
duplication and simplify the entire system to be as simple as possible.
This final simplification process is called Refactoring (page 95).

Now, with the tests all running and the code simplified, we’re ready to
release the code. That can be a moderately complex process, and we
talk about it in some detail in Releasing Changes (page 145). The basic
ideas are simple: keep the unit tests at 100 percent, so there are no
regressions; release often, so that there will be few collisions from peo-
ple editing the same classes; then resync with the rest of the team, so
that the system stays in continuous integration; use a single point of
integration to serialize updates. Good XP pairs release software multi-
ple times per day and retest the integrated system every time. The less
time you wait, the fewer problems you’ll have.

There you have it. Task done, built by a pair of programmers, testing
first, expressing intention, maintaining a simple design through start-
ing simply and Refactoring (page 95) as needed, following an
agreed-upon coding standard, and releasing code frequently to keep
everyone notching forward together. Check out some important
details below.

Programming

93

Collective Code Ownership

I’m not afraid to change my own code. And it’s all my own
code.

As you work with code, you’ll inevitably find that there’s behavior you
need on objects that you weren’t planning to work on. You’ll always
find that there’s commonality between what you’re working on and
some other object you weren’t thinking about when you started. You’ll
always find behavior on one object that belongs somewhere else. You’ll
find objects that you were planning to work with that are recalcitrant,
somehow resisting your attempts to use them. What should you do?

Well, if you owned those objects, you’d just fix them, wouldn’t you?
Yucch, this is wrong, you’d think. Let’s fix it. Whack, wham, a little
refactoring and now it’s all better. Then you’d move on.

If you didn’t own those objects, it’d be a different story. You’d have to
find the owner, explain your problem, talk him into the need for the
change, wait for him to whine and complain about how much he has
to do, then wait again while he gets around to making the changes you
need. Then, of course, they wouldn’t be quite right, either because he
didn’t understand – or because you didn’t.

The first way is better. Therefore, own everything. There you are, your
problem is solved. If an object needs to help you, own it, and make it
help you. If its interface isn’t quite right, own it and fix it. If it doesn’t
have quite enough power in some method, own it, and beef it up. If it
doesn’t inherit the right stuff, own it, and move it.

Life is better if you own everything. There’s just one drawback: it
wouldn’t be fair to all the other programmers if you didn’t let them
own everything too. So all the programmers own all the code. Now
we’re just down to the details of how.

Simple Design

Programming

94

Simplicity is more complicated than you think. But it’s well
worth it.

We all strive for simple and clear design, don’t we? Of course we do.
But in XP, we take it to extremes. At every moment in time, we want
the system to be as simple as possible. That means that we want no
additional functions that aren’t used, no structures or algorithms that
are more complex than the current need would dictate.

As programmers, we pride ourselves on our ability to predict what
“they’re gonna need”, and we like to put in generality looking forward
to that day. Extreme programmers don’t do that. The best don’t do
that, ever. Isn’t that risky? Won’t it be harder to put in later? Well, no,
it isn’t risky, and no, it won’t be harder to put in. Here’s why: if you
keep the system simple enough at all times, then whatever you put in
will go in easily and in as few places as possible. Here’s what we mean
by simple enough: our code is simple enough when it:

1. Runs all the tests;

2. Expresses every idea you need to express;

3. Contains no duplicate code;

4. Has the minimum number of classes and methods.

Let’s think about the implications of this a bit. If there is no duplicated
code, then whatever needs changing is in just one place, cornered,
where it’ll be easy to change. Therefore adding needed generality or
enhancements will be easy. If the code runs the tests and has the mini-
mum number of classes or methods, then there is nothing in it that is
unused. Therefore it is efficient and dedicated to exactly what it has to
do right now. If the code expresses every idea we need to express, we’ll
be able to find the concepts we need (like totalSalary) when we look
for them.

Code written like this, tested intensely, very expressive, free of duplica-
tion, and of minimal size, is a delight to work with. It’s a delight to

Programming

95

write as well, and of all the joys of XP, seeing this craftsmanlike simple
code emerge is one of the greatest.

To keep the code this way, we have to become good at refactoring.

Refactoring

We keep the code simple at all times.This minimizes invest-
ment in excess framework and support code. We retain the
necessary flexibility through refactoring.

Refactoring is the process of improving the code’s structure while pre-
serving its function. The definitive book on the subject is Martin
Fowler’s Refactoring: Improving the design of existing code. Get it,
study it, learn it. We can’t begin to do it justice here, but we’ll tell you
a bit about how and why.

Even if you spent a lot of time designing up front, as you wouldn’t do
on an XP project, the details of your design would inevitably be wrong
here and there. If you focus on delivering business value rapidly, your
system will have an even greater need to evolve. Refactoring is what
keeps you from getting wedged by your own changes. Have you ever
needed a new way to do something in the code, implemented it, and
then put off updating all the existing uses of the old way? Well, proba-
bly not, but we have, and we can tell you that it leads to code that is
hard to understand, hard to update, and contains duplication. Since
you’ve probably never done it don’t start.

Instead, when the design wants to change, as it will, change it. Put in
the new capability you need; move the functionality to the class where
it wants to be; create the new helper class that’s called for. Then bring
the entire system into line using the new capability, just as if it had
been there all the time. Nothing else is really good enough – every-
thing else leaves you with cruft growing on your code.

Refactoring is a formal process (but not a difficult one) that lets you
change the code without breaking it. Each refactoring step is revers-
ible, so that you can try things and if you don’t like the outcome, put

Programming

96

them back. This lets you have a curious, experimental, learning atti-
tude about your code. Hmm, this seems a bit off, let’s refactor it this
way. Oh, that’s better, we’ll leave it. Or, um, that’s not so good, let’s
put it back.

Through refactoring and focus on simple design, we can build a system
incrementally, focused on business value, without getting cornered by
an early decision that turns out to be wrong. We expect our early deci-
sions to need updating, and through refactoring, we know just how to
do it. Read Martin’s book and learn refactoring. It’s a critical skill in
these times of rapid change.

One more thing: one reason people don’t change existing code is that
they’re afraid they’ll break it. But you have all those unit tests that ran
at 100% when you started. When you’re finished with a little refactor-
ing, run them again. If they break, see what happened. Most likely, you
broke something, although sometimes you’ll just find that the test
needed changing to match the refactoring. The tests are your safety
net, protecting you from breaking the system during fast evolution.
Just don’t tell anyone we have a safety net – they wouldn’t let us call it
Extreme Programming if they knew we work with a net.

Continuous Integration

Integration is a bear. We can’t put it off forever. Let’s do it
all the time instead.

Here's an idea. Let's divide up the system. We'll all write our share of
the objects. It should only take a few months. We'll all test our work.
Then, when everything is written, we'll just integrate the code in a
week or so, run a few acceptance tests, and release.

Does this sound like a recipe for disaster, with mismatched method sig-
natures, objects that don't work as their users expected, and a system
that won't even load, let alone actually run? We sure hope it sounds
that bad.

Programming

97

The longer we wait between integrations and acceptance tests, the
worse things get. Wait twice as long and we'll have four or more times
the hassle. The reason is that one bug written just yesterday is pretty
easy to find, while ten or a hundred written weeks ago can become
almost impossible.

The Extreme solution, of course, is to integrate as often as possible.
We call it Continuous Integration. A good XP team will integrate and
test the entire system multiple times per day. Yes, multiple, times, per
day.

Most of us have worked on systems with a zillion lines of code that
took hours to compile and link. The authors once met with a team
whose system took a week to build. The system in question was smaller
than ours, which took ten minutes to build on a bad day.

Well, if your system already takes ages to build, you're on your own.
You'll have to get it down any way you can. But if you're starting
clean, it's really quite easy.

Build multiple times a day. If the build starts getting slow, get right on
it. Keep inter-file dependencies low. Set up your make dependencies to
keep as many files as possible in object form except when they're actu-
ally edited. Use dynamic loading where possible. Build intermediate
partially-linked object files. Build lots of DLLs wherever possible.
Experiment with different structures, learn what works best. But above
all, keep build time low.

Keep after it. Effort spent improving the build is more than repaid in
reduced integration hassles.

Work toward continuous integration. And while you're at it, keep the
unit tests fast.

Coding Standard

I can always read my own code. But wait, it’s all my own
code.

Programming

98

We all code to an agreed coding standard. This ensures that the code
communicates as clearly as possible and supports our shared responsi-
bility for quality everywhere. It doesn’t matter so much what the
standard is, as that everyone use it. Yes, we know it sounds regimented
at first, but it will pay off. Suppose someone went onto your computer
some night and reformatted all your code. Not only would you change
your password, but you’d be slowed down. You might even go to the
trouble to format it all back, because you need to be able to just glance
at the code and see what it’s up to.

Now, it turns out that it isn’t the specifics of your favorite formatting
that matter, it’s your familiarity with them. So push a bit for your
favorite style, but be prepared to bend and go with the team’s choices.
In a very short time, if you use the new style, you’ll get just as good at
it as you are with your favorite. You may even come to like the other
style better. No, really, it happened to us.

Now, what about the specifics? Easy and simpler is better. If you’re
programming in Smalltalk, our advice is to adopt Kent Beck’s Best
Practice Smalltalk Patterns as a whole. They’re well-thought out, con-
sistent, and simple. If you’re not lucky enough to be programming in
Smalltalk, you’re on your own. Look for some industry or local stan-
dards in your language, and adopt those. Here are some key topics
we’d think about in our standard:

Indentation. Use a consistent indentation format. Same tab widths all
the time, same bracket placement. Always indent subordinate code,
even if you’re not using Python, where you have to.

Capitalization. Use consistent capitalization practices. Follow what’s
typical in your language, not something left over from another lan-
guage, even if you’re more familiar with it. Do they capitalize classes
and put underbars in their names. OK, go with it.

Commenting. Use sparse commenting. A focus on clear, inten-
tion-revealing code is more valuable than all the comments you can
write. Do write them when you need them - to explain an optimiza-

Programming

99

tion, to explain something you just can’t simplify, and so on. Don’t’
write them when they don’t really help.

Method size. Keep methods small. If the code can’t be seen in one
display screen, it’s too long. It’s probably too long anyway. While
you’re at it, avoid those big comment blocks at the beginning of the
method - they obscure what matters, the actual code.

Names. There is another area of standardization that you want to
work on throughout the project, and that’s the names themselves.
Even though your name formats will be consistent, the names of
things want to be consistent as well. It’s not helpful if you call it total-
Salary and I call it totPay. We need to name things similarly so that we
can find them, and so that we can understand them quickly when we
see them. The impact of consistent naming is small at first, when the
system is trivial, but as things get bigger and you learn to go faster,
consistent names do their part to keep you going at full speed. Well
worth the investment.

Use names that are intended to be read, not convenient to type.
Longer is better, within reason. The idea is that your code needs to
communicate with you, and with your colleagues, in the future, when
you’ve forgotten what “pig” and “cow” meant to you at the time. For
further ideas on this, read Ward Cunningham’s System of Names,
http://c2.com/cgi/wiki?SystemOfNames, or the names discussion in
Hunt and Thomas’ Pragmatic Programmer, or go back to the classics.

In XP we call this concept Metaphor, the idea that each application
should have a conceptual integrity based on a simple metaphor that
everyone understands, explaining the essence of how the program
works. The essence of this idea is to have a common concept of what
the program is “like”. C3 payroll, for example, is like a manufacturing
line, building paychecks by taking hour parts and converting them to
dollar parts, assembling all the various parts until you get a paycheck.
Odd as it may seem, this metaphor let the customer and programmers
communicate clearly about what the system does and how it does it.

Programming

100

Creating a good metaphor for your program is something we can’t yet
teach you to do — we manage to do it about half the time we try. It’s
a brainstorming process that, when it succeeds, gives you a basis for the
names of all the objects in your program, and gives you a clear way of
describing its operation to programmers and humans alike. Suddenly a
program that seemed mysterious and complex becomes clear and sim-
ple. Get creative. When you have the right metaphor, it will click. On
the other hand, if your general ledger program just looks like general
ledger to you, or your air traffic control program doesn’t look like an
ant colony, move on, and build conceptual integrity some other way.
When we are able to say more about metaphor, you can be sure that
we will.

40-Hour Week

One time on your author’s common project, C3, the entire team went
into a heavy-overtime mode, in order to meet some delivery date. (Yes,
even extreme teams can get up against a deadline once in a while.
Scope had not been managed properly, and we were up against it.) We
worked really hard for a few weeks. Most of the team were coming in
on weekends, in the middle of the night, and generally acting like we
were in Silicon Valley instead of Michigan.

After the crunch was over, we all took some time off and then got back
to it. We looked upon the work we had done in the overtime period,
and unlike the Creator, we did not see that it was good. In fact, it was
bad1. We found poorly written code; we found untested code; we
found unrefactored code. We found all pig iron.

1. We offer apologies here to our wise and more gentle colleague, Don Wells,
(http://www.extremeprogramming.org), who doesn’t like to call work done with the best
of will “bad”. Suffice it to say that we looked upon what we had wrought and did not see
that it was good.

Programming

101

During the crunch, we were honestly doing our best. Our best just
wasn’t very good, because we were tired. We can’t prove it yet2, but
from our own experience we are certain that heavy overtime is bad.
Thus the XP rule, 40-hour week: Do not work more than one consecu-
tive week of overtime.

Summary

Of course programming is what it’s all about. XP embeds program-
ming in a process that lets programmers stay healthy through the
course of a project, by helping the project to stay healthy. As we pro-
gram, we work in pairs, using simple design plus refactoring to keep
design quality high. We integrate all the time, so that we can all
improve the code wherever it needs improving. And we communicate
through the code by writing in a meaningful, standard way.

2. We can’t prove it yet, but we’re working on it. Recent reserach has shown that the com-
mong hospital practice of working residents and interns results in more mistakes than let-
ting them work more normal hours. Remember that the next time you go to the hospital,
and the next time you decide to program while you’re tired.

Programming

102

103

Sidebar - Chapter 11
Code Quality

A little more detail on something close to our hearts:
simplicity.

Remember when code is “simple enough”. Everything we write must:

1. Run all the tests;

2. Express every idea that we need to express;

3. Say everything once and only once;

4. Have the minimum number of classes and methods consistent with
the above.

Run all the tests

It's most important that the code does what it has to do. In XP there is
only one way to know whether the code does what it has to do: there
must be a test. A feature does not exist unless there is a test for it.

Does this mean that every class must have tests? Not necessarily, but it
wouldn't hurt. If a class has no behavior that could possibly break,
then it doesn't need tests. If it could possibly break, test it.

What if another class uses ours, and the other class has tests? Does our
class need tests? More likely than not, it does. Does the test for the
other class test every feature of our class? Very likely it does not. Will
our class ever need enhancement or clarification or optimization? Very
likely it will. Changing our class and testing it by running other peo-
ple's tests isn't very well targeted.

Code Quality Express every idea

104

Most classes need tests for anything that could possibly break. Writing
those tests will find problems sooner and let the project go faster. Writ-
ing the tests first will make our classes easier to use and more compact.

The code we release must run all the tests. It's not sufficient that the
tests for our code run - all the tests in the entire system must still run
whenever you release. This ensures that changes we make don't impact
other people in surprising ways.

Express every idea

As we write code, we are thinking. (We'll assume that, anyway.) As we
go along, we think:

I have to turn all these strings into operands …turning this string into
an operand I have to see whether it starts with an operator … an oper-
ator is a plus or a minus … or it might not have one … if it has one, the
rest of the string is the variable name … if it doesn't, the whole string is
the variable name …

At the end of coding, the program should clearly express all of those
ideas. Yes, I know they're all there, embedded in our loops and nested
if statements. But they are hidden. Instead, let every idea be expressed
explicitly in the code.

Say everything once and only once

Whenever code is duplicated, get rid of it. Make a method of it, make
an object to do it, do something. Get rid of it.

Where there is duplicated code, there is usually an idea lurking: first I'll
convert this one, then I'll convert that one. That idea needs to be
expressed.

Where there is duplicated code, there is always an opportunity to make
the program smaller. Do it.

Minimize number of classes and methods Code Quality

105

Where there is duplicated code, there is always an opportunity for one
of the duplicates to get fixed and the other one forgotten. Remove this
opportunity.

Where there is duplicated code, there is more code to read before you
understand the program. Make the job easier.

Hmm … there's duplication above. I should have said:

When there is duplicated code,

• There is usually an idea lurking: first I'll convert this one, then I'll
convert that one. Express that idea.

• There is always a way to make the program smaller. Do it.

• There is always a chance for one of the duplicates to get fixed and
the other one forgotten. Remove this chance.

• There is more code to read and understand. Make your job easier.

Minimize number of classes and methods

When all these things are done, if there are classes or methods we
don't need, remove them. This won't happen very often - program-
ming with tests first, and expressing each intention once and only once
generally minimizes classes and methods.

We put this rule here to remind ourselves that it is last. Minimize
classes and methods, but not at the expense of correctness, expressive-
ness, or duplication of code.

Code Quality Minimize number of classes and methods

106

107

Chapter 12

Pair Programming

On an Extreme Programming team, two programmers sit-
ting together at the same machine write all production
code.

Pair programming has been around for ages. We’ve heard that P. J.
Plauger wrote about working in pairs back in the 70s, perhaps in one
of his "Programming on Purpose" columns, but haven’t been able to
find the reference. Nearly everyone has had the experience of working
together with another programmer on something really difficult, or on
a really serious emergency, and it’s usually a good experience.

With pair programming, as with most of XP, we turn the dials up to
ten. We don't reserve pair programming for difficult problems, or for
serious emergencies. We do it all the time: all production code, all the
time.

Two programmers working together generate more code, and better
code, than the same two programmers working separately. They can
work longer without getting tired, and when they're finished, two peo-
ple understand everything, instead of understanding just half of
everything.1

A cat is not a dog, we are told, and pair programming isn't one pro-
grammer looking over another's shoulder as she bangs in code. Pair

1. We’re not just making this up. Experiments in pair programming show its benefits. See,
for example, Laurie Williams and Robert Kessler’s article in the May 2000 Communica-
tions of the ACM.

Pair Programming

108

programming is two programmers, side by side, working together to
write the program. The programmer currently doing the typing is
called the driver, and the other is called the partner. The partner isn't
sitting idly by, but is actively engaged and helping every minute.

When you are typing in a method definition, you are spinning a lot of
dishes at once. You have an intention in mind for the method - it is
supposed to accomplish some task. You are trying to type legal state-
ments of the programming language, keeping the syntax rules in mind.
You are trying to type meaningful code, code that can be understood
now, and that will be understood months or years from now. You are
trying to conform to the team's coding standards. You are sending
messages to other objects, requiring you to remember what they are
and what messages they understand. All this is fitting into an overall
context of what you are trying to accomplish - and all of it has to be
spelled and punctuated correctly. No wonder we make so many mis-
takes. It's a wonder we can program at all.

Your experience may vary, but what I can keep well in mind is usually
the purpose of the method, the general algorithm I have in mind, and
most of the syntax rules of the language. If I need to think about any-
thing else, I have to kind of swap out one of those items and swap in
something else, like the protocol of some object I'm talking to. Every
time I make that mental swap, I have a chance of losing a little bit of
my picture. It slows me down and once in a while I even make a mis-
take. (On the average, I make at least one mistake requiring an edit (a
backspace or worse) in every method I write. I almost always need to
reformat or rename variables, though some of that can be done after
the method works.)

My partner keeps track of the things I don't have in my brain. Because
he doesn't have to think so hard about just what the method is, he
spots simple errors like spelling and punctuation. Because he is track-
ing carefully with where we're going, he reminds me of the message
protocol to the objects I'm dealing with, and he makes sure I'm not
going off down some rat hole, implementing something we don't even
need. As I move from method to method, he makes sure that we're on
a consistent strategy, and reminds me of the names of the methods and

Pair Programming

109

variables we've just defined. Finally, my partner acts as the pair's con-
science, reminding us to keep the code communicative, to keep it
formatted to the team's standards, and to keep it tested.

Both driver and partner have responsibilities during pair programming.

The partner is responsible for being completely engaged. He's not just
along for the ride: he must understand everything that is being done.
If he doesn't, he needs to stop the process and get hooked up again.

The partner must be working the same strategy as the driver. He might
have another idea, he might even think it is better. Tough. When
you're the partner, your job is to help the driver do what the driver is
doing. Get with what's going on and support it.

The driver, in addition to typing in the code, is responsible for making
sure that the partner can be completely engaged. The driver explains
what she is doing, so the partner can understand it. She also listens to
what the partner is saying, and to what he is not saying. If she stops
hearing encouraging noises from her partner, she needs to stop and see
what's wrong. If she hears discouraging noises, she needs to stop even
sooner.

We're trying to build a mind-meld here, and both players need to keep
it going.

It takes a little time to get used to pair programming, and at first it will
feel a bit awkward. Then you'll get good at pairing with someone, then
finally you'll get good at pairing with most anyone. Just keep at it.
Here are some tips:

The partner can say “Let me drive” when he can't express an idea ver-
bally, or when the driver is stuck. And it's a good idea to switch drivers
every so often anyway, just to keep from getting stale.

It's generally a good idea if the programmer who is least sure of what's
being done does most of the driving. It's easy to let yourself get sucked

Pair Programming

110

along when you don't really get it, and then you lose the advantage of
pairing.

As driver, notice all the times your partner helps. Acknowledge them
to yourself and to him. Sometimes it'll just be syntax or punctuation
help. Sometimes he'll remind you of the method name you were trying
to remember, or point to the window button you're looking for.
Sometimes he'll remind you to write a test that you need, or remind
you that the code isn't communicating as well as it could. Notice these
aids, and acknowledge them.

As partner, learn your driver's rhythm. Don't prompt every time
before he's ready. Just prompt when he's really a bit stuck. Try to
speak in “we” terms rather than “you” terms, especially when what
you have to say isn't entirely favorable. “We need to make that variable
name a bit more clear.”

Speak in “I” terms when the going gets tough. Is the driver writing
something grotesquely ugly, the least understandable code you've ever
seen? Then just say “I don't understand that. Can you help me out?
Let's make it better.”

Partner, don't take the driver off his strategy unless you really need to.
If you do, try something like “I've got an idea. Let's try it that way for
five minutes, then I'd like to try something.”

Driver, don't run away with what you're doing. Chances are, your
partner does have a better idea, because while you've been down in the
mud, he's had his head up above the ground looking around. Listen.

We can't offer much more detail than that. Each pair is unique, but the
general moves are the same. Work at pairing. The result will be more
code, better code, better understanding of the system, and more fun.

Pair programming, if you can do it, will make you go faster in any situ-
ation. In Software Development (October 1999), Larry Constantine
put it this way:

Pair Programming

111

They spell each other, check each other's work, inspire each
other, fill in each other's weak spots, and crank out better code
with fewer defects. The same formula works for learning a lan-
guage or using a new piece of software - you not only learn
from the system or the material but from each other. A dynamic
duo who work well together can be worth three people work-
ing in isolation.

Pairing doesn't come naturally to everyone, but most folks get to like
it once they try it. Here are some techniques to try to get it going:

Ask for help by pairing. This is a powerful approach to many problems,
and a wonderful one for pairing, because it lets the other person be the
strong one. “Jack, could you sit down and help me for a couple of
minutes?” Next thing you know, you're pairing.

Provide help by pairing. When someone asks you how something
works, or how to do something, try “I've got a few minutes, let's take
a look at it.” Move to their machine, give them the keyboard, and help
them through it.

Send help by pairing. After folks get used to working with you,
encourage other pairs to get together: “Susan, could you sit with Jim
on that and help him with those formats? I'll join you if you need me.”

Drop in. Just plunk down at the desk of people who look confused.
“Whatcha doin'?”

Finally, remember that desk or table layout is critical for pair program-
ming. Computer in the inside corner doesn't work. Two chairs side by
side facing the monitor, that's the ticket.

Summary

Two programmers working together are more effective than two
working alone. Team knowledge grows faster and the work is more
fun.

Pair Programming

112

113

Chapter 13

Unit Tests

Extreme Programmers test everything that could possibly
break, using automated tests that must run perfectly all the
time.

In order to deliver value as early as possible, XP teams work only on
what the customer orders. They refine the design and code continually,
so that the system is always clean and capable of evolving. Code refine-
ment is only possible if you have lots of tests to prove that things still
work. Therefore, XP teams build automated unit tests for everything,
and make sure they run perfectly all the time.

XP teams share ownership of all classes. This lets them go fast, with no
waiting for someone else to get around to putting in a needed feature.
When code is being changed rapidly, you need to know you haven’t
broken anything. Therefore, XP teams build automated tests for every-
thing, and make sure they run perfectly all the time.

Let’s be clear about this: you need tests for every class – for everything
that could possibly break. And all those tests must run at 100% all the
time.

Imagine that you had just been brought in to maintain an application
of a thousand or so classes, ten thousand methods, 50,000 lines of
code. The former team have all run off to join the circus. You might be
feeling some fear about now. Then your manager tells you one more
thing: “Oh, by the way, there are about 10,000 tests for the system,
testing all the classes and important methods – and every one of them

Unit Tests

114

runs correctly.” We hope this would give you some comfort. We know
it would give us comfort.

It turns out that if it’s your own ten thousand methods and fifty thou-
sand lines of code, the tests will give you the same comfort. So we
want tests for everything, and we want them to run perfectly all the
time. How do we do that?

It helps to start at the beginning. We’ll address later what to do when
you have a bunch of code to maintain and not enough tests. Starting
on a new project, you can have all the tests you will need by writing
them as you go. And you’ll go faster when you work that way, a won-
derful additional benefit.

The best way to write tests for a class is to write them first – test a little,
code a little – rather than writing them at the end, or even writing
them all at the beginning. All of these ways will result in what you
need, but going bit by bit is best. We’ll focus on that.

Testing bit by bit

There’s a full example on this in Test-first, by Intention on page 129.
Check that out for some detailed ideas. Here we’ll just give you the
basics, and we’ll assume that you’re using a testing framework like
xUnit (page 127), our favorite testing tool.

OK, you have decided you need a class to hold a collection of com-
pleted tax returns. It has to be able to give back a collection of all the
returns whose “score” is larger than a user-supplied number, and it has
to be able to remove all the returns whose score is less than some other
number. And it should be able to accept new forms being added. This
class, of course, will be driven by the tax auditor’s GUI that Bill is
working on, and it will use the return scoring capability that Martha is
building.

Unit Tests

115

We’ll even suppose that Martha isn’t done with the tax return objects,
and certainly we aren’t going to work with the GUI. Our mission is
just to write the Tax Return Scrutinizer.

We want to build up our tests, bit by bit. We’ll first test that we can
create a Scrutinizer with no elements, and that it behaves reasonably.
Our first test, therefore, just creates a Scrutinizer. Then we ask it some
questions: “Give me all the returns scoring more than 10". It should
answer an empty collection. We ask it to remove all the returns scoring
less than five. It should happily accept this command, removing none
of its already-absent returns.

We create a test case in xUnit, named ScrutinizerTestCase, and write a
test that looks like this:

testEmpty
create a new Scrutinizer
select returns with score > 10
result size should be zero
remove returns with score < 5
nothing should blow up

Then we run the test. Depending on your programming language, you
may have to define the Scrutinizer class, or maybe even some of its
methods. Be sure to define the methods from the point of view of the
user, i.e. your test. This is a good chance to make them easy to use.

Finally the test can run. Probably it will run correctly. If it doesn’t
(maybe you forgot to initialize the Scrutinizer’s return collection), fix
it.

Now the test works, and we move on to another one. Let’s test adding
returns. But wait, there aren’t any, Martha isn’t finished! What shall we
do? I just asked Chet, and he said, “We’ll make a fake one.” That’s
right, we’re just here to implement and test the scrutinizer, and we can
test it without having any real returns to test. So create a stub class
called FakeTaxReturn, give it a constructor method, and write your
test to add them in.

Unit Tests

116

testAdding
create a scrutinizer
add some fake returns with various scores
see how many returns the scrutinizer has

The test for adding needs to find out how many returns are in the
Scrutinizer. We might have done that in the first test, but it wasn’t on
our mind, because we knew that a new Scrutinizer has no returns. Size
seems like a reasonable thing for it to be able to answer, so we’ll just
implement a public size method and move on. In rare cases you might
need to build a friend method or do something a little more exotic.
Generally, it can be this simple, and we recommend that you keep it
that way.

OK, now we want to test the selection. No problem, just extend the
FakeTaxReturn to have a score, and use it in a test. This would be a
good time to coordinate with Martha on the name of the method, so
she’ll use the same name in the real TaxReturn. Our test is easy: add a
few returns of various scores, ask for returns with scores bigger than X,
and see if we get the right number of returns.

testSelecting
create a scrutinizer
add some fake returns with various scores
select all the returns with score > 10
see if you get the right number
select all the returns with score > 5
see if you get the right number.

Some people might not be satisfied just checking the number of
returns. They’d want to look at the result collection and see whether it
contained the exact right returns. Do this if it makes you comfortable,
but if by inspection you can see that if the code gets the right number
of returns, it must have the right returns, there’s no need to test
further.

Here’s an important point: you are trying to test everything that could
possibly break in this object. If you can see from the code that if it
selects a return correctly, it’ll return it correctly, then there’s no need

Unit Tests

117

to dig further. Use judgment, of course, but there’s no need to go
nuts. There’s more on this in Everything that could possibly break
(page 265).

Now we’re in good shape to test the removal. We have enough mecha-
nism here to write the test, except for the removal method itself. Add a
few returns, select some, remove the ones less than some number,
check to see how many are left, check some selections to see if you get
the [new] right answer. Run the test, watch it fail until you fix the
removal mechanism. We won’t show the test pseudocode this time,
you can certainly visualize it by now.

Inch by inch, step by step, we test and build our way to a running class.
When we’ve got it doing everything we want, we’re ready to release
the tests and the code.

That’s right, tests and code. Now that we have written these tests, we
don’t throw them away, or file them for future use. We immediately
make them permanent parts of the system. We release our new test case
and our new classes to the version control system. That’s discussed in
more detail in Releasing Changes on page 145. But here’s a short
summary:

Everyone on the team only releases code when all the unit tests in the
entire system run at 100%. This is a critical point about XP, so we’ll
repeat it: in the released code, all the unit tests must run at 100% all
the time. When we put our Scrutinizer code away, with all tests at
100%, we’re sure that everything works in the whole system. When we
come back later and add some more new tests and code, then run the
whole suite and something breaks, we know that only our changes
could have broken it. If we’ve only worked for a little while between
releases, we’ll have no difficulty finding the problem.

The effect of all this is that the system kind of notches forward in cor-
rectness. Each time a pair of programmers releases a few more tests and
a bit more code, the system becomes more complete, and more correct
at the same time. Using this approach, you’ll rarely, if ever, get those

Unit Tests

118

embarrassing regressions where you release what was supposed to be a
simple change and the whole system goes weird.

The feeling of confidence that comes from building tests for every-
thing, together with the code, is one of the best parts of XP. Be sure to
experience it for yourself.

One more point on the Scrutinizer test, then we’ll move on to some
more general unit testing questions. We used a FakeTaxReturn to
make sure that the Scrutinizer worked, without having to wait for
Martha to get the real TaxReturn object working. That leaves a small
crack in the system, the possibility that Martha will name the method
that returns the score something other than score. A case could be
made that the Scrutinizer should be tested with real TaxReturns as
well.

We’d agree with that, but there are two key points to consider on the
other side. First of all, we don’t want to have programmers waiting on
each other. That just slows things down. You’ll naturally try to order
your tasks to help that happen, but things work fine if you just go
ahead. Second, with more complex collaborating objects than the
Scrutinizer, you can get strange interactions in your testing. So we
often find that using stub objects instead of the real thing will simplify
the testing and help you go faster.

But it’s important not to lose track of the connection between the
assumed method name and the real one. There are several good
approaches. Pick one that applies best in the actual situation.

1. You might find it desirable to write a task on the board to write at
least one test for Scrutinizer using real returns, when that’s possi-
ble.

2. If Martha hasn’t even started the TaxReturn object yet, create the
class yourself, and give it the necessary method to answer the score,
and use it in the test. Now when Martha gets started on TaxReturn,
she’ll find the method and the tests, and will work to preserve the
semantics. It’s worth mentioning to the team that you’re creating

Unit Tests

119

the TaxReturn object, so everyone will know to look for it.

3. If TaxReturn exists, you could check it out, implement “score”,
and check it back in. If Martha has it checked out at the moment,
she’ll get a collision when she goes to release, but the integration
will be trivial. Of course you’ll give her a heads-up that you’re do-
ing it anyway.

4. You could write a test that uses reflection to see whether there is a
TaxReturn class, and if there is, whether it responds to the score
method. If it doesn’t, fail the test. This is a bit glitzy for the exam-
ple, and you’ll have to wear the propeller beanie, but for a more
complex situation, it can be very worthwhile. If every subclass of
some master class must have its own implementation of “foo”, for
example, a unit test that checks them all can be a lifesaver.

Having discussed all these options, we now think that the FakeTaxRe-
turn wasn’t the best possible idea. Probably creating the class or
editing it would have been better in this case, because it would require
less human coordination, instead relying on the source code and the
version control system to keep things in order. We decided to leave the
example this way, however, because it gave us a basis for the discussion
of the options. Sometimes you get lucky.

Summary of testing steps

Here, in a nutshell, is a sketch of unit testing the XP way:

1. Create a test class. Name it in such a way as to evoke the class or
process you will be testing. If you are testing the Scrutinizer class, call
the test class ScrutinizerTestCase.

2. Code a set up method to create a Scrutinizer object. You may find
the need to add example creation methods to the tested class to aid in
the setup. Be sure to test this code, as an error in this type of code can
be very difficult to debug later.

Unit Tests

120

3. Write a test. If your new behavior will change the state of the Scruti-
nizer instance, code an assertion to verify its current state. Then code
sending the message for your new behavior to the Scrutinizer instance.
If you don't know the message selector, now is the time to make one
up. Depending on your implementation language, you may need to
code a stub method. Now code an assertion to verify that your
expected change in state occurred.

4. Run the test. It will probably fail. If it does not, you are done, all
that is left to do is release. Go to step 6.

5. Modify the model code and repeat steps 4 and 5 until the test runs
successfully.

6. Release the model code and the test case.

Testing questions

Now here are some questions that get asked every time we talk about
this subject, so we’re guessing that you’ll have some or all of them. If
we miss yours, drop us an email.

How do you test when you have an attached database?

There are a couple of things to be concerned about with an attached
database. First of all may be performance. We need the unit tests to
run really fast, so that we can do our test-code-release cycle as quickly
as possible. If lots of unit tests rely on the database, it can slow the tests
down. That causes programmers to release less frequently, which
increases collisions in the code manager, which slows you down even
more. That’s bad. So we need to keep the database-related tests fast.

The basic trick is to write most of the tests that use data from the data-
base to use data from files, or from memory, instead. Just capture the
database result, as records or objects, and write it to a file in the test
directories. Then write the tests to use the file data instead of going to
the database. Often this is best done by having a dummy database

Unit Tests

121

object, perhaps one that looks at the SQL statement it’s sent and just
opens the corresponding data file. Other times you can test using the
data without needing to fake out the database.

But you do need to test the database access as well. Having a very few
tests that actually open the database and get records from it, making
sure that the connection works, that the records come back right, and
so on, is a really good idea. Just try to make that test as tight as
possible.

You might feel the need to test your record-mapping methods, the
ones that take the stuff that comes back from the database and turns it
into objects. These tests can be written against hard-coded data as well,
but it might be a good idea to have one that runs against the real data-
base, just in case a version changes or something, and they start
sending you data in a different format.

The basic rule is to go to the actual database as infrequently as possi-
ble, consonant with safety, so that the tests run as rapidly as possible.

What if your tests run really slowly?

This is a big deal, as we mentioned above. Slow tests slow down the
entire project. The short answer is to optimize them. If you have a pro-
filer, run it on the tests. You’ll invariably find two things: tests that are
doing more than they need to, and parts of the system that are too
slow. Fix the system parts that are too slow – you have the tests there
to let you optimize with confidence – and gain two benefits, a faster
system and faster tests.

Tests that do too much should be fixed as well. Are you running an
entire paycheck to see whether the tax deduction is correctly taken?
Take a little more time in setup and just check the one object that’s
involved.

And, of course, look for things like excessive use of an external
resource, such as a database or other remote connection.

Unit Tests

122

What if you can’t figure out how to test a class?

This is often a good sign that there’s something odd about the class.
Clearly we can’t give specific advice without seeing the class, but the
guidelines are always the same.

Is the class hard to create? This is often due to not having, or not fol-
lowing, a coding standard that calls for a complete constructor
method. Taking the time to make the object easier to build will proba-
bly help.

Does the class being tested collaborate with a lot of other complex
objects that are hard to get? This is a hint that you need some stub
objects to work with, and also suggests that the class might benefit
from a little refactoring to make it less dependent on so many others.

Get with the team, talk about what’s hard to test. You’ll think of some-
thing most every time. And better tests make you go faster – you’ll be
glad you did.

Is it OK to test a class by just testing the classes that use
it?

There’s more discussion on this in Everything that could possibly break,
but lean away from this. It’s true that if the using classes exercise the
“inner” class enough, all the defects will show up. But there are two
serious drawbacks. First of all, the limitations of the inner class may not
be exercised by its users, but may show up in production. It’s better to
do a little “white box” testing, looking directly at the inner class and
exercising it directly.

Second, when the other tests fail due to an error in the inner guy,
you’ll have a bit more of a debugging session to fix it. Think of it this
way: if you have a test that says the square root of 4 should be 2, and
the test fails, you know it’s the square root that broke. If you have a
numeric routine that relies, among many other things, on getting cor-

Unit Tests

123

rect square roots, you could debug for a long time before noticing that
the root is wrong. Local tests give better diagnostics, so you go faster.

How do you know you have tested everything that could
possibly break?

We have a chapter on that very subject, Everything that could possibly
break on page 265. The short answer is that it’s a matter of conscience
– really trying – and experience. When the software gets an error in an
acceptance test, it’s a sign that a unit test was missing. Write that test,
then think about what it reminds you of. Write all those tests, too.
You’ll quickly get good at this.

When the software gets an error in the users’ hands, you have a sign
that you need both acceptance and unit test enhancements. Learn
from this yourselves, in terms of what kinds of tests are needed. And
help the software learn as well, by writing the new ones you need right
now.

What do you do if you have a body of already-written
code, but not many tests?

I suppose running away isn’t an option. There are changes that need to
be made, since if there aren’t, you might as well work on something
else. Figure out what part of the system the changes are going to
affect, and write tests around that part. If you’re working on a defect,
always write the test that shows the defect first. Then write tests that
relate to it, tests that you are reminded of by the one that actually finds
the bug.

At first, it seems like the tests slow you down. But the first time you
release something that doesn’t work, and feel like a fool, remember
this section. Build a scaffolding of tests before you work. It’ll help keep
the walls from coming down while you rebuild them.

What about errors that only show up in collaborations

Unit Tests

124

between classes?

Our Scrutinizer problem above was an example of how a collaboration
error could show up, and discussed how to avoid it. If your system is
showing lots of such errors, there’s some kind of coordination problem
happening. People are writing different responses to the same ques-
tions, or they are naming classes and methods inconsistently, or there
are consistency checks needed in the unit tests, or something. When
this kind of error shows up, it’s a sign that some additional work needs
to be done. All we can say is to figure out what that work is, and do it.
Since these defects are hard to find, when they start showing up, it’s
time to invest in cornering them.

Our own experience is that we get very few of these errors. We’re
guessing here, but we think that somehow our focus on testing up
front is preventing them, but we can’t prove it. And we certainly agree
that when they do show up, such problems are difficult to find. So
when they show up, we go after them vigorously, trying to build a
tighter net of tests around those areas. More than that, we don’t know
how to answer.

What about real time errors or multithreading errors?

These can be very problematical. Real-time and multithreading errors
are not very amenable to testing. Our basic reaction is to do the sim-
plest designs possible in these areas, and to make sure that lots of eyes
look at them. When errors do occur, it’s often possible to write tests,
especially reflective ones, that ensure that all objects that do X are first
synchronizing on X’s semaphore, and such. We’d write them, and rec-
ommend that you do, as well.

What about GUIs?

Arrgh, GUI testing. The basic rule is this: do no processing in your
GUI code. No logic other than the inherent event logic of press this,
change these widgets to contain that.

Unit Tests

125

Everything else should be done in model code, where it is easy to test.
All the selections for the list boxes, and so on. Everything. The rule is
simple: the model is easy to test, the GUI is not. So make the GUI
simple and test the model vigorously.

To check whether the GUIs respond correctly, there are those
click-recording GUI testing tools out there. All the ones we have used
were equally good and equally awkward. Try them, pick one that
works for you.

My stuff can’t be tested because...

We don’t believe you. We think you can test anything. It helps if you
start that way and stay that way, because when you write a little tiny
thing that “can’t” be tested, and then make it testable, the system
never gets away from you. Test, then code, then test, then code. You’ll
be glad you did.

Unit Tests

126

127

Sidebar - Chapter 13
xUnit

Use the world’s lightest testing tool.

Starting with unit tests is a bit difficult – you just don’t know what to
do. Here’s some free software to give you a leg up.

Kent Beck wrote a testing framework, called SUnit, for Smalltalk some
years ago. It caught on all over, especially in XP teams using Smalltalk.
He and Erich Gamma then provided the jUnit tool for Java. Today,
there are CppUnit, PerlUnit, PyUnit for Python, VBUnit for Visual
Basic, and many other languages as well. These frameworks are avail-
able on Ron Jeffries’ website, www.XProgramming.com. Click the
“software” link.

Within the limitations of the language being tested, all the frameworks
work the same way. You build a subclass of the class “TestCase” to
contain your tests for some object that needs testing. (And they all do.)

The test case includes as many testing methods as you want. Typically,
each one begins with “test”. They might be named “testCreation”,
“testSelection”, “testRemoval”, and such. The versions of the tool in
languages with reflection build up test suites automatically, by collect-
ing all the methods named “test...”. In less advanced languages, you
have to set up the suites manually.

The testing framework collects up all the tests and executes them one
after another. Each one is initialized by calling a standard setup
method that you can override, and torn down by calling teardown.
This way you can ensure that each test runs in a clean environment, so
that mistakes in one test don’t impact another.

xUnit

128

Most versions of the framework come with a little GUI that you can
use to control which tests to run, and that shows progress and your
final score. Naturally, before your code release, you run all the tests in
the system, and your final score is perfect. Click, one more notch for-
ward on the progress dial.

It’s tempting to use more complex testing tools. There are even some
out there that claim to do intelligent “black box” testing of your
classes. Read about these with some skepticism – how could they possi-
bly know the right and wrong answers to feed to your class. They
might build some skeleton methods, but that’s not the important part.
The important part is your application of your intelligence to testing
what really needs it.

Try these xUnit tools. They’re free, and worth ten times that much. A
hundred, maybe.

129

Chapter 14

Test-first, by Intention

Code what you want, not how to do it. Chet and Ron do a
small task test first, trying always to express intention in
the code rather than algorithm.

Warning: There is Smalltalk code in this example. We think you’ll do fine
and ask you to try to read along. The details of the code aren’t critical —
the thinking and the partnering are.

Chet and I wanted to give a short demonstration to tie together all the
XP programming practices. We decided to work on an actual problem
that I’d encountered at a client location. This is a transcript of an
actual session, not a sanitized session made up for the book. The
ragged edges are real life.

There are two key things to watch for in this example. First, we only
write new code when we have a test that doesn’t work. We call this
test-first programming.

Second, we don’t think much at all about how to do a thing, we think
about what we have to do. We call this programming by intention. You
just write code as if someone had written the hard method for you and
you just had to send the message.

The task is this: we have two collections of Sum objects. A Sum has a
name (a string) and an amount (a number). The output is to be a sin-
gle collection of new Sums. If a Sum of the same name appears in each
collection, the new one should have the same name, and the total of

Test-first, by Intention

130

their amounts. If a Sum appears in only one collection, the new one
should have that amount. The order of the output should be the order
of the first collection, followed by any elements from the second that
didn’t occur in the first. For example,

Chet asked a few questions, mostly about whether we had any code to
start with. I said that it had been ugly and didn’t work, so we decided
to start from scratch.

We were working on a new machine, so we started by defining a simple
Sum object with a name and an amount. We didn’t write tests for it
because it was pretty trivial and it was just a foil in our real example.
For those who don’t speak Smalltalk, we’ll give a little commentary.

---Sum 10:25:00

The lines that look like the above just name the class we’re putting
code into, and the time we did it. They aren’t part of Smalltalk, they’re
just here to give you a sense of how long things took. Here’s the class
definition:

---Sum 10:25:00
Object subclass: #Sum
instance variables: ’name amount’

This defines a new class named Sum, with instance variables name and
amount. In Smalltalk, you don’t have to define the types of the
variables.

Now we build the Constructor Method for the class. This is a method
definition. Each method definition starts with the name of the
method, tabbed out one tab stop. A method definition in Smalltalk has
a name which consists of one or more keywords. This one is

First Second Result

A 1
C 2

A 10
B 3

A 11
C 2
B 3

Test-first, by Intention

131

name:amount:. The method definition also includes the names of the
parameters. By convention, these names suggest the types of the
parameters, but they are just names to be used in the code that follows.

The method itself starts on the next line, indented. So we’re defining
name:amount:. The definition is

^self new
setName: aString
amount: aNumber

which means (self new) create a new instance of this class (Sum), then
send it the message

setName: aString amount: aNumber

which is what we call a Constructor Parameter method. The hat char-
acter (^) means “answers”, or “returns”.

We start every class definition this same way, with a Constructor and
Constructor Parameter method. It gets you going smoothly when you
always start a class the same way. Here’s the whole Constructor
method:

---Sum class 10:25:00
name: aString amount: aNumber

^self new
setName: aString
amount: aNumber

The next step is always to define the Constructor Parameter method
we just sent. (Smalltalk doesn’t mind if you use a method before you
define it, although some versions will give you a warning about it.)

---Sum 10:25:15
setName: aString amount: aNumber

name := aString.
amount := aNumber

Test-first, by Intention

132

This method just assigns the two parameters to the corresponding
instance variables. Now the instance is initialized. We also build acces-
sors for the instance variables, because I happen to know we will need
them. I was building this class from memory, and was sure we’d need
the accessors. It would have been better to wait to be sure.

---Sum 10:25:30
name

^name

This method is named name, and it answers (returns) the name
instance variable. This method is an accessor for name. Strictly speak-
ing we wouldn’t have put this in, except that I was building this class
from memory as a “given”.

We also built an accessor for amount while we were there. Bad Ron.
Rolled-up newspaper for you.

---Sum 10:25:40
amount

^amount

OK, enough warm-up. It’s time to write our object, which we have
decided to call Summarizer. We began by making a test class named
SummarizerTest. Here’s the conversation we had as we pair pro-
grammed our way along.

Chet: What shall we test first?

Ron: Let’s just make an empty one. That should answer an
empty collection.

Chet writes the test. He assumes that there is a method already in
existence named emptySummarizer. This keeps him focused on the
immediate task, making an empty one and making sure that its result is
empty.

Test-first, by Intention

133

--- SummarizerTest 10:32:08
testEmpty

| summarizer |
summarizer := self emptySummarizer.

This is what we call programming by intention. Instead of worrying
about how to create an empty Summarizer and maybe writing the
code in line, Chet just expresses his intention, to have an empty Sum-
marizer. This makes the code more clear, but more important it keeps
you moving smoothly because you don’t have to shift gears to think
about a subordinate detail while you code the method you’re on.
You’ll see that we do that right along.

For you non-Smalltalkers, the vertical bars set off definition of a tem-
porary variable named summarizer. The variable is local to the method.

Now Chet pauses before writing the first should: to discuss what to do.

Chet: How shall we get the answer?

Ron: Let’s just send “summarize” to the Summarizer.

Chet: How about “summary”?

Ron: OK, that’s better.

Note that here we are defining a key element of Summarizer’s proto-
col: the method you send to make it actually do its thing. It’s great to
do this in a test, because you are actually using the object, and that
gives you a much better chance of defining a useful and clear interface.

--- SummarizerTest 10:32:08
testEmpty

| summarizer |
summarizer := self emptySummarizer.
self should: [summarizer summary isEmpty]

The test method above just creates an emptySummarizer (or would if
that method existed) and tests to be sure its summary is empty. Natu-
rally, we run the test. It doesn’t work, because emptySummary isn’t

Test-first, by Intention

134

defined. We expected that, but we like to run the test every chance we
get – it’s a good habit to have.

Chet: How do we create one of these deals?

Ron: Let’s define the class, give it two instance variables, call
them first and second.

Chet: I hate those names.

Ron: Me too, but I can’t think of anything better.
--Summary 10:32:45
Object subclass: #Summarizer
instance variables: ’first second’

We immediately go back to the test, not even making a Constructor
Method, because we don’t know yet what we want it to look like.
Looking at the blank test method for emptySummarizer, we discuss it:

Ron: So we need a Summarizer with two collections of Sums.

Chet: first:second:?

Ron: How about just with:with:?

Chet: OK

The name with:with: has good history in Smalltalk when you are creat-
ing some object with a couple of items that aren’t particularly
differentiated except for order. On the other hand, the name isn’t very
communicative. Ron may have been wrong with this suggestion.

Chet writes the method that way, putting two empty arrays into the
Summarizer.

--- SummarizerTest 10:33:06
emptySummarizer

^Summarizer
with: #()
with: #()

Test-first, by Intention

135

We run the test again. It breaks, of course, because Summarizer
doesn’t understand the with:with method. Chet just types it in, along
with the corresponding Constructor Parameter method. Again, it’s a
rote thing he just knows how to do because we always do it this way.

--- Summarizer class 10:35:03
with: firstCollection with: secondCollection

^self new
setFirstCollection: firstCollection
secondCollection: secondCollection

--- Summarizer 10:35:54
setFirstCollection: firstCollection secondCollection: secondCollection

first := firstCollection.
second := secondCollection

We run the test again. This time it breaks because the Summarizer
doesn’t understand “summary”. Chet hasn’t an idea how to do the
method so he just creates one with a halt in it, then runs the test again
to get into the debugger.

--- Summarizer 10:37:18
summary

self halt

In the debugger we look around a bit.

Chet: OK, the two input collections are empty.

Ron: What should we answer? I don’t know what to do next.

Chet: This will work.
--- Summarizer 10:38:11
summary

^first, second

Chet has answered the two inputs collections concatenated together. I
don’t know why he picked this but I can see it will “work”. That is, the
result will be an empty collection, so the test will run. This is nearly the
simplest thing that could possibly work. Simpler would have been to

Test-first, by Intention

136

just answer a literal empty collection, but Chet was just getting his
hands on the variables a bit.

Our first test runs. Even though the object is clearly wrong, we don’t
have a broken test to make us fix it. So we write another test.

Ron: Let’s test the example I wrote down. (The one in the table
up above.)

Chet: OK.

Chet starts the method, creates a temp, starts an assignment to it. He
pauses and types a left paren. I know that he’s about to try to construct
the test Summarizer right there.

Ron: Just send abcSummarizer.

Chet: Right.

Ron: We have to remember to tell them how important this is.

Chet: This is one of the most important things you’ve taught
me. I just write code that assumes that ten seconds ago some-
one already wrote the method I need, like the abcSummarizer
method.

Here again, we’re talking about intention. We just say what we want,
not how to do it. When we get there, it’s always easy.

--- SummarizerTest 10:39:34
testABC

| summarizer |
summarizer := self abcSummarizer.
self should: [summarizer summary size = 3]

So that’s what he does. Again, this is programming by intention. Chet
just assumes a method abcSummarizer that will set up the test object.
Then he writes a simple test, that checks to make sure the summary
send to this one answers back a three-element collection. It’s not
enough of a test, but it’s enough to break, which is all we need. We go

Test-first, by Intention

137

on to build the Summarizer to test. Note that we just copied the
method – we haven’t put the elements in it yet.

--- SummarizerTest 10:40:57
abcSummarizer

^Summarizer
with: #()
with: #()

Having built the Summarizer object, Chet is ready to enhance the test.
I wasn’t ready, but he was, so I rode along as he enhanced the test to
check all the values.

--- SummarizerTest 10:43:06
testABC

| summarizer summary |
summarizer := self abcSummarizer.
summary := summarizer summary.
self should: [summary size = 3].
self should: [summary first name = 'a'].
self should: [summary first amount = 11].
self should: [(summary at: 2) name = 'c'].
self should: [(summary at: 2) amount = 2].
self should: [summary last name = 'b'].
self should: [summary last amount = 3].

Ron: I guess there’s no choice, we’re going to have to build the
collections now.

Chet: Not quite, we can still do this:
--- SummarizerTest 10:44:29
abcSummarizer

^Summarizer
with: self acCollection
with: self abCollection

Chet puts off the inevitable thinking a bit longer by declaring his
intention in the method, namely to have a collection with a and c, and
one with a and b. Again he assumes that a magic elf has already created
them. Programming his intention, not his algorithm.

Test-first, by Intention

138

Now it’s pretty clear what we need, since we have a name for it. So we
type in the methods:

--- SummarizerTest 10:45:45
acCollection

^OrderedCollection
with: (Sum

name: 'a'
amount: 1)

with: (Sum
name: 'c'
amount: 2)

--- SummarizerTest 10:45:59
abCollection

^OrderedCollection
with: (Sum

name: 'a'
amount: 10)

with: (Sum
name: 'b'
amount: 3)

(This slightly cryptic Smalltalk code just creates an OrderedCollection
(like a Java vector) with two instances of Sum.)

Great, the test is written. We run it. Oops. The original summary
method that concatenates the inputs gives back four elements, not
three, and the test breaks. We aren’t surprised.

Chet: OK, we have to actually do summary. How?

Ron: We could go over the first collection and put all of its ele-
ments into a summary collection. Then we could go over the
second collection and if the element is in the summary, add it
in, otherwise put it in.

Chet: That’s weird, the two methods would be sort of alike, but
not quite. How about if we go over each collection, and each
time if the item we have is in the summary we add it in, other-
wise we create one?

Test-first, by Intention

139

Ron: Good, I like that. So we’ll just process first, then process
second.
--- Summarizer 10:50:29
summary

self
processFirst;
processSecond

Chet: Where shall we put the answer?

Ron: Just make a new instance variable, summarizer.

Chet: OK, shall I just init it in the Constructor Parameter
method?

Ron: OK.

Chet updates the class definition to add the instance variable, and the
method to define it as an empty OrderedCollection.

--- Summarizer 10:51:01
setFirstCollection: firstCollection secondCollection: secondCollection

first := firstCollection.
second := secondCollection.
summary := OrderedCollection new

Ron: Duh. We shouldn’t have two different process methods,
let’s just have a process: method that we use twice.
Chet: Duh.
--- Summarizer 10:51:55
summary

self process: first.
self process: second

Ron: OK, let’s write process:.

Chet writes a loop over the collection, pausing for a moment to think
how to process the items. Then he remembers to just declare his inten-
tion (processItem:) and go on.

--- Summarizer 10:52:32
process: aCollection

aCollection do: [:each | self processItem: each]

Test-first, by Intention

140

(Collections in Smalltalk know how to iterate themselves. The above
code sends processItem: to each object in the input collection
aCollection.

It’s getting close now. We run the test and notice we don’t have pro-
cessItem: defined yet. Chet makes a blank method, then we talk.

--- Summarizer 10:52:42
processItem: aSum

Ron: OK, rubber meeting road here. What shall we do?

Chet: Well, we just find the matching Sum in the summary ...

Ron: And add our input Sum into it! Do it!
--- Summarizer 10:54:22
processItem: aSum

(self matchingSum: aSum) add: aSum

Chet codes just what we said. Our intention is find matching Sum, add
our input Sum into it. The code says just that. Now we run the test
and, of course, matchingSum isn’t defined.

Ron: We have to go through the existing summary items and
see if we have a matching one ...

Chet: detect!

Ron: Yes, do a detect ...

Chet: and ifAbsent:

Ron: ifNone:

Chet: I never can remember which it is.

Ron: Make a new Sum and put it in the summary.

Chet codes it up. This is a pretty standard Smalltalk idiom, so he codes
the whole thing in line. The code just says that it’ll find a Sum in the
summary with matching name if there is one, and if not it’ll create a
new one of that name, and put it in. In either case, it gives back the
new or existing matching Sum. You could make a case that we should

Test-first, by Intention

141

have broken it up, but we discussed it and couldn’t find a way we liked
better.

--- Summarizer 10:56:40
matchingSum: aSum

^summary
detect: [:each | each name = aSum name]
ifNone: [summary add: (Sum

name: aSum name
amount: 0)]

We run the test. It doesn’t run because Sum doesn’t understand how
to add. We quickly build that:

--- Sum 10:58:40
add: aSum

amount := amount + aSum amount

We run the test again. It doesn’t work. Instead of getting a collection
of Sums back, we get back the Summarizer. This means we forgot to
answer back the result. I recognize this immediately.

Ron: Jeffries error type 1. We didn’t answer the collection.
Where was my partner?

Chet: Driving. You were supposed to help me.

Ron: Oh.
--- Summarizer
10:59:31
summary

self process: first.
self process: second.
^summary

We add the final line to summary, then run the test. It runs. We cele-
brate briefly, wishing we had a bell to ring. Then we begin to review
the code now that it works, to see if we should clean it up.

Chet: process: isn’t a very good name.
Ron: We could say summarize:.

Test-first, by Intention

142

Chet: OK.
--- Summarizer 11:04:45
summary

self summarize: first.
self summarize: second.
^summary

Chet runs the test. It breaks, there’s no summarize: method. He
renames the process: method.

--- Summarizer 11:04:53
summarize: aCollection

aCollection do: [:each | self processItem: each]

Chet runs the test and it works. But he doesn’t like the new method
the way it is.

Chet: Oops, better change processItem: to summarizeItem:
while we’re at it.

Ron: Good.

He changes summarize: to send summarizeItem:.

--- Summarizer 11:05:30
summarize: aCollection

aCollection do: [:each | self summarizeItem: each]

Running the test, Chet “discovers” that summarizeItem: isn’t defined,
and renames processItem: to summarizeItem:

--- Summarizer 11:05:42
summarizeItem: aSum

(self matchingSum: aSum) add: aSum

The test runs again. At this point we look at what we have done and
find it good. We stop, and go to lunch at Red Hot and Blue. We each
have a Pulled Pig sandwich.

Review Remarks

Test-first, by Intention

143

An online reviewer, Jim, remarks:

Well, `summarize' and `summarizeItem' were fairly simple
one-liners. Not much to break there. But `matchingSum' was
longer and possibly worth testing, at least to my non-Smalltalk
trained eyes. Perhaps an experienced Smalltalker would disagree
and say that `matchingSum' was obviously correct.

I think Jim is probably right. When we wrote the method, it just
flowed out in good Smalltalk style. But as I mentioned above, Chet
and I looked hard at it, hoping to make it more clear. We couldn’t
think of anything, and it was working fine, so we stopped.

On another day, I might experiment with breaking out the lookup
aspect of the object. It kind of seems like overkill, but there’s a com-
mon kind of behavior one uses a lot that might be called Lookup
Matching or Add One Of These. We might discover a useful object
someday if we play with that.

The bottom line is always judgment. If the code’s not clear enough, it
needs more work and probably more tests. Jim was right to wonder.

A triumph of Internet-based Collective Code Ownership. Thanks, Jim!

Summary

Experiment with writing little tests first, and with always expressing
your intention, not algorithm, in the code you write. We think you’ll
find that the work goes more smoothly, and you wind up with code
that communicates what you mean to do, not just how you did it.

Test-first, by Intention

144

145

Chapter 15

Releasing Changes

Using collective code ownership and comprehensive unit
tests, an XP team releases changes rapidly and reliably.

An XP team practices collective code ownership: every class and
method belongs to the team, and any team member can improve any-
thing that needs it. Collective code ownership lets the team make faster
progress, because no one has to wait until someone else gets around to
fixing something. And the code stays cleaner, because programmers
aren't forced to work around a deficiency in one object by hacking up
another.

One of the most important parts of making collective code ownership
work is the process of releasing changes to other programmers on the
team. This chapter won’t tell you everything you need to know about
code management, just give you some ideas about how to interact with
your code manager.

When a XP programming pair is working, their code goes through
three phases. These phases are:

1. Local. This is the first phase of development. The pair has just start-
ed working, and their changes are not available to any of the other
developers.

2. Release Candidate. The programmers have finished their task, and
are ready to begin the process of releasing their changes to the oth-

Releasing Changes

146

er programmers.

3. Released. This is the current official version of the code. This code
is guaranteed to work, i.e. all of the Unit Tests run at 100%. Re-
leased changes are available to all of the other programmers.

Throughout the day, an XP programming pair would probably release
changes at least once, and potentially many more times. Meanwhile,
other pairs have also been making changes and releasing them, and
there’s a chance they will have changed the same things you did. You’ll
need an approach to releasing your changes that keeps things running
smoothly.

The process we recommend goes like this:

1. Always start with all of the released code. This ensures that you are
starting with the latest and best versions of everything.

2. Write tests that correspond to your task. (Write the test first)

3. Run all the Unit Tests.

4. Fix any Unit Tests that are broken. Since you started with the re-
leased code, the only tests that should break are the ones you just
wrote. It is your responsibility to fix them.

5. When all of the Unit Tests run at 100%, your local changes become
release candidates.

6. Release Candidate changes are integrated with the currently-re-
leased code. We recommend the use of a separate integration ma-
chine for this, and we’ll describe it that way. Go to the integration
machine. Load all the released code. Load all of your Release Can-
didate changes. Then check for conflicting edits. The currently re-
leased code should be the same code you started from. If it isn’t,
another pair has released before you. This doesn’t happen often,
but let’s assume that it has.

7. If the released code was modified while you were making your
changes, compare the differences between your changes and the re-

Releasing Changes

147

leased code. Use a diff tool if possible, not just your eyes. Identify
the changes released by the other pair(s), and integrate those
changes with your changes. Ask the other pair for help if you need
it.

8. Once you have integrated any necessary changes, run the Unit
Tests on the integration machine. They should run to 100%, and
they usually will. If they don’t, it usually means you missed integrat-
ing something, or that your changes and someone else’s conflict.
The Unit Tests that fail will pinpoint the problem. Fix all the prob-
lems. Again, get help from the other pairs if you need it.

9. When the Unit Tests run at 100%, release all of your code - that is,
make the code on the integration machine the official version.

The release process generally goes more quickly than it took to write
about it. A few minutes to load your Release Candidates on the inte-
gration machine, a quick check for conflicting edits, ten minutes to run
the Unit Tests, and then the code can be marked as released.

Code Management Tools

The code mangement tool used on your project can make a huge dif-
ference in your productivity. Ideally, whatever tool you use, it should
make it easy to do the following tasks.

1. Identify local changes
2. Differentiate between local changes and released code
3. Identify who released a change, and when they released it
4. Merge changes and released code
5. Revert to previously released code

If you're using VA Smalltalk, VW Smalltalk, or VA Java, we recom-
mend using ENVY. There are alternatives, but ENVY is the preferred
choice in our opinion.

In other environments, or if you just can't swing the price, a tool like
Visual SourceSafe, PVCS, MKS, or TLIB will do the job. There are

Releasing Changes Troubleshooting

148

lots of code managment tools out there - read this chapter, then check
them out and pick one.

In general, set as few restrictions as possible into the code management
tool. No passwords, no group restrictions, as little ownership hassle as
possible. Your objective is for everyone to own everything. Everyone
has equal rights to all code.

Begin your project with no segmentation into code groups or topics.
It's best to use a flat structure as long as possible. Let the flow of code
development tell you what organization is needed, when the time
comes. Then refactor the code database.

Troubleshooting

The two most common problems with releasing changes are lots of
conflicting edits, i.e. taking too much time to merge changes, and lost
changes.

Lots of Conflicting Edits

Occasional conflicting edits are a natural result of going rapidly with
collective ownership. In the beginning of your project they will be
more common; if you only have one class, everyone is going to be
making changes to it. As your system grows, conflicting edits should
become fewer and fewer. If this is not the case, the best way to solve
this problem is to release your changes more frequently. This will
reduce the likelihood that two pairs will conflict. See “Continuous
Integration”.

Some teams try to avoid simultaneously editing anything. Please don’t
do this — moving where the code leads is more important than the
occasional collision of conflicting edits. Instead, edit what needs it, and
deal with collisions as they happen.

Troubleshooting Releasing Changes

149

In rare cases, you may need a more formal check out / check in pro-
cess for a few classes. Avoid this if you can, but be alert for the need to
do it if too much time is spent merging changes.

Also be aware that different classes will become “hot”. It might be a
good idea to sign up for tasks with hot classes in mind, so that fewer
pairs will be likely to need the same classes.

Lost Changes

Losing changes are a time wasting nuisance. The main cause of lost
changes is incorrectly merging release candidate changes with released
code. This is usually either because a conflicting edit was not recog-
nized, or the programmer incorrectly merged the two sets of changes.

The solution to this problem has three parts. The first two parts of the
solution are: always start with all of the released code, and always
release changes frequently. Frequent releases minimize the chance that
the released code has changed. When changes do have to be merged,
frequent releases minimize the impact. Remember Continuous Integra-
tion, page 96.

The third part of the solution is your Unit Tests (page 113). Code
can't stay lost for long if there's a test somewhere relying on it. Be sure
you add tests whenever you add code to any class. Since all the Unit
Tests must all run at 100% before any code is released, this ensures that
other programmers can’t break your code by accident.

Another common cause of lost changes is intentional reversion. Some-
times you want to roll a class back to a previously released version.
When this is done, you will of course lose all the changes relating to
that path. Unfortunately, you will also lose valid changes that were
done along the way. The solution for this type of lost change is to go
forward, not back. Start with the currently released code, and identify
the differences between it and the desired version. Then edit the cur-
rently released code to bring it back into line with the previously
released version, but retaining any new code. These changes are release

Releasing Changes Troubleshooting

150

candidates, and when the Unit Tests all run at 100%, the code can be
released.

Finally, give detailed consideration to preserving your source code. An
XP project is like any other in this regard: you can be sure you'll lose
the source manager files as soon as they aren't backed up. So use nor-
mal precautions in setting up procedures for use of the tool you
choose.

Conclusion

Code management and your release process is right when it is unob-
trusive. It should be easy and fast to get the source you need. It should
be easy and fast to save your changes. The code manager should detect
conflicts, and resolving them should be straightforward. There should
be no waiting — if a pair needs to edit something, they should feel free
to go ahead.

A good Extreme pair saves code very frequently, multiple times per
day. If the code manager is making you want to release less often, fix
the code manager. Rapid progress depends on rapid and frequent
release.

151

Chapter 16

Do or Do Not

We’ve now covered most of the programming aspects of XP.
Here’s a summary of things we do — and things we don’t.

Extreme Programming is about doing. For each key aspect of software
development, XP prescribes a few simple practices aimed at helping
you know when you are done, and know when you are right.

But XP is also about not doing. Over the years, software development
“methodology” has become encrusted with practices that, for most
projects, do not advance the actual effort of producing the product
that is wanted: the software.

The result of an XP project is a computer program. Not just any com-
puter program, but a well-crafted, flexibly-structured,
properly-documented computer program, shown by testing to meet
known and documented requirements.

Remember that: if you're doing XP right, at the end of the project you
will have a computer program that is

• well designed;
• well crafted;
• flexibly structured;
• properly documented;
• tested;
• meeting known and documented requirements .

Do or Do Not

152

Some of the things that we do not recommend doing are a bit contro-
versial. As you review the simple XP processes, we're sure you'll see
that the other things aren't always necessary after all.

Here are a few examples of things we do not recommend:

• Don't try to design the whole system before you start implement-
ing. Usually, requirements changes alone will make this impossible.
In any case, no existing design methodology is effective enough to
avoid problems during implementation, and a process of design a
little, build a little will allow you to learn faster and get a quality sys-
tem done sooner.

• Do design all the time. Begin simply, and as you learn what the de-
sign should be, refactor to make it so. Never stop designing, never
stop making the code agree with what the design should be.

• Don't try to freeze requirements before you start implementing.
Requirements changes show that the customer is learning! Sure, it
would be nice if they knew just what they wanted before you started
building things, but the fact is that when they see what you're
building, they'll learn what they meant. XP lets you use a develop-
ment and planning approach that allows for change, without big
up-front investment in frameworks or flexibility.

• Do develop comfort with taking on any story in any order. Sure,
sometimes order makes a difference, but more often than we pro-
grammers think, it doesn’t. Just tell the customers the cost of every
story, and let them choose.

• Don't produce voluminous design documents at the beginning.
Don't even produce them in the middle: produce them at the end.
Extreme Programming teaches you how to keep the design flexible,
for highest flexibility and fastest implementation. The design doc-
uments you produce at the beginning will go out of date very
quickly (they always do, even on non-Extreme projects), and you'll
either waste time updating the docs or let them get out of date. Ei-
ther is bad.

• Do focus on communication. A few diagrams can help. A big pic-
ture on the wall can help. More important, however, are clear code
and talking, talking, talking.

• Don't produce documents or other artifacts that aren't being used.

Do or Do Not

153

You couldn't resist writing up the design or drawing some UML.
Notice whether anyone is really using the documents. If they
aren't, stop producing them. For extra credit, erase the ones you
have already created - they're out of date anyway, aren't they?

• Do pay attention to your metrics and your key reporting
graphs.The project’s progress needs to be published frequently.
Most of the design probably does not.

• Don't separate the team into designers and coders. Let everyone
reach their own level in design and coding.

• Do let everyone get involved in design. Do group design, using
CRC, for everything important. This will let everyone learn and
participate. And let's face it, the most junior person on the team is
as likely as anyone to spot a design flaw.

• Don't build for tomorrow. When you hear yourself elaborating or
generalizing a design, stop. Implement the simplest design that
could possibly work to do what you have to do right now. When
you say “We're gonna need”, you're wasting precious time, and
you're usurping the customer's right to set priorities.

• Don't build for tomorrow. When you read the paragraph above,
you said “But it'll be harder to put it in later”. That turns out to be
incorrect almost every time. If you leave the code simple and true
today, improving it tomorrow will be easy. And you'll be smarter
tomorrow: you'll know more about what is really needed, and
you'll know more about how to do things.

• Do build perfectly for today. Do the simple thing that solves to-
day’s problem, but do it well. Keep the code of high quality, just
perfect for today’s needs.

• Don't build for tomorrow. OK, I know that you're good enough
to look to the future. But XP is a team discipline, and everyone has
to play by the same rules. Look around the room. Probably you see
someone who shouldn't be building for the future, because they'll
get it wrong or make it too elaborate. In fairness to them, you're
going to give up building for tomorrow, so that they'll give it up as
well. (And just ignore all those people looking at you while they
read this paragraph.)

Do or Do Not

154

155

Chapter 17 ‘

Experience improves
estimates

Each iteration we gain experience. Experience with stories
helps us estimate future stories more easily and more accu-
rately.

You’ve just released your changes for some task. When you finish all
the tasks in a story, it’s time to take a moment. For example, when
Chet and I wrote the Summarizer program in Test-first, by Intention
(page 129), it took us about an hour. From now on, we’ll have a good
idea of how long it takes to do tasks that are about that hard. And of
course it’s not difficult to estimate whether a given task is about the
same size as the Summarizer, or half as big or twice as big.

This means that when we have a task like that one, we can estimate
about how long it will take and be pretty reliable. And the more we
estimate, and the more we pay attention to how things really turn out,
the better we’ll do.

Some tasks, of course, aren’t anything at all like the Summarizer.
That’s fine, you have lots of tasks and lots of time. As you do your first
few tasks interfacing with the database, note how long they take. As
you write the first couple of reports, note how long they take. And so
on.

You can read more about task creation in Team brainstorms Engineer-
ing Tasks (page 81), and in How to estimate anything (page 217), but

Experience improves estimates

156

the simple answer is that when the team has a big thing to do, they
brainstorm how to break it down, until it is broken into small enough
tasks that experience allows them to estimate.

The important things to remember about XP task estimation are just
these:

1. Estimate each task that you sign up for. Don’t try to get down to
minutes – it’s probably best in a project not to go below half a day.
For the Summarizer, I estimated two hours, but it only took one.
My partner was great.

2. Estimate the amount of actual time you will spend working, with a
partner, at the machine, on the task. Don’t worry about time you’ll
spend discussing it, drawing pictures, or thinking. These things will
all average out when you measure your velocity. The important
thing is the size of the solution, in time spent implementing.

3. Pay attention to the actual time you spend working, at the machine,
on the task. You can write it on a card if you want to, but since
you’ll probably want to focus on just one task at a time, memory
will probably suffice.

4. Take a moment. You estimated a day. It took a day and a half. Or
you estimated a day and it only took a half. What was it that you
missed in the estimate that would help you estimate better next
time?

It should be pretty clear that if you do this a lot, you’ll get really good
at estimating how long things will take. Feeding this knowledge back
into each Iteration Plan makes things go more and more smoothly and
easily.

157

Chapter 18

Resources, Scope, Quality,
Time

Who’s doing what? How much is finished? How good is it?
When will we be done? What metrics should we keep?

It's important to know where we are - whether we are programmers,
customers, or managers. We have to know because we want to be sure
we're doing well.

Even if things aren't going according to plan, everyone needs to know.
It's tempting to sugar-coat things, but everyone has the right to the
truth.

XP prescribes tracking and reporting approaches that are easy and pub-
lic. This ensures that everyone's always on the same page. Briefly, it
goes like this:

Resources

Keep track of key resources: planned vs actual: number of developers;
number of customers assigned to the project; number of testers; num-
ber of computers in development, test, production; and so on.

Scope

Resources, Scope, Quality, Time

158

Keep track of the number of stories over time: how many exist; how
many are done; how many more are expected. Consider tracking total
estimated time for the project and estimated vs actual scope
consumption.

Quality

Use a standard acceptance testing graph showing number of tests and
number succeeding over time.

Time

Track the results of each release plan. Graph schedule vs time. Discuss
dropped or added functionality and its impact on time.

Tracking and Reporting Scope

Kent beck says you should report scope by picking up the stack of
story cards and saying, “This is everything we have to do.” Then you
divide the cards into two stacks and say, “This is what we have done so
far, and this is what we have left to do,” showing the two stacks.

As a first approximation, this is just about right. You probably need to
track history of progress, and your management might be comfortable
with just a bit more.

Here are a few graphs. Pick the simplest one that could possibly work
in your situation. Don't move up the scale of complexity unless experi-
ence says you have to.

Resources, Scope, Quality, Time

159

Each iteration, graph how many story cards exist and how many are
done, on a bar chart. Color completed cards green and those still to be
done white. (Not red - red means bad.)

Take a look at this graph. What is it telling us? The growing portion of
green shows that we're making good progress. But we seem to be get-
ting more stories as well. What's up with that?

It's your project, so you'd better know. Here are some possibilities:

• Stories are being split for better planning. (release plan). In this case
the work isn't really increasing, and everything is probably OK.
Consider adjusting the historical columns to show the new story
count also.

• Stories are being added because progress is good. This can actually
happen, and if you can make the original date, might be OK. Con-

Figure 18.1 Completed Stories

Completed Stories

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6

Iteration

St

or
ie

s

Completed Stories

Resources, Scope, Quality, Time

160

sider scheduling an early release with the original stories, followed
by another quick release with the new ones. Consider showing the
new stories as a yellow section of the bar.

• Stories are being added and the date is in jeopardy. This is “scope
creep”, and generally it is bad. People will remember that you were
late, not that you did more. Use the planning game to reduce scope
to hit your promised date, then do a quick second release.

I may seem fanatical about making the date. If I am, it's because many
years of development tell me that the date is what management
remembers. XP lets you predict your progress accurately, and manage
scope to make that date. For my money, that's the most impressive
thing your team can do.

Now unless you dozed off, you probably want to object that just
counting the cards loses the fact that some stories are big and some are
small. That's true, yet it probably doesn't matter. Since you're doing
worst things first, if anything you should speed up toward the end, as
you get into all that easy stuff.

But if it really matters to you, use the same graph but show estimated
weeks of work (Gummi Bears, points, XPUs) instead of card count.
Each time you do a new release plan, use the new numbers in all the
subsequent graph columns. There's probably no need to do anything
to the historical columns.

Frankly, the effort graph is probably overkill. The charts aren't that dif-
ferent, and the second one is much more hassle to create. If you just
draw the standard scope graph after each iteration, you'll know and
express more about your progress than most projects ever do.

Go for it!

Tracking and Reporting Quality

Resources, Scope, Quality, Time

161

OK, the first and most important quality graph is unit test scores over
time. Here is it. Copy it out of the book and post it on the wall.

That's right. You must have unit tests for everything that could possi-
bly break, and they must always be at 100%, for every release of code
by every programmer. That's one graph done.

The official public XP measure of quality is, of course, your acceptance
tests. What are the most important dimensions of acceptance tests?

The number of acceptance tests gives a good measure of the scope of
your testing. And the number of tests succeeding tells you how well
you're doing.

What should the graph of number of acceptance tests look like? As you
get close to release, it should flatten out, as you think of fewer and

Figure 18.2 Unit Test - always 100%

Unit Test Scores

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

Iteration

Sc
or

e

Resources, Scope, Quality, Time

162

fewer things that still need testing. It will probably start slowly and
ramp up, giving a classic s-curve.

The success curve will generally be lower than the number of tests. Yes,
if your code is perfect and never breaks, they'll be equal. If you can
really do that, go for it, and write and tell us how. For the rest of us,
we'll color under the graph, green for success, red for failure. Put the
green on the bottom, it shows progress better.

Figure 18.3 Acceptance Tests

Acceptance Test Scores

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Month

Correct Tests

Resources, Scope, Quality, Time

163

Graph the scores at the end of every iteration, for a graph like the one
above. Within the team, you’ll want to graph the scores more fre-
quently, preferably every day, for something like this:

For your monthly report, these graphs will probably suffice to show
progress toward quality at completion. Internally, however, you may
want more.

Usually your acceptance tests will break out into some natural organi-
zation. Each of these breakouts will probably have several, perhaps

Figure 18.4 Daily Acceptance Tests

Daily Acceptance Tests

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Month

Te

st
s

Correct Tests

Resources, Scope, Quality, Time

164

many individual tests in it. If you want to see how errors are clumping
by product area, produce a graph showing success/failure by area.

It's probably sufficient to show product area graphs scaled to 100%. If
your groups vary a lot in number of tests, you'll probably have to scale
them. If they're all about the same size anyway, you could show them
at natural scale, but if they're all about the same size, there's no real
benefit to doing so. Draw the charts both ways and use the ones you
prefer.

Figure 18.5 Acceptance Test Scores by Product Area

Scores by Product Area

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

input rates payments insurance

Correct Tests

Resources, Scope, Quality, Time

165

The point of this graph is to identify, daily, things that are improving
or breaking. Compare this chart with the previous one:

What happened? A bunch of the payment group’s tests broke. They
need attention - and we may need to beef up the unit tests for some
part of the code, because there's definitely a bug that slipped through
somewhere.

Figure 18.6 Acceptance Test Scores by Product Area - Changed!

Scores by Product Area

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

input rates payments insurance

Correct Tests

Resources, Scope, Quality, Time

166

Another useful graph, especially as you near perfection and release, is
the change, up or down, in the number of successful tests:

Take a look at that big dip. A bunch of tests broke that day. The next
day a few came back, and over the next couple of days, it looks like
they all came back. You can tell a lot about what's going on in the sys-
tem from a simple chart like this.

Set up your acceptance testing process to produce a few numbers each
day, and enter them into Excel or your favorite spreadsheet. Run the
graphs and put them on the wall. Talk about them at the daily
stand-up meeting. Your tester should bring up the test topic every day,
even if nothing changed: “Running acceptance tests. Numbers 3701
and 4130 are still bad. A couple of others broke but Susan says she
knows what happened and they'll be fixed by tonight.”

Figure 18.7 Daily Change in Test Scores

Change in Test Scores

-8
-6
-4
-2
0
2
4

1 2 3 4 5 6 7 8 9 10 11

Date

Resources, Scope, Quality, Time

167

Here’s an acceptance test chart that is hard to draw by machine, but
easy by hand. It shows an empty dot for an existing test that’s running
wrong, and a full dot if it’s running right.

When we look at this chart, we see blocks of tests coming on line. It
takes a day or so before they run right, but then usually they continue
to run right along. But something happened to test 4 on the 12th, and
to test 2 on the 16th, and to 5 and 6 on the 18th. These changes,
especially blocks of changes

When it's time for your status report, even if it's to the president, take
the test charts off the wall and show him. If you just have to make
slides, I suppose it's OK to print them from the spreadsheet. But be
certain you are reporting the exact same data you look at every day.
Good or bad, that's the Extreme way: tell the truth straight out.

What about other metrics?

There are lots of interesting metrics, and most of them are pretty easy
to track. Number of classes, number of methods, number of methods

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Date

1
2
3
4
5
6
7
8
9
10

T
e
s
t

Resources, Scope, Quality, Time

168

per class, all kept historically of course. Source lines, story completion
rate, tasks per story. Pair programming time vs reported defect rate.

There are lots of great metrics. Color charts, rates of change. Fantastic,
and with a few scripts, a little Perl, some Excel, you could know so
much.

Stop! Cut it out! Don’t do that!

The success of your project is in Resources, Scope, Quality, Time.
Track these, as shown here, and you'll know more than most projects
ever do.

The success of your project is in your people. Watch these few vari-
ables, and if they show there's trouble, talk to the people. Watch the
people. Are people relaxed, friendly, playing around, throwing Nerf
balls at each other? Good. Are they heads down, avoiding eye contact,
snapping at each other? Not good.

Watch the people. You can spot trouble coming, and avert it, long
before it will ever show up in your metrics.

You can't resist, can you?

OK, you can't resist some metrics, and you might want to write up
your project for the journals. Here are some things to do.

First, keep a daily journal. The real metrics are the things that happen
in the real world. Write in your journal every day at a fixed time,
recording the events of the previous 24 hours. Evening is probably
best for memory, if it works for you.

Resources, Scope, Quality, Time

169

Here are some things I've been asked, or asked myself, that I some-
times wish I had written down.

• Number of classes and methods by date;

• Number of test classes, methods, and shoulds by date;

• Number of stories available by date;

• Number of stories replaced, destroyed, split by date;

• Risks identified;

• Daily journal of feelings and observations;

• Significant events or comments made by people.

But here’s the telling thing: while a number of these would be interest-
ing in papers about the projects, or in conversations at conferences,
not one of them would have helped the project succeed even a little bit
better. Sure, we can see how they might have helped. But the chances
of their helping are awfully small. They’re not worth taking time away
from actually helping.

Your best friend is the facts, even if they aren't in your favor. But if you
track them, the facts probably will be in your favor! At the end of the
project, you may want to have a retrospective, to help the organization
learn. When you do, it can be difficult to reconstruct certain bits of
history.

• · What was the project velocity in terms of stories per time? Alter-
natively, what was the load factor, and how has it changed?

• · What was the schedule and number of completed points you pre-
dicted at each release plan?

• · How did the acceptance test scores change over time?

• · How rapidly did the code turn over? Did you get more or less re-
use within the system than you expected?

Resources, Scope, Quality, Time

170

So you must either accept that there will be varying recollections of
some of these things, or you must record some minimum amount of
historical information somewhere.

In the end, you must use your own judgment on what to record. But
please, don’t be a manager who fiddles with his spreadsheet while the
project burns. Success is in your people — work with them.

171

Chapter 19

Steering

The estimates are wrong. Your priorities will change. You
must steer.

You’re smart people, and you’re going to be learning during the
course of your project. Customers will learn what they want by seeing
what they get, and by learning the cost of the features they would like
to have. The programmers will learn that some things are harder than
they thought, and some things are easier. They will learn good ways of
doing work that they need to do a lot of, and they’ll build tools to
make things go faster.

The results of this are clear. I’m sure your own history will agree when
you look back on it: on most projects, the estimates are often wrong,
far too high or far too low, and the priorities will change before you
even begin, let alone before you get to the end.

XP’s practices help with the estimates. Many of the estimates you’ve
heard about, where projects took far longer than they were “sup-
posed” to, were based on demands, not on measured performance and
estimates of difficulty. So the estimates of an XP team tend to be quite
good. However, there will still be variability. You will inevitably find,
over the course of the project, that a large number of stories get easier
and easier to do. Most teams find that there are stories where the first
couple take a few days each, and the remaining similar ones can be
done at ten per day.

Steering

172

Most teams also find that there are some stories that take much longer
than originally estimated. It’s easy to be upset by this, or to look for
someone to blame. (Look no further: It’s Chet’s Fault, page 223.)
Software is difficult. Specifying software is difficult, and designing it is
difficult. There’s no need to make it more difficult, so let’s not.
Instead, let’s just assess our situation and steer the project on to
success.

When things take longer than they should, take that result into
account in your planning. Fact is, “we’ll make it up later” rarely hap-
pens, and it’s not the way to bet. If you are the fortunately project that
hits the Making It Up Later lottery, don’t worry, you’ll have plenty of
ideas about what to do with the extra time. Consider selling it to all
the projects that don’t hit the lottery. Or use it to put additional value
into your project.

But plan to proceed at the pace you’re measuring. If certain stories are
going slowly, look for similar ones and assume that they will go slowly
as well. Get the team to reestimate those stories, or, for that matter, all
stories. Use that information to decide which stories to do first, and
which to defer. If it looks like some important story that you were put-
ting off won’t get done, move it forward, at the expense of things that
don’t look so important now.

Steering your project will give you great pleasure and great success. As
you learn what you need, an XP team can adapt to those needs. As you
learn how long things take, you can rearrange stories and split stories
to build an excellent product. Frankly, we believe that the process of
selecting and steering will deliver a better product than getting every-
thing you originally imagine you’ll want. And the most important
thing is, steering to success is actually possible.

173

Chapter 20

Steering the Iteration

To steer each iteration, you need to track stories getting
done, and how well the task estimates are holding up.

When we planned the iteration, we broke the stories down to tasks,
then signed up and estimated, in terms of days of work.

Get stories done

The main point of each iteration is to complete stories. If the customer
brings ten stories, and the programmers brainstorm ten tasks for each
story, what should they do if they’re only able to complete 90 of those
tasks? One possible thing would be to get each of the ten stories 90
percent done. We think that’s not going to impress the customer. In
fact, we hereby instruct the customer: accept only real completion on
your stories. Ten stories 90 percent done = zero stories done.

A better way would be to get nine of the stories completely done and
skip one — the least valuable one. Nine stories 100 percent done plus
one story zero percent done = nine stories done. Much better than
zero.

Improve estimates

Story delivery is important, but it’s not the only thing. Since we base
all our planning on estimated difficulty, we need to get feedback on
difficulty. When we planned the iteration, we broke each story into

Steering the Iteration

174

tasks, and the programmer who signed up estimated each task. During
the iteration, we need to reflect on these estimates.

First of all, if an estimate is turning out to be seriously wrong, it could
jeopardize finishing the story, so we want to check up on how we’re
doing against estimates frequently enough to let us reallocate resources
to get things done. Second, reflecting on how long tasks take will help
you estimate better next time.

Experience in task estimation, with feedback, will improve program-
mers' ability to estimate. This will feed back into the estimation of
stories that you do during the Release plan. With improved estimation
at the story level, you'll have improved information about what you
can accomplish, and when. This increases the chance of project success.

Tracking

If the main point of the iteration is to get stories done, then the main
purpose of steering the iteration is to make that happen. All during the
iteration, we want to steer so as to make sure that as many stories as
possible get completed. To accomplish that, we need to track the tasks.
Sometimes we call the person with this responsibility the “Tracker”.

The team needs to check, every few days, how all the tasks are going.
You can do this by having Tracker go around to all the programers
every few days, or by covering task progress at the morning stand-up.
Going around is better if you can find someone who can do it without
driving everyone mad, do you hear me, mad.

Sometimes a programmer will go off track. She may make the wrong
choice at some decision point, or make a poor choice of where to
begin. Often programmers feel that they are “just about” to solve the
problem - they can be “just about” to crack it for days at a time. Track-
ing is an independent check of how things are going. The tracking
function identifies tasks that are going beyond their estimates and gives
the team a chance to deal with them. More tasks get completed this
way, and the team is more successful and confident.

Steering the Iteration

175

All you need to do tracking is the contents of the Iteration Plan: the
stories chosen, the tasks to be done, who signed up, and what their
estimate was. Oh, and you need the programmers, so you can talk to
them.

You need a pencil or pen, and some cards or a clipboard or a spiral
notebook. Some people record tracking results in a spreadsheet, and
there are coming to be tracking products. But the essence of tracking is
the face to face contact, and a couple of numbers per task. Paper works
fine.

It's tempting to “just have the programmers email in their results every
couple of days”. Forget it. XP is about people, not computers. The eye
contact is important. The team-building human contact is important.

We’ll pretend you’re using cards. If you’re not, make suitable adjust-
ments to what we say here. Write each programmer's name at the top
of a card. On the card, write each task she signed up for, plus her initial
estimate. Leave a little space between tasks. But don't worry, you can
make a new card if you mess this one up.

Talk to each programmer thus:

“Hi Dave, I'm here to track. You signed up for task XYZ. How much
time have you worked on it so far? “

Dave replies, “About a day.”

Then ask, “How much do you think you have to go?”

“About one more day.”

“You initially estimated two days. So it's going about as you thought?”

“Yes, it's going fine.”

“Dave, you also signed up for ABC. How much time on that so far?”

Steering the Iteration

176

“Well, I've got two days in on that, and I think maybe about a day to
go.”

Your ears prick up. (If you can actually do this, you are a born tracker.)
“You originally estimated a day and a half. What happened?”

“Well, it's taking longer than I thought.”

From Dave’s vagueness, you get that the ABC task is in trouble. You
may ask more questions, or might suggest a CRC session, or might ask
the coach to drop in on Dave and his partner. It's not Dave's fault:
these things happen. The thing to do is to make sure that it gets sorted
out.

There are several actions to initiate when you discover that the itera-
tion is off track.

First of all, bring the information to the team level. A story not getting
done is not an individual’s problem, it is the team’s problem. The
sooner you get to solving it, the better you’ll perform. See It’s Chet’s
Fault on page 223, for one way of dealing with the blame aspect.
Coach Dave to bring it up himself, and offer to handle it for him.
Don’t let it slide.

Second, solve the story problem within the programming team, if pos-
sible. Often other people are ahead of schedule or can buckle down a
little bit to pick up the slack to complete all stories. If this can be done,
it should be done. The programmers should have it be a point of
honor that the team makes commitments whenever possible.

Third, give some special attention to the particular task that’s off track.
Call a Quick Design Session (page 87) in almost every case, to make
sure the best minds are looking at what has turned out to be a problem
task. Consider giving the task owner a new partner, or even switching
owners. Sometimes you’re just down a rathole on a task and a new pair
will do better. Yes, we know that will feel like a defeat, but move to
another task and play that one to win. The iteration is the important
thing.

Steering the Iteration

177

Fourth, if the team just can’t pick up the slack, get the customer
involved. Level with them on what’s happening, and ask them to make
the call on what to do. Sometimes they’ll have you drop a story — and
often it’s a different one from what you expect. Sometimes they’ll sim-
plify a story, so that all stories can be completed, but one is a bit
smaller than first planned. In any case, it’s the customer’s call. Strange
as it may seem, you’ll engender more confidence by getting them
involved as soon as there’s trouble. And confidence is what will get you
a successful release.

Benefits of Tracking

We do recommend that teams have a Tracker. However, every team
we’ve worked with has had trouble getting someone to fit the position.
The tracker needs to have a non-threatening approach to getting infor-
mation, needs to be sensitive to body language and other non-verbal
behavior, and needs to be willing and able to track on a regular basis.

We’ve tried it with peers, customers, managers, and people who hap-
pened by on the street. Our best experience was with a manager who
was really good at being non-judgmental, but whose slightly sad
expression when people fell short encouraged people to do their best
for him. Our worst experience was when we tried switching to a differ-
ent tracker each iteration, making it a rotating duty among the
programmers. The individual variability in personality and style just
didn’t help.

A close second in undesirability, by the way, is using the customer for
tracking. It’s difficult for the customer to be non-judgmental, as they
are rightly so involved in getting the most done that they can. And
they are prone to solve the problem on the spot instead of letting the
team solve those that they can.

Tracking is a critical activity, giving you the best chance of recovering
from stumbles within the iteration, helping with the ongoing commu-
nication in the team, and adding confidence. It helps you be sure that
you deliver complete stories rather than stories that are “nearly done”.

Steering the Iteration

178

It helps programmers focus for a few moments every now and then on
their estimates, improving your ability to know what’s going to hap-
pen. And it puts a little attention on the task brainstorming process, by
finding those cases where the task list wasn’t complete, and helping the
team learn from the mistake.

You can track with a Tracker, if you can find one. You can track during
your daily stand-up meetings. There are probably other ways, as well.
One way or another, track the iteration as it goes along. Steering is
best if you do it all the time.

179

Chapter 21

Steering the Release

To steer the release, you need to track what’s done, how fast
you are going, and how well the system works.

At the release level, there are only a couple of interesting things to
know: when are you going to release, and what will you have when you
do so.

Often you have a specified date by which you are supposed to release
your product. By controlling scope, you can steer your project to
release the best possible product by that day.

Sometimes you have a minimal level of capability that really must be
there before you release. Even in these cases, you can usually release
earlier by judiciously controlling the scope, but there is some absolute
minimum below which you just can’t go.

This chapter is about counting what’s done, so the first thing is to
know what’s done. That’s the role of your acceptance tests. Review
Resources, Scope, Quality, Time (page 157) and use some of those
graphs, every day, to be sure done means done.

A release consists of a selection of stories implemented in the system.
To know how close you are to release, you just need to know which
stories are finished and which remain to be done. Finished, of course,
means that the code is in the system and that it runs correctly, passing
its acceptance tests. Here’s a simple chart:

Steering the Release

180

Points Done: xxxxxxxx
Proj Points: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Look, one-fourth done! Could it be that easy? To a first, but very good
approximation, the answer is yes. Here’s why:

Programmers can estimate comparative difficulty very well. And as the
project goes on, their estimates will get better and better. And, as the
project goes on, the speed at which the team implements things will be
fairly stable. If it takes a programmer two weeks to implement a
one-point story this iteration, it’ll probably be about two weeks for
other one-point stories later on. That gives us the basic thing to track:
keep track of the number of story points implemented in every itera-
tion. Whether you use ideal programming time or gummi bears, just
count them.

The number of points per iteration will probably be pretty stable from
one to the next. It’ll go down if a lot of people are on vacation or get
distracted by a course or a planning meeting or lots of support require-
ments. It’ll go up, too, especially as the team learns how to do things
or builds new tools. Factoring out lost time, the number of points built
per iteration will probably stay flat or climb slowly.

For tracking and management purposes, treat the number as a fact of
nature. If you’re getting nine points per iteration, plan for nine.

So what about your release? Just do the math. Want to know what will
be done by six weeks from now, and you’re doing nine points per
two-week iteration? There are three iterations, for 27 points. Pick the
most valuable cards adding up to 27 points — that’s your best estimate
of what will be done.

Note why we say always to put the most valuable stories into each iter-
ation. By choosing the most valuable stories, we make sure that the
system has the highest value on any given day, including that most
important day, release day!

Steering the Release

181

Isn’t it possible to be more accurate? Wouldn’t it be better to build a
PERT chart, or to use your favorite project manager to build a depen-
dency graph? Well, in a word, no.1 You’re dealing with inherently
unreliable data, namely the difficulty of software which is not yet writ-
ten. You can’t get decimal-place accuracy from your estimates, and
there’s no use trying. Estimate difficulty, measure performance, refine
the estimates. That’s the way to know what’s going to happen.

And there’s something more important than knowing what’s going to
happen — guiding what actually happens. It’s not possible to control
how long a given story takes, though we give some tips on doing your
best in Steering the Iteration on page 173. What you can do — what
you must do in our opinion — is control scope. By deciding what to
do next and what to defer, you can have a system that does what it
must do, and that has the best additional features possible within the
time and resources you have. There is no better deal than that.

Summary

Steering the release is the most critical aspect of XP. No matter how
fast or slow the team is, no matter what happens as you go along, your
best shot at a successful release by your scheduled date is to steer. For-
tunately, steering is easy. Know what’s done, know how fast your team
is moving, and use that knowledge to decide what to do next, and
what to defer.

1. PERT and project software often do more harm than good. They give you the illusion of
truth when all you have is estimates. They give you the illusion of control when all you
have is data. They focus your attention on your computer screen instead of your people.
For an XP-sized project: Resources, Scope, Quality, Time (page 157) — that’s all you
need. Do we repeat ourselves? Then we repeat ourselves.

Steering the Release

182

183

Chapter 22

Handling Defects

Report ’em, schedule ’em, test and fix ’em, avoid ’em. Just
don’t call ’em bugs.

Call them Incident Reports, Customer Information Requests if you
like. Just don’t call them bugs. Bugs are things that creep into your
software against your will. Every defect in your code was put there by
one of the programmers. Two of the programmers, with pair program-
ming. With the customers we visit, when something goes wrong, they
think it’s a defect. We’ll talk here about reporting the problem, sched-
uling the repair, testing and fixing the problem, and avoiding as many
defects as possible. But first, a word from our sponsor.

Defects reduce the value of the software to the customer. That runs
counter to our primary purpose, delivering value to the customer.
Defects also get in the way of delivering future value, by taking time
that could have been used to do new things. Finally, defects that get
through to the customer slow us down disproportionately. Since we
don’t have a test that shows the defect, it is often harder and more
time-consuming to fix.

OK. We don’t want defects. Hold that thought while we deal with
them.

Reporting Problems

The users are on line and perhaps in their own space, away from you.
They may want an easy way to submit problem reports. If they want to

Handling Defects

184

use email, that’s OK. If they ask you to build a problem reporting tool
right into the software, that’s OK too. The question is what do you do
with those emails when you get them.

Write them on cards. That’s right. You already have a good scheduling
mechanism. Why not use it?1 Let’s go on to ...

Scheduling Corrections

If the problem is of low enough priority, the customer can just write it
on a card (or someone can), and schedule the fix in a future iteration.
This is by far the best thing to do, as it uses your normal practiced flow
of planning. Where possible, write them on cards and schedule them
like any other story.

More urgent problems are a bit more complex. They need to be
addressed in the current iteration, typically right away. Often, that
means that some already scheduled work won’t get completed. What
should be deferred? That, of course, is up to the customer. You’ll need
to communicate proactively on this, because you won’t even know
how long it will take to fix until you’re nearly done. If you’re dealing
with a flow of defects, be sure you know your story and task priorities,
and be sure you keep the customer up to date on the impact of your
bug hunting. Consider putting a maximum amount of time on hunt-
ing before you consult the customer. They might want to reduce the
priority of the defect if it’s going to take a long time.

Keep track of the time spent fixing defects. Graph it on the wall. It’s a
potentially important consumption of resources, and well worth
watching. When you get some history on your velocity in the presence
of defect fixes, use that velocity figure in planning the next iteration. As
always, past history is your best indicator of future performance. But
keep the defect time broken out and displayed. It may be taking a big
bite of your development time, and if it is, you want to know it and do
something about it.

1. Some folks want to have a defect database. We call that a defeatist attitude. On a green-
field project you may well be able to do without. Give it a try!

Handling Defects

185

When the flow of support issues is high enough, some XP teams dedi-
cate programmers to support and fixes, usually on some kind of rolling
schedule. Feel free to try this, as it has the advantage of letting the bulk
of the programmers focus on new value without interruptions. There is
an important downside to this approach, however: it reduces feedback
in your process. By masking the impact of problems, you lose quite a
bit of the incentive to avoid them. Some teams like to have defects
sting a bit as they come in, to help remind them not to send them out.

Test and Fix the Problem

When a defect gets out to the customer, it slipped through both nets
of tests, the unit tests and the acceptance tests. The best way to make
code work is to start with a test that doesn’t work, then fix it. So write
a test to show the bug.

Customers, your acceptance tests let the defect through as well. While
the problem is fresh in your memory, specify new tests for that prob-
lem and anything it brings to mind. This is your chance to avoid some
irritation in the future. Programmers, do the same with the unit tests.
There’s a really good chance that when you do this, you’ll both find
additional problems. That’s great – those are problems that won’t
come back to slow you down later. Don’t let the press of time urge you
to skip the tests. It will just slow you down later. Testing makes the
whole project go faster and lets it deliver more value.

Preventing Defects

Let’s face it, the fewer problems we have, the better we’re going to like
it. It’s not realistic to expect no problems, but it’s not healthy to get
complacent. Sure, there are bugs in almost all software. So let’s not get
too excited when there are bugs in ours. Maybe we’re afraid that if
bugs aren’t inevitable, bugs in our code will mean we aren’t as good as
we should be. Well, we’ve all worked hard to get where we are, so we
probably are as good as we should be. But unless we’ve stopped learn-
ing, we aren’t as good as we could be. We aren’t as good as we can be.

Handling Defects

186

As an individual and as a team, look regularly at the defects that have
turned up. Look at them from two angles: where did they come from,
and how could you prevent problems like them in the future.

Where did they come from? One thing is almost certain: a bunch of
them will show up right at the edges of your testing. Problems will
show up right at the edge of your input testing, and downstream of
your last output check. Some of these, even if they’re many, will look
like there’s nothing you can do.

“If they send us bad data, there’s nothing we can do about it.” I wish I
was collecting a royalty on that sentence. It’s used all over the world,
and I’d be rich today. Often, however, there is something you can do.
Tighten up your validity tests, do some early cross-checking or hash
totals. Let your mind run a bit. Tightening this up with make your life
easier.

There’s another common event when you look at where the problems
are coming from. Often there’s a part of the system where they seem
to cluster. This is your clue to do a little scrambling in that area. Maybe
you need more tests there. Maybe a little refactoring is in order. Figure
out what’s needed, and give the area a little attention.

One more thing – often a team will notice a bug cluster in an area
where there hasn’t been pair programming. Yes, it’s true. Many teams
stop pairing once in a while, often in highly specialized areas. Take a
look at your defect sources. If they show more problems where there
has been less pairing – well, think about it. Maybe even do something
about it.

Summary

That’s the scoop on defects. Report them, schedule them, test to fix
them, prevent them. Go now, and bug no more!

Advanced Issue: Bug Databases

187

Sidebar - Chapter 22
Advanced Issue:

Bug Databases

After release, if you have multiple users reporting problems, you clearly
need some mechanism to keep track of them. If you have lots of users,
writing on a card may not do. In December 1999, Ron was involved in
a newsgroup conversation. Here, he is addressing whether a bug data-
base is needed during active, pre-release, full XP development.

Ken asked:

Bug tracking will allow you to uncover 'smells' in code (to use a
refactoring phrase). If there are a large number of problems in a
particular segment of your project then you may want to really
focus on that segment and stabilize it. How do you identify this
clustering unless you keep track of the errors. For example: we have
50% of our errors relating to monthly payroll.

Yes, the potential problem is real. If there are a large number of prob-
lems in some area (even over time), then that area needs focus. Ken
asks a good question: how do you keep track of this clustering?

Suppose some class, BadClass, hasn't been well-tested and is poorly
written. It's a bug cluster. It can and does happen.

How are the defects that cluster in BadClass detected and found? Or,
rephrasing the question slightly, and I hope harmlessly, how do the
existing XP practices naturally identify and deal with bug clusters?

Advanced Issue: Bug Databases

188

Susie and Bill, using BadClass as they build more function, encounter
those defects, which show up when their Unit Tests stop working
because of a problem in BadClass.

XP has Collective Code Ownership. So Susie and Bill fix BadClass. To
do this, they need to have a Unit Test for BadClass that is failing.

All its tests work now, so they write one that shows the defect. They fix
the defect.

Similarly, an Acceptance Test may show the problem. Someone has
that story and needs to make it run. They find that BadClass is failing.
Again they write a Unit Test and fix BadClass.

Fixing BadClass, Susie and Bill notice that the code is ugly. They may
refactor it a little, or might make a note to do it later.

At the next stand-up meeting (no more than 24 hours away) they
report what they're doing. Because they're a little ticked off about
BadClass biting them, they mention it. Everyone gets a little nudge
that BadClass is in fact bad.

BadClass is a bug cluster, so others have been bitten by BadClass, and
they join in the grousing.

Soon, a couple of people will say “BadClass has been ticking us off
long enough, let's go after it”, and they'll do just that.

So the normal effect of Relentless Testing and Collective Code Owner-
ship and Daily Stand-up Meeting is that the defects in BadClass get
found early and often, and the whole team gets an awareness of where
the bugs are.

That's how the XP practices naturally identify and deal with bug
clusters.

During the active implementation of the system, then, the whole team
tends to know what's bad, and the bad tends to heal.

Advanced Issue: Bug Databases

189

Might this be enough to ensure that there will in fact be no bug clus-
ters? Well, it could happen. In my experience, it DOES happen. The
team knows where the system is weak and they go after the weak places
as a natural part of their work.

My original short answer was based on the above characterization of
how the existing XP rules and practices “automatically” attack and
eliminate bug clusters. I didn't make that clear.

So I question, based on experience with bug databases and with XP
whether, during pre-release development, a bug database would carry
its weight.

But Ken goes on:

Process improvement is about feeding the loop. XP starts this by
including Unit tests when bugs are discovered.

Yes. And the XP value of Simplicity suggests that a team might well
start with the core practices and improve their practices where they
need it, rather than assume they will need it and add weight to the pro-
cess from the beginning. That's where I'm coming from. I’d strive to
keep the defect count low enough to avoid the slower feedback from
the database. But when I needed the database, I’d get one.

There are other elements that could be picked up from the other
camps.

Unquestionably. The trick in XP, because you want to go fast, is to add
only process elements that are actually needed, that will deliver more
benefit than they cost.

During development, before there are multiple streams of support
requests, I sincerely question whether a bug database would be
needed. I know of lots of successful XP projects that don't have them.

Advanced Issue: Bug Databases

190

If it were me, starting a greenfield project that would be delivered to
many customers, I'd still start without a bug database, because during
development I don't think it'd be helpful.

I would be planning to buy or build something by the time the pro-
gram got released to its using customer base.

YMMV, and if you use a bug database, you won't lose your XP merit
badge. But remember the Courage value, try the practices clean, and
watch for where you need process improvement. The real world will
surely surprise both of us.

Advanced Practice: Tests as Database

191

Sidebar - Chapter 22
Advanced Practice:

Tests as Database

Here’s a tip from Chet on keeping track of defects by using process
elements you already have: your tests. Stop relying on a trail of paper
or emails, or even a database, to keep track of bugs. Instead, write tests
to show bugs. You will need to decide how you will implement a
test-driven bug list. Since the unit tests must be kept at 100%, you
must decide how to have tests that document current bugs. There are
several ways to do this.

1. Define bug tests as acceptance tests (which may be below 100%).

2. Keep the bug tests in a separate unit test category and shift them
into the production unit suite as they are worked on.

3. Defer writing the test until you are ready to begin working on the
bug. This can mean that the test will never get written, which isn’t
a good thing.

4. Or the most fiendish way, take the failing test and release it into the
production test suite and let it lay in wait for the next team of pro-
grammers to come along with code to release. They will discover
the failure while running the production release suite and be forced
to fix it before legally releasing their code. Moo ha ha ha ...

When the team responsible for capturing bugs finds one, they do
enough analysis to be able to reproduce it in a test. The test is then
passed along to the team responsible for fixing the bug. The correction
team now have a concrete example of the failure and are able to work
in the standard 'write the test first' mode.

Advanced Practice: Tests as Database

192

You’re doing this right when bugs are corrected quickly, without
excessive meetings and confusion about what the bug report meant.

193

Sidebar - Chapter 22
Test to show a defect

When a defect is detected, begin with a test.

Stop relying on a trail of paper or emails, or even a database, to keep
track of defects. Instead, write tests to show defects.

You will need to decide how you will implement a test-driven defect
list. Since the unit tests must be kept at 100%, you must decide how to
have tests that document current defects. There are several ways to do
this.

1. Define defect tests as acceptance tests (which may be below 100%).

2. Keep the defect tests in a separate category and shift them into the
production unit suite as they are worked on.

3. Defer writing the test until you are ready to begin working on the
defect. This can mean that the test will never get written, which
isn’t a good thing.

4. Or the most fiendish way, take the failing test and release it into the
production test suite and let it lay in wait for the next team of pro-
grammers to come along with code to release. They will discover
the failure while running the production release suite and be forced
to fix it before legally releasing their code. Moo ha ha ha ...

When the team responsible for capturing defects finds one, they do
enough analysis to be able to reproduce it in a test. The test is then
passed along to the team responsible for fixing the defect. The correc-
tion team now have a concrete example of the failure and are able to
work in the standard 'write the test first' mode.

Test to show a defect

194

You’re doing this right when defects are corrected quickly, without
excessive meetings and confusion about what the defect report meant.

195

Chapter 23

Conclusion

We have been working with Extreme Programming for over four years,
and would never go back to what we did before. XP has equipped us to
communicate better with our peers, our customers, and our managers.
It has helped us to manage the stresses of working hard on something
we deeply care about. We think it’s good stuff and we recommend it to
anyone working on a project of suitable size and scope.

The values of XP are simplicity, communication, feedback, and cour-
age. There’s certainly enough to XP to fill this book and several others,
yet the essence truly is simple. Be together with your customer and
your fellow programmers, and talk with each other. Use simple design
and programming practices, and simple methods of planning, tracking,
and reporting. Test your program and your practices, using feedback
to decide how to steer the project. Working together in this way gives
the team courage. We’ve found that many of the higher-ceremony
trappings of software projects are based on fear of the unknown — that
fear is reduced or eliminated by XP’s high communication, reducing
the need for those practices. We’ve found that many such practices are
based on fear of losing — we prefer to focus on winning, by delivering
what the customer wants, when he wants it, in a context of solid soft-
ware enginerring.

Conclusion

196

There are 12 key practices in Extreme Programming, and we have
addressed them all in as much detail as our ability and space have per-
mitted. The practices are:

• On-site Customer (page 31);

• Small Releases (page 65);

• Planning game, addressed in Story Estimation (page 51), Customer
Defines Release (page 71), and Iteration Planning (page 79), and
in the steering chapters Steering (page 171), Steering the Release
(page 179), and Steering the Iteration (page 173);

• Metaphor, addressed briefly in Programming, in the discussion of
names on page 99;

• Simple design, addressed in Quick Design Session (page 87) and
Code Quality (page 103), as well as in Simple Design (page 93) in
the Programming chapter;

• Pair Programming (page 107);

• Collective Code Ownership (page 93);

• Continuous Integration (page 96);

• Coding Standard (page 97)

• Testing, addressed in Acceptance Tests (page 45), Unit Tests
(page 113), and other chapters;

• Refactoring (page 95), for which you really need Martin Fowler’s
book, Refactoring;

• 40-Hour Week (page 100).

The rules and practices we have described here are not intended to be
followed blindly, although we do sincerely recommend that you start
by following the practices closely. What’s really important, though, is
not to work as if XP is a checklist, but instead to let it get into your
bones. Just as an XP project controls itself by steering — making small
adjustments as you go — the application of XP in your environment
should be the same. Get the feeling for what is happening in your

Conclusion

197

organization, get the data, then adjust your process, keeping in mind
simplicity, communication, feedback — and courage.

To become truly good at programming is a life’s work, an ongoing
enterprise of learning and practicing. To become good at Extreme Pro-
gramming is much the same. In spite of the name, Extreme
Programming is about people as much as it is about programming, and
our relationships with other people are what life itself should be about.

We have enjoyed the journey so far, and sincerely hope that you will as
well. If we can help — like the truth, we’re out there. Look us up.

Conclusion

198

Conclusion

199

Conclusion

200

Conclusion

201

Conclusion

202

Conclusion

203

Conclusion

204

205

Section I

Bonus Tracks

Here are some things we’ve paid a lot to learn. Since you
bought the album, we wanted to give you a little something
extra. Thank you, and we hope we passed the audition.

206

207

Chapter 24

We’ll Try

“We’ll try” can be the saddest words a programmer has ever
spoken, and most of us have spoken them more than once.
We’ve covered this material in other forms already, but it
bears repeating here.

These words are often the preface to months of grueling effort against
a deadline we know in our heart we cannot make. At the end, we come
up tired, burnt out, beaten, and short. Management hates us, we hate
ourselves, our families don't know us any more or have fallen by the
wayside. The software, if it works at all, is nothing to be proud of.

Oh, there have been exceptions. Successful products have been
launched this way, and there is a certain pride in having gone through
hell and survived. We have to believe it was worth it, if the alternative
is to believe we wasted a big chunk of our lives.

There has to be a better way. Here's one that couldn't really happen.

Suppose you knew everything they were asking for, and suppose you
knew how long it would take your team to do every one of the things
they were asking for.

Suppose you knew that, and you weren't afraid of the truth. Suppose
you wrote down everything they were asking for, maybe on little cards,
and you went in to them and laid your cards on the table.

We’ll Try

208

Suppose you said: Here's everything you have asked for, and on each
card I've put down how long it is going to take to get done. I've bro-
ken them down into three-week periods, and in each period I've put as
many cards as will get done in that period. As you can see, it will take
14 periods to do all this.

You lay a pencil vertically between two of the columns, and say: Here's
the date we want to deliver. We have too much to do. Our job now is
to put the cards we want the most on the left side of the pencil. When
we put a card over there, we have to remove a card with the same num-
ber on it.

They rant. They rave. They call you names. Secure in your perfect
knowledge, you say, This is how long each of these things will take. To
get the best product by our date, we need to put the cards we want
most on the left side of the pencil, removing cards with the same
number.

They threaten your job. You say, trying not to smile, This is how long
it will take our current team to do it. Maybe if you fire us, you can
find, recruit, hire, and train a team that will get it done sooner.

Bask for a moment in how calm, how strong, how totally cool and
heroic you would be, because you know how long it will take.

But that couldn't happen, could it? Yes, it could. We may not be able
to do as well as the lucky devil above, but it turns out we can do pretty
well. Here's how an XP team does it:

For a moment, get in touch with that feeling you have when you're
just coding along. The world goes away, you code and test and test and
code, and quickly you're done with whatever it is.

A day of that is what we call a Perfect Engineering Day. For a lot of
your tasks, you probably have a solid feeling: If you guys would just
leave me alone, I could do that in two days!

It couldn't be that easy! We’ll Try

209

Cool. With that in hand, we only need three things:

1. We need to know all the tasks there are;

2. We need to have that solid feeling for each of them;

3. We need to know how many real days it takes to get a Perfect En-
gineering Day.

Armed with that information, a stack of cards, and a pencil, we can
estimate how long any project will take!

It couldn't be that easy!

It isn't exactly easy, but it isn't hard. Briefly, here's how an XP team
goes about it.

First, we have to have the User Stories on cards. It would be nice to
have all of them. It's important to have enough of them, and to write
placeholder cards for stories that don't exist yet.

The entire team, customers and programmers, goes through all the
stories. Customers explain what the system has to do, and the team
brainstorms quickly how it might be done. Estimate each card in pro-
grammer weeks: 1, 2, or 3 weeks of one programmer's time.

If a story seems much less than a week, batch it with a few other small
ones. If it seems more than 3 weeks, take that as a sign that you don't
understand it. Get the customers to break it down into two or more
stories and explain it again. Repeat until you have all the stories
estimated.

Now no one believes we can do all those stories in the time we esti-
mate, because there is so much else to do that we haven't counted.
We'll start by assuming we are off by a factor of three. Yes, three! We’ll
guess that it takes us three weeks to do what we could do in one per-
fect week. If that’s too conservative, we’ll know soon enough and
reflect it in future plans. We call our actual speed of delivering stories

We’ll Try What if you don’t have all the stories?

210

"velocity", and this figure is a velocity adjustment to use until we know
our real velocity. We’re assuming a velocity of 1/3 story point per pro-
grammer per week.

Pick an iteration size (we’ll use 3 weeks) and figure out how many pro-
grammer weeks there are in an iteration: 3 weeks X N programmers /
3. (We divided our factor of 3 back out. If we had guessed 2, we’d
have divided by 2.)

Voila, you plan for 1 week's work done in every iteration, for each of
your N programmers! This is a really good starting point.

Start arranging cards into groups of N (the number of programmers)
points' work. Each of these piles will take, we estimate, 3 weeks to get
done. Count the piles, check the calendar. That's your prediction for
when you'll get done.

Of course no one believes this. But we're doing to do it again and
again, as we go along in the project. And we're going to refine our
ability to estimate, and we're going to learn more about how the sys-
tem works, so we will know more about how long things will take. A
little way into the project, we'll be really good at this. Better yet,
because we will be tracking this performance, management will come
to know that we are really good at it, and they'll start believing our
estimates.

At this point you might be asking yourself some questions ...

What if you don’t have all the stories?

Don’t worry — you can be sure you don't have all the stories. It's
important to at least have placeholders for all the big ones. Spend a lit-
tle time brainstorming, customers and programmers together, about
what else might be needed. Make cards for the things that make sense.
Estimate them like all the others. But the specific stories aren’t as
important as the steering that becomes possible when you can tell the
customer how fast you are going.

How do you get estimates? We’ll Try

211

How do you get estimates? 1

Estimating is scary. Assume for now that no one will know but you
what you come up with. We'll talk about how to deal with errors
shortly.

With all the programmers together, estimates will tend to average out.
And remember: we have our velocity adjustment to give us some slack,
and we will be revising the schedule many times as we go along.

Programmers divide up into teams of two or three. Each team looks at
each story. Reflect on how you are going to do it in the system, using
your experience in general, and any exploration already done, to guide
you. Talk through an option, estimate how long each step would take.

Consider alternatives. If you think of an easier alternative, or someone
says they think they can do it in less time, take the smaller number.
When the other teams look at a card that has already been estimated,
they can reduce the time but not increase it.

If you can't estimate a story because there's something you don't
know, something not yet figured out, put down the one you can't esti-
mate and pick up the precursor and estimate it. Get back to the
dependent story.

Repeat until all teams have looked at all stories. If you take 10 minutes
per story, you can do 150 stories in 3 days. You'll probably wind up
going faster than that after the first few.

How do you explain velocity?

We recommend that you start with a velocity of 1/3 story point per
programmer per week. That is, we assume that every week of time you
estimate for development will take three weeks of real time.

1. In this book, there’s more about estimation in Iteration Planning (page 79), Experience
improves estimates (page 155), and How to estimate anything (page 217).

We’ll Try We can't tell management our real estimates!

212

This number is a rule of thumb. An experienced XP team will have a
measured, more accurate number, and you’ll be experienced real soon.

Here are some of the things that make up the number. There are prob-
ably more.

You probably don't have all the stories, and some of the ones you do
have will change as customers learn more about what they really need;

There will be meetings, reports, writing, support, testing, planning,
various other activities that mean no one will really be able to program
8 hours a day, day in and day out.

You don't know your real velocity yet, and 1/3 is a fairly decent start-
ing point.

We can't tell management our real estimates!

Some teams are afraid to tell management their “perfect engineering”
estimates for the stories, for fear they will be held to those estimates
instead of the loaded ones.

If this is your situation, use “perfect engineering” in your head, but
call the estimates eXtreme Programming Units (XPUs) or something.
One project called the estimates Gummi Bears, but it is probably bet-
ter for the programmers to think in terms of their own perfect time.

Then it is simple enough to say to management: “In each three-week
period, each programmer can do one eXtreme Programming Units.
eXtreme Programming Units are carefully calibrated estimates of diffi-
culty. We'll be measuring our rate of delivering XPUs as we go along,
so you'll be able to track how we're doing.”

This can't possibly work!

This can't possibly work! We’ll Try

213

You're asking how this could possibly work. The amazing thing is that
it actually works pretty well, even for your first estimate of the project.
But what makes it really work is that you do it again and again.

When you present your first Release Plan, explain to management how
you got the schedule. Then tell them that you do not believe this
schedule, and that neither should they. You go on:

“Many things can, and will change in the course of this development.
Customers will change requirements, some things will turn out to be
easier than we thought, and some will be harder. That has happened in
every project we have ever done, and it will happen this time.

“The difference with this project is that we will do this schedule every
nine weeks as we go along, and we will report the results to you. We
will refine all our estimates of the remaining stories, based on what we
have learned in the preceding iterations. Each time we get together, we
will all see how many stories are done, and how many there are to go.

“Each time we get together, expect to see that we are closer to comple-
tion. Expect also that the date may move in, and it may move out. But
you will be able to see exactly what our estimate is, and that will enable
you to make good decisions about the project.

“We're confident that we can give you quality information about how
we're doing, and we're confident that with that information you will
have the best chance of helping us be successful.”

And you will do just that: you will observe your own performance, and
you will estimate the stories over again based on what you know, and
every two months your ability to estimate the schedule will get better
and better.

Even better, customers and management will learn that you are telling
the truth as you know it; they will learn that your estimate of the
schedule is the best they can get; they will learn that they can help with
the delivery by providing you what you need, and by adjusting scope
judiciously to help you make the date.

We’ll Try Not with my management!

214

Not with my management!

Sometimes teams believe that even with the best knowledge of what
the schedule will really be, their management is so draconian, so unen-
lightened, so evil, that the process can't possibly work.

Well, if it's really that bad, I'd advise you to hit the silk.2

But more likely, management has been lied to, misled, bamboozled,
and spun so many times that they have come to believe that nothing
works but pressure.

Give the process a chance. Most managers really are more than ready
to use accurate information to make better decisions. Every time you
do this process, your knowledge of what will happen improves. If every
time you report, you tell them what you really believe will happen,
even the most dull management will finally figure out that your esti-
mates are better than whatever they are shouting.

In January you'll say: “Here is our schedule, it shows we'll be done in
September”. They'll shout at you that it must be done in June. You
say, “We'll try, but if this is what we have to do, it'll be September.
That’s with all 300 points in there. 200 points we could do by June, if
you’d like to reduce scope.”

In March, you'll say: “Notice that we got done about what we pre-
dicted. Our schedule shows that we'll be done in September, or June
on reduced scope.” They'll shout, but they won't be so sure. Expect
them to say you have to work harder. “We're working as effectively as
we can,” you reply. “Would you like to see our Tracking Report?”

Every month, your schedule shows you converging on the predicted
date. It must: there’s less to do each time, and your experience in esti-
mating will inevitably improve. Even the most pointy-haired
management will get it. And if they don't, you're still the best-estimat-
ing, most effective team in the company. How can this be bad?

2. This is a reference to bailing out of an airplane. Used back when Jeffries was a boy.

Not with my management! We’ll Try

215

We’ll Try Not with my management!

216

217

Chapter 25 ‘

How to estimate anything

Sometimes estimating stories seems scary. Keep your heads,
stick together, and break the story down into small parts.
You’ll be surprised what you can do.

Let’s look now at a complex story and see how we might break it down
into tasks that can be estimated.

Psychic Message Management
All messages displayed by the Psychic Operating System will
appear in overlapping rectangles. Each rectangle is indepen-
dently clickable, and will come to the front of the screen before
the user actually clicks it. Owing to the importance of prime
numbers in getting good psychic contact, the rectangles must
all have their length and width be prime numbers. If the win-
dow is too small to hold the message, there should be a Psychic
Extension Bar on the right side of the window ...

I didn’t promise a reasonable story, and in fact didn’t want one. Part of
what we’ll see here is that even a story that seems impossibly weird will
yield to task breakdown, especially if the team works together. Help
me out here. What are some of the tasks we have to do to implement
the story? Speak up, we haven’t implemented the Psychic Operating
System yet.

1. Well, we have to be able to display rectangles on the screen. Regular
windows are rectangular, wonder if that would work.

2. We have to put text inside the rectangles. There’s a TextBox object

How to estimate anything

218

or something like that, I think.

3. Sounds like the windows have a bar on the right side to scroll the
message up and down. We could use a scroll bar for that.

4. The rectangles have to have prime length and width. We’ll need a
list of primes. I bet I can do that in a couple of hours ...

5. The window has to come to the front before the user clicks on it.
That could be tricky. Would it be OK if it came up just a little bit
before he clicked? I’ve got an idea — what if the window popped
up as soon as your mouse got near it?

These tasks are starting to look reasonable. They all seem to be possi-
ble, except for maybe number 5, and it’s not hard to estimate how to
do them. For this story, some of them are minutes, so maybe we went
too far. In most stories, it’s enough to get the tasks down to a day or
so.

Some very important things have happened here.

The team has translated the customer’s requirement into something
they can understand. At first the idea seemed strange and impossible,
but it turns out we actually understand it.

The team has taken a story they couldn’t possibly estimate, and broken
it down into finite tasks that they can actually estimate and do. This is
design. An XP team does design throughout the project, and we just
did a little bit of it here.

The tasks are mostly estimatable. The one that may not be easy to esti-
mate is broken out as well, and someone already has an idea. We’ll do
an experiment.

A seemingly impossible story has turned into something we can predict
and actually do. Not bad.

219

Chapter 26

Infrastructure

What about that database you need to build first? What
about that framework? What about that syntax-directed
command compiler? Get over it!

All too often, projects go dark for a few months at the beginning while
they build some absolutely necessary bit of infrastructure. Usually the
team really believes that it’s necessary, and that it will make things go
faster in the long run.

YAGNI: You’re Not Gonna Need It. This slogan, one of XP’s most
famous and controversial, reminds us always to work on the story we
have, not something we think we’re going to need. Even if we know
we’re going to need it.

XP’s planning process works by allowing the customers to steer all of
development, based on business value. If we wait for a few months not
delivering business value, we’re violating that process and losing the
customers’ interest and confidence. We may never get it back. Some
projects never emerge from this cave of darkness. Don’t go in there.

Some teams address infrastructure by allowing some percentage of
programmers’ time to go to infrastructure tasks. “We need a database,
so we’ll put two programmers’ worth of work on it in every iteration.
That’s two for us, and the remaining six for the customer.” This is a bit
better, but frankly, it’s a slippery slope.

Infrastructure

220

One project we know of took 100 percent of one of its final iterations
on infrastructure issues. This really confused the customers, who had
had stories in mind for that iteration. Doctor, it hurts when I confuse
my customers.1

Where possible, associate infrastructure work with specific stories that
the customer wants. One of our favorite examples is this one: the pro-
grammers realized that they needed to write some scripts to check
whether input data files were available and FTP them to the server.
They couldn’t think of any way to associate this with business value.

Finally, someone got the answer. The story was “When we (the cus-
tomers) show up in the morning at 8 AM, the data is there live on our
systems.” Naturally, the customers wanted this — they gave it a very
high priority. And this story served quite well as the basis for the tasks
of writing the tasks.

Use this trick ruthlessly. Every time you are thinking of some big infra-
structure investment that you may have to make “behind the scenes”,
tie it back to customer business value. If you can’t, maybe the cus-
tomer doesn’t need it. If the customer doesn’t need it, don’t do it.

OK, you’ve got it tied to a story: “The system records name, address,
age, height, weight, and a lot of other personal information for each of
10 million patients. It can display any patient by record number and
can display statistical analyses for any and all stored data. It knows
everything that has ever happened to any patient at any time. And
that’s just the beginning.”

OOPS, clearly we need a database. Or do we?

First of all, that story is too big to estimate. Let’s break it down. Here
are a couple of the new stories:

“The system records name, address, age, height, and weight for
patients.

1. If you don’t know this joke, email us. No, on second thought, “Don’t do that”.

Infrastructure

221

“The system can display any patient.”

“The system supports 10 million patients.”

OK, but doesn’t that still imply a database? Well, yes, but maybe not
right away. What if you wrote the initial system to know just those
fields for a few patients, and stored them on a file? Might you be able
to deliver some value with such a system? Sure you could. Up to 1,000
patients, or even 10,000, it might work just fine on the file.

On a file, you could easily add fields or change their size or content:
just write little programs to do it.

“Yes, but what about integrity,” you ask.

“Do you have a story for that,” we reply. “And how hard is integrity
anyway?”

Files actually have very high integrity, especially if you’re a little careful
about writing them in the right order. You could go a long way on
files.

But, honestly, we do know that sooner or later you’re going to want to
have a database. But if you are able to deliver business value for a few
iterations without one, just writing the information to files and reading
it back, the cool thing is that the database schema will stop changing so
much. The record definitions, the fields, the formats — these things
will stabilize as the customers get to see the system in operation. Once
things stabilize, it’s no big deal to go in and set up the database. Sure,
it’ll still happen that you need to change it, but you’ll have most of the
structure in hand, and refactorings won’t be so frequent or severe.

But wait, won’t it be really hard to convert the system to use the data-
base after making it run on files? That could take ages!

Go back and read Code Quality on page 103, especially rule three, Say
everything once and only once. Quality, well-factored code for your
file-based application will have just one place that reads each record

Infrastructure

222

type, and one place that writes it. Those places will converge down to
just one place that reads an arbitrary record and just one that writes.
Those are the places — the only places — where the database access
code will have to go.

Now as you begin with XP, we realize you’ll have trouble fully signing
up for this philosophy. At first you’ll feel the need to do some amount
of infrastructure work, and you’ll have to find some technique to avoid
going completely dark on your client. Maybe the level of effort thing.

But where possible, associate infrastructure explicitly with customer
value. And where possible, do infrastructure tasks very incrementally, a
little bit with each story. When your courage is high, try extra simple
solutions, then watch how they work out. If your anxiety level gets
high, go ahead and put in as much generality as you think you need —
but just enough for right now.

Observe what happens. We’re sure you’ll find that you don’t need to
invest as much in the future as you used to, and that things will actually
go more smoothly in the process. As you go along, put more and more
simplicity in at the beginning, relying on your ability to refactor to add
the generality — or the general tools — that you’ll need.

223

Chapter 27

It’s Chet’s Fault

Are you looking for someone to blame? This chapter
explains how to know whose fault it is. Now move on and
solve your problems.

Early on in the C3 project, the team was having a “discussion” about
something that had gone wrong. Someone was trying to find out who
had messed up. Chet got fed up with the witch hunt and announced,
“It’s my fault.” He took a card (we had a few around) and wrote “It’s
my fault” on it and signed it. Then he put it in his desk and told every-
one where to find it if we ever needed someone to blame.

Everyone knew that it wasn’t Chet’s fault, which was what made his
act so powerful. It jolted us all out of looking for who and back into
looking for what to do. It reminded us that we were a team, on a team
effort, and that we all accept responsibility for everything that happens.
It was one of Chet’s famous stone-snatching moves1.

Since then, other teams have taken advantage of the fact that it’s
Chet’s fault. Some just use the same old Chet who is writing this book,
but others have adopted their own Chet. Here’s a picture of the real
Chat and the Chet from a very special team in Omaha. See if you can
guess which is which.

Pictures of Chets.

1. Another was the famous Balancing Hopes and Fears (page 225), where Chet snatched the
stone from the very hand of Beck himself.

It’s Chet’s Fault

224

225

Chapter 28

Balancing Hopes and
Fears

Those of you who have heard Ron, Ann, or I speak about XP are prob-
ably wondering where are all the war stories. Well, here’s one.

C3 was about ready to launch, the acceptance tests where in the low
nineties and moving steadily upwards, performance was within accept-
able levels. But we had one hole. Early in the project, we had decided
to retain the reporting portions of the legacy system. This would allow
us control the new system’s interface, and maybe, launch the first
phase of the system much quicker. Unfortunately, that interface con-
tained several hundred poorly understood data items. And it is difficult
to write acceptance tests when the customer doesn’t know what the
data means let alone what the correct value is.

So here we were, all of our measures were pointing to a launch in the
near future, but we all knew our biggest risk was not showing up on
our charts. We knew it, but we didn’t want to know it. And so we lied
to ourselves, or at least we didn’t tell ourselves the complete truth.

About this time Kent made one of his periodic visits and after assessing
the situation, called us all together. We then had the most uncomfort-

Balancing Hopes and Fears

226

able meeting I ever attended. We had worked very hard, we had a
program that did an obviously better job of calculating the payroll than
the legacy system, so we wanted to launch it. But we had to come to
grips with the problems with the tapeworm (as the interface to the leg-
acy reporting system was called). After about an hour of talking about
our certainly that the calculations were correct, and our uncertainty as
to whether we could communicate the results of those calculations to
the program what would actually print the payroll checks, we
adjourned. A couple of us stood around talking to Kent about what we
should do next. I walked the couple of feet to where the acceptence
tests results were posted and reflected on the meeting. I had an epep-
hany. I went back to where Kent was and said that we were just
"balance hopes and fears". We had all focused on our hope that we
could launch the system as planned and our fear that we wouldn’t.
Kent thold me that I had just "snatched the peeble from the master’s
hand".

We knew what had to be done. Kent called everyone back. We brain-
stormed the tasks that were required to launch the system, estimated
them, and started back to work with a schedule we all believed in. We
still had some uncertainty about the tapeworm, but we had given our-
selves permission to talk about it.

We had let our emotions rule our actions, so much so that we co-oped
Kent into our emotional state. Because we had allowed this major
piece of functionality to be developed outside the mainstream of our
process, it had no acceptance tests. We had no way of knowing how
close it was to being finished and no way of measuring its progress
towards completion except for days expended. This lack of knowledge
caused us to become afraid of the tapeworm and as we know "Fear
leads to Anger. Anger leads to Hate. Hate leads to Suffering."

227

Chapter 29

Testing Improves Code

An example showing how writing some tests can cause you
to improve the code.

My favorite coding partner, Rich Garzaniti, and I were writing an
object to control the printing of checks and eft stubs from the C3 pay-
roll system. We had a collection of Disclosure objects, each of which
knew all the information required to print each document. Our next
task was to split the creation of the actual print files into multiple con-
current processes. The disclosures were in the correct order for
printing and check numbers had been assigned, so all we had to do was
write a little code to split the collection into equal chunks and parcel it
out to each process. We wrote a method on the object responsible for
controlling multithreaded processes.

SharedManagedPopulation>>intervalToProcess
| slice start end |
slice := disclosures size // numberOfThreads.
start := (slice * threadNumber - 1) + 1.
end := (start + slice) max: disclosures size.
^Interval

from: start
to: end

We had written a little workspace code to make sure we had the algo-
rithm right, but now we needed to write a unit test. The method we
had written was self-contained; all the information we had needed was
stored as instance variables on the class. So to test it we would have to
create a series of SharedManagedPopulations, each with a collection of

Testing Improves Code

228

Disclosures, each with the appropriate numberOfThreads and thread-
Number. That seemed like too much work to us, so we decided to
refactor the code to make it easier to test.

SharedManagedPopulation>>intervalForThread: threadInteger
 numberOfThreads: threadTotalInteger
 collectionSize: sizeInteger

|slice start end|
slice := sizeInteger // threadTotalInteger.
Start := (slice * threadInteger) + 1.
End := (start + slice) max: sizeInteger.
^Interval

from: start
to: end

SharedManagedPopulation>>intervalToProcess
^self

intervalForThread: threadNumber
numberOfThreads: numberOfThreads
collectionSize: disclosures size

The need to easily test the intervalToProcess method has caused us to
remove its interesting behavior to the new helper method interval-
ForThread:numberOfThreads:collectionSize:. With the result that
intervalToProcess no longer needs a test, since it has no behavior and
therefore cannot fail, and intervalForThread:numberOfThreads:collec-
tionSize: can be tested without any setup beyond creating an instance
of SharedManagedPopulation.

The pressure to test has forced us to write better code. This is a pattern
we have encountered time and again during our XP experience, code
that can not be easily tested is not factored properly. This happens
because we are breaking an XP rule: Write the tests first. If we had
written the unit test first, instead of using an experiment written in a
workspace, we would have discovered the need for the helper method
much sooner.

Does this mean Rich and I are bad people? No, it just means we are
people. And, it also means this lesson has two morals. If you are having

Testing Improves Code

229

difficulty writing the test, refactor the code to split out the behavior.
And secondly, if you find yourself needing to split out the behavior to
improve testability, write the test first. In either case, you will discover
that testing will improve the quality of your code.

Testing Improves Code

230

231

Chapter 30

XPer Tries Java

After the C3 project ended most of the team was trans-
ferred to work on the human resources intranet. I found
how they were using the principles of XP to improve their
lives on a new project heartening. What follows is a
description of how Rich Garzaniti, exC3er and devoted
XPer is introducing testing and modern development tools
into an environment where none existed.

One of the first tasks on my new assignment was to change an intranet
web application to access a different directory service. The application
had been born four years earlier and was using its own LDAP directory
server to access corporate data. In the intervening four years, the cor-
poration had developed a central corporate LDAP directory server
which was far more accurate.

A change to use one LDAP over another sounds easy, right? Just
change a parameter or two and off you go. What I found was anything
but. The layouts of the two directory servers were different.

The application was written in server-side java script (SSJS). It uses
live connect technology to communicate with java objects on the
server. These java objects are responsible for interfacing with the direc-
tory server and returning information to the application. The
application uses Netscape’s Directory SDK. Our java class LdapServer
creates an instance of LdapConnection, passes it some parameters, and
receives back a UserData object that contains the result of the LDAP
query.

XPer Tries Java

232

The first attempt at making and testing this change was a nightmare.
The connection parameters resided in one of the java classes. A dupli-
cate file directory structure was copied on the test Unix server to
accommodate the changes being made to the SSJS and the java classes.
Changes to the files were being made using ‘vi’ on the test machine.
Since the test server did not have the correct environment to test the
change (no comment on this one), the files were then moved to a
pre-production machine. A make-file was run that compiled and linked
all the associated files together. The web server then had to be stopped
and restarted for the changes to take effect. The web browser then was
engaged through a special port (set up for testing) that started the
application.

This totally unacceptable. Each code change required five to ten min-
utes to verify its effects. Three developers spent three days mucking
around in all this code. The only error message displayed in the
browser was ‘Exception 52’ (translated: ‘The LDAP server is unavail-
able”). The end result was three days of frustration and nothing
accomplished (except knowing what a ‘52’ LDAP exception is). As a
bonus, all that hacking and slashing of files and directories corrupted
the already unstable environment and the server was unavailable for
over a week.

What we were missing were some good testing tools. The developers
in the group were used to writing applications in scripting languages
like SSJS and PERL. And boy did they love coding in ‘vi’! Coming
from a Smalltalk environment, I was used to working in a great IDE
and being able to step through RUNNING code to help debug prob-
lems. So I knew there had to be another way.

I purchased a copy of Visual Age for Java Professional Edition (VAJ)
and installed it on my PC. I then went to the Xprogramming site and
downloaded the JUnit testing framework. I imported the framework
into VAJ and spent a few hours familiarizing myself with it. I had spent
three years using the Smalltalk version so the mechanics of how it
worked was pretty easy to follow.

XPer Tries Java

233

Having used ENVY/Developer for many years, I was also familiar with
the paradigm on which VAJ operated. I immediately felt the power of
knowing that all the java code I wrote would be in a code repository
and I wouldn’t be dealing with files all over the place. And version
control would be greatly simplified.

Our application’s interface to LDAP was localized through java classes.
The first thing I did was try and import the three classes that had been
developed specifically for the application. The exceptions I got trying
to import stated that netscape.ldap.* was not visible. I then went to
the Netscape web site and downloaded their Directory SDK. It came
with 2.jar files that contained all the.class files from the SDK. So, as a
first step I imported the 2.jar files into VAJ. No problems there. I then
tried again to import our three application classes. Success! At least
they were imported without any errors.

The next step was to browse the code and try to make a little sense of
how it all operated so I could start writing some unit tests. The two
immediate advantages I had at this point were being in a good editor
and having VAJ browser tools at my disposal. Unlike the generic ‘vi’,
the ability to double click inside a pair of {} brackets and have the
entire block of code between them highlighted made reading code
much easier. The availability of the search tools in VAJ was what really
made things fly. Being able to open a class browser on referenced
classes and find senders and implementers of methods in a unified envi-
ronment makes you realize that there is no other way to do it.

I have to admit that within an hour I had a much better knowledge of
how the code all fit together than I had after three days of looking at
java code in ‘vi’ in different files and trying to piece it all together. (As
you can tell I am a tool guy).

It was now time to write a unit test. I figured I should be able to get a
simple test written that used the untouched imported code to connect
to our own LDAP and return a UserData object. Since I was running
VAJ on my local Windows’95 PC and the LDAP directories were on
our pre-production unix servers I at first thought that I would have to
set up some kind of local LDAP test server. But I decided against that

XPer Tries Java

234

strategy. One of our XP mottoes was ‘let Smalltalk tell you’. Even
though this was java, I knew that if there was a problem, the code
would tell me. I knew how VAJ worked and that it would actually help
me find any problems.

First I built a test case called LdapTest (subclassed from TestCase). I
then took the SSJS code that instantiated an LdapServer object and
put it in the setUp() method of the test:

public void setUp() {
ldapServer = new LdapServer();

}

The constructor on LdapServer creates and opens a connection to the
actual LDAP directory server.

I then wrote a simple test method:

public void testLdap() {
UserData data = ldapServer.getUserData(“t9999rg”);
assertEquals(data.emplId(), "666666");

 }

Since I had configured VAJ with JUnit as a tool, I simply right clicked
on the LdapTest class and selected Tools>Junit. The JUnit gui opens
and automatically runs the test. The best part of all this was that the
progress bar came up green….the test had run!! And it ran in 0.054
seconds. A few hours of work and I now had a repeatable test that
would test any changes I made to the Ldap classes. I think that is a
good thing. I then expanded the number of assertions to test every
piece of data the UserData object is supposed to retrieve.

Now that the test was up and running, I placed a breakpoint at the
start of the test and was able to step through the running code. There
is no better way to decipher how an application works than to watch it
do its thing. The reaction from other members of the team was imme-
diate. They realized that debugging time in this environment would be
only one-tenth of what it was currently. After watching me for that one
day writing tests and stepping through code, another member of the

XPer Tries Java

235

team took a small java application he had written, imported the code
into VAJ, and spent time walking step-by-step through the code he
had written.

Now I set my sights on the task at hand. I needed to change the code
to point to the new corporate LDAP directory server. The LdapServer
creates an instance of LdifServer which actually does the LDAP inter-
facing. After reviewing how LdifServer worked (by stepping through
the unit tests), I realized that a refactoring of the class was needed to
proceed. And with my unit tests in place I knew it would be a snap.

Here is what LdifServer looked like before I started:

private void openConnection() {
_conn = new LDAPConnection();
try {

_conn.connect("oddshpr1-nf0.oddc.company.com",
389);

_base = "o=American Corporation, c=US";
_scope = LDAPv3.SCOPE_SUB;

}
catch(Exception ex) {

System.out.println(ex);
return;

}
}

public UserData getUserData(String tid) {
openConnection();

String filter = "(&(objectclass=companyPerson)" +"(uid=" +tid +"))";
String attrs[] = { "givenName", "sn", "employeeNumber",

"nationality",
 "destinationIndicator", "cn", "employeeType",

"dsHasAgreed" };
boolean attrsOnly = false;
LDAPSearchConstraints cons = _conn.getSearchConstraints();
LDAPSearchResults results;
UserData data = null;
try {

results = _conn.search(_base, _scope, filter, attrs,
attrsOnly, cons);

XPer Tries Java

236

if(!results.hasMoreElements()) return(null);

LDAPEntry entry = results.next();
LDAPAttributeSet attribs = entry.getAttributeSet();

String givenName = getValue(attribs, 0);
String sn = getValue(attribs, 1);
String employeeNumber = getValue(attribs, 2);
String nationality = getValue(attribs, 3);
String plant = getValue(attribs, 4);
String cn = getValue(attribs, 5);
String employeeType = getValue(attribs, 6);

 boolean isEmployee =
!(employeeType.equalsIgnoreCase("N/A"));

 boolean policyFlag = getValue(attribs,
7).equalsIgnoreCase("true");
data = new UserData(tid, givenName, sn, null, isEmployee,
employeeNumber, nationality, plant, cn, employeeType, policyFlag);

}
catch(Exception ex) {

try {
 System.out.println("Exception: " +ex);
}
catch(Exception ex2) {
}
}

return(data);
}

As you can see, the code was a mess. Not only was it hard to follow,
but the individual pieces were impossible to test. Without getting into
too much detail of how the LDAP interface works, the LdapConnec-
tion executes a search() function that takes a whole bunch of
parameters. These parameters specify which Ldap directory server to
connect to and what attributes to retrieve. It was obvious that refactor-
ing the search attributes would make it possible to subclass LdifServer
and override the connection parameters.

Here’s what I ended up with:

private void connect() {
try {_conn.connect(ldapServer(), ldapPort());

XPer Tries Java

237

}
catch(Exception ex) {systemOut(ex);

}
}

public String ldapServer() {
return "oddshpr1-nf0.oddc.company.com";

}

public int ldapPort() {
return 389;

}

I then subclasses LdifServer into CorporateLdifServer and overrode
one method:

public String ldapServer() {
return "directory.appl.company.com";

}

Since I had written my new unit test, I just hit the ‘Run” button and,
what do you know, the test ran! That wasn’t so hard. I decided to
refactor the other method so I could test it thoroughly.

public UserData getUserData(String tid) {
LDAPSearchResults results = null;
LDAPEntry entry = null;

try {results = search(tid);}
catch(Exception ex) {systemOut(ex);}

if(!results.hasMoreElements()) return(null);

try {entry = results.next();}
catch(Exception ex) {systemOut(ex);}

UserData data = newUserData(entry);
return(data);
}

public LDAPSearchResults search(String tid) {
LDAPSearchResults results = null;
try {results = _conn.search(ldapBase(),

XPer Tries Java

238

ldapScope(),
ldapFilter(tid),
ldapAttributes(),
ldapAttributesOnly(),
ldapSearchConstraints());}

catch(Exception ex) {systemOut(ex);}
return(results);

}

I was now able to write more unit tests for each piece of the puzzle.
Here are a few examples:

public void testLdapConnections() {
LdifServer ldifServer = new LdifServer();
assert(ldifServer.connection().isConnected());

try {ldifServer.connection().disconnect();}
catch(Exception ex){};

assert(!ldifServer.connection().isConnected());

try {ldifServer.connection().connect(ldifServer.l dapServer(),
ldifServer.ldapPort());}
catch(Exception ex){};

assert(ldifServer.connection().isConnected());
assertEquals(ldifServer.ldapPort(), 389);
assertEquals(ldifServer.ldapScope(), 2);
assertNull(ldifServer.ldapAttributes());
assert(!ldifServer.ldapAttributesOnly());
assertNull(ldifServer.newUserData(null));
}

public void testLdapSearch() {
LdifServer ldifServer = new LdifServer();
LDAPSearchResults results = ldifServer.search("t4321rg");
assert(results.hasMoreElements());
}

public void testNullLdapSearch() {
LdifServer ldifServer = new LdifServer();
UserData data = ldifServer.getUserData("TestNullReturn");
assertNull(data);
}

XPer Tries Java

239

After more refactoring and more tests, we were ready to move from
the test environment to real time. I exported the *.class files from
Visual Age and replaced the ones on the server. Then I logged into the
application. To my complete and utter non-surprise, it worked! This
compared to three days of hassle on the previous attempt with NO
success and no clues. A day’s worth of coding, testing, and refactoring
had gotten the job done.

In the course of making these changes, it was announced that there
was to be a new and improved corporate directory server making its
debut in three weeks. This time, the server we were using wasn’t
changing, but all the attribute names were! With all the refactoring
work that was done, I was able to make the change and test this new
piece in 15 minutes. And I know when it comes time to turn it over, it
will be a non-event.

XPer Tries Java

240

241

Chapter 31

A Java Perspective

We would like to thank Bill Wake for allowing us to use his
article. It is the second in a series entitled "The Test/Code
Cycle in XP". His website http://users.vnet.net/wwake
contains the entire series plus a whole lot more.

People who unit-test, even many who unit-test in Extreme Program-
ming, don’t necessarily test the user interface. You can use JUnit to
assist in this testing, however. This paper will work through a small but
plausible example, giving the flavor of testing and programming using
JUnit. This paper is part 2, but can be read on its own; part 1 devel-
oped the model.

Example

Suppose we’re developing a simple search engine. We’d like the user
interface to look something like this:

A Java Perspective

242

We’ll develop it in the XP style, working back and forth between test-
ing and coding. The code fragments will reflect this: tests will be on
the left side of the page, and application code on the right.

Model First

When you’re creating a GUI (graphical user interface), you should
develop and test the model first. We’ll assume this has been done, and
that it has the following interface:

 public class SearcherFactory {
 public static Searcher get(String s) throws IOException {...}
 }

 public interface Searcher {
 public Result find(Query q);
 }

 public class Query {
 public Query(String s) {...}
 public String getValue() {...}
 }
 public interface Result {
 public int getCount();
 public Document getItem(int i);
 }

 public interface Document {
 public String getAuthor();

A Java Perspective

243

 public String getTitle();
 public String getYear();
 }

In testing and development of the GUI, I don’t mind depending on
the interfaces of the model; I’m less happy when I have to depend on
its concrete classes.

The GUI Connection

What we’d like to happen:

• a searcher is associated with the GUI

• a query is entered

• the button is clicked

• the table fills up with the result

We want to make this happen and unit-test the result.

Testing Key Widgets

We proposed a screen design earlier. The first thing we can test is that
key widgets are present: a label, a query field, a button, and a table.
There may be other components on the panel (e.g., sub-panels used
for organization), but we don’t care about them.

So, we’ll create testWidgetsPresent(). To make this work, we need a
panel for the overall screen ("SearchPanel"), the label ("searchLabel"),
a textfield for entering the query ("queryField"), a button ("findBut-
ton"), and a table for the results ("resultTable"). We’ll let these
widgets be package-access, so our test can see them.

public void testWidgetsPresent() {
 SearchPanel panel = new SearchPanel();
 assertNotNull(panel.searchLabel);
 assertNotNull(panel.queryField);
 assertNotNull(panel.findButton);

A Java Perspective

244

 assertNotNull(panel.resultTable);
}

The test fails to compile. (Of course - we haven’t created SearchPanel
yet.) So, create class SearchPanel with its widget fields, so we can com-
pile. Don’t initialize the widgets yet - run the test and verify that it
fails. (It’s good practice to see the test fail once; this helps assure you
that it captures failures, and lets you ensure that the testing is driving
the coding.) Code enough assignments to make the test pass.

Things to notice:

• The test helped design the panel’s (software) interface.

• The test is robust against even dramatic re-arrangements of the
widgets.

• We took very small steps, bouncing between test, code, and design.

• Our panel might not (and in fact, does not) actually display any-
thing - we haven’t tested that.

• The panel still doesn’t do anything (e.g., if the button were
clicked).

We can make another test, to verify that the widgets are set up
correctly:

public void testInitialContents() {
 SearchPanel sp = new SearchPanel();
 assertEquals("Search:", sp.searchLabel.getText());
 assertEquals("", sp.queryField.getText());
 assertEquals("Find", sp.findButton.getText());
 assert("Table starts empty", sp.resultTable.getRowCount() == 0);
}

Run this test, and we’re ok.

At this point, our SearchPanel code looks like this:

public class SearchPanel extends JPanel {

A Java Perspective

245

 JLabel searchLabel = new JLabel("Search:");
 JTextField queryField = new JTextField();
 JButton findButton = new JButton("Find");
 JTable resultTable = new JTable();

 public SearchPanel() { }
}

We could go in either of two directions: push on developing the user
interface, or its interconnection with searching. The urge to "see" the
interface is strong, but we’ll resist it in favor of interconnection.

Testing Interconnection

Somehow, we must associate a Searcher with our GUI, and verify that
we display its results.

We’ll give our panel two methods, getSearcher() and setSearcher(),
that will associate a Searcher with the panel. This decision lets us write
another test:

public void testSearcherSetup() {
 Searcher s = new Searcher() {
 public Result search(Query q) {return null;}
 };

 SearchPanel panel = new SearchPanel();
 assert ("Searcher not set", panel.getSearcher() != s);
 panel.setSearcher(s);
 assert("Searcher now set", panel.getSearcher() == s);
}

The compile fails, so bounce over to SearchPanel, add the methods,
run the tests again, they fail; implement the set/get methods, and the
test passes.

The panel still can’t do much, but now we can associate a Searcher
with it.

A Java Perspective

246

Testing with a Fake Searcher

A search returns a set of results. When something returns a list of val-
ues, I’m always interested to see how it will behave when it returns 0,
1, or an arbitrary number.

Because this is a unit test, I don’t want to depend on the real Searcher
implementations: I’d rather create my own for testing purposes. This
lets me control behavior in a fine-grained way. Here, I’ll create a new
Searcher called TestSearcher. We’ll have the query string be an integer,
which will tell how many items to return. We’ll name the items "a0"
(for first author), "t1" (second title), etc.

But first... a test. (Notice this is a test of our testing class, not of our
GUI.)

public void testTestSearcher() {
 assertEquals(new Query("1").getValue(), "1");

 Document d = new TestDocument(1);
 assertEquals("y1", d.getYear());

 Result tr = new TestResult(2);
 assert(tr.getCount() == 2);
 assertEquals("a0", tr.getItem(0).getAuthor());

 TestSearcher ts = new TestSearcher();
 tr = ts.find(ts.makeQuery("2"));
 assert("Result has 2 items", tr.getCount() == 2);
 assertEquals("y1", tr.getItem(1).getYear());
}

Go through the usual compile/fail cycle, and create the test classes,
starting with TestDocument:

public class TestDocument implements Document {
 int count;
 public TestDocument(int n) {count = n;}
 public String getAuthor() {return "a" + count;}
 public String getTitle() {return "t" + count;}
 public String getYear() {return "y" + count;}

A Java Perspective

247

}

The TestResult class has a constructor that takes an integer telling how
many rows should be present:

public class TestResult implements Result {
 int count;
 public TestResult(int n) {count = n;}
 public int getCount() {return count;}
 public Document getItem(int i) {return new TestDocument(i);}
}

TestSearcher uses the number value of the query string to create the
result:

public class TestSearcher implements Searcher {
 public Result find(Query q) {
 int count = 0;
 try {count = Integer.parseInt(q.getValue());}
 catch (Exception ignored) {}

 return new TestResult(count);
 }
}

Run the test again, and it passes.

0, 1, Many

We’ll build tests for the 0, 1, and many cases:

public void test0() {
 SearchPanel sp = new SearchPanel();
 sp.setSearcher (new TestSearcher());
 sp.queryField.setText("0");
 sp.findButton.doClick();
 assert("Empty result", sp.resultTable.getRowCount() == 0);
}

At last, we’re using the GUI: setting text fields, clicking buttons, etc.

A Java Perspective

248

We run the test - and it passes! This means we already have a working
solution - if our searcher always returns 0 items.

We move on:

public void test1() {
 SearchPanel sp = new SearchPanel();
 sp.setSearcher (new TestSearcher());
 sp.queryField.setText("1");
 sp.findButton.doClick();

 assert("1-row result", sp.resultTable.getRowCount() == 1);
 assertEquals(
 "a0",
 sp.resultTable.getValueAt(0,0).toString());
}

Now we fail, because we don’t have any event-handling code on the
button.

When the button is clicked, we want to form the string in the text field
into a query, then let the searcher find us a result we can display in the
table. However, we have a problem in matching types: the Searcher
gives us a Result, but the table in our GUI needs a TableModel. We
need an adapter to make the interfaces conform.

 Record our Mental Stack

We have several things in progress at the same time, so it’s a good time
to review them - and write them down - so we don’t lose track of
anything.

• Write the button code

• Test and develop a TableModel adapter

• Get test1() to pass

• Write testN() and get it to pass

• Test the "look" of the GUI

A Java Perspective

249

Adapter Implementation

Let’s write the button code as if a ResultTableAdapter class existed:

 findButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 Query q = new Query(queryField.getText());

 resultTable.setModel(
 new ResultTableAdapter(getSearcher().find(q)));
 }
 });

When this fails to compile, stub out a dummy implementation:

 public class ResultTableAdapter extends DefaultTableModel {
 public ResultTableAdapter(Result r) {}
 }

Test0() still passes, and test1() still fails.

The adapter is straightforward to write, but we begin by writing a test.

public void testResultTableAdapter() {
 Result result = new TestResult(2);
 ResultTableAdapter rta = new ResultTableAdapter(result);
 assertEquals("Author", rta.getColumnName(0));
 assertEquals("Title", rta.getColumnName(1));
 assertEquals("Year", rta.getColumnName(2));
 assert("3 columns", rta.getColumnCount() == 3);

 assert("Row count=2", rta.getRowCount() == 2);
 assertEquals("a0", rta.getValueAt(0,0).toString());
 assertEquals("y1", rta.getValueAt(1,2).toString());
}

The test fails because the dummy implementation doesn’t do anything.

Bounce over and implement the ResultTableAdapter. Change it to be a
subclass of AbstractTableModel (instead of DefaultTableModel), then

A Java Perspective

250

implement the column names, column and row counts, and finally
getValueAt().

public class ResultTableAdapter
 extends AbstractTableModel implements TableModel {
 final static String columnNames[] = {"Author", "Title", "Year"};
 Result myResult;

 public ResultTableAdapter(Result r) {myResult = r;}

 public String getColumnName(int i) {return columnNames[i];}

 public int getColumnCount() {return columnNames.length;}

 public int getRowCount() {return myResult.getItemCount();}

 public Object getValueAt(int r, int c) {
 Document doc = myResult.getItem(r);

 switch(c) {
 case 0: return doc.getAuthor();
 case 1: return doc.getTitle();
 case 2: return doc.getYear();
 default: return "?";
 }
 }
 }

This test (testResultTableAdapter) should pass, and so should test1().

 TestN and More

Write testN(), with say 5 items. It will also pass.

What else can give you problems? One possible problem occurs when
we do a sequence of queries - can we get "leftovers"? For example, a
query returning 5 items followed by a query returning 3 items should
only have 3 items in the table. (If the table were improperly cleared, we
might see the last two items of the previous query.)

We can test a sequence of queries:

A Java Perspective

251

public void testQuerySequenceForLeftovers() {
 SearchPanel sp = new SearchPanel();
 sp.setSearcher (new TestSearcher());

 sp.queryField.setText("5");
 sp.findButton.doClick();
 assert(sp.resultTable.getRowCount() == 5);

 sp.queryField.setText("3");
 sp.findButton.doClick();
 assert(sp.resultTable.getRowCount() == 3);
}

This test passes.

Testing for Looks

We have a properly connected panel. We can check the widgets’ rela-
tive locations:

• label left-of queryField

• queryField left-of findButton

• queryField above table

(Would we bother with these tests? Perhaps not, we might just put the
panel on-screen and deal with its contents manually. There are times
when such tests would definitely be appropriate: perhaps when we’re
working against a style guide, or when the window format is expected
to be stable.)

To make this test run, we need to put our panel in a frame or window.
(Components don’t have their screen locations set until their contain-
ing window is created.)

public void testRelativePosition() {
 SearchPanel sp = new SearchPanel();

 JFrame display = new JFrame("test");
 display.getContentPane().add(sp);

A Java Perspective

252

 display.setSize(500,500);
 display.setVisible(true);

 //try {Thread.sleep(3000);} catch (Exception ex) {}

 assert ("label left-of query",
 sp.searchLabel.getLocationOnScreen().x
 < sp.queryField.getLocationOnScreen().x);

 assert ("query left-of button",
 sp.queryField.getLocationOnScreen().x
 < sp.findButton.getLocationOnScreen().x);

 assert ("query above table",
 sp.queryField.getLocationOnScreen().y
 < sp.resultTable.getLocationOnScreen().y);
}

The test fails, as we haven’t done anything to put widgets on the panel.
(You can un-comment the sleep() if you want to see it on-screen.)

To implement panels, I usually do a screen design that shows the inter-
mediate panels and layouts:

A Java Perspective

253

Now we can lay out the panel:

 public SearchPanel() {
 super (new BorderLayout());

 findButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 Query q = new Query(queryField.getText());
 resultTable.setModel(
 new ResultTableAdapter(getSearcher().find(q)));
 }
 });
 JPanel topPanel = new JPanel(new BorderLayout());
 topPanel.add(searchLabel, BorderLayout.WEST);
 topPanel.add(queryField, BorderLayout.CENTER);
 topPanel.add(findButton, BorderLayout.EAST);

 this.add(topPanel, BorderLayout.NORTH);

A Java Perspective

254

 this.add(new JScrollPane(resultTable),
BorderLayout.CENTER);
 }

Compile, test, and it works.

We’ve successfully implemented our panel!

Main

To complete the system, we’ll create a main() routine:

public class Main {
 public static void main(String[] args) {
 if (args.length == 0) {
 System.err.println(
 "Arg - file w/tab-delimited author/title/year");
 System.exit(1);
 }

 Searcher searcher = null;
 try {
 searcher = SearcherFactory.get(args[0]);
 } catch (Exception ex) {
 System.err.println(
 "Unable to open file " + args[0] + "; " + ex);
 System.exit(1);
 }

 SearchPanel sp = new SearchPanel();
 sp.setSearcher(searcher);

 JFrame display = new JFrame("Bibliographic System - " +
args[0]);
 display.getContentPane().add(sp);
 display.setSize(500,500);
 display.setVisible(true);
 }
 }

Conclusions

A Java Perspective

255

We’ve completed development of our user interface. Not every aspect
of a GUI can be unit-tested through the approach we’ve used, but
we’ve identified a number of useful techniques:

• Even GUI development can maintain the cycle-in-the-small of
test-code-design.

• GUI tests can be robust against changes in how the widgets are
arranged on-screen.

• Fields and buttons can be simulated with getText(), setText(),
doClick(), etc.

• Stub out the services provided by the model, to get fine-grained
control over what the GUI test shows.

• We can test relative positioning using getLocationOnScreen().

Unit tests can be tedious to write, but they save you time in the future
(by catching bugs after changes). Less obviously, but just as important,
is that they can save you time now: tests focus your design and imple-
mentation on simplicity, they support refactoring, and they validate
features as you develop.

Resources
• code for this example can be found on

http://users.vnet.net/wwake.

• The Test/Code Cycle in XP: Part 1, Model, William Wake, found on
http://users.vnet.net/wwake.

• Extreme Programming Explained, Kent Beck.

• Refactoring, Martin Fowler.

• JUnit can be found on http://www.XProgramming.com.

Copyright 2000, William C. Wake, used with permission.

William.Wake@acm.org

A Java Perspective

256

257

Chapter 32

A True Story

Ron Jeffries [re]learns something about simplicity.

We are writing this book using Adobe FrameMaker. Frame, as we
affectionately call it, lets us store the chapters in individual files and
organize them into a book in a separate book file. It turns out that we
could use a little extra automation of our work, so I thought I’d just
code up a little application. I wrote a few stories – here are a couple:

Report which files in the book directory aren’t actually used in
the book file. Ignore the backup files.

After adding and updating chapters, send just the files that have
changed to Chet and Ann.

We’re in the midst of a fairly large reordering of chapters, and I really
wanted the list of files that exist but aren’t in the book. Last night I set
out to implement that story in Dolphin Smalltalk. (Don’t worry, I’m
not going to make you read the code.)

It turns out that Dolphin doesn’t have an object that represents a file
directory or folder. It can give you a list of “file specs” that match a
pattern. Well, obviously I’m going to need a Directory object, so I
started on it last night. I wrote some tests, some code, and got a
decent start at it. I put a few hours into it, and it was a bit harder than
I thought, and I hadn’t even gotten to the idea of a Directory holding
another Directory. So I posted a question on the Dolphin news group,
and went to bed.

A True Story

258

This morning I still wanted the list of files that weren’t in the book,
but I had come to my senses. The value was in that list of files, not
some general support for directories. I went back to the story: report
which files in the book directory aren’t in the book file.

I created a test for a “BookAnalyzer” object. The test checked to see if
the analyzer could learn which files were used. This was easy, as there’s
a script from Frame that writes that information out to a text file. That
test was running in no time.

Then I wrote a test that asks the BookAnalyzer for the “unused files”.
I implemented that by intention, by asking for the chapter files and
removing all the used files. I implemented the chapter files by asking
for the “.fm” files and removing all the “backup.fm” files. I imple-
mented the “.fm” files by getting the list of file specs from the book
directory that matched “*.fm”.

Well, guess what. Done in an hour, works perfectly, and doesn’t need a
Directory object at all.

I put a couple of chapters in that had been missed, deleted a couple of
files that were no longer relevant, and got on with business.

Now in microcosm there are some important lessons here, lessons I
need to relearn time and again:

• I was working alone. A partner might have kept me from starting.
Surely a partner would have gotten bored with messing with Direc-
tory for so long.

• Small releases provide immediate business value. I got and used the
info I really needed with my small project this morning.

• Simple solutions are faster. The BookAnalyzer got done in half the
time I put into Directory, which still isn’t done.

You might have one major concern – didn’t I wind up with some very
specialized and hacked-together code, instead of the Directory object I
will really need some day?

A True Story

259

I don’t think so. The file name manipulation in BookAnalyzer is clean,
clear, and all in separate methods. As I generally do, I finished up the
object by making sure it used good names and was generally
well-factored.

The next time I need to do some directory-like stuff, I’ll go to that
code, pull it out into a little object, enhance it if needed, and use it in
BookAnalyzer and for the new task. If a Directory object turns out to
really be what I need, I’m sure I’ll evolve to it easily. More likely I’ll
get something better, and more useful for what I really need to do.

What we have here is a small example of why we say to do the simplest
thing that could possibly work. Take it to heart. Try working this way
for a while: we’re sure it will work for you, too.

A True Story

260

261

Chapter 33

Estimates and Promises

We estimate how long the project will take. We promise to
tell the truth about how we’re doing.

We believe, and therefore teach, that we cannot know how long it will
take to do software we’ve never done before. Therefore we cannot,
with integrity, promise exactly what will be done. What we can do is
estimate what will be done, and promise to do our best and to tell the
truth about what happens.

No one really knows how long the project will take. The very best ways
of finding out only result in estimates. If we were to break the project
down into tiny tasks each of which was obvious, and arrange them in a
PERT chart with a complete contingency analysis, and if we did every-
thing we could think of like that, what we would wind up with would
be a very complex estimate. The first snow day or the flu could make a
mockery of our plan. Something will make a mockery of any such plan.

Therefore all planning processes have mechanisms for dealing with the
uncertainties. They produce a range of results, perhaps, or they fudge
the result by multiplying all the estimates by 3.14.

It is just not possible to promise, with integrity, to be finished exactly
on any given day with exactly this much work done. We don’t mean
that it’s hard, we mean that it is not possible. And we value integrity.

Much of the pain of software development revolves around a simple
error: mistaking an estimate for a promise.

Estimates and Promises

262

Here’s what programmers can promise, and what the practices in this
book will help deliver:

1. You can promise to estimate the difficulty of the entire project, each
story in the project, and each task in each story, as accurately as you
can.

2. You can promise to track those estimates to improve your ability to
know how hard things are going to be.

3. You can promise to track delivery performance, to make it clear
how fast the project is really going.

4. You can promise to use the facts to refine the picture of when the
project will be done, by estimating again as you learn, and by using
the velocity so far to predict where you’ll be by any given date, or
to predict the date when you’ll have chosen features done.

Estimate the entire project as accurately as possible

Estimate the project by breaking it down into “stories” that are small
enough to understand and to estimate in week-sized chunks.

Estimate the stories by breaking them down into “tasks” that are small
enough to understand and to estimate in day-sized chunks.

Estimate the tasks one at a time, and watch your performance to
improve your accuracy.

Track estimates to get project velocity

Divide implementation into short periods called “iterations”, and keep
track of how many stories you get done in each iteration. The pace at
which you currently develop stories is an excellent predictor of your
future pace.

Track the tasks you do in each iteration, and note how long each one
takes compared to how long you expected. This gives you an even bet-

Estimates and Promises

263

ter predictor of your day-to-day ability to implement tasks. Since you
can estimate tasks better and better, and since stories are made up of
tasks, you learn to estimate stories better as you go.

Refine the picture

With improving ability to predict everyday progress, and improving
ability to relate past stories to future ones, you can easily improve your
estimates.

The improved estimates do come closer to promises, but an XP team
doesn’t fall into that trap. They know that estimates are just guessing
wearing a nice outfit. Instead the XP team uses actual performance,
plus enhanced estimates, to control the project outcome.

Control the outcome

If you know how fast you are going, and you know when you need to
be done, you can do an excellent job of selecting what to do to get the
best possible program by that date. You do this by selecting the essen-
tial stories first, then the very valuable ones, then the less valuable
ones, and so on.

If you have a critical release date, expect that you will have to make
some choices of what to leave out. And remember – that’s a good
thing, because so many projects deliver less than you asked for without
letting you choose what you get.

Because an XP team can give you good estimates of how hard each
story is to do, and good reports of how long such things take, you can
make your project a success in spite of the fact that no one really knows
exactly how long the project will take.

Estimates and Promises

264

265

Chapter 34

Everything that could
possibly break

Test everything that could possibly break. What does this
mean? How is it possible?

In XP, programmers write unit tests for all their code. The rule is, Test
everything that could possibly break.

Sometimes people get really angry at us when we talk about this rule.
Don't you know it's impossible to prove that a program works by test-
ing, they'll shout. Don't you know an infinite number of things could
go wrong?

Yes, your authors took those courses and read those papers, too. Hold
your horses, as people used to say in Jeffries' day, and hear us out.

First of all, like all the XP rules, this one is meant to make us think, and
to keep us on the hook. In XP we turn all the dials up to 10, not up to
Reasonable.

Test everything that could possibly break. As we test, this impossible
banner waves over our head. As we abandon testing an object, we ask
ourselves seriously whether we have tested everything about it that
could possible break. Because we're realists, we stop before writing an
infinite number of tests. But we try hard to test everything that could
possibly break.

Everything that could possibly break

266

Sometimes, because we're human, a defect slips through. When that
happens, we note that something broke, and that it wasn't tested.
Oops, fell short. Well, we knew it was impossible, so we don't feel too
bad. But let's take a moment to learn from what happened. Maybe we
can't test everything, but we sure want to test everything that is going
to break, and this thing here just broke. We needed a test.

So we Test to show a defect (page 193), and while we're at it, we make
some notes and write a few more tests, whatever this mistake reminds
us of.

But wait, don't answer yet. There's more! If you go back and see what
is really being said in those famous old theories, it's that it's not possi-
ble to completely test any program of sufficient complexity. Those
theories always show the exponentially-increasing number of branches
and paths through the system, and they whine about how you couldn't
possibly test them all.

This is all true. The more complex an object is, the harder it is to test it
completely. But the reverse is also true: the simpler an object or
method is, the easier it is to test.

When we are testing some object and we can see things that might
break, but they seem impossible to test, we let the pressure to test
everything that could break flow back into the design. Maybe we can
simplify this object, break it up, make it easier to test.

It turns out that usually we can simplify the code and make it easier to
test. In the process, we make the code easier to understand, and easier
to get right. It's a win all around. We get better code and better
testing.

Try to test everything that could possibly break. You'll be glad you
did.

Does this mean to test every object and every method?

Everything that could possibly break

267

The rule is to test everything that could possibly break. To save time,
don't test things that couldn't possibly break. There are more things
that couldn't possibly break than you might imagine.

Start conservatively on identifying things not to test. Until you're sure,
test. But unit testing is “white box” testing. You look at the code when
you write the test, and if the code can't break - don't test it.

Accessors can't break. There's no need to test them. Unless, of course,
you have a tendency to forget to write them, and no other test is going
to find that they're missing. But wait - if no other test is going to
access them, they shouldn't be there anyway. So probably you don't
need to test accessors.

Even if it's more complex, sometimes code just can't break. Here's an
example in Smalltalk:

printAccounts
 accounts do: [:each | each print]

That method loops over the collection named accounts, and tells each
account to print. The method can't possibly break. There are other
things that could break: accounts might not be a collection, and
depending on the code you might need to test that. Accounts might
not know how to print themselves, or their printing might break. You
might need to test that. But, in my opinion, you don't need to test the
printAccounts method. (Just my luck there'll be a bug in it. Well, live
and learn.)

I (Jeffries here) used to teach that if an object was used extensively in
other objects, maybe you didn't need to test it directly. I'm not so sure
any more. Just the other day, looking at a client's code, I found an
object that needed some work to be really good code. I grabbed a
partner and we sat down to work. First thing we noticed was that the
object wasn't directly tested. It was exercised rather fully by the test for
another object, but when we got to refactoring the first object, it
didn't seem that those tests were correctly aimed. So we wrote some

Everything that could possibly break

268

tests, then refactored. It went very smoothly. And I learned a lesson:
it's better if every class has its own tests.

That same day I was browsing the code, as I do when I stop by to visit,
and I found a method that couldn't possibly work. I mean could not
possibly work. There was an if in it, and one of the branches answered
a different kind of object from the other branch. Sure enough, there
were no tests for that branch of the if. The right thing to do might
have been to write a test and then fix the method. In fact, however,
when we looked at the users of the method, no one was using the
object in a way that could ever invoke that branch of the if. So we
removed the feature instead of writing the test.

My general recommendation now is that any non-trivial object needs
tests. By non-trivial I mean any object that has behavior. Maybe you
don't need to test record objects, objects with nothing but accessors. I
still wouldn't test every method. I'd skip methods that couldn't possi-
bly break. And I'd let my experience with defects found outside the
object's own tests guide me in understanding when things couldn't
possibly break.

Test everything example

A correspondent wrote to Ron, regarding our rule, Test everything that
could possibly break:

“Everything” means just that, right? Software can do lots of
desirable and not-so-desirable things, and XP is supposed to
test for everything.

That strikes me as either impossible (number of execution
cycles approaches infinity) or vague (we know the previous, so
we test for almost everything or some other such subset).

Here’s a short example of how we would test an object. We'll do the
thing in Smalltalk, because we can do it faster. We'll comment the code
for folks who don't know Smalltalk very well. We’re sure you’ll do fine.

Everything that could possibly break

269

The task is to build a class named Account that holds collections of
transactions, and that can answer the balance of the transactions.

Transactions, by hypothesis, already exist. We have a simple Transaction
class so far, that just holds positive deposits and negative withdrawals,
thusly:

Object subclass: #Transaction
instanceVariableNames: 'amount'
classVariableNames: ''
poolDictionaries: ''!

!Transaction methodsFor!
setAmount: anAmount

amount := anAmount!

value
^amount! !

!Transaction class methodsFor!

deposit: anAmount
"A deposit is a Transaction with a positive amount"
^self new setAmount: anAmount!

withdraw: anAmount
"A withdrawal is a Transaction with a negative amount"
^self new setAmount: anAmount negated! !

We have written two tests, one that checks an Account with no entries
(written mostly because it was the simplest test that we could think of),
and one that checks an Account with three entries:

TestCase subclass: #AccountTest
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''!

!AccountTest methodsFor!

testEmpty
self should: [Account new balance = 0]!

Everything that could possibly break

270

testThree
| account |
account := Account new.
account add: (Transaction deposit: 100).
account add: (Transaction withdraw: 15).
account add: (Transaction withdraw: 25).
self should: [account balance = 60].! !

Finally, here's the Account class as we have presently implemented it.
We'll comment a bit more fully on each method:

Object subclass: #Account
instanceVariableNames: 'transactions'
classVariableNames: ''
poolDictionaries: ''!

The class contains transactions. We'll see below that these are an
OrderedCollection (similar to Java Vector).

add: aTransaction
self transactions add: aTransaction!

This method gets the transactions collection (see below), and adds the
method parameter, aTransaction, to the collection. The method add: is
standard behavior on OrderedCollections, and can add anything at all
to the collection.

balance
^self transactions

inject: 0
into: [:sum :each | sum + each value]!

The inject:into: method on collections initializes sum with the input
value (in this case zero), and executes the into: block once per element
of the collection. This is a standard Smalltalk idiom for adding things
up.

This particular usage takes the transaction collection and sums what-
ever it gets by sending value to each Transaction. (We happen to know

Everything that could possibly break

271

that this will be a positive number for a deposit and a negative number
for a withdrawal.)

transactions
transactions isNil ifTrue:

[transactions := OrderedCollection new].
^transactions! !

This method checks to see if the transactions instance variable is nil,
which it is guaranteed to be for a new instance. If it is nil, it is initial-
ized to be an empty OrderedCollection. Then the instance variable, now
guaranteed to be an OrderedCollection, is answered.

Now then. We want to assert that for our new class, Account, we have
tested everything that could possibly break. (Hold your objections
regarding the Transaction class and the system as a whole for a
moment. Let's just talk about Account. What else could break?

Transactions that don't answer numbers when sent value could blow up
the system, but the error would not be in this class. (Some people
would suggest asserting that aTransaction is a Transaction, or that it
supports some interface. That would address system integrity, but
would not increase the correctness of the code we have, in our
opinion.)

We honestly can't think of what else could break. OrderedCollections
work. add: works. The code clearly inits the variable transactions once
and only once.

So - have we tested everything that could possibly break on our class
Account? We think so.

Now then. We have not shown the tests for Transaction. Would they be
hard to write? Probably not. The big question would be whether we
should check integrity for the amounts, determining that they're
numeric. Again, not our job in the style we advocate, but in Eiffel
you'd certainly be tempted. Since Transaction has essentially no behav-
ior, it's not hard to test.

Everything that could possibly break

272

That leaves us with the system problems like “What if someone creates
a non-transaction and sends it to an account”? Well now. Any class that
(thinks it) is creating Transactions and putting them in Accounts must
have a test. Would it be hard to test? We don't know, but our rule is
that we must test everything about it that could possibly break. If the
code visibly started with numbers and created Transactions with
deposit: and withdraw:, it would probably be pretty clear how much to
test.

So we assert with confidence and no proof that the AccountBuilder (or
whatever it might be) would also be easy to test everything that could
possibly break.

And finally, remember that there are acceptance tests as well. These are
designed to test whether the system, in actual use, every gets wrong
answers or blows up. If/when these tests found something, they would
point, almost inevitably, to a particular class (like AccountBuilder) that
was doing something wrong, i.e. that wasn't tested enough. We would
(a) learn something about what to test in such classes, (b) add the nec-
essary test[s], and (c) add similar tests everywhere we thought we
needed them.

In no case, it seems to me, are we likely to run into combinatorial
problems, problems of writing an infinite number of tests, or such.
There's just no place for them to happen - wherever we invoke them,
we are writing a class, and that class can support a sensible and quite
finite collection of tests.

Now, of course, this is “just” a simple example. But in my strong opin-
ion, it is not at all atypical. Most everything one ever needs to do can
be built this simply, and incrementally, and testably. None of us always
does it, but each of us nearly always could, and would benefit if we did.

Questions about the example

One of our favorite reviewers wasn’t so sure we had tested everything.
He asked:

Everything that could possibly break

273

Can the account go negative? How negative?

Yes, clearly it can, because the balance method just adds up the transac-
tions, without regard to their sign. Does that need a unit test? Not in
my opinion, because it can’t possibly break.

Does it need an acceptance test? Almost certainly.

Can an account have fractions less than one penny?

The code doesn’t say. What will determine the answer will be the class
of the object that comes back from sending value to a Transaction. That
might be something as simple as an Integer or a Float, but is more likely
some kind of monetary type. In any case, the answer isn’t here in
Account, but in that class.

Is there a maximum size on the account?

Our reviewer might have meant maximum number of Transactions or
maximum balance, we’re not sure which.

The transactions variable is initialized to an OrderedCollection. In Small-
talk these have no maximum size. So there is no maximum number of
Transactions.

The maximum balance value will depend on the underlying numeric
type of the value field of a Transaction. In Smalltalk, the built-in
numeric types have no limit – they can get as large as they want. If
there is a test for this at all, it would be in the monetary type that’s
inside the Transaction.

Summary response to the review questions

The authors would stick with the tests in the example, and feel that
they have tested everything that could possibly break in the Account

Everything that could possibly break

274

class. With similar diligence in Transaction and the monetary classes,
they’d feel very confident overall.

Other testers might test more or less. It always comes down to one’s
best professional judgment in the specific case: have I tested everything
that could possibly break in this code?

275

The purpose of this section is to give you a chance to dig deeper
into the aspects of XP that interest you, and to see some of the
aspects of life that have brought the authors to this point.

Scott Adams, The Dilbert Principle, HarperCollins, 1996; ISBN
0-88730-787-6.

Bill Rogers, Ron’s old mentor, always used to say “You have to either
laugh or cry.” Join Scott Adams and Dilbert, and laugh.

Robert C. Atkins, M.D., Dr. Atkins’ New Diet Revolution, Avon Books,
1999; ISBN 0-71001-00750-3.

Don’t ask.

Kent Beck, Extreme Programming Explained, Addison-Wesley, 2000,
ISBN 0-201-61641-6.

The book that started XP happening. We are pleased to have been
there while it happened. Thank you, Kent.

________, Smalltalk Best Practice Patterns, Prentice-Hall,1996; ISBN
013476904X.

Annotated
Bibliography

276

For Smalltalk programmers, you can do no better than to follow these
patterns to writing clear, consistent, communicative code. Need a cod-
ing standard? Use this one.

Boris Beizer, Black-Box Testing, John Wiley and Sons, 1995; ISBN
0-471-12094-4.

Beizer hopes “that for most of us, testing ceases to be a profession, but
an inseparable aspect of what every conscientious developer routinely
does.”

David Bellin and Susan Suchman Simone, The CRC Card Book, Addi-
son-Wesley, 1997; ISBN 0-201-89535-8.

Bellin and Simone take CRC where it has never gone before. Good
material on brainstorming, requirements gathering, collaboration.
Even some implementation.

Jon Louis Bentley, Programming Pearls, Addison Wesley Longman,
1999; ISBN 0201657880.

Pearls, indeed. This collection of columns from Bentley’s column in
CACM addresses things you need to know in simple, clear language.

Ambrose Bierce, The Devil’s Dictionary, Dover Publications, 1958
(original publication 1911).

“Hope, n. Desire and expectation rolled into one.” The original and
still in many ways the best.

Robert V Binder, Testing Object-Oriented Systems, Addison-Wesley,
2000, ISBN 0-201-80938-9.

Binder provides almost 1200 pages on testing. Every technique you
could need, and many you could not, are in this book. Strive to write
programs such that you will need only to scratch the surface. No
XP-scale program should ever need all this. But it’s there if you do
need it.

Kenneth Blanchard, Ph.D. and Spencer Johnson, Ph.D., The One Minute
Manager, Berkley Books, 1982; ISBN 0425098478.

277

Be present. Delegate. Follow up.

Barry W. Boehm, Software Engineering Economics, Prentice Hall, 1981; ISBN
0138221227.

In the range of the economics curve where the cost of change is nearly flat,
XP recommends deferring unnecessary investment. This very expensive
book is the only resource we know for using economics in software deci-
sion-making. Check it at the library to see if you need a copy.

Grady Booch, Object-Oriented Analysis and Design with Applications, Addi-
son-Wesley, 1994; ISBN 0805353402.

Notationally dated, this book talks about real applications and how they
might be designed with objects. We still look at it from time to time.

Daniel J. Boorstin, The Creators: A History of Heroes of the Imagination, Ran-
dom House,1992; ISBN 0394543955.

How “Man-The Creator” built western civilization by imagining it.

Frederick P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, 1995;
ISBN 0201835959.

The anniversary edition of the original, published in 1975. Brooks was one
of the first to address programming as a people business and a management
business, not just a technical business.

Dan Carrison and Rod Walsh, Semper Fi, Business Leadership the Marine
Corps Way, American Management Association, 1999; ISBN 0-8144-0413-8.

You think not? Think again. What about recruiting the best, communicating
clearly, leading with integrity, accepting responsibility?

Lewis Carroll,Introduction and Notes by Martin Gardner, The Annotated Alice,
World Publishing Company, 1963.

The complete text of Wonderland and Looking Glass, annotated by the
famous author of Mathematical Recreations in Scientific American. If you
love Alice, find a copy of this book.

Clayton M. Christensen, The Innovator’s Dilemma, Harvard Business School
Press, 1997; ISBN 0-87584-585-1.

XP is about how to build the value that the business people ask for. The
Innovator’s Dilemma addresses how disruptive new technologies can throw
successful companies into failure. Not a license to program what you’re ot
asked for, but a license to ask good questions.

278

Alistair Cockburn, Surviving Object-Oriented Projects, A Manager’s Guide,
Addison-Wesley, 1998, ISBN 0-201-49834-0.

Alistair is a project anthropologist. He has visited many projects, observing
not just what they say, but what they really do. From this experience, he pro-
vides guidance and suggestions for your projects. Alistair favors a light
approach to projects. The book is worth it for the pullout checklist alone, but
has much much more!

James C. Collins and Jerry I. Porras, Built to Last, HarperCollins, 1997; ISBN
0-88730-739-6.

What makes great companies great? Collins and Porras studied eighteen
“visionary” corporations, with an eye to what makes them truly different. If
you must be in a large company, these are the kind you’d like to be in.

Daryl R. Conner, Leading at the Edge of Chaos, John Wiley and Sons, 1998,
ISBN 0-471-29557-4.

________, Managing at the Speed of Change, Villard, 1992, ISBN
0-679-40684-0.

Conner sees his job as “leading people through the jungle of change.” With
its focus on embracing change, XP is one tool for dealing with the need for
rapid change in information systems.

Larry L. Constantine, Constantine on Peopleware, Yourdon Press, 1995; ISBN
0-13-331976-8.

Larry presents over 30 essays and articles on the people side of software,
and of life.He is a practitioner, a theorist, and a top observer of the field.

The Editors of Cook’s Illustrated, The Best Recipe, Boston Common Press,
1999; ISBN 0936184388

“Would you make 38 versions of Creme Caramel to find the absolute best
version? We did. Here are 700 exhaustively tested recipes plus no-nonsense
kitchen tests and tastings”. Here is the best cook book I have seen. They
really did try 38 different Creme Caramel recipes and explained which one
was best and why.

Mihaly Csikszentmihalyi, Flow, Harper and Row, 1990;ISBN 0-06-016253-8.
In our terms, Flow is Perfect Engineering Time. Yes, it is possible to attain
flow when working in pairs. Lasts longer, too. Here’s the definitive work on
what Flow really is.

279

Alan M. Davis, 201 Principles of Software Development, McGraw-Hill, Inc.,
1995; ISBN 0070158401.

This book is a "reader's digest" of some of the classic software engineering
references.

Tom Demarco and Timothy Lister, Peopleware: Productive Projects and
Teams, Dorset House, 1999; ISBN 0932633439.

Tom DeMarco, The Deadline, Dorset House, 1997; ISBN 0-932633-39-0.
A fascinating novel about software project management. Who are the thinly
disguised people Tom includes? Does he really believe the things they
espouse? This one is entertaining and it will make you think.

________, Why Does Software Cost So Much?, Dorset House, 1995; ISBN
0-932633-34-X.

This book of essays covers a lot of issues, and they’re all interesting and
enjoyable. Tom’s angle on managing the software process is light-handed
and collaborative. Again, he was there first.

Max Depree, Leadership is an Art, Dell Books, 1990; ISBN 0440503248.
This book is easy to read, with good advice for both leaders and aspiring
leaders.

Edward Dijkstrra, A Discipline of Programming, Prentice-Hall, 1976; ISBN
013215871X.

Dijkstra blends the mathematician’s view with the programming view.
Almost alone, this book started Ron on his life-long quest for simple and
elegant expression in programming.

Barrie Dolnick, The Executive Mystic: Intuitive Tools for Cultivating the Win-
ning Edge in Business, HarperCollins Publishers, 1999; ISBN 0887309542.

Ron got this confused with The Corporate Mystic. Both books are worth
reading, but are completely different. So when Ron was explaining what he
got out of the book, it was quite humorous….

Bruce Eckel, Thinking in Java, Prentice Hall, 1998; ISBN 0136597238.
Bruce brings a joy and simplicity to his description of Java, moving the
reader along the way to “thinking in Java”. Bruce is also the author of
“Thinking in C++”.

Carlton Egremont III, Mr. Bunny’s Big Cup o’ Java, Addison-Wesley, 1999,
ISBN 0201615630.

280

A humorous look at Java and its programmers. As Smalltalkers, we found it
almost enough to make Java tolerable. But take our word for it, it’s a fun
read. This is not a techical book.

Emily Eisele, You Don’t Eat Spiders, not yet published, 1996.
A common sense look at the complexities of life in the post-modern world.

Richard P. Feynman, Surely you’re joking, Mr. Feynman!, W. W. Norton, 1985,
ISBN 0-393-31604-1.

Biographical essays from one of the world’s most brilliant and bizarre men.

Daniel D. Ferry and Noelle Frances Ferry, 77 Sure-fire Ways to Kill a Software
Project, Buy Books on the web.com, 1999; ISBN 0-7414-0010-3.

By thinking “what could we do to really screw this up”, the Ferrys provide a
delightful yet terrifying reminder of most every mistake possible in the soft-
ware business. Well, 77 of them, anyway. Short, fun, scary.

Martin Fowler, Analysis Patterns, Addison-Wesley, 1996; ISBN
0-2-1-89542-0.

Business design patterns, nearly all you could ever need. Please, start with
the simplest ones — but do start here. Gamma, et al. covered the patterns
that make our programs work, Martin covers those that make them accom-
plish something.

________., Refactoring: Improving the Design of Existing Code, Addison
Wesley Longman, 1999; ISBN 0201485672.

The programming side of XP is all about being ready for the next require-
ment, refactoring is how you do it. Martin catalogs over 70 refactorings, the
key steps in transforming a program to improve its structure while preserv-
ing its function. Refactoring is a core practice in XP, and this is the text.

________, UML Distilled, Second Edition, Addison-Wesley, 2000; ISBN
0-201-65783-X.

In this excellent small volume, Martin captures everything you’re ever
likely to need to know about UML, except for one key fact: UML diagrams
should only be drawn on scrap paper — use them to focus your mind, then
embody them in the program.

Jack Fultz, The Comet’s Tale, a history
A history of Chet’s hometown as told through its high school athletics. Writ-
ten by Chet’s uncle

281

Daniel P. Freedman, Gerald M. Weinberg, Handbook of Walkthroughs, Inspec-
tions, and Technical Reviews, Dorset House, 1990, ISBN 0-932633-19-6.

XP’s Pair Programming obviates the need for most inspections and reviews.
If you must do them, do them right. Freedman tells you how.

Erich Gamma, Richard Helms, Ralph Johnson, and John Vlissides, Design
Patterns, Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995;
ISBN 0-201-63361-2.

A collection of key design patterns, providing description of problem and
solution. These patterns now serve as the official terminology for these
ideas. Know them and use them in your designs. If you can’t quote from this
one, your computer geek friends will make fun of you.

Roger Garrett, Starship Simulation, dilithium Press, 1978, ISBN
0-918398-10-X.

Designing and implementing a simulation of a starship on a personal com-
puter. We want to play this game!

Donald C. Gause and Gerald M. Weinberg, Are Your Lights On?: How to Fig-
ure Out What the problem Really Is, Dorset House, 1990; ISBN 0932633161.

This is a fun book about problem solving and creativity.

Thomas Gilb, Principles of Software Engineering Management, Addison Wes-
ley Longman, 1988; ISBN 0201192462.

Tom Gilb is very much into incremental development, and measurement.
Check him out!

Malcom Gladwell, The Tipping Point, Little, Brown, 2000; ISBN
0-316-31696-2.

How do fashion trends come to be? How are unknown books transformed
into best sellers? How do software development processes become used
world-wide, making the universe safe for programmers? Gladwell tells us of
Connectors, Mavens, Salesmen, and the Stickiness Factor. Does XP have all
those? We hope so.

James Gleick, Genius: The Life and Science of Richard Feynman, Pantheon,
1992; ISBN 0679408363.

The story of one of the great minds of the 20th century. The man who used a
spike solution to discover why the shuttle Challenger exploded.

282

Adele Goldberg and David Robson, Smalltalk-80: The Language, Addi-
son-Wesley, 1989; ISBN 0201136880.

If you use Smalltalk, you know the purple book. If you are just wondering
why we won’t let it go, here is the bible.

Stephen Jay Gould, The Mismeasure of Man, Norton, 1996; ISBN
0393314251.

Science has spent the last 150 years trying to measure human intelligence by
using everything from the volume of our skulls to our ability to fill-in little
circles with a #2 pencil. An important lesson for all of us who want to mea-
sure performance.

David Halberstam, The Reckoning, Morrow, 1986, ISBN 0688048382.
U.S vs Japan, Ford vs Nissan, I never would have guessed Ford would win.
Wonderful insights into late 20th century American industrial management
techniques. When the car guys wanted money to build bigger paint ovens,
Ford President Robert McNamara suggested cutting the cars in half before
painting them. I guess it also explains a lot about Viet Nam.

Gay Hendricks, Ph.D. and Kate Ludeman, Ph.D., The Corporate Mystic, Ban-
tam Books, 1996; ISBN 055337494X.

One of the groups I work with recommends this book to all of their employ-
ees.It addresses integrity, leadership, working with others. Excellent.

James A. Highsmith III, Adaptive Software Development, Dorset House, 1999;
ISBN 0-932633-40-4.

Jim’s Adaptive Software Development describes how to bring teamwork,
speed, and adaptability to larger-scale projects. We’d say that he copied our
ideas, except that he got there first. Powerful and deep material in a compact
and readable form.

Watts S. Humphrey, Managing Technical People, Addison-Wesley, 1997;
ISBN 0-201-54597-7.

Good thoughts on group dynamics, innovation, and process. As one might
expect from the SEI part of the world, somewhat oppressive, and aimed at
larger groups than we address.

________, The Personal Software Process, Addison-Wesley, 1997; ISBN
0-201-54809-7.

If you knew all these things about your programming, you’d know some-
thing good. You could also win the retention medal for America in the

283

upcoming Olympics. Good ideas, good focus on personal skill. Rather regi-
mented.

Andrew Hunt and David Thomas, The Pragmatic Programmer, Addison-Wes-
ley, ISBN 0-201-61622-X.

A delightful book, demystifying much of programming, bringing it down to
earth. “Pragmatic Dave”, as we call him to distinguish him from other
important Dave Thomases, has been an active questioner, indeed inquisitor,
and has helped us sharpen our understanding of our ideas. Very XP compat-
ible.

Carole Jackson, Color Me Beautiful, Ballantine Books, 1980; ISBN
0-345-29015-1.

Why does Jeffries wear so much black? He’s a Winter!

Ricky Jay, Cards as Weapons, Warner Books,1988; ISBN 0446387568.
An early precursor to the use of cards for planning and design. Ricky Jay is
one of the premier card users of all time.

Bill Jensen, Simplicity, Perseus Books, 2000; 0-7382-0210-X.
“Making the complex clear always helps people work smarter. Because it is
a lot easier to figure out what’s important and ignore what isn’t.”

Joseph L. Jones and Anita M. Flynn, Mobile Robots, Inspiration to Implemen-
tation, A K Peters, Ltd., 1993, ISBN 1-56881-011-3.

How to build two inexpensive robots, essentially from scratch. Here’s a book
about a toy you really need!

Wolfgang Langewiesche, Stick and Rudder, An Explanation of the Art of Fly-
ing, McGraw-Hill, 1944, 1972; ISBN 0070362408.

Kent tells a story about learning to drive and how that lesson influenced his
ideas on project management. Knowing XP before learning to fly, has made
me more aware of their similarities.

Richard A. Lanham, Revising Business Prose, Macmillan Publishing Com-
pany, 1992; ISBN 0-02-367480-6.

As we revised this book, we tried to follow Lanham’s advice. The book is
short, and simple, and follows its own advice.

Brian W. Kernighan and Rob Pike, The Practice of Programming, Addi-
son-Wesley, 1999; ISBN 0-201-61586-X

284

Simplicity, Clarity, Generality: the cover says it all. Good programmers,
especially Extreme ones, profit from having a deep bag of tricks into which
they can dig when they need to. Kernighan and Pike show that the tricks
need not be complex — the best tricks are delightfully simple.

Brian W. Kernighan and P.J. Plauger, The Elements of Programming Style,
McGraw-Hill Book Company, 1988; ISBN 0070342075.

The examples aren't in Java (or even C++), but the ideas are still valid.

Donald E. Knuth, The Art of Computer Programming, Volumes 1,2,and 3,
Addison Wesley Longman, 1998; ISBN: 0201485419.

They're expensive, but they're worth it.

Steve Maguire, Debugging the Development Process : Practical Strategies for
Staying Focused, Hitting Ship Dates, and Building Solid Teams, Microsoft Press,
1994; ISBN: 1556155514.

Thoughtful work on the human side of running a process. I’d not do every-
thing he says here, as I feel the XP processes work better. But the concerns,
and many of the practices, are right on.

Steve McConnell, Code Complete, Microsoft Press, 1993; ISBN
1-55615-484-1.

Really good material on software construction. Good stuff on personal
craftsmanship. Very rubber-meets-road.

Steve McConnell, Software Project Survival Guide, Microsoft Press, 1998;
ISBN 1-57231-621-7.

We see here the precursors of McConnell’s Gold Rush thinking. Still, some
good advice if rather more draconian than we think necessary. Know thy
enemy.

Steve McConnell, After the Gold Rush, Microsoft Press, 1999; ISBN
0-7356-0877-6.

McConnell believes that licensing is coming as software development
moves into the future. We share a concern over quality and good practice.
Our approaches differ substantially, as we lean much more toward simplicity
and good internal practices. But read this book.

Bertrand Meyer, Object-Oriented Software Construction, Prentice Hall, 2000;
ISBN 0136291554.

285

Glenford J. Myers, Reliable Software through Composite Design, Mason/Char-
ter Publishers, 1975; ISBN 0-88405-284-2.

Together with Constantine’s work on Structured Design, one of the seminal
works on modularity. High cohesion, low coupling, just how to build good
objects even today.

Miyamoto Musashi, A Book of Five Rings, The Overlook Press, 1974; ISBN
0-087951-018-8.

Originally written in 1645, this book hold the philosophy of Japan’s most
renowned warrior. He intended this book “for any situation where plans and
tactics are used”. It’s no longer acceptable to kill your programmers with
swords, but this is a fascinating book.

Sarah O’Keefe, FrameMaker 5.5.6 for Dummies, IDG Books, 1999;
0-7645-0637-4.

The one book without which this one could not exist. This, and Extreme
Programming Explained. The two books ... oh never mind. Sarah saved our
bacon. Thanks, Sarah.

Mark C. Paulk, et al., The Capability Maturity Model, Addison-Wesley, 1995;
ISBN 0-201-54664-7.

This isn’t just “know thy enemy”. Yes, CMM can be, has been, and will be
misused. However, the goals and the generic activities of CMM are consis-
tent with quality, and worth thinking about. We think you can do without
most of the practices, in most situations, but keep them in mind for those
sticky situations.

M. Scott Peck, M.D., The Road Less Travelled, Simon and Schuster, 1978;
ISBN 0-671-25067-1.

There comes a time when we need to take a look at our lives.

Ayn Rand, The Fountainhead, Penguin Books; ISBN 0-451-19115-3.
________, Atlas Shrugged, Penguin Books; ISBN 0-451-19114-5.

Individual responsibility and individual mastery are at the core of team per-
formance. It doesn’t hurt to start with Rand’s vision of the competent man.
Just don’t stop there.

James Rumbaugh, Michael Blaha, WilliamPremerlani, Frederick Eddy, and
William Lorenson, Object-Oriented Modeling and Design, Prentice Hall, 1991;
ISBN 0136298419.

286

Elaine St. James, Simplify Your Life: 100 Ways to Slow Down and Enjoy the
Things That Really Matter, Hyperion, 1994; ISBN 0786880007.

A small book with lots of advice for thinking about your life and what's
really important.

Michael Schrage, Serious Play, Harvard Business School Press, 2000; ISBN
0-87584-814-1.

Collaboration, play, “Demo or Die”. Learning what you want comes from
playing with what might be. Schrage offers prototyping as a way of life. XP
suggests making your prototypes real.

Philip Toshio Sudo, Zen Computer, Simon and Schuster, 1999; ISBN
0-684-85409-0.

This short book asks us to acknowledge the spiritual, meditative side of our-
selves as we work with the computers we face every day. It’s not deep, not
heavy. Rather, it’s mild and calming. Good preparation for facing the Blue
Screen of Death.

Guy L. Steele, Jr., the Hacker’s Dictionary, Harper & Row, 1983, ISBN
0-06-091082-8.

“BOGOSITY - the degree to which something is bogus. See autobogopho-
bia, a fear of becoming bogotified.”

Dave Thomas, Spicy Chicken Sandwich, Fresh Every Day, 2000; 213 G 410
Cal.

One of the other Daves. Good cook, we don’t know about his programming.

Sun Tzu, James Clavell, The Art of War, Delta, 1999; ISBN: 0385299850.
Life is a battlefield. Plan to win.

Gerald M Weinberg, Quality Software Management, Volume 1, Systems Think-
ing, Dorset House, 1992; ISBN 0-933963-22-6.

________, Quality Software Management, Volume 2, First-Order Measure-
ment, Dorset House, 1993; ISBN 0-932633-28-5.

________, Quality Software Management, Volume 3, Congruent Action, orset
House, 1994;ISBN 0-932633-24-2 .

________, Quality Software Management, Volume 4, Anticipating Change,
Dorset House, 1997; ISBN 0-932633-32-3 .Rebecca Wirfs-Brock, Brian Wilker-
son, and Lauren Wiener, Designing Object-Oriented Software, Prentice Hall,
1990; ISBN 0136298257.

287

________, The Psychology of Computer Programming, Dorset House Publish-
ing, 1998, ISBN0-9263-42-0.

This is the silver anniversary edition! Way back in ‘71, Weinberg made it
clear that programming is a people business, not a technical business. Why
won’t Ron ever learn?

________, The Secrets of Consulting, Dorset House Publishing, 1985, ISBN
0-932633-01-3.

Weinberg brings his usual good humor and good advice together in this
bookabout “the irrational world of consulting.” Ron likes to read it in the
evenings after a rough day with a client.

________, Understanding the Professional Programmer, Dorset House, 1998;
ISBN 0-932633-09-9.

Are you a programmer? Weinberg can help you understand why you are the
way you are, and how to be a better one. Hang out with programmers? Read
this book in self-defense.

Garry Willis, Lincoln at Gettysburg, The Words That Remade America, Simon
and Schuster, 1992; ISBN 0671769561.

How those 272 words we memorized in school changed the meaning of the
Constitution. A reminder that a powerful message simply expressed can
change the world

Edward Yourdon, Death March, Prentice Hall, 1997; ISBN 0-13-748310-4.
The most depressing book Chet has ever read, and hewas an Economics
major. Yourdon almost seems to approve of the march, and tries to help peo-
ple make the best of it. XP is about avoiding the death march. You might
like that better.

Edward Yourdon, Decline and Fall of the American Programmer, Prentice
Hall, 1994; ISBN 013191958X.

Yourdon predicts the end of the world as we know it.

Edward Yourdon, Rise & Resurrection of the American Programmer, Yourdon,
1996; ISBN 013121831X.

Yourdon becomes an optimist…

Edward Yourdon and Larry L. Constantine, Structured Design: Fundamentals
of a Discipline of Computer Program and Systems Design, Prentice Hall, 1986;
ISBN 0138544719.

288

Good material on the use of coupling and cohesion. Dated now, in these
days of objects.

William Zinsser, On Writing Well, HarperCollins, 1998; ISBN 0-06-273523-3.
We hesitate to list books on writing here. We’ve tried to follow this good
advice. To the extent that we have fallen short, we blame these other books
for being unclear or difficult. And, of course, it’s Chet’s fault anyway.

	Preface
	Extreme Programming
	The customer role
	The programmer role
	The manager role
	Rights / Responsibilities
	Manager and Customer Rights
	Programmer Rights
	You have the right to an overall plan, to know what can be accomplished, when, and at what cost.
	You have the right to get the most possible value out of every programming week.
	You have the right to see progress in a running system, proven to work by passing repeatable test...
	You have the right to change your mind, to substitute functionality, and to change priorities wit...
	You have the right to be informed of schedule changes, in time to choose how to reduce scope to r...
	You have the right to know what is needed, with clear declarations of priority.
	You have the right to produce quality work at all times.
	You have the right to ask for and receive help from peers, superiors, and customers.
	You have the right to make and update your own estimates.
	You have the right to accept your responsibilities instead of having them assigned to you.
	Project flow

	Forward
	Circle of Life
	On-site Customer
	On-site customers do real work
	If the customer can’t be there
	Summary

	User Stories
	Starting with stories
	Sample Stories
	Stories are promises for conversation
	Do programmers ever write stories?
	Can stories be too big or too small?
	What if you don’t have all the stories?
	What’s the next step with stories?

	Acceptance Tests
	Automating the tests
	Timeliness

	Acceptance Test Samples
	Story Estimation
	During project flow, estimate by comparison
	Early on, start with intuitive time estimates
	Spike Solution
	Balancing an account.
	Formatted reports
	Database Access
	Automatic Email
	Spiking for estimation
	Estimation Summary

	Sense of Completion
	Programmers set the rhythm

	Small Releases
	Payroll is all or nothing
	Personnel System
	Tax Package
	Distributed manufacturing control system
	Air traffic control system
	Summary

	Customer Defines Release
	Release Planning Meeting

	Iteration Planning
	The planning meeting
	Customer presents User Stories
	Team brainstorms Engineering Tasks
	Programmer signs up for work and estimates
	Sign up for stories
	An Iteration Planning Practice

	Quick Design Session
	Programming
	Collective Code Ownership
	Simple Design
	Refactoring
	Continuous Integration
	Coding Standard
	40-Hour Week
	Summary

	Code Quality
	Pair Programming
	Summary

	Unit Tests
	Testing bit by bit
	Summary of testing steps
	Testing questions
	How do you test when you have an attached database?
	What if your tests run really slowly?
	What if you can’t figure out how to test a class?
	Is it OK to test a class by just testing the classes that use it?
	How do you know you have tested everything that could possibly break?
	What do you do if you have a body of already-written code, but not many tests?
	What about errors that only show up in collaborations between classes?
	What about real time errors or multithreading errors?
	What about GUIs?
	My stuff can’t be tested because...

	xUnit
	Test-first, by Intention
	Review Remarks
	Summary

	Releasing Changes
	Do or Do Not
	Experience improves estimates
	Resources, Scope, Quality, Time
	Resources
	Scope
	Quality
	Time
	Tracking and Reporting Scope
	Tracking and Reporting Quality
	What about other metrics?
	You can't resist, can you?

	Steering
	Steering the Iteration
	Get stories done
	Improve estimates
	Tracking
	Benefits of Tracking

	Steering the Release
	Summary

	Handling Defects
	Reporting Problems
	Scheduling Corrections
	Test and Fix the Problem
	Preventing Defects
	Summary

	Advanced Issue: Bug Databases
	Advanced Practice: Tests as Database
	Test to show a defect
	Conclusion
	Bonus Tracks
	We’ll Try
	How to estimate anything
	Infrastructure
	It’s Chet’s Fault
	Balancing Hopes and Fears
	Testing Improves Code
	XPer Tries Java
	A Java Perspective
	Example
	Model First
	The GUI Connection
	Testing Key Widgets
	Testing Interconnection
	Testing with a Fake Searcher
	0, 1, Many
	Record our Mental Stack
	Adapter Implementation
	TestN and More
	Testing for Looks
	Main
	Conclusions
	Resources

	A True Story
	Estimates and Promises
	Estimate the entire project as accurately as possible
	Track estimates to get project velocity
	Refine the picture
	Control the outcome

	Everything that could possibly break
	Does this mean to test every object and every method?
	Test everything example
	Questions about the example
	Can the account go negative? How negative?
	Can an account have fractions less than one penny?
	Is there a maximum size on the account?
	Summary response to the review questions

