

Object-orieted systems are reputed to be effective for prototyping They owe this
reputation to their ability to allow a programmer to quickly reexpluit a large budy of
existing cude to demonstrate a sulutiun to a nuvei pmblem. The ability u-f object-
oriented systems to promote code reuse, in turn, suggests an object-oriented
pe~pective on the software lifecycle which emphasizes component and application
framework evultiun. This ev&utiun can take place both within the lifecycle of
individual applications or across that of a family of appiicatiuns, as req$rements
change and experiencze in a given applicaticm domain accumulates. FKYIII this
pe~pective, prototyping nzpresents an expansionary, exploratory phase in the
evuhxtiun of a pati of a system #at can take place at any time during the evulutiun of
the overall system. Protattutyping episodes should be followed by design cunsulidatiun
phases that resture to the system the structural integrity that can be undermined
during such expluratiun. B~I allowing ~xpkxat~~ and petiective design activity
to pervade the Hecycle, the struchxal IEBKHRI that takes place during conventional
application maintenance can be averted.

Object-oriented languages and sy&ents have deservedly WWXI~~ a reputation as being
effective for prototyping T’his reputation is pmbably due in nu small part to the
SUCCBS seen using object-oriented systems for breadboarding user in&faces. Certainly
those features which distinguish object-oriented languages fKlm conventional ones,
polymorphism inheritance, and encapsulaticm~, facilitate the rapid production of
prototype applicatiuns. However, no language, no matter huw puwetil) can supputt
the quick constrtlction of elaborate applicationsP even at the mock-up or facade level
without the previous development of an extensive software infrastructure. The
timely construction of a prototype application is simply not poss~ible without the
reexpbitatiun of appropriate application specific and application independent
components. Successful prototyping then, is an exercise in sohare reuse. VVe
believe that one of the princ+al strengths of object-oriented systems and languages is 2PLt
they support both component and application level ruse, and that it is largely for this
reason that they have proven so effective fur suftware prututyping

T’hb in& CoMponent and application level~reuse potential can lead one, in turn,
to a decidedly different view of the application development prucess and lifecycle.
This grxzater reuse potential means that it is buth mure Wely that an existing
component UT application framework can be used tu futfin the requirements of the
current projec& and that code developed for a given project wii be reexploitable
during subsequent prujects. This reuse potential lowers the break even puint fur
etiutis to make s&tware cumpcmen~s mure general, thus making such effurts easier to
ju&ify. Object-oriented tools and techniques allm the lifecycle emphasis to be shifted

2

from the design and implementation of individual projects to the production and
refinment of zxxasablc components and ezpplicatiott framewaics.

draft mat the start of a project’s lifecycle. Instead, it pervades the lifecycle at all
levels throughout and beyond individual product development efforts. PrcWtyping
becomes a hallmark of an exploratoly phase in the development of both individual
software components and application frameworks. This activity is not limited to the
initial design stages of a project, but may OEW at any time, even (especially) during
what is traditicmally regarded as the maintenance phase of a project.
becomes a way of life rather than a dry run

htcxtyping

It is important to distinguish the reuse capabilities found in object-oriented systems
from those p=sent in more ccmventional systems. Objeckcxiented systems share with
more traditional prqram development systems the ability to construct libraries of
application independent mutines. However, components in an object-oriented
system may, because of polymorphism, work within a wider range of confexts ti

s than na@t components in a
conventional library- I~heritarxe allows library companents to be specialized for
specific applications. Because of polymorphism and inheritance, the reuse potential
for components in an object-oriented library is considerably greater than pfor those
in conventional librzwies.

The avaltibility of a rich vocabulay of l’brary components can greatly simplify the
application development process as well as the resulting applications themselves.
Using conventional pmgramming systems we can reuse application independent
components with relative ease as well, but reusing the edifice that ties the compunents
together so that they solve a prublem af interest is usually possl%le only by physically
capying the application [Foote 881. Object-oriented systems provide an alternative to
this “skeleton” pmgram approach: object-oriented frameworks.

Framewmk

A framew& is a c&xtiun of couperating classes t%mether define a generic or
template solution to a family of domain specific w The best kmwn
frameworks, such as MVC and MacApp, define generic user interfaces. However,
frameworks are by no means limited to user interface construction. For instance, the
Battery Simulation [Foote 88) defines a framework for constructing realtime data-
aquisiticm and experimental control applications. As object-oriented techniques are
appkdJ&n other application domains, frameworks for these domains can be
expectedtoappearaswell.

Frameworks are often characterized by an inversion of control in which the
framewark plays the Tc)le of a main pmgram in coordinating and sequencing

3

application activity. The user of a framework supplies methods that override specific
framework behaviors to tailor it for a specific application. Frameworks can hence
serve as dynamically extensible skeletons.

&dJ+44- 2!4L3

b
Frameworks aeeeanlike skeletcms,&uu@, in that tkewcarcs are dynamically shared
w all applications derived from them. (Object-oriented inheritance can be
thought of as having a super-Lamarkian flavor. Traits acquired by parents even after

QGO J- JJ@
the production of offSpring are inherited.) This allows a framework to serve as the
nucleus of a family of related applications as evoMng requirements cause its

7%)J w S Cmemti to diverge.
J ’ if

(i gac P’
DeutsCh [Deutsch 831 has pointed out that framewc&s allow designs to be reused at
different levels af abstraction. A frameworkcan embody an abstract design that can
time increasingly mare concrete as one rnmes towards the leaves of the
framew&‘s inheritance hierarchy. (An abstract framewo~ is like an abstract
superclass in this respect.) The more abstract levels of the framework can- cQrne to
resemble a high-level specification, while the lower levels fill in the implementation
detail. A single abstract design can serve as the basis for a number of related concrete
realizations of that design.

A framework’s application specific behavior is usually defined by adding methods to
subclasses of one or more of its classes. Each method must abide by the internal
cunventiuns of its superclasses. We call these &&M&rarne~ because the
internal implementation details of the framework are visible to the application
specific methods, and must be understood if the framework is to be successfully used
[Johnson & Foote 881.

The relationships among the elements of a white-box framework tend to be rather
infml. As a framework evolves, the relationships among its elements tend to
become better defined. Portions of the framework frequently emerge as distinct
components. Communication among components is then peti~rmed in conformity
with the companpcment’s external protocot. The white-box elements become black-box
components. We call such framew& A black-box
framew& is easier to reuse than a white-box framework, since only the external
protocol of the framework components need be understood, and since any component
conforming to that protml may be substituted for any other.

White-box frameworks can play an important role during the early, exploratory phase
uf a system’s evolution. urganized part of a system
while its structure is stii As the system and pMblem
domain bemme better understood, distinct black-box components begin to emerge.

Prototype implementations frequently exhltit white-box characteristics~ since
extensive opportunistic c0cie-b0rrowin~ is frequently employed. It is almost
invariably necessav to subsequently reorganize the class hierarchy to better reflect the
structural demands that the new system component is making on the overall system.

4

Designing and implementing a sy3fcm that meets its spccificaticms is a challenging
task in itself. Adding to this the requirement that the componenfs of such a system
anticipate and accommodate future requirements is a much mure daunting task
Designing a system frrom a fixed specification is a deductive process, whereas designing
reusable classes and frameworks is an inductive one. Must often, a designer will know

I
how to produce a Benera solution to a problem only after having seen several related
specific solutions to it. A prototyping pass may cm occasion provide such experience,

.but __ -____ ______ ---_ _- --____ __-_ __ _ ________ _ __- -___ -_-_--_-- -- -- ----
*ring the impl~ment&ion of successive memberr;sof a family ufI *

1
related products.

As a result1 design itself can be seen as a process that pervades an object-oriented
product’s lifecycle. Indeed, some of the must valuable design effrt, that involving the
identification, generalization and refinement of framework components, will take
place during the maintenance phase of the project. An interesting implication of this
obsenration is that existing programmer deployment practices that place the most
skilled designers on new projects and delegate maintenance to fledgling programmers
may be less than optimal.

Designing reusable classes and frameworks is a difficult task that requires experiencet
judgement and skill. Even the best designers will seldom be able to divine optimal
abstractions of a first attempt. Only experience within a given application domain can
lead to the insights needed to product general components far it.

The ability to quickly demonstrate the basic design ideas behind a system to a client is
one of prototyping’s greatest virtues. Object-oriented encapsulation and
polymorphism can allow the substitution of alternate implementations, such as MU@
drafts, mock-ups, or simulations for the final components of an object-oriented
system. This permits final implementation decisions to be deferred, and vital early
experience to be gained.

Much of the motivation fur a prututyping pass can be found in Brolok’s classic
&XIAtiCWL T&W & &YVW~ a~~ylw H@ AKP$XP~BTD&S?S]. Apratotype is
frequently treated as a rough draft, or as vehicle for demcmstrating the soundness of
fimt level design concepts. Considerations such as efficiency, elegance, thoroughness
and completeness are uften treated as secondary during the construction of a
ptiutype During such an effort, the ability to co-opf existing code to the purposes of
the pmtdype applicaticm can be quite valuable. Obj ed inheritance allows
one to casually borrow existing Existing
frameworks and classes can be a ideas w&&@s&R

Such opportunistic code borrowing. but this should never be mistaken for good
design. Applications constructed in this fashion will usually have an ad hoc,
haphazzati structure. The exten+ions made to existing classes may undermine their
conceptual integrity as well. A prototypingpass should be seen as a prelude to a good
design8 and nut a subs0tu for it.

It is ironic that the very experience that can lead to the production of truely generic
applications is largely squandered during the maintenance phase of the conventional
s&ware lifecycle. Consider the following quote from the Mythical Man-Month
[Brooks 75).

Lehman and Belady have studied the history of successive
releases in a large operating system. They find that the total
number of modules increases linearly with release number, but
that the number of modules affected increases exponentially
with release number. All repairs tend to destroy the structure,
to increase the entropy and disorder the system. Less and less
effort is spend on fixing original design flaws; more and more
is spent on fixing flaws introduced by earlier fixes. As time
passes, the system becomes less and less well ordered....

. ..Systems program building is an entropy-decreasing process,
hence inherently metastable. Program maintenance is an
entropy increasing process1 and even its most skillful
execution only delays the subsidence of the system into
unfixable obsolescence.

d +!!I
Maintanance, it would seem, is hlce fixing holes in a failing dyke. Eventual&. fails,
and must be rebuilt. Only then are the lessons learned during it’s tenure exploited.

We believe that a well mangaged team using object-otiented tools and techniques can
stay this tide, by employing an incremental refinement strategy that distributes design
expluraticm and consolidaticm across the entire lifecy&, and a-s both low level
components and hi#14eve1 application frameworks. Such a strategy should be flexible
and opportunistic It would treat the production of an individual application as an
opportunity not only to solve the problem at hand, but to lay the groundwork for
r&&cl future efforts. Indeed, many software houses operate in just this fashion,
treating the first application effort in a given domain as an effort to gain experience
that will make subsequent efforts less painful Certainly attempts to do just this are
not unique to the object-oriented w&d. However, the greater reuse potential of
object-oriented camponents would seem to make them more Nely to succeed.

Design, given this pempective# is an activity that pervades the software lifecvcle. The
4JiA- @-a
&I.L. 3 capsulation capabilities of object-oriented systems allow a

r& -’ ndifferent to lucalized design evolution and consolidation.
system as a wh&e to be
By the same token, the

constituent parts of a system can be made relativeIy immune to glubal changes in the
systemls structure.

This perspective resembles Boehm’s spiral lifecycle model in a number of respects
[Boehm 881.

There is a Darwinian quality to component reuse, in that a succe~ful component will
produce a lot of offspring (subclasses). This very success, can@ some cases, conspire
to make a component less general as it evaIves. This is because a previously general
component can becomeunnecessarily constrained by cude that addresses some specific
new requirement in such a wa#as to undermine the components previous
generality. This midlife generality loss can be mitigated in object-oriented systems via
subclassing. The proliferation of requirements made of a successful component
becomes represented in a white-box inheritance hierarchy or framework instead.
Much is made in discussion of object-oriented design techniques of the ability of
object-oriented architectures to model the underlying structure of the application
domain. The ability of object-oriented architectunzs to reflect the structure of a system
with evulving, diverging requirements in such as way as to make their evolution
more managable is perhaps one of their greatest strengths.

As experience with a number of specific requirements sets is gained, the structure of a
general soluticm to a range of application problems can reveal itself to the system
designer. As the structure of such a solution becomes more obvious, the system will
tend to evolve away from a rather casual white-box structure into a black-box
structunz. Not all Components will complete, or ven
journey. However, the greater ~c3use potential of&!8&~&;~t~~~~ake
a decision to lavish the resounzes necesssary to achieve such a result on them easier to
justify.

At the simplest level, the motivation for prototyping a system first can be
characterized as an attempt to gain hindsight, that is, to answer the question: If
hindsight is so valuable, how do we get it?

(Out of time...)

[Apple 84)
Apple Computer, Inc.
f&z 7zz!if30
Apple Computer, Cupertino, CA

[Boehm 881
Barry W. Boehm
A Spiral Model of S&ware Development and Enhancement
Computer, May 1988, Volume 21, Number 5

fB=l@mi
Frederick P. Braoks
No Silver Bullet Essence and Accidents of Software Engineering
IEEE Computer, Vol. 20, No. 4, April 1987

[Deutsch 831
L Peter Deutsch
Reusability in the Smalltalk- Programming System
pp 72-76 ITI’ Proceedings of the Workshop on Reusability in Programming
(reprinted in Tutorial on software Reusability,
IEEE Computer Society press, 1987)

[Guldberg83]
Adele Goldberg and David Robson
sma/ffa~&&Z? J%e ~qgwzgw and& hpiementation
Addison-Wesley, Reading MA 1983

8

[Johnson & Kaplan 86]
Ralph E. Johnson and Simon Kaplan
Towards Reusable software Designs and Implementations
Proceedings of the Workshop on
Future Directions in Computer Architecture and Software
May 5-7,198& Seabrook island, Charlston, SC
Sponsored by the Army l&sear& office (ARO)

[Johnson & Foote 881
Ralph E. JohnsDn and Brian Foote
Designing Reusable Classes
Journal of Object-Oriented Programming
Volume 1, Number 2, June/ July 1988

[Lehman 80)
M. M. Lehman
Programs, life cycles and the laws of software evolution
Pruc. IEEE 68(g), lCk%l-76,198O

[McCracken 82)
Daniel D. McCracken and Michael A Jacksun
Life Cycle Ccmcept Considered Ha&l
Software Engineering Notes, Volume 7, Number 2,
April 1982, pages 29-32

[Par&h 84)
Girish Par&h
What is S&ware Maintenance Really? What is in a Name?
mare Engineering Notes, Volume 9, Number 2,
April 1984, pages 114-116

[Pa&h 851
Girish Par&h
SOFTWARE MAINTENANCE NEWS
Software Engineering Notes, Volume 10, Number 2,
April 1985, pages 58-60

Schmucker 861
Kurt J. Schmucker
U~~-tient~~pmm~gforfrFIe Ma&fmh
Hayden, Hasbnzuck Heights, NJ, I!%6

[Sheil 831
B. Sheil
Environments for Exploratory
Datamaticm, February 1983

J?rugramming

9

[St&k 861
Mark Stefik and Daniel G. Bobrow
Object-Oriented Programming Themes and Variations
AI Magazine 6(4): 40-62, Winter, 1986

10

