Prototyping as a Way of Life
(DRAFT)

Brian Foote

20 August 1988



Bbstract

Object-orieted systems are reputed to be effective for prototyping They owe this
reputation to their ability to allow a programmer to quickly reexploit alarge budy of
existing code to demonstrate a solution to a novel problem. The ability of object-
oriented systems to promote code reuse, in turn, suggests an object-oriented
perspective on the software lifecycle which emphasizes component and application
framework evolution. This evolution can take place both within the lifecycle of
individual applications or across thet of a family of applications, as requirements
change and experience in a given application domain accumulates. From this
perspective, prototyping represents an expansionary, exploratory phase in the
evolution of a part of a system #at can take place at any timeduring the evolution of
the overall system. Prototyping episodes should be followed by design cunsulidatiun
phases that restore to the system the structural integrity that can be undermined
during such exploration. By allowing exploratory and perfective design activity
to pervade the lifecycle, the structural thett takes place during conventional
application maintenance can be averted.

Introduction

Object-oriented languages and systems have deservedly earned a reputation as being
effective for prototyping This reputation is probably due in no small part to the
success seen USiNg object-oriented systems for breadboarding user interfaces. Certainly
those features which distinguish object-oriented languages from conventional ones,
polymorphism, inheritance, and encapsulation (B, facilitate the rapid production of
prototype applications. However, no language, N0 matter how powerful, can support
the quick construction of elaborate applications, even at the mock-up or facade level,
without the previous development of an extensive software infrastructure. The
timely construction of a prototype application is simply not possible without the
reexploitation of appropriate application specific and application independent
components. Successful prototyping, then, is an exercise in software reuse. We
believe that one of the principal strengths of object-oriented systems and languages is Hhak
they su both component and application level reuse, and that it is largely for this
reason that they have proven so effective fur software prototyping.

This increased component and application level reuse potential can lead one, in tumn,
to a decidedly different view of the application development process and lifecycle.
This greater reuse potential means that it isbuth more tikely that an existing
component or application framework can be used to fulfill the requirements of the
current project, and that code developed for a given project wii be reexploitable
during subsequent projects. This reuse potential lowers the break even point fur
efforis to make software components more general, thus making such efforts easier to
justify. Object-oriented tools and techniques allow the lifecycle emphasis to be shifted



from the design and implementation of individual projects to the production and
refinement of reusable components and application frameworks.

ey ¢
Prototyping ae&mz-gwn.zhxspexspechw is not restricted t a-ﬂmnuht-lme rough
draft produeedat the start of a project's lifecycle. Instead, it pervades the lifecycle at al
|evels throughout and beyond Individual product devel opment efforts. Prototyping
becomes a hallmark of an exploratory phase in the development of both individual
software components and application frameworks. This activity is not limited to the
initial design stages of a project, but may occur at any time, even (especially) during

what is traditionally regarded as the maintenance phase of a project. Prototyping
becomes a way of Ilfe rather than a dry run

It is impartant to distinguish the reuse capabilities found in object-oriented systems
from those present in more conventional systems. Object-oriented Systems share with
more traditional program development systems the ability to construct libraries of
application independent routines. However, components in an object-oriented
system may, because of ponmorphlsm work within awider range of contexts and

peeptawidervariety-etdifferent argrmments than might components in a
conventlonal lxbrary Inhentance aIIOWS Ilbrary components to be specialized for
specific applications. Because of polymorphism and inheritance, the reuse potential
for components in an object-oriented library is consi derably greater than et for those
in conventional libraries.

The availability of arich vocabulary of library components can greatly simplify the
application development process as well as the resulting applications themselves.
Using conventional programming Systems we can reuse application independent
components with relative ease as well, but reusing the edlr ce that ties the components
together so that they solve a problem of interest is usualy possible only by physically

the application [Foote 88]. Object-oriented systems provide an aternative to
thls ¢ §<el eton” program approach: object-oriented frameworks.

Frameworks

A framework is a collection of cooperating classes that together define a generic or
template solution to a family of domai ngspecmc ﬁqkeﬁm The best known
frameworks, such as MV C and MacApp, define generic user interfaces. However,
frameworks are by no means limited to user interface construction. For instance, the
Battery Simulation [Foote 88) defines a framework for constructing realtime data-
acquisition and experimental control applications. As object-oriented techniques are
applied }#'in other application domains, frameworks for these domains can be

expected to appear as well.

Framewor ks ar e often characterized by an inversion of control in which the
framework plays the role of a main program in coordinating and sequencing



Dees Ll

d.«;;,& A

Sa C-[‘m_. “a

radeStd é V72
application activity. The user of a framework supplies methods that override specific Subo .
framework behaviors to tailor it for a specific application. Frameworkscanhence ~ Newewn, &k
serve as dynamically extensible skeletons, ey b f'7’~)da .

l 20
Frameworks aue—unﬁk?skeletons/thmgq, in that their-gbres are dynamically shared

&g) mmﬁ all applications derived from them. (Object-oriented inheritance can be
thoug

t of as having a super-Lamarkian flavor. Traits acquired by parents even after L}
the production of offspring are inherited.) Thisalows a framework to serve as the Chrph aslibth,
nucleus of afamily of related applications as evolving requirements cause its

NIVR "‘5‘* (members to diverge.

@S¢

Deutsch [Deutsch 83} has pointed out that frameworks allow designs to be reused at
different levels of abstraction. A framework can embody an abstract design that can
become increasingly more concrete as one moves towards the leaves of the
framework's inheritance hierarchy. (An abstract framework is like an abstract
superclass in this respect.) The more abstract levels of the framework can gg#t come to
resemble a high-level specification, while the lower levelsfill in the implementation
detail. A singleabstract design can serve as the basis for a number of related concrete
realizations of that design.

A framework’s application specific behavior is usualy defined by adding methods to
subclasses of one or more of its classes. Each method must abide by the internal
conventions Of its superclasses. We call these usite-baxframeworks because the
internal implementation details of the framework are visible to the application
specific methods, and must be understood if the framework is to be successfully used
[Johnson & Foate 88),

The relationships among the elements of a white-box framework tend to be rather
informal. As a framework evolves, the relationships among its elements tend to
become better defined. Portions of the framework frequently emerge as distinct
components. Communication among components is then performed in conformity
with the component's external protocol. The white-box elements become black-box
components. \We call such frameworks biack-boxframeworks. A black-box
framework is easier to reuse than a white-box framework, since only the external
protocol of the framework components need be understood, and since any component
conforming to that protocol may be substituted for any other.

White-box frameworks can play an important role during the early, exploratory phase
of a system’sevolution. Th enca ulate aninformally organized part of a system
while its structure is stii 1 ien. AS the system and problem
domain become better understood, distinct black-box components begin to emerge.

Prototype implementations frequently exhibit white-box characteristics, since
extensive opportunistic code-borrowing is frequently employed. It is almost
invariably necessary to subsequently reorganize the class hierarchy to better reflect the
structural demands that the new system component is making on the overall system.



We I\U.{I. eﬂm/les fm ¢ rc«\ 5,6'éw /,n.}ec{

Designing and implementing a system that meets its specifications is a challenging
task in itself. Adding to this the requirement that the components of such a system
anticipate and accommodate future requirements is a much more daunting task
Designing a system from a fixed specification is a deductive process, whereas designing
reusable classes and frameworksis an inductive one. Most often, a designer will know
Sty mnch mne how to produce a general solution to a problem only after having seen several related
e fff‘”‘/{ Ep?uﬂc sol utlons toit. A prototypmg pass may cm occason prowde such experlence
! Ul i#-will a-buni vants : w-rvv_-v-»

u %1‘\“

dunng the 1mplementahon of successive members of a faml Iy of

related products

As aresult, design itself can be seen as a process that pervades an object-oriented
product’s lifecycle. Indeed, some of the must valuable design effort, that involving the
Identification, generalization and refinement of framework components, will take
place during the maintenance phase of the project. An interesting implication of this
observation is that existing programmer deployment practices that place the most
skilled designers on new projects and delegate maintenance to fledgling programmers
may be less than optimal.

Designing reusable classes and frameworks is a difficult task that requires experience,
judgement and skill. Even the best designers will seldom be able to divine optimal
abstractions of a first attempt. Only experience within a given application domain can
lead to the insights needed to product general components far it.

Prototyping and the Software Lifecycle

The ahility to quickly demonstrate the basic design ideas behind a systemto aclient is
one Of prototyping's greatest virtues. Object-oriented encapsulation and
polymorphism can allow the substitution of aternate implementations, such as rough
drafts, mock-ups, or simulations for the final components of an object-oriented
system. This permits final implementation decisions to be deferred, and vital early
experience to be gained.

Much of the motivation fur a prototyping pass can be found in Brook's classic
admonition: “Alen fo throw one away; you wil] anyhow'|Brooks 75] A prototype is
frequently treated as a rough draft, or as vehicle for demonstrating the soundness of
first [evel design concepts. Considerations such as efficiency, elegance, thoroughness
and completeness are often treated as secondary during the construction of a
prototype. During such an effort, the ability to co-opt existing code to the purposes of
the prototype application can be quite valuable. Objectgriented inheritance allows
one to casualy borrow existing code with realnvely effort. Existing

frameworks and classes can be a\ﬁible treasure trove of code and ideas waiting4a-be
RN "f-‘lm"n.rY_‘"_g,: ...... Br.




Such opportunistic code borrowing, but this should never be mistaken for good
design. Applications constructed in this fashion will usually have an ad hoc,
haphazzard structure. The extengfions made to existing classes may undermine their
conceptua integrity aswell. A prototypingpass should be seen asa prelude to a good
design, and nut a substffugfor it.

It is ironic that the very experience that can lead to the production of truely generic
applicationsis largely squandered during the maintenance phase of the conventional
software lifecycle. Consider the following quote from the Mythical Man-Month
[Brooks 75}

Lehman and Belady have studied the history of successive
releases in a large operating system. They find that the total
number of modules increases linearly with release number, but
that the number of modules affected increases exponentially
with release number. All repairs tend to destroy the structure,
to increase the entropy and disorder the system. Less and less
effort is spend on fixing original design flaws, more and more
is spent on fixing flaws introduced by earlier fixes. As time
passes, the system becomes less and less well ordered....

...Systems program building is an entropy-decreasing process,
hence inherently metastable. Program maintenance is an
entropy increasing process, and even its most skillful
execution only delays the subsidence of the system into

unfixable obsolescence. w4 JJL

Maintanance, it would seem, is tike fixing holes in afailing dyke. Eventuall)ut/ fails,
and must be rebuilt. Only then are the lessons learned during it's tenure exploited.

We believe that a well mangaged team using object-oriented tools and techniques can
stay this tide, by employing an incremental refinement strategy that distributesdesign
exploration and consolidation across the entire lifecycle, and across both low level
components and high-level application frameworks. Such a strategy should be flexible
and opportunistic 1t would treat the production of an individual application as an
opportunity not only to solve the problem at hand, but to lay the groundwork for
related future efforts. Indeed, many software houses operate in just this fashion,
treating the first application effort in agiven domain as an effort to gain experience
that will make subsequent efforts less painful Certainly attempts to do just this are
not unique to the object-oriented world. However, the greater reuse potential of
object-oriented components would seem to make them more likely to succeed.

Design, given this perspective, is an activity that pervades the software lifecycle. The
Wif encapsulation capabilities of object-oriented systems allow a System as a whole to be
£ indifferent to localized design evolution and consolidation. By the same token, the



constituent parts of a system can be made relatively immune to global changes in the
system's Structure.

This perspective resembles Boehm's spiral lifecycle model in a number of respects
[Boehm 88].

Thereis aDarwinian quality to component reuse, in that a successful component will
produce alot of offspring (subclasses). This very success, can,in SOme cases, conspire
to make a component less general as it evolves. Thisis because a previoudy genera
component can becomeunnecessanly constrained by code that addresses some specific
new requirement in such awa)/as to undermine the components previous
generality. This midlife generality loss can be mitigated in object-oriented systems via
subclassing The proliferation of requirements made of a successful component
becomes represented in a white-box inheritance hierarchy or framework instead.
Much is made in discussion of object-oriented design techniques of the ability of
object-oriented architectures to model the underlying structure of the application
domain. The ability of object-oriented architectures to reflect the structure of a system
with evolving, diverging requirements in such as way as to make their evolution
more managable is perhaps one of their greatest strengths.

As experience with a number of specific requirements sets is gained, the structure of a
general solution t0 a range of application problems can reveal itself to the system
designer. As the structure of such a solution becomes more obvious, the system will
tend to evolve away from a rather casual white-box structure into a black-box
structure. Not all Components will complete, or gven gin, such an evolutionary
journey. However, the greater reuse potential of £hese components thatse can make
a decision to lavish the resources necesssary to achieve such a result on them easier to

justify.
Conclusion
At the simplest level, the motivation for protot%zping a system first can be

characterized as an attempt to gain hindsight, that is, to answer the question: If
hindsight is so valuable, how do we get 1t?

(Out of time...)



References

[Apple 84]
Apple Computer, Inc.
Lisa Toolkt 30
Apple Computer, Cupertino, CA

[Boehm 88
Barry W. Boehm
A Spiral Model of Software Development and Enhancement
Computer, May 1988, Volume 21, Number 5

[Brooks 75]
Frederick P. Brooks
The Mythical Man-Month: Essays on Software Engineering
Addison-Wesley, Reading MA, 1975

[Brooks 87)
Frederick P. Brooks
No Silver Bullet: Essence and Accidents of Software Engineering
IEEE Computer, Val. 20, No. 4, April 1987

[Cox 86}
Brad Cox
Object-Oriented Frogramming: An Evolutionary Approach
Addison-Wesley, 1986

[ Deutsch 83]
L Peter Deutsch
Reusahility in the Smalltalk- Programming System
pp 72-76 ITT Proceedings of the Workshop on Reusability in Programming
(reprinted in Tutorial on Software Reusability,
| EEE Computer Society Press, 1987)

[Foote88]
Brian Foote
Desjgning to Facilitate Change with Object-Oniented frameworks
Master's Thesis, University of Illinois at Urbana-Champaign, 1988

[Goldberg83]
Adele Goldberg and David Robson
Smalltalk-80 The Language and its Implementation
Addison-Wesley, Reading MA, 1983



[Johnson & Kaplan 86
Ralph E. Johnson and Simon Kaplan
Towards Reusable Software Designs and |mplementations
Proceedings of the Workshop on
Future Directions in Computer Architecture and Software
May 5-7, 1986, Seabrook island, Chariston, SC
Sponsored by the Army Research Office (ARO)

[Johnson & Foote 88]
Ralph E. Johnson and Brian Foote
Designing Reusable Classes
Journa of Object-Oriented Programming
Volume 1, Number 2, June/ July 1988

[Lehman 80)
M. M. Lehman
Programs, life cycles and the laws of software evolution
Proc. | EEE 68(9), 1060-76, 1980

[McCracken 82)
Daniel D. McCracken and Michael A Jackson
Life Cycle Concept Considered Harmful
Software Engineering Notes, Volume 7, Number 2,
April 1982, pages 29-32

[Parikh 84]
Girish Parikh
What is Sofware Maintenance Really? What is in a Name?
Software Engineering Notes, Volume 9, Number 2,
April 1984, pages 114-116

[Parikh 85]
Girish Parikh
SOFTWARE MAINTENANCE NEWS
Software Engineering Notes, Volume 10, Number2,
April 1985, pages 58-60

[Schmucker 86}
Kurt J. Schmucker
Object-Onented Frogramming for the Macintosh
Hayden, Hasbrouck Heights, NJ, 1986

[Sheil 83]
B. Sheil
Environments for Exploratory Programming
Datamaticm, February 1983



[Stefik 86]
Mark Stefik and Daniel G. Bobrow
Object-Oriented Programming Themes and Variations
Al Magazine 6(4). 40-62, Winter, 1986

10



