
Wrappers to the Rescue

John Brant
Brian Foote

Ralph E. Johnson
Donald Roberts

Department of Computer Science
 University of Illinois at Urbana-Champaign

 Urbana, IL 61801
{brant, foote, johnson, droberts}@cs.uiuc.edu

Abstract

Wrappers are mechanisms for introducing new

behavior that is executed before and/or after, and

perhaps even in lieu of, an existing method. This

paper examines several ways to implement wrap-

pers in Smalltalk, and compares their perform-

ance.

Smalltalk programmers have customarily used

Smalltalk’s lookup failure to customize method

lookup. Our focus is different. Rather than

changing the method lookup process directly, we

instead modify the method objects that the

lookup process returns. We call these objects

method wrappers.

We have used method wrappers to construct sev-

eral program analysis tools: a coverage tool, a

class collaboration tool, and an interaction dia-

gramming tool. We also show how we used

method wrappers to construct several extensions

to Smalltalk: synchronized methods, assertions,

and multimethods.

Wrappers are relatively easy to build in Small-

talk, because it was designed with reflective fa-

cilities that allow programmers to intervene in

the lookup process. Other languages differ in the

degree to which they can accommodate these

sorts of manipulations. Our experience testifies

to the value, power, and utility of this sort of

openness.

2

1. Introduction

One benefit of building programming languages

out of objects is that programmers have a place

where they can go when they want to change the

way a running program works. Languages like

Smalltalk and CLOS, which represent program

objects like Classes and Methods as objects that

can themselves be manipulated at runtime allow

programmers to make permanent, or temporary,

changes to the ways these objects work when the

need arises.

This paper focuses on how to intercept and aug-

ment the behavior of existing methods in order to

“wrap” new behavior around them. Several ap-

proaches are examined and contrasted and their

relative performances are compared. These are:

1. Source Code Modifications
2. Byte Code Modifications
3. New Selectors
4. Dispatching Wrappers
5. Class Wrappers
6. Instance Wrappers
7. Method Wrappers

We then examine several tools and extensions

we’ve built using wrappers:

1. Coverage Tool
2. Class Collaboration Diagram Tool
3. Interaction Diagram Tool
4. Synchronized Methods
5. Assertions
6. Multimethods

Taken one at a time, it might be easy to dismiss

these as Smalltalk specific minutiae, or as lan-

guage specific hacks. However, taken together,

they illustrate the power and importance of the

reflective facilities that support them.

Before and after methods as we now know them

first appeared in Flavors [WM81] and Loops

[BS83]. The Common Lisp Object System

(CLOS) [BDG+88] provides a powerful method

standard combination facility that includes

:before, :after, and :around methods. In

CLOS, a method with a :before qualifier that

specializes a generic function, g, is executed

before any of the primary methods on g. Thus,

the before methods are called before the primary

method is called, and the :after methods are

called afterwards. An :around method can

wrap all of these, and has the option of complet-

ing the rest of the computation. The method

combination mechanism built into CLOS also

lets programmers build their own method qualifi-

ers and combination schemes, and is very power-

ful.

Unfortunately, misusing method combination is

can lead to programs that are complex and hard

to understand. Application programmers use

3

them to save a little code but end up with systems

that are hard to understand and maintain. The use

of these sorts of facilities to solve application-

level problems is often symptomatic of more

serious design problems that should be addressed

through refactoring instead. The result is that

before and after methods have gained a bad

reputation.

We use method wrappers mostly as a reflective

facility, not a normal application programming

technique. We think of them as a way to impose

additional structure on the underlying reflective

facilities. For example, we use them to dynami-

cally determine who calls a method, and which

methods are called. If methods wrappers are

treated as a disciplined form of reflection, then

they will be used more carefully and their com-

plexity will be less of a problem.

Our experience with method wrappers has been

with Smalltalk. Smalltalk has many reflective

facilities. The ability to trap messages that are

not understood has been used to implement en-

capsulators [Pas86] and proxies in distributed

systems [Ben87, McC87]. The ability to ma-

nipulate contexts has been used to implement

debuggers, back-trackers [LG88], and exception

handlers [HJ92]. The ability to compile code

dynamically is used by the standard program-

ming environments and makes it easy to define

new code management tools. Smalltalk pro-

grammers can change what the system does when

it accesses a global variable [Bec95] and can

change the class of an object [HJJ93].

However, it is not possible to change every as-

pect of Smalltalk [FJ89]. Smalltalk is built upon

a virtual machine that defines how objects are

laid out, how classes work, and how messages

are handled. The virtual machine can only be

changed by the Smalltalk vendors, so changes

have to be made using the reflective facilities that

the virtual machine provides. Thus, you can’t

change how message lookup works, though you

can specify what happens when it fails. You can’t

change how a method returns, though you can

use valueNowOrOnUnwindDo: to trap returns

out of a method. You can’t change how a method

is executed, though you can change the method

itself.

We use method wrappers to change how a

method is executed. The most common reason

for changing how a method is executed is to do

something at every execution, and method wrap-

pers work well for that purpose.

4

2. Compiled Methods

Many of the method wrapper implementations

discussed in this paper are based on Compiled-

Methods, so it is helpful to understand how

methods work to understand the different imple-

mentations. While this discussion focuses on

VisualWorks, we have also implemented wrap-

pers in VisualAge Smalltalk. They can be im-

plemented in most other dialects of Smalltalk.

However, the method names and structure of the

objects are somewhat different. A complete dis-

cussion of how to implement wrappers in these

other dialects of Smalltalk is beyond the scope of

this paper.

Smalltalk represents the methods of a class using

instances of CompiledMethod or one of its sub-

classes. A CompiledMethod knows its Smalltalk

source, but it also provides other information

about the method, such as the set of messages

that it sends and the bytecodes that define the

execution of the method.

Interestingly, CompiledMethods do not know the

selector with which they are associated. Hence,

they are oblivious as to which name they are in-

voked by, as well as to the names of their argu-

ments. They are similar to Lisp lambda-

expressions in this respect. Indeed, a compiled

method can be invoked even if it does not reside

in any MethodDictionary. We will use this fact to

construct MethodWrappers.

CompiledMethod has three instance variables

and a literal frame that is stored in its variable

part (accessible through the at: and at:put: meth-

ods). The instance variables are bytes, mclass,

and sourceCode. The sourceCode variable holds

an index that is used to retrieve the source code

for the method and can be changed so different

sources appear when the method is browsed.

Changing this variable does not affect the execu-

tion of the method, though. The mclass instance

variable contains the class that compiled the

method. One of its uses is to extract the selector

for the method.

5

The bytes and literal frame are the most impor-

tant parts of CompiledMethods. The bytes in-

stance variable contains the byte codes for the

method. These byte codes are stored either as a

small integer (if the method is small enough) or a

byte array, and contain references to items in the

literal frame. The items in the literal frame in-

clude standard Smalltalk literal objects such as

numbers (integers and floats), strings, arrays,

symbols, and blocks (BlockClosures and Com-

piledBlocks for copying and full blocks). Sym-

bols are in the literal frame to specify messages

being sent. Classes are in the literal frame when-

ever a method sends a message to a superclass.

The class is placed into the literal frame so that

the virtual machine knows where to begin

method lookup. Associations are stored in the

literal frame to represent global, class, and pool

variables. Although the compiler will only store

these types of objects in the literal frame, in prin-

ciple any kind of object can be stored there.

Figure 1 shows the CompiledMethod for the

removeFirst method in OrderedCollection. The

method is stored under the #removeFirst key in

OrderedCollection’s method dictionary. Instead

of showing the integer that is in the method’s

sourceCode variable, the dashed line indicates

the source code that the integer points to.

3. Implementing Wrappers

There are many different ways to implement

method wrappers in Smalltalk, ranging from

simple source code modification to complex byte

code modification. In the next few sections we

discuss seven possible implementations and some

of their properties. While we recognize that many

of the implementation details that we use are

Smalltalk-specific, other languages provide

similar facilities to varying degrees.

3.1 Source code modification

A common way to wrap methods is to modify the

method directly. The wrapper code is directly

removeFirst
 self emptyCheck.
 …

#[17 68 …]

OrderedCollection class
methodDict
… MethodDictionary

#removeFirst
…

CompiledMethod
mclass
bytes
sourceCode
1

#emptyCheck

Figure 1: removeFirst method in Ordered-

Collection

6

inserted into the original method’s source and the

resulting code is compiled. This requires parsing

the original method to determine where the be-

fore code is placed and all possible locations for

the after code. Although the locations of return

statements can be found by parsing, these are not

the only locations where the method can be ex-

ited. Other ways to leave a method are by excep-

tions, non-local block returns, and process termi-

nation.

VisualWorks allows us to catch every exit of a

method with the valueNowOrOnUnwindDo:

method. This method evaluates the receiver

block, and when this block exits, either normally

or abnormally, evaluates the argument block. The

new source for the method using value-

NowOrOnUnwindDo: is

originalMethodName: argument
“before code”
^[“original method source”]

valueNowOrOnUnwindDo:
[“after code”]

To make the method appear unchanged, the

source index of the new method can be set to the

source index of the old method. Furthermore, the

original method does not need to be saved since

it can be recompiled from the source retrieved by

the source index.

The biggest drawback of this approach is that it

must compile each method that it changes.

Moreover, it requires another compile to reinstall

the original method. Not only is compiling

slower than the other approaches listed here, it

cannot be used in runtime images since they are

not allowed to have the compiler.

3.2 Byte code modification

Another way to modify a method is to modify the

CompiledMethod directly without recompiling

[MB85]. This technique inserts the byte codes

and literals for the before code directly into the

CompiledMethod so that the method does not

need to be recompiled. This makes installation

faster. Unfortunately, this approach does not

handle the after code well. To insert the after

code, we must convert the byte codes for the

original method into byte codes for a block that

is executed by the valueNowOrOnUnwindDo:

method. This conversion is non-trivial since the

byte codes used by the method will be different

than the byte codes used by the block. Further-

more, this type of transformation depends on

knowledge of the byte code instructions used by

the virtual machine. These codes are not stan-

dardized and can change without warning.

7

3.3 New selector

Another way to wrap methods is to move the

original method to a new selector and create a

new method that executes the before code, sends

the new selector, and then executes the after

code. With this approach the new method is:

originalMethodName: argument
“before code”
^[self newMethodName: argument]

valueNowOrOnUnwindDo:
[“after code”]

This approach was used by Böcker and Herczeg

to build their Tracers [BH90].

This implementation has a couple of desirable

properties. One is that the original methods do

not need to be recompiled when they are moved

to their new selectors. Since CompiledMethods

contain no direct reference to their selectors, they

can be moved to any selector that has the same

number of arguments. The other property is that

the new forwarding methods with the same be-

fore and after code can be copied from another

forwarding method that has the same number of

arguments. Cloning these CompiledMethods

objects (i.e. using the Prototype pattern

[GHJV95]) is much faster than compiling new

ones. The main difference between the two for-

warding methods is that they send different se-

lectors for their original methods. The symbol

that is sent is easily changed by replacing it in the

method’s literal frame. The only other changes

between the two methods are the sourceCode and

the mclass variables. The mclass is set to the

class that will own the method, and the source-

Code is set to the original method’s sourceCode

so that the source code changes aren’t noticed.

Since byte codes are not modified, neither the

original method nor the new forwarding method

needs to be compiled, so the installation is faster

than the source code modification approach.

One problem with this approach is that the new

selectors are visible to the user. Böcker and

Herczeg addressed this problem by modifying

the browsers. The new selectors cannot conflict

with other selectors in the super or subclasses

and should not conflict with users adding new

methods. Furthermore, it is more difficult to

compose two different method wrappers since we

must remember which of the selectors represent

the original methods and which are the new se-

lectors.

3.4 Dispatching Wrapper

One way to wrap new behavior around existing

methods is to screen every message that is sent to

an object as it is dispatched. In Smalltalk, the

8

doesNotUnderstand: mechanism has long been

used for this purpose [Pas86, Ben87, FJ89]. This

approach works well when some action must be

taken regardless of which method is being called,

such as coordinating synchronization informa-

tion. Given some extra data structures, it can be

used to implement wrapping on a per-method

basis. For example, Classtalk [Coi90] used

doesNotUnderstand: to implement a CLOS-

style before- and after- method combination

mechanism.

A common way to do this is to introduce a class

with no superclass can to intercept the dispatch-

ing mechanism to allow per-instance changes to

behavior. However, the doesNotUnderstand:

mechanism is slow, and screening every message

sent to an object just to change the behavior of a

few methods seems wasteful and inelegant. The

following sections examine how Smalltalk’s

meta-architecture lets us more precisely target

the facilities we need.

3.5 Class Wrapper

The standard approach for specializing behavior

in object-oriented programming is subclassing.

We can use subclassing to specialize methods to

add before and after code. In this case, the spe-

cialized subclass essentially wraps the original

class by creating a new method that executes the

before code, calls the original method using

super mechanism, and then executes the after

code. Like the methods in the new selector ap-

proach, the methods for the specialized subclass

can also be copied, so that the compiler is not

needed.

Once the subclass has been created, it can be

installed into the system. To install the subclass,

the new class has to be inserted into the hierarchy

so that subclasses will also use the wrapped

methods. It can be inserted by using the super-

class: method to change the superclass of all of

the subclasses of the class being wrapped to be

the wrapper. Next, the reference to the original

class in the system dictionary must be replaced

with a reference to the subclass. Finally, all ex-

isting instances of the original class have to be

converted to use the new subclass. This can be

accomplished by getting allInstances of the

original class and using the changeClass-

ToThatOf: method to change their class to the

new subclass.

Like the new selector approach this only requires

one additional message send. However, these

sorts of wrappers take longer to install. Each

9

class requires a scan of object memory to look

for all instances of the original class. Once the

instances have been found, we have to iterate

though them changing each of their classes.

3.6 Instance Wrapper

The class wrapper approach can also be used to

wrap methods on a per instance basis, or a few at

a time. Instead of replacing the class in the sys-

tem dictionary, we can change only the objects

that we want to wrap, by using the

changeClassToThatOf: method on only those

objects.

Instance wrappers can be used to change the way

individual objects behave. This is the intent of

the Decorator pattern [GHJV95]. However since

these decorations are immediately visible though

existing references to the original object, objects

can be decorated dynamically.

3.7 Method Wrapper

A method wrapper is like a new selector in that

the old method is replaced by a new one that

invokes the old. However, a method wrapper

does not add new entries to the method diction-

ary. Instead of invoking the old method by send-

ing a message to the receiver, a method wrapper

evaluates the original method directly. A method

wrapper must know the original method, and

must be able to execute it with the current argu-

ments. Executing a CompiledMethod is easy,

since a CompiledMethod responds to the

valueWithReceiver:arguments: message by

executing itself with the given a receiver and an

array of arguments.

One way for a MethodWrapper to keep track of

its original method is for MethodWrapper to be a

subclass of CompiledMethod with one new in-

stance variable, clientMethod, that stores the

original method. MethodWrapper also defines

beforeMethod, afterMethod, and re-

ceiver:arguments: methods as well as a few

helper methods. The beforeMethod and after-

Method methods contain the before and after

code. The valueWithReceiver:arguments:

method executes the original method given the

receiver and argument array.

valueWithReceiver: anObject
arguments: args

self beforeMethod.
^[clientMethod

valueWithReceiver: anObject
arguments: args]

valueNowOrOnUnwindDo:
[self afterMethod]

10

The only remaining problem is how to send the

valueWithReceiver:arguments: message to a

MethodWrapper. The method must be able to

refer to itself when it is executing, but Smalltalk

does not provide a standard way to refer to the

currently executing method. When a Compiled-

Method is executing, the receiver of the message,

and not the CompiledMethod, is the “self” of the

current computation. In VisualWorks Smalltalk,

the code “thisContext method” evaluates to the

currently executing method, but it is inefficient.

We need some kind of “static” variable that we

could initialize with the method, but Smalltalk

does not have that feature. Instead, we make use

of the fact that each Smalltalk method keeps

track of the literals (i.e. constants) that it uses.

Each MethodWrapper is compiled with a marked

literal (we use #(), which is an array of size 0).

After it has been created, the system replaces the

reference to the literal with a reference to the

MethodWrapper. Using this trick the

receiver:value: message can be sent to the

MethodWrapper by compiling

originalMethodName: argument
^#() receiver: self value: argument

and replacing the empty array (in the first posi-

tion of the literal frame) with the method. The

receiver:value: method is one of the Method-

Wrapper’s helper methods. It is responsible for

converting its value argument into an array and

sending them to the valueWithReceiver:-

arguments: method.

MethodWrapper
mclass
bytes
clientMethod
sourceCode
1
2

OrderedCollection class
methodDict
… MethodDictionary

#removeFirst
…

removeFirst
 self emptyCheck.
 …

#[17 68 …]CompiledMethod
mclass
bytes
sourceCode
1

#emptyCheck

118567696

#receiver:

11

Figure 2 shows a MethodWrapper wrapping the

removeFirst method of OrderedCollection. The

CompiledMethod has been replaced by the

MethodWrapper in the method dictionary. The

MethodWrapper references the original method

through its clientMethod variable. Also, the

empty array that was initially compiled into the

method has been replaced with a reference to the

wrapper.

Like the new selector approach, MethodWrap-

pers do not need to be compiled for each method.

Instead they just need a prototype (with the same

number of arguments) that can be copied. Once

copied, the method sets its method literal, source

index, mclass, and clientMethod. Since the

method wrapper can directly execute the original

method, no new entries are needed in the method

dictionary for the original method.

Table 1 and Table 2 compare the different ap-

proaches for both runtime overhead and instal-

lation time. These tests were performed on an

486/66 with 16MB memory running Windows 95

and VisualWorks 2.0. The byte code modifi-

cation approach was not implemented, thus it is

not shown. The dispatching wrapper has been

omitted from the installation times since it is only

an instance based technique. Added to the list-

ings is an inlined method wrapper. This new

method wrapper inlines the before and after code

into the wrapper without defining the additional

methods. This saves four message sends over the

default method wrapper. Although it helps run-

time efficiency, it hurts installation times since

the inlined wrappers are larger.

Table 1 shows the overhead of each approach.

The method modification approach has the low-

est overhead if the method does not contain a

Number of arguments

Approach 0 1 2 3

Method modification (no returns) 5.2 5.2 9.2 9.7

Method modification (returns) 339.0 343.8 344.5 346.5

New selector 5.5 9.7 10.3 10.7

Dispatching wrapper 21.1 22.8 23.5 27.5

Class wrapper 5.9 9.8 10.5 10.9

Method wrapper 23.4 28.7 31.5 31.8

Inlined method wrapper 18.8 20.3 21.9 24.5

Table 1: Overhead per 1,000 method calls (ms)

12

return, but when it contains a return, the over-

head for method modification jumps to more

than ten times greater than the other techniques.

Whenever a return occurs in a block, a context

object is created at runtime. Normally these

context objects are not created so execution is

much faster. The new selector and class wrapper

approaches have the best overall times. The two

method wrapper approaches and the dispatching

wrapper approaches have more than double the

overhead as the new selector or class wrapper ap-

proaches since the method wrappers and dis-

patching wrappers must create arrays of their

arguments.

Table 2 contains the installation times for in-

stalling the various approaches on all subclasses

of Model and its metaclass (226 classes with

3,159 methods). The method wrapper techniques

are the fastest since they only need to change one

entry in the method dictionary. The new selector

approach is slightly slower since it needs to

change two entries in the method dictionary. Al-

though the class wrapper only needs to add one

entry, it must scan object memory for instances

of each class to convert them to use the new sub-

class wrapper. Finally, the method modification

approach is the slowest since it must compile

every method.

4. Applications

Method wrappers can be used in many different

areas. In this section we outline six different

uses.

4.1 Coverage Tool (Image Strip-

per)

One application that can use method wrappers is

an image stripper. Strippers remove unused ob-

jects (usually methods and classes) from the im-

age to make it more memory efficient. The de-

fault stripper shipped with VisualWorks only

removes the development environment (compil-

ers, browsers, etc.) from the image.

A different approach to stripping is to see what

methods are used while the program is running

Approach Time

Method modification 262.6

New selector 25.5

Class wrapper 44.2

Method wrapper 17.0

Inlined method wrapper 19.9

Table 2: Installation times for 3,159 meth-

ods in 226 classes (sec)

13

and remove the unused ones. Finding the used

methods is a coverage problem and can be han-

dled by method wrappers. Instead of counting

how many times a method is called, the method

wrapper only needs a flag to signify if its method

has been called. Once the method has been

called, the original method can be restored so

that future calls occur at normal speeds.

We created a subclass of MethodWrapper that

adds two new instance variables, selector and

called. The selector variable contains the

method’s selector, and called is a flag that sig-

nifies if the method has been called. Since the

method wrapper does not need to do anything

after the method is executed, it only needs to

redefine the beforeMethod method:

beforeMethod
called ifFalse:

[called := true.
mclass addSelector: selector

withMethod: clientMethod]

This method first sets its flag and then reinstalls

its original method. The ifFalse: test avoids infi-

nite recursion in case that the method is called

while performing the addSelector:withMethod:

operation. Execution of the application program

is slow at first, but it rapidly increases once the

base set of methods are reinstalled.

The method wrapper correctly reports whether it

has been called. However, this stripping scheme

requires 100% method coverage. Any method

that is not used by the test suite will be removed,

so if a test suite does not provide 100% method

coverage (which they rarely do) then the stripper

will remove a method that is needed later. There-

fore, all methods should be saved to a file before

they are removed. If one of the removed methods

is called, it must be loaded, installed, and exe-

cuted. The best way to detect that a deleted

method has been called is with the

doesNotUnderstand: mechanism, though it is

also possible to use method wrappers for this

purpose.

4.2 Class Collaboration

Method wrappers can also be used to dynami-

cally analyze collaborating objects. For example,

we might create call graphs that can help devel-

opers better understand how the software works.

Furthermore, such information can help the de-

veloper visualize the coupling between objects.

This can help the developer more quickly ana-

lyze when inappropriate objects are interacting.

Method wrappers can capture this information by

getting the current context, just like the debugger

14

does. Whenever a method is called, its wrapper

needs to record who called the method, where the

call occurred (which method and statement inside

the method), the starting and ending times for the

method, and finally how the method terminated

(either normally with a return, or abnormally by a

signal). Methods that return abnormally might be

a problem since the programmers might not have

programmed for such a case.

Using the information collected by the method

wrappers, we can create a class collaboration

graph such as the one shown in Figure 3. When-

ever one object of a class sends a message to

another object in another class, a line is drawn

between them. Classes whose objects collaborate

a lot are attracted to each other. The collabora-

tion graph can help the programmer see which

objects are collaborating as well as how much

they are collaborating.

4.3 Interaction Diagrams

Interaction diagrams illustrate the dynamic se-

quence of the message traffic among several ob-

jects at runtime. The interaction diagram appli-

cation allows users to select the set of methods

that will be watched. These methods are

wrapped, and the tool records traffic through

them. When the wrappers are removed, the inter-

actions among the objects that sent and received

these messages are depicted, as in Figure 4.

The diagrams generated by the tool are similar to

the interaction diagrams seen in many books,

with one notable exception. Since we only select

a few methods to observe, we miss some mes-

sages. As a result, there are times when a mes-

sage is received, but the last method entered did

not send the message. For example, suppose you

have:

Foo>>createBar
^Bar new

Bar>>initialize
"do some initialization"

Figure 3: Class collaboration graph of the

Refactoring Browser

15

Bar class>>new
^super new initialize

and that you only wrap Foo>>createBar and

Bar>>initialize. If you send a Foo the create-

Bar message, that event will be recorded. It will

send the new message to Bar class, but since that

method is not wrapped, it is not observed. When

the new method sends the initialize method to a

Bar, it is observed, but the last observed method

did not send it. Such events are called indirect

message sends and are displayed as yellow lines.

In the figure, we can see that "a Refactor-

ingBrowser" sent a closed message to some

object that wasn’t wrapped, which resulted in the

update:with:from: method being called on

"(nothing selected)" (a CodeModel).

Without a facility for wrapping the watched

methods, tools would have to intervene at the

source or binary code levels. The relative ab-

sence of such tools in languages without support

for wrappers testifies to the difficulty of inter-

vening at these levels

4.4 Synchronized Methods

Method wrappers are also useful for synchroniz-

ing methods. In a multithreaded environment,

objects used concurrently by two different

threads can become corrupt. A classic example in

Smalltalk is the Transcript. The Transcript is a

global variable that programs use to print output

on. It is most often used to print debugging in-

formation. If two processes write to the Tran-

script at the same time, it can become corrupt

and cause exceptions to be raised. To solve this

problem we need to ensure that only one process

accesses the Transcript at a time.

16

One solution would be to define a language con-

struct for synchronization. For example, Java

takes this approach by defining a method tag that

is used to specify that a method is synchronized

[GJS96]. The system ensures that only one

method that is tagged with the synchronized

keyword is running at any time for an instance

and only one static method that is tagged is run-

ning at any time for a single class.

The Smalltalk compiler does not need to directly

support synchronized methods since Smalltalk

exposes enough of its implementation to allow us

to implement these features. For example, we can

implement static synchronized methods by using

Figure 4: Interaction Diagram on the Refactoring Browser

17

method wrappers where each wrapper acquires

its lock before executing the original method and

releases it after the method executes. Similarly,

the non-static synchronized methods can be im-

plemented by using class wrappers where each

instance would have its own class wrapper that

would wrap each super message send with the

lock. Method and class wrappers let us add this

functionality in dynamically, whereas Java forces

us to recompile to change the method’s attribute.

4.5 Pre- and Post-conditions

Pre- and post-conditions help programmers pro-

duce quality software by describing a component

and helping detect when it is being misused. The

earlier an error is detected, the easier it is to fix.

Eiffel supports pre- and post-conditions directly

with the require and ensure keywords [Mey92].

When conditions are enabled, invocations of the

method are required to meet its conditions before

executing and the method ensures its conditions

after executing.

In systems like Smalltalk that do not directly

support pre- and post-conditions, programmers

sometimes write the checks directly into the

code. For example, the removeFirst method in

OrderedCollection checks that it is non-empty.

Other times these conditions are written as com-

ments in code, or not written down at all.

While it is useful to have these checks in the

code when developing the software, they are not

as useful after releasing the software. To the user,

an unhandled empty collection signal raised by

the empty check in removeFirst is the same as

an unhandled index out of bounds signal that

would be raised if the error check was elimi-

nated. Both cause the product to fail. Therefore,

to be useful to developer, a system that imple-

ments pre- and post-conditions should be able to

add and remove them quickly and easily.

Pre- and post-conditions can be implemented by

using method wrappers. For each method, a

method wrapper would be created that would test

the pre-condition, evaluate the wrapped method,

and finally test the post-condition on exit.

Post-conditions can also have old values. Old

values are useful in comparing values that occur

before executing a method to the values after

execution. To support old values, we added a

special selector, OLD, that when sent to an ex-

pression will refer to the value of the expression

before the execution of the method. Although

this selector appears to be a message send, a pre-

18

processing step replaces it with a temporary. The

receiver of the message is then assigned to the

temporary before the method is executed.

As an example, consider the removeFirst

method of OrderedCollection. It might have a

pre-condition such as “self size > 0” and a post-

condition of “self size OLD - 1 == self size”

(i.e., the size of the collection after execution is

one less than the size before). The method wrap-

per for this example would be:

| old1 |
old1 := self size.
[self size > 0] value ifFalse:

[self preconditionErrorSignal raise].
^[“code to evaluate wrapped method”]

valueNowOrOnUnwindDo:
[[old1 - 1 == self size] value

ifFalse: [self
postconditionErrorSignal

raise]]

Notice that the “self size OLD” from the post-

condition has been replaced by a temporary and

that the receiver, “self size”, is assigned at the

beginning of the wrapper.

Others have implemented pre- and post-condi-

tions for Smalltalk [CCGMP94, Riv96], but they

modified the compiler to generate the conditions

directly into the methods. Thus they require a

complete recompile when (un)installing the con-

ditions. [CCGMP94] allowed conditions to be

turned on and off, but they could only be com-

pletely eliminated by a complete recompile.

Figure 5 shows a browser with pre- and post-

conditions inspecting the removeFirst method.

The three text panes at the bottom display the

method’s pre-condition, the source, and the post-

condition. Both the pre-condition and the post-

condition panes can be eliminated if the pro-

grammer does not wish to view them. Since the

pre- and post-conditions are separated from the

method, we don’t need to augment the method

definition with special keywords or special mes-

sage sends as Eiffel and the other two Smalltalk

implementations do.

4.6 Multimethods

The Common Lisp Object System provides

elaborate facilities for method wrapping. The

CLOS method combination mechanism provides

programmers with a great deal of control over

how different kinds of methods interact with the

inheritance hierarchy to determine how and when

methods are executed. The CLOS standard

method combination mechanism executes the

:around and :before methods in outermost

to innermost order. Next, the primary methods

are executed, followed by the :after methods

19

in innermost to outermost order. Finally, the

:around methods are resumed.

Our basic wrappers are much simpler. They exe-

cute the before code and primary code for each

wrapper, before calling the wrapped method. If

that method is wrapped, its before code and pri-

mary code is executed. Like CLOS :around

methods, our wrappers may decide to not call

their wrapped methods.

We have used method wrappers to construct

mechanisms like those found in CLOS. Next, we

will describe how to use them to build CLOS-

style generic functions, method combination, and

multimethods.

Multimethods [BDG+88] are methods that are

dispatched at runtime by taking the identities of

all the methods arguments into account, rather

than just that of the message receiver, as is the

case in languages like Smalltalk, Java, and C++.

Java and C++ use static overloading to distin-

guish methods based on the compile-time types

of the arguments. Multimethods are more power-

ful because they choose a method at run-time.

Figure 5: Browser with pre and postconditions

20

In CLOS, all the multimethods that share the

same function name (selector) are members of a

generic function by that name. When this func-

tion is called, it determines which (if any) of its

multimethods apply, and calls them in the appro-

priate order.

The way that multimethods are called is deter-

mined by a method combination object. Mul-

timethods are not only specialized by the types of

their arguments, they may also be qualified. For

instance, the standard method combination object

conducts the execution of :around, :before,

:after, and primary methods by taking

these qualifiers into account. The CLOS

Metaobject Protocol [KdRB91, KL92] permits

optimizations of this process by a sort of partial

evaluation, using discriminating functions and

effective methods.

Our Smalltalk multimethod implementation uses

a dormant type syntax that is built into the Visu-

alWorks Smalltalk compiler as its syntax for spe-

cializing multimethod arguments. This syntax

lets us specify both ClassSpecializers, and

EqualSpecializers for literal instances.

When the Smalltalk browser accepts a method

with these specializations, it creates a Mul-

tiMethod object. MultiMethods are subclasses of

CompiledMethod that are given selectors distinct

from those of normal methods. MultiMethods

also make sure there is an instance of Gen-

ericFunction for the selector for which they are

being defined. GenericFunctions also keep track

of one or more DiscriminatingMethods.

DiscriminatingMethods are subclasses of

MethodWrapper that intercept calls that occupy

the MethodDictionary slots where a normal

method for their selector would go. When a Dis-

criminatingMethod gains control, it passes its

receiver and arguments to its GenericFunction,

which can then determine which MultiMethods

to execute in what order. It does so by passing

control to its MethodCombination object.

Subclasses of our MethodCombinations, besides

implementing the standard before/after/primary –

style combinations, can be constructed to collect

the values of their primary methods, as in CLOS,

or to call methods in innermost to outermost or-

der, as in Beta [KMMN90] .

Of course, by virtue of being called in a context

where a dispatch on its first argument has already

been done, DiscriminatingMethods can, in con-

junction with their MethodCombination and

21

GenericFunction objects, take advantage of such

information to optimize their tasks.

To illustrate our syntax, as well as the power of

multimethods, consider the impact of mul-

timethods on how the Visitor pattern [GHJV95]

is implemented. First, consider a typical Small-

talk implementation of Visitor:

ParseNode>>acceptVistor: aVisitor
^self subclassResponsibility

VariableNode>>acceptVistor: aVisitor
^aVisitor visitWithVariableNode: self

ConstantNode>>acceptVistor: aVisitor
^aVisitor visitWithConstantNode: self

OptimizingVisitor>>
visitWithConstantNode: aNode

^aNode value optimized

OptimizingVisitor>>
visitWithVariableNode: aNode

^aNode lookupIn: self symbolTable

However, when MultiMethods are available, the

double-dispatching methods in the ParseNodes

disappear, since the type information does not

need to be hand-encoded in the selectors of the

calls to the 9LVLWRU objects. Instead, the Visitor

is able, together with the ;[[1RGH with which

visitWithNode: is called, to correctly dispatch

calls on the visitWithNode: GenericFunction to

the correct MultiMethod:

ParseNode>>acceptVistor: aVisitor
^aVistor visitWithNode: self

OptimizingVisitor>>

visitWithNode: aNode <ParseNode>
^self value optimized

OptimizingVisitor>>
visitWithNode: aNode <VariableNode>

^aNode lookupIn: self symbolTable

Multimethods simplify the ParseNode side of the

hierarchy . It eliminates the redispatching meth-

ods that encode the identity of the node from

which they are called, and replaces them with a

single implementation of acceptVisitor: in Par-

seNode.

The savings on the 9LVLWRU side may appear to

be merely cosmetic. The visitWithXxxNode:

methods are replaced by corresponding

visitWithNode: aNode <XxxNode> methods,

which are specialized according to the sort of

node they service. Even here, though, savings are

possible when a particular node’s implementation

can be shared with others in a superclass of the

leaf node. For instance, if many of 2SWLPL]�

LQJ9LVLWRUªV multimethods would have sent the

optimized message to their QRGHªV� value, they

can share the implementation of this method de-

fined for 2SWLPL]LQJ9LVLWRU and 3DUVH1RGH.

The hand coded double-dispatched implementa-

tions usually provide a stub implementation of

the subclass 1RGHªV version of the method so as

to avoid a breach of encapsulation.

22

5. Other Approaches

Many systems provide ways for programs to

augment or preempt the behavior of existing

functions. If the language does not permit such

modifications, programmers will often resort to

low-level, implementation specific schemes to

achieve their ends.

Wrapping strategies are not limited to languages.

For instance, all the routines in the Macintosh

Toolbox can be wrapped. The architects of the

Toolbox designed it so that calls to the ROM-

based built-in Toolbox functions were accessed

indirectly through a table in RAM. This indirec-

tion allowed Apple to ship patched copies of

Toolbox entries to correct or supplement the

existing routines. It also gave third-party soft-

ware designers the opportunity to change the

routines from which the system was built.

Over the years, Macintosh programmers have

shown remarkable ingenuity in the ways that

they’ve exploited these hooks into the system.

For instance, applications like wide desktops and

screen savers were built by wrapping the Tool-

box. This shows the wisdom of designing sys-

tems with flexible foundations.

Programmers using Microsoft Windows have

achieved similar results with the dynamic linking

mechanism used to implement Dynamic Link

Libraries (DLLs). A function can be wrapped by

providing a wrapping implementation for it in a

DLL that is referenced before the wrapped DLL.

C++ has no standard mechanisms for allowing

programmers to intercept calls to C++ functions,

virtual or otherwise. However, some pro-

grammers have exploited the most common im-

plementation mechanism for dispatching C++

virtual functions, the “v-table” [ES90] to gain

such access [Tie88]. By falling back on unsafe C

code, and treating v-table entries as simple C

function pointers, programmers can dynamically

alter the contents of the v-table entry for a class

of objects. By substituting another function with

the same signature for a given v-table entry, that

entry can be wrapped with code that can add

before and after actions before calling (or not

calling) the original method.

Since the v-table mechanisms are not a part of

the C++ standard, and since more complex fea-

tures of C++ such as multiple inheritance and

virtual bases often employ more elaborate im-

plementations, programmers cannot write port-

able code that depends on “v-table surgery”. In-

23

terestingly, C with Classes contained a mecha-

nism [Str94] that allowed programmers to spec-

ify a function that would be called before every

call to every member functions (except con-

structors) and another that would be called be-

fore every return from every member function.

These call and return functions resemble

dispatching wrappers.

In contrast to C++, the Microsoft Common Ob-

ject Model (COM) [Bro95] defines an explicit

binary format that is similar to, and based upon,

the customary implementation of simple C++ v-

tables. Since any COM object must adhere to this

format, it provides a potential basis for wrapping

methods using v-table manipulation, since the

rules by which v-tables must play are explicitly

stated.

6. On the Importance of Be-

ing Open

Smalltalk’s reflective facilities, together with our

wrappers, allowed us to construct powerful pro-

gram analysis tools and language extensions with

relative ease. The ease with which we can add

and remove wrappers at runtime makes tools like

our interaction diagramming tool possible. In

contrast, adding a feature like dynamic coverage

analysis to an existing program is impossible for

users of traditional systems, and difficult for the

tool vendors.

While wrappers can, in principle, be used to

solve problems at both the domain-level, or at the

meta-, or language-level, the analysis tools and

language extensions we present here are all re-

flective applications, in that they exploit our

ability to manipulate program objects as pieces

of the program itself, rather than as representa-

tions of application-level concerns.

In the case of tools, the fact that the program is

built out of objects lets us inspect and alter these

objects on-the-fly. Tools need an inside view of

the program. For instance, when we wrap a

CompiledMethod object using our interaction

tool, we are exploiting its language level role as a

program element and are indifferent to domain-

specific behavior it engenders.

In the case of our linguistic extensions, the open-

ness of the language’s objects permitted us to

construct these extensions, which were then used

to write domain specific code. The use of raw

reflective facilities to construct such extensions is

a good way to harness the power of reflection.

24

None of the examples of method wrappers in this

paper are domain specific. Domain specific uses

of reflective facilities like before- and after-

methods are frequently symptoms of problems

with the application’s structure that would be

better addressed by refactoring its design. Re-

flective facilities are useful alternatives when a

system becomes so overgrown that it can’t be

redesigned. Being able to change the language

level gives programmers a big lever and can buy

time until the resources to overhaul the system

become available. However, metalevel tricks are

no substitute for properly addressing a system’s

serious long-term structural problems.

A generation of Smalltalk programmers has

turned to Smalltalk’s lookup failure exception,

doesNotUnderstand:, when the time came to

extend the language. This paper has examined

the strengths and weaknesses of several ways of

intervening during the lookup process. Ap-

proaches based on doesNotUnderstand: have a

brute force quality about them, since they must

screen every message sent. Method wrappers let

us intervene more precisely and selectively.

When we needed a way to build power, efficient

programming tools and language extensions,

wrappers came to the rescue.

The original Smalltalk designers did a wonderful

job of building a language out of objects that

users can change. We rarely run into the “keep

out” signs that so often frustrate users of other

languages. This lets us add new tools to the pro-

gramming environment, keep up with the latest

database and network technology, and maintain

and enhance our own systems as they evolve.

Acknowledgments

Ian Chai, Dragos Manolescu and Joe Yoder pro-

vided valuable comments and insights on an ear-

lier version of this paper.

The interaction diagramming tool was originally

a project done by David Wheeler, Jeff Will, and

Jinghu Xu for Ralph Johnson's CS497 class.

Their report on this project can be found at:

http://radon.ece.uiuc.edu/~dwheeler/interaction.h

tml.

References

The code referenced in this article can be found

at:

http://st-www.cs.uiuc.edu/~brant/wrappers.html

25

[BDG+88] Dan G. Bobrow, Linda G. DeMi-
chiel, Richard P. Gabriel, Sonya
E. Keene, Gregor Kiczales, and
David A. Moon. Common lisp
object system specification.
SIGPLAN Notices, 23, Septem-
ber 1988.

[Bec95] Kent Beck. Using demand load-
ing. The Smalltalk Report,
4(4):19-23, January 1995.

[Ben87] John K. Bennett. The design and
implementation of distributed
Smalltalk. In Proceedings OOP-
SLA ’87, pages 318-330, De-
cember 1987. Published as ACM
SIGPLAN Notices, volume 22,
number 12.

[BH90] Heinz-Dieter Böcker and Jürgen
Herczeg, What Tracers are Made
Of, ECOOP/OOPSLA ’90 Con-
ference Proceedings, SIGPLAN
Notices, Volume 25, Number 10,
October 1990

[Bro95] Kraig Brockschmidt. Inside
OLE, second edition, Microsoft
Press, Redmond, Washington,
1995.

[BS83] Daniel G. Bobrow and Mark
Stefik. The LOOPS Manual.
Xerox PARC, 1983.

[CCGMP94] Manuela Carrillo-Castellon, Je-
sus Garcia-Molina, and Ernesto
Pimentel. Eiffel-like assertions
and private methods in Smalltalk.
In TOOLS 13, pages 467-478,
1994.

[Coi90] Pierre Cointe, The Classtalk
System: a Laboratory to Study
Reflection in Smalltalk, OOP-
SLA/ECOOP ’90 Workshop on
Reflection and Metalevel Archi-
tectures in Object-Oriented Pro-
gramming, Mamdouh Ibrahim,
organizer.

[ES90] Margaret A. Ellis and Bjarne
Stroustrup. The Annotated C++

Reference Manual. Addison-
Wesley, Reading, Massachusetts,
1990.

[FJ89] Brian Foote and Ralph E. John-
son. Reflective facilities in
Smalltalk-80. In Proceedings
OOPSLA ’89, pages 327-336,
October 1989. Published as
ACM SIGPLAN Notices, vol-
ume 24, number 10.

[GHJV95] Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlis-
sides, Design Patterns: Elements
of Reusable Object-Oriented
Software, Addison-Wesley,
1995.

[GJS96] James Gosling, Bill Joy, and Guy
Steele, The Java™ Language
Specification, Addison-Wesley,
1996.

[HJ92] Bob Hinkle and Ralph E. John-
son. Taking exception to Small-
talk. The Smalltalk Report, 2(3),
November 1992.

[HJJ93] Bob Hinkle, Vicki Jones, and
Ralph E. Johnson. Debugging
objects. The Smalltalk Report,
2(9), July 1993.

[KdRB91] Gregor Kiczales, Jim des
Rivieres, and Daniel G. Bobrow,
The Art of the Metaobject Proto-
col, MIT Press, 1991.

[KL92] Gregor Kiczales and John
Lamping, Issues in the Design
and Implementation of Class
Libraries, OOPSLA ’92, Van-
couver, BC, SIGPLAN Notices
Volume 27, Number 10, October
1992.

[KMMN90] Bent Bruun Kristensen, Ole
Lehrmann Madsen, Birger Mol-
ler-Pedersen, and Kristen
Nygaard, Object-Oriented Pro-
gramming in the Beta Language,
8 October, 1990.

26

[LG88] Wilf R. LaLonde and Mark Van
Gulik. Building a backtracking
facility in Smalltalk without ker-
nel support. In Proceedings
OOPSLA ’88, pages 105-122,
November 1988. Published as
ACM SIGPLAN Notices, vol-
ume 23, number 11.

[MB85] Steven L. Messick and Kent L.
Beck. Active variables in Small-
talk-80. Technical Report CR-
85-09, Computer Research Lab,
Tektronix, Inc., 1985.

[McC87] Paul L. McCullough. Trans-
parent forwarding: First steps. In
Proceedings OOPSLA ’87, pages
331-341, December 1987. Pub-
lished as ACM SIGNPLAN No-
tices, volume 22, number 12.

[Mey92] Bertrand Meyer. Eiffel: The Lan-
guage. Prentice-Hall, 1992.

[Pas86] Geoffrey A. Pascoe. Encapsula-
tors: A new software paradigm in
Smalltalk-80. In Proceedings
OOPSLA ’86, pages 341-346,
November 1986. Published as
ACM SIGPLAN Notices, vol-
ume21, number 11.

[Riv96] Fred Rivard. Smalltalk: a re-
flective language. In Proceedings
Reflection ’96.

[Str94] Bjarne Stroustrop. The Design
and Evolution of C++. Addison-
Wesley, Reading, MA 1994.

[Tie88] Michael D. Tiemann. Solving the
RPC problem in GNU C++. In
1988 USENIX C++ Conference,
pages 17-21, 1988.

[WM81] D. Weinreb, and D. Moon. Lisp
Machine Manual, Symbolics,
1981.

