
Wrappers to the Rescue

John Brant
Ralph E. Johnson
Donald Roberts

Brian Foote

Department of Computer Science
 University of Illinois at Urbana-Champaign

 Urbana, IL 61801
{brant, johnson, droberts, foote}@cs.uiuc.edu

Abstract

When an object-oriented language is itself built
out of first-class objects, programmers may
change and extend these objects as the need
arises. One such language is Smalltalk. This
paper focuses on how Smalltalk’s reflective fa-
cilities can be used to “wrap” before- and after-
behavior around calls to existing methods, and
quantifies the relative performance of several
ways of doing this. We then, in turn, show how
wrappers have proven indispensable during the
construction of a coverage tool, a class collabo-
ration tool, and an interaction diagramming tool.
We’ve also used wrappers to construct synchro-
nized methods, assertions, and multimethods,
where they proved to be equally valuable. The
relative ease with which wrappers allowed us to
build these analysis tools and linguistic exten-
sions stands in contrast to the rather draconian
measures one must take to achieve similar results
in languages devoid of support for wrappers.

1. Introduction

One benefit of building programming languages
out of objects is that programmers have a place
where they can go when they want to change the
way a running program works. Languages like
Smalltalk and CLOS, which represent program
objects like Classes and Methods as objects that
can themselves be manipulated at runtime allow
programmers to make permanent, or temporary,
changes to the ways these objects work when the
need arises.

This paper focuses on how to intercept and aug-
ment the behavior of existing methods in one
such language: Smalltalk. Several approaches
are examined and contrasted and their relative
performances are compared. These are:

1. Source Code Modifications
2. Byte Code Modifications
3. New Selectors
4. Dispatching Wrappers
5. Class Wrappers
6. Instance Wrappers
7. Method Wrappers

We then examine several tools and extensions
we’ve built using wrappers:

1. Coverage Tool
2. Class Collaboration Diagram Tool
3. Interaction Diagram Tool
4. Synchronized Methods
5. Assertions
6. Multimethods

Taken one at a time, it might be easy to dismiss
these as Smalltalk specific minutiae, or as lan-
guage specific hacks. However, taken together,
we think they help illustrate the power and im-
portance of the underlying reflective facilities
that support them.

Before and after methods first appeared in Fla-
vors [MW81] and Loops [BS83]. The Common
Lisp Object System (CLOS) [BDG+88] provides
a powerful method combination facility that in-
cludes before and after methods. In CLOS, a
method with a :before qualifier that special-
izes a generic function, g, is executed before any

of the primary methods on g. Thus, the before

2

methods are called before the primary method is
called, and the after methods are called after-
wards. An :around method wraps a primary
method and has the choice of calling it. The
method combination mechanism built into CLOS
lets programmers build their own method qualifi-
ers and combination schemes, and are very pow-
erful.

Unfortunately, when method combination is used
badly, it can lead to programs that are complex
and hard to understand. Application program-
mers use them to save a little code but end up
with systems that are hard to maintain. The result
is that before and after methods have gained a
bad reputation, and few languages support them.

We use method wrappers primarily as a reflec-
tive facility, not a normal application program-
ming technique. We think of them as a way of
disciplining the underlying reflective facilities.
For example, we use them for determining dy-
namically who calls a method, and which meth-
ods are called. If before and after methods are
treated a disciplined form of reflection, then they
will be used more carefully and their complexity
will be less of a problem.

Our experience with before and after methods
has been with Smalltalk. Smalltalk has many
reflective facilities. The ability to trap messages
that are not understood has been used to imple-
ment encapsulators [Pas86] and proxies in dis-
tributed systems [Ben87, McC87]. The ability to
manipulate contexts has been used to implement
debuggers, back-trackers [LG88], and exception
handlers [HJ92]. The ability to compile code
dynamically is used by the standard program-
ming environments and makes it easy to define
new code management tools. Smalltalk pro-
grammers can change what the system does when
it accesses a global variable [Bec95] and can
change the class of an object [HJJ93].

However, it is not possible to change every as-
pect of Smalltalk [FJ89]. Smalltalk is built upon
a virtual machine that defines how objects are
layed out, how classes work, and how messages
are handled. The virtual machine can’t be
changed except by the Smalltalk vendors, so
changes have to be made using the reflective
facilities that the virtual machine provides. Thus,
you can’t change how message lookup works,
though you can specify what happens when it
fails. You can’t change how a method returns,

though you can use valueNowOrOnUnwindDo:
to trap returns out of a method. You can’t change
how a method is executed, though you can
change the method itself.

We use before and after methods to simulate
changing how a method is executed. The most
common reason for changing how a method is
executed is to do something at every execution,
and before and after methods work well for that
purpose. For example, we have used them for
determining which methods in a program get
executed, for ensuring that only one process is
executing a method at a time, and for checking
the pre and post-conditions of a method.

This paper shows a variety of techniques for im-
plementing before and after methods in Small-
talk-80 and describes their tradeoffs. It also de-
scribes several uses for them. It is another illus-
tration of the merits of opening up a pro-
gramming system.

2. Compiled Methods

Many of the before and after method implemen-
tations discussed in this paper are based on
CompiledMethods, so it is helpful to understand
how methods work to understand the different
implementations.

Smalltalk represents the methods of a class using
instances of CompiledMethod or one of its sub-
classes. A CompiledMethod knows its Smalltalk
source, but it also provides a more efficient rep-
resentation of a method. The virtual machine
executes methods by translating them into ma-
chine code. Also, browsers use them to check
senders of messages and references to variables
as well as for inspecting source code.

CompiledMethod has three instance variables
and a literal frame that is stored in its variable
part (accessible through the at: and at:put: meth-
ods). The instance variables are bytes, mclass,
and sourceCode. The sourceCode variable holds
an index that is used to retrieve the source code
for the method and can be changed so that differ-
ent sources appear when the method is browsed.
Changing this variable does not affect the execu-
tion of the method, though. The mclass instance
variable contains the class that compiled the
method. One of its uses is to extract the selector
for the method.

3

The bytes and literal frame are the most impor-
tant parts of CompiledMethods. The bytes in-
stance variable contains the byte codes for the
method. These byte codes are stored either as a
small integer (if the method is small enough) or a
byte array, and contain references to items in the
literal frame. The items in the literal frame in-
clude standard Smalltalk literal objects such as
numbers (integers and floats), strings, arrays,
symbols, and blocks (BlockClosures and Com-
piledBlocks for copying and full blocks). Sym-
bols are in the literal frame to specify messages
being sent. Classes are in the literal frame when-
ever a method sends a message to super. The
class is placed into the literal frame so that the
virtual machine knows where to begin method
lookup. Associations are stored in the literal
frame to represent global, class, and pool vari-
ables. As a result, every access of a global, class,
or pool variable sends the value message to the
association. Although the compiler will only
store these types of objects in the literal frame, in
principle any kind of object can be stored there.

Figure 1 shows the CompiledMethod for the re-
moveFirst method in OrderedCollection. The
method is stored under the #removeFirst key in
OrderedCollection’s method dictionary. Instead
of showing the integer that is in the method’s
sourceCode variable, the dashed line shows the
source code that the integer points to.

3. Implementing Wrappers

There are many different ways to implement be-
fore and after methods in Smalltalk, ranging from
simple source code modification to complex byte

code modification. In the next few sections we
discuss six possible implementations and some of
their properties.

3.1 Source code modification

A common way to implement before and after
methods is to modify the method directly. The
before and after code is directly inserted into the
original method’s source and the resulting code
is compiled. This requires parsing the original
method to determine where the before code is
placed and all possible locations for the after
code. Although the locations of return statements
can be found by parsing, these are not the only
locations where the method can be exited. Other
ways to leave a method are by exceptions, non-
local block returns, and process termination.

VisualWorks allows us to catch every exit of a
method with the valueNowOrOnUnwindDo:
method. This method evaluates the receiver
block, and when this block exits, either normally
or abnormally, evaluates the argument block. The
new source for the method using value-
NowOrOnUnwindDo: is

originalMethodName: argument
“before code”
^[“original method source”]

valueNowOrOnUnwindDo:
[“after code”]

To make the method appear unchanged, the
source index of the new method can be set to the
source index of the old method. Furthermore, the
original method does not need to be saved since
it can be recompiled from the source retrieved by
the source index.

The biggest drawback of this approach is that it
must compile each method that it changes.
Moreover, it requires another compile to reinstall
the original method. Not only is compiling
slower than the other approaches listed here, it
cannot be used in runtime images since they are
not allowed to have the compiler.

3.2 Byte code modification

Another method modification approach is to
modify the CompiledMethod directly without
recompiling [MB85]. This technique inserts the
byte codes and literals for the before code di-
rectly into the CompiledMethod so that the

removeFirst
 self emptyCheck.
 …

#[17 68 …]

OrderedCollection class
methodDict
… MethodDictionary

#removeFirst
…

CompiledMethod
mclass
bytes
sourceCode
1

#emptyCheck

Figure 1: removeFirst method in Ordered-
Collection

4

method does not need to be recompiled, thus
installing faster. Unfortunately, this approach
does not handle the after code well. To insert the
after code, we must convert the byte codes for
the original method into byte codes for a block
that is executed by the valueNowOrOnUn-
windDo: method. This conversion is non-trivial
since the byte codes used by the method will be
different than the byte codes used by the block.
Furthermore, this type of transformation depends
on knowing the byte code instructions used by
the virtual machine. These codes are not stan-
dardized and can change without warning.

3.3 New selector

Another approach for before and after code
moves the original method to a new selector and
creates a new method that executes the before
code, sends the new selector, and then executes
the after code. Using this approach the new
method is created as:

originalMethodName: argument
“before code”
^[self newMethodName: argument]

valueNowOrOnUnwindDo:
[“after code”]

This implementation has a couple of nice prop-
erties. One is that the original methods do not
need to be recompiled when they are moved to
their new selectors. Since methods contain no
direct reference to their selectors, they can be
moved to any selector that has the same number
of arguments. The other property is that the new
forwarding methods with the same before and
after code can be copied from another forwarding
method that has the same number of arguments.
The main difference between the two forwarding
methods is that they send different selectors for
their original methods. The symbol that is sent is
easily changed by replacing it in the method’s
literal frame. The only other changes between the
two methods are the sourceCode and the mclass
variables. The mclass is set to the class that will
own the method, and the sourceCode is set to the
original method’s sourceCode so that the source
code changes aren’t noticed. Since byte codes are
not modified, neither the original method or the
new forwarding method need to be compiled so
the installation is faster than the source code
modification approach.

The problem with this approach is that the new
selectors are visible to the user. These new selec-
tors cannot conflict with other selectors in the
super or subclasses and should not conflict with
users adding new methods. Furthermore, it is
more difficult to compose two different before
and after methods since we must remember
which of the selectors represent the original
methods and which are the new selectors. An-
other undesirable property is that inserting new
selectors may cause the method dictionaries to
grow, and since method dictionaries do not
shrink, this space is effectively lost.

3.4 Dispatching Wrapper

One way to wrap new behavior around existing
methods is to screen every message that is sent to
an object as it is dispatched. In Smalltalk, the
doesNotUnderstand: mechanism has often
been recruited for this purpose [Pas86, Ben87,
FJ89]. This approach has customarily been used
where some action must be taken regardless of
which method is being called, such as coordinat-
ing synchronization information. It could even be
used, together with additional dictionaries, to
orchestrate wrapping on a per-method basis. To-
gether with lightweight classes, wrapping the
dispatching mechanism can allow per-instance
changes to behavior.

However, the doesNotUnderstand: mechanism
is slow, and screening every message set to an
object to change the behavior of a few methods
has a blunderbuss quality about it. The following
sections examine how Smalltalk’s meta-archi-
tecture permits us to more precisely target the
facilities we need.

3.5 Class Wrapper

The standard approach for specializing behavior
in object-orient programming is subclassing. We
can use this approach to specialize our methods
to include the before and after conditions. In this
case our specialized subclass would essentially
wrap the original class by creating a method that
would execute the before code, call the original
method using super keyword, and then execute
the after code. Like the methods in the new se-
lector approach, the methods for the specialized
subclass can also be copied so that the compiler
is not needed.

5

Once the subclass has been created, it will need
to be installed into the system. To install the sub-
class, the new class will need to be grafted into
the hierarchy so that subclasses will also use the
wrapped methods. It can be inserted into the hi-
erarchy by using the superclass: method. Next,
the reference to the original class in the system
dictionary will need to be replaced with a refer-
ence to the subclass. Finally, all existing in-
stances of the original class will need to be con-
verted to use the new subclass. This can be ac-
complished by getting allInstances of the origi-
nal class and using the changeClassToThatOf:
method to change their class to the new subclass.

3.6 Instance Wrapper

This approach can also be used to give per in-
stance changes. Instead of replacing the entry in
the system dictionary, we can change the objects
that we want, by using the changeClassTo-
ThatOf: only on those objects.

Like the new selector approach this only requires
one additional message send, but unlike the new
selector approach, it does not have the side effect
of growing the method dictionary to install the
before and after code. The biggest drawback of
this approach is that it takes longer to install.
Each class requires a scan of object memory to
look for all instances of the original class. Once
the instances have been found, we will need to
iterate though them changing each of their
classes.

3.7 Method Wrapper

A method wrapper is like a new selector, except
that it does not add new entries to the method
dictionary. Instead of sending a message to the
new selector, this approach evaluates the original
method directly by using the valueWithRe-
ceiver:arguments: method. The valueWith-
Receiver:arguments: method executes a
method given a receiver and an array of argu-
ments.

This approach uses a new subclass of Com-
piledMethod called MethodWrapper1. Method-

1 In VisualAge you cannot add temporaries to
subclasses of CompiledMethod so MethodWrap-

Wrapper adds one instance variable, client-
Method, that stores the original method. It also
defines beforeMethod, afterMethod, and re-
ceiver:arguments: methods as well as a few
helper methods. The beforeMethod and after-
Method methods contain the before and after
code. The receiver:arguments: method exe-
cutes the original method given the receiver and
argument array.

receiver: anObject arguments: args
self beforeMethod.
^[clientMethod

valueWithReceiver: anObject
arguments: args]

valueNowOrOnUnwindDo:
[self afterMethod]

pers are a subclass of Object. A stub method is
compiled which delegates to the MethodWrap-
per.

6

When a MethodWrapper is executed it must pass
control to its receiver:arguments: method,
therefore the method must be able to refer to
itself. The code “thisContext method” is one
way for methods to refer to themselves, but this
is inefficient since a context must be created
every time the method is needed. Instead the
method can be included in its own literal frame
so that the code has direct access to it. Although
one could modify the compiler to support a
“ thisMethod” keyword, a simpler approach is to
compile another literal in place of the method,
and then replace the literal with the method. Us-
ing this trick the receiver:value: message can be
sent to the MethodWrapper by compiling

originalMethodName: argument
^#() receiver: self value: argument

and replacing the empty array (in the first posi-
tion of the literal frame) with the method. The
receiver:value: method is one of the Method-
Wrapper’s helper methods. It is responsible for
converting its value argument into an array and
sending them to the receiver:arguments:
method.

Figure 2 shows a MethodWrapper wrapping the
removeFirst method of OrderedCollection. The
CompiledMethod has been replaced by the
MethodWrapper in the method dictionary. The
MethodWrapper references the original method
through its clientMethod variable. Also, the

empty array that was initially compiled into the
method has been replaced with a reference to the
wrapper.

Like the new selector approach, MethodWrap-
pers do not need to be compiled for each method.
Instead they just need a prototype (with the same
number of arguments) that can be copied. Once
copied, the method sets its method literal, source
index, mclass, and clientMethod. Since the
method wrapper can directly execute the original
method, no new entries are needed in the method
dictionary for the original method.

Table 1 and Table 2 compare the different ap-
proaches for both runtime overhead and instal-
lation time. These tests were performed on an
486/66 with 16MB memory running Windows 95
and VisualWorks 2.0. The byte code modifi-
cation approach was not implemented, thus it is
not shown. The dispatching wrapper has been
omitted from the installation times since it is only
an instance based technique. Added to the list-
ings is an inlined method wrapper. This new
method wrapper inlines the before and after code
into the wrapper without defining the additional
methods. This saves four message sends over the
default method wrapper. Although it helps run-
time efficiency, it hurts installation times since
the inlined wrappers are larger.

Table 1 shows the overhead of each approach.
The method modification approach has the low-

MethodWrapper
mclass
bytes
clientMethod
sourceCode
1
2

OrderedCollection class
methodDict
… MethodDictionary

#removeFirst
…

removeFirst
 self emptyCheck.
 …

#[17 68 …]CompiledMethod
mclass
bytes
sourceCode
1

#emptyCheck

118567696

#receiver:

7

est overhead if the method does not contain a
return, but when it contains a return, the over-
head for method modification jumps to be more
than ten times greater than the other techniques.
The new selector and class wrapper approaches
have the best overall times. The two method
wrapper approaches and the dispatching wrapper
approaches have more than double the overhead
as the new selector or class wrapper approaches
since the method wrappers and dispatching
wrappers must create arrays of their arguments.

Table 2 contains the installation times for in-
stalling the various approaches on all subclasses
of Model and its metaclass (226 classes with
3,159 methods). The method wrapper techniques
are the fastest since they only need to change one
entry in the method dictionary. The new selector
approach is slightly slower since it needs to
change two entries in the method dictionary. Al-
though the class wrapper only needs to add one
entry, it must scan object memory for instances
of each class to convert them to use the new sub-
class wrapper. Finally, the method modification
approach is the slowest since it must compile
every method.

4. Applications

Before and after methods can be used in many
different areas. In this section we outline four
different uses.

4.1 Coverage Tool (Image Strip-
per)

One application that can use before and after
methods is an image stripper. Strippers remove
unused objects (usually methods and classes)
from the image to make it more memory effi-
cient. The default stripper shipped with Visual-
Works only removes the development environ-
ment (compilers, browsers, etc.) from the image.

A different approach to stripping is to see what
methods are used while the program is running
and remove the unused ones. Finding the used
methods is a coverage problem and can be han-
dled by method wrappers. Instead of counting
how many times a method is called, the method
wrapper only needs a flag to signify if its method
has been called. Once the method has been
called, the original method can be restored so
that future calls occur at normal speeds.

We created a subclass of MethodWrapper that
adds two new instance variables, selector and
called. The selector variable contains the
method’s selector, and called is a flag that sig-
nifies if the method has been called. Since the
method wrapper does not need to do anything
after the method is executed, it only needs to
redefine the beforeMethod method:

beforeMethod

Number of arguments

Approach 0 1 2 3

Method modification (no returns) 5.2 5.2 9.2 9.7

Method modification (returns) 339.0 343.8 344.5 346.5

New selector 5.5 9.7 10.3 10.7

Dispatching wrapper 21.1 22.8 23.5 27.5

Class wrapper 5.9 9.8 10.5 10.9

Method wrapper 23.4 28.7 31.5 31.8

Inlined method wrapper 18.8 20.3 21.9 24.5

Table 1: Overhead per 1,000 method calls (ms)

Approach Time

Method modification 262.6

New selector 25.5

Class wrapper 44.2

Method wrapper 17.0

Inlined method wrapper 19.9

Table 2: Installation times for 3,159 meth-
ods in 226 classes (sec)

8

called ifFalse:
[called := true.
mclass addSelector: selector

withMethod: clientMethod]

This method first sets its flag and then reinstalls
its original method. The ifFalse: test avoids infi-
nite recursion in case that the method is called
while performing the addSelector:withMethod:
operation. Execution is slow at first, but it rap-
idly increases once the base set of methods are
reinstalled.

The method wrapper correctly reports whether it
has been called. However, this stripping scheme
requires 100% method coverage. Any method
that is not used by the test suite will be removed,
so if a test suite does not provide 100% method
coverage (which they rarely do) then the stripper
will remove a method that is needed later. There-
fore, all methods should be saved to a file before
they are removed. If one of the removed methods
is called, it must be loaded, installed, and exe-
cuted. Once again method wrappers can be used
for the deleted methods. Instead of containing a
direct reference to their wrapped methods, they
contain an index which they use to load their
method if it is called. In addition, instead of re-
placing every method with a method wrapper,
additional space can be saved by creating only a
few wrappers and handling most methods
through the doesNotUnderstand: mechanism.

4.2 Class Collaboration

Another use of before and after methods is dy-
namically analyzing collaborating objects. For
example, we might create call graphs that can
help developers better understand how the soft-
ware works. Furthermore, such information can
help the developer visualize the coupling be-
tween objects. This can help the developer more
quickly analyze when inappropriate objects are
interacting.

This information can easily be captured using
method wrappers together with some of Small-
talk other reflective facilities such as the ability
to get the current context with the thisContext
keyword. Whenever a method is called, we need
to record who called the method, where the call
occurred (which method and statement inside the
method), the starting and ending times for the
method, and finally how the method terminated
(either normally with a return, or abnormally by a

signal). Methods that return abnormally might be
a problem since the programmers might not have
programmed for such a case.

Using the information collected by the method
wrappers, we can create a class collaboration
graph as shown in Figure 3. Whenever one object
of a class sends a message to another object in
another class, a line is drawn between them.
Classes whose objects collaborate a lot are at-
tracted to each other. The collaboration graph
can help the programmer see which objects are
collaborating as well as how much they are col-
laborating.

4.3 Interaction Diagrams

Interaction diagrams illustrate the dynamic se-
quence of the message traffic among several ob-
jects at runtime. The InteractionDiagramApplic-
tion allows users to select the set of methods that
will be watched. These methods are wrapped,
and traffic through them is recorded by the tool.
When the wrappers are removed, the interactions
among the objects that sent and received these
messages are depicted, as in Figure 4.

The diagrams generated by the tool are similar to
the interaction diagrams seen in many books,
with one notable exception. Since we only select
a few methods to observe, we miss some mes-
sages. As a result, there are times when a mes-
sage is received, but the last method entered did

Figure 3: Class collaboration graph of the
Refactoring Browser

9

not send the message. For example, suppose you
have:

Foo>>createBar
^Bar new

Bar>>initialize
"do some initialization"

Bar class>>new
^super new initialize

and that you only wrap Foo>>createBar and
Bar>>initialize. If you send a Foo the
createBar message, that event will be re-
corded. It will send the new message to Bar
class, but since that method is not wrapped, it is
not observed. When the new method sends the
initialize method to a Bar, it is observed,
but the last observed method did not send it.
Such events are called indirect message sends
and are displayed as yellow lines. In the picture
above, we can see that "a RefactoringBrowser"
sent a closed message to some object that
wasn’t wrapped, which resulted in the up-
date:with:from: method being called on

"(nothing selected)" (a CodeModel).

Without a facility for wrapping the watched
methods, tools would have to intervene at the
source or binary code levels. The relative ab-
sence of such tools in languages without support
for wrappers testifies to the difficulty of inter-
vening at these levels

4.4 Synchronized Methods

Yet another example where before and after
methods are useful is synchronizing methods. In
a multithreaded environment, objects used con-
currently by two different threads can become
corrupt. A classic example in Smalltalk is the
Transcript. The Transcript is a global variable
that programs use to print output on. It is most
often used to print debugging information. If two
processes write to the Transcript at the same
time, it can become corrupt and cause exceptions
to be raised. To solve this problem we need to
ensure that only one process accesses the Tran-
script at a time.

One solution would be to define specific lan-
guage construct that explicitly support synchro-
nization. Java takes this approach as it defines a
special method tag that is used specify that a
method is synchronized [GJS96]. All methods
within a class that are tagged with the syn-
chronized keyword cannot be run concurrently
across an instance and all static methods that are
tagged cannot be run concurrently across all in-
stances of that class.

Although synchronized methods are directly sup-
ported by the Java compiler, they don’t need to
be directly supported in Smalltalk since Small-
talk exposes enough of its implementation to
allow us to implement these features. For ex-
ample, we can implement static synchronized
methods by using method wrappers where each
wrapper acquires its lock before executing the
original method and releases it after the method
executes. Similarly, the non-static synchronized
methods can easily be implemented by using
class wrappers where each instance would have
its own class wrapper that would wrap each su-
per message send with the lock. By using
method and class wrappers, we can add this
functionality in a dynamic and incremental fash-
ion, whereas with Java, we would be forced to
recompile to change the method’s attribute.

4.5 Pre- and Post-conditions

Pre- and post-conditions can be used to aid the
programmer in producing quality software. These
conditions can help the programmer quickly de-
tect when a component is being misused. Since
the detection occurs sooner, it is more likely to
be easier to fix. Eiffel supports pre- and post-

10

conditons directly with the require and ensure
keywords [Mey92]. When the conditions are
enabled, invocations of the method are required
to meet its conditions before executing and the
method ensures its conditions after executing.

Sometimes in systems such as Smalltalk that do
not directly support for pre- and post-conditions,
the checks are written directly into the code. For
example, the removeFirst method in Ordered-
Collection checks that it is non-empty. Other
times these conditions are written as comments in
code, or not written down at all.

While it is useful to have these checks in the
code when developing the software, they are not
as useful after releasing the software. To the user,
an unhandled empty collection signal raised by
the empty check in removeFirst is the same as
an unhandled index out of bounds signal that
would be raised if the error check was elimi-
nated. Both cause the product to fail. Therefore,
to be useful to developer, a system that imple-
ments pre- and post-conditions should be able to
add and remove them quickly and easily.

Pre- and post-conditions can be implemented by
using method wrappers. For each method, a
method wrapper would be created that would test
the pre-condition, evaluate the wrapped method,
and finally test the post-condition on exit.

Post-conditions can also have old values. Old
values are useful in comparing values that occur

before executing a method to the values after
execution. To support old values, we added a
special selector, OLD, that when sent to an ex-
pression will refer to the value of the expression
before the execution of the method. Although
this selector appears to be a message send, we
modified to the compiler to replace the message
with a temporary. The receiver of the message is
then assigned to the temporary before the method
is executed.

As an example, consider the removeFirst
method of OrderedCollection. It might have a
pre-condition such as “self size > 0” and a post-
condition of “self size OLD - 1 == self size”
(i.e., the size of the collection after execution is
one less than the size before). The method wrap-
per for this example would be:

| old1 |
old1 := self size.
[self size > 0] value ifFalse:

[self preconditionErrorSignal raise].
^[“code to evaluate wrapped method”]

valueNowOrOnUnwindDo:
[[old1 - 1 == self size] value

ifFalse: [self
postconditionErrorSignal

raise]]

Notice that the “self size OLD” from the post-
condition has been replaced by a temporary and
that the receiver, “self size”, is assigned at the
beginning of the wrapper.

11

Others have implemented pre- and post-condi-
tions for Smalltalk [CCGMP94, Riv96], but they
modified the compiler to generate the conditions
directly into the methods. Thus they require a
complete recompile when (un)installing the con-
ditions. [CCGMP94] allowed conditions to be
turned on and off, but they could only be com-
pletely eliminated by a complete recompile.

Figure 5 shows a browser with pre- and post-
conditions inspecting the removeFirst method.
The three text panes at the bottom display the
method’s pre-condition, the source, and the post-
condition. Both the pre-condition and the post-
condition panes can be eliminated if the pro-
grammer does not wish to view them. Since the
pre- and post-conditions are separated from the
method, we don’t need to augment the method
definition with special keywords or special mes-
sage sends as Eiffel and the other two Smalltalk
implementations do.

4.6 MultiMethods

The Common Lisp Object System provides
elaborate facilities for method wrapping. The
CLOS method combination mechanism provides
programmers with a great deal of control over
how different kinds of methods interact with the
inheritance hierarchy to determine how and when
methods are executed. The CLOS standard
method combination mechanism executes the
:around and :before methods in outermost
to innermost order. Next, the primary methods
are executed, followed by the :after methods
in innermost to outermost order. Finally, the
:around methods are resumed.

Our basic wrappers are more modest in this re-
spect. These wrappers executes the before code
and primary code for each wrapper, before call-
ing the wrapped method. If that method is
wrapped, its before code and primary code is
executed. Like CLOS :around methods, our
wrappers may decide to not call their wrapped
methods.

Figure 5: Browser with pre and postconditions

12

Method wrappers can be used to construct
mechanisms like those found in CLOS. Indeed,
we have used our method wrappers as the basis
for a Smalltalk implementation of CLOS-style
generic functions, method combination, and
multimethods.

Multimethods [BDG+88] are methods that are
dispatched at runtime by taking the identities of
all the methods arguments into account, rather
than just that of the message receiver, as is the
case in languages like Smalltalk, Java, and C++.
Java and C++ use static overloading to allow the
compile-time types of the arguments to distin-
guish methods. Allowing full runtime polymor-
phism among all the arguments to a family of
methods is a more powerful facility.

In CLOS, all the multimethods that share the
same function name (selector) are members of a
generic function by that name. When this func-
tion is called, it is the generic function’s job to
determine which (if any) of the multimethods
defined for it apply, and to call them in the ap-
propriate order.

The manner in which multimethods are called is
determined by a method combination object.
Multimethods are not only specialized by their
the types of their arguments, they may also be
qualified. For instance, the standard method
combination object conducts the execution of
:around, :before, :after, and primary
methods in the matter described above by taking
these qualifiers into account. The CLOS
Metaobject Protocol is designed
[KdRB91][KL92] to permit optimizations of this
process via a sort of partial evaluation, using
discriminating functions and effective methods.

Our Smalltalk Multimethod implementation uses
a dormant, postfix bracketed type syntax that is
built into the VisualWorks 2.5 Smalltalk com-
piler as its syntax for specializing multimethod
arguments. Using this syntax, ClassSpecializers
(for Classes or Metaclasses) and EqualSpecializ-
ers (for literal instances) may be specified.

When a method with these specializations is ac-
cepted in a Smalltalk browser, a MultiMethod
object is created. MultiMethods are subclasses
of CompiledMethod. MultiMethods are given
selectors distinct from those of normal methods.
MultiMethods also ensure the existence of a

GenericFunction object for the selector for which
they are being defined. GenericFunction objects,
in turn, are entrusted with deploying any Dis-
criminatingMethods an object might need.

DiscriminatingMethods are subclasses of
MethodWrapper that intercept calls that occupy
the MethodDictionary slots where a normal
method for their selector would go. When a Dis-
criminatingMethod gains control, it passes its
receiver along to its GenericFunction, which can
then determine which MultiMethods to execute
in what order. It does so by passing control to its
MethodCombination object.

Subclasses of our MethodCombinations, besides
implementing the standard before/after/primary –
style combinations, can be constructed to collect
the values of their primary methods, as in CLOS,
or to call methods in innermost to outermost or-
der, as in Beta [KMMN90] .

Of course, by virtue of being called in a context
where a dispatch on its first argument has already
been done, DiscriminatingMethods can, in con-
junction with their MethodCombination objects,
take advantage of such information to optimize
their tasks.

Multimethods can considerably simplify the im-
plementation of the Visitor pattern [GHJV95].
For instance, consider a typical Smalltalk imple-
mentation of Visitor:

3DUVH1RGH!!DFFHSW9LVWRU��D9LVLWRU
AVHOI�VXEFODVV5HVSRQVLELOLW\

9DULDEOH1RGH!!DFFHSW9LVWRU��D9LVLWRU
AD9LVLWRU�YLVLW:LWK9DULDEOH1RGH��VHOI

&RQVWDQW1RGH!!DFFHSW9LVWRU��D9LVLWRU
AD9LVLWRU�YLVLW:LWK&RQVWDQW1RGH��VHOI

$EVWUDFW9LVLWRU!!
YLVLW:LWK&RQVWDQW1RGH��D1RGH

AVHOI�VXEFODVV5HVSRQVLELOLW\

2SWLPLQ]LQJ9LVLWRU!!
YLVLW:LWK&RQVWDQW1RGH��D1RGH

AD1RGH�YDOXH�RSWLPL]HG

2SWLPLQ]LQJ9LVLWRU!!
YLVLW:LWK9DULDEOH1RGH��D1RGH

AD1RGH�ORRNXS,Q��VHOI�V\PERO7DEOH

When 0XOWL0HWKRGV are available, the double
dispatching methods in the 3DUVH1RGHV disap-
pear, since the type information need no longer
be hand-encoded in the selectors of the calls to

13

the 9LVLWRU objects. Instead, the 9LVLWRU is able
to correctly dispatch calls on the YLVLW1RGH�
*HQHULF)XQFWLRQ to the correct 0XOWLPHWKRG:

3DUVH1RGH!!DFFHSW9LVWRU��D9LVLWRU
AD9LVWRU�YLVLW:LWK1RGH��VHOI

2SWLPL]LQJ9LVLWRU!!
YLVLW:LWK1RGH��D1RGH��3DUVH1RGH!

AVHOI�YDOXH�RSWLPL]HG

2SWLPLQ]LQJ9LVLWRU!!
YLVLW:LWK1RGH��D1RGH��9DULDEOH1RGH!

AD1RGH�ORRNXS,Q��VHOI�V\PERO7DEOH

The savings on the 3DUVH1RGH side of the hierar-
chy are dramatic. All the redispatching methods
that encode the identity of the node from which
they are called are gone.

The savings on the 9LVLWRU side may appear to
be merely cosmetic. The YLVLW:LWK;[[1RGH�
methods are replaced by corresponding YLVLW�
:LWK1RGH�� D1RGH� �;[[1RGH! methods. Even
here, though, savings are possible where a par-
ticular node’s implementation can be defined in a
superclass of the leaf node. For instance, if many
of an OptimizingVisitor’s multimethods would
have sent the optimized message to their Node’s
value, they can share the implementation of this
method defined for OptimizingVistor and Parse-
Node. With the double dispatched implementa-
tion, a stub implementation of the subclass ver-
sion of the method is usually provided so as to
avoid a breach of encapsulation.

Classtalk [C90] provided an implementation of
CLOS-style before and after method combination
(without multimethods), that uses Smalltalk’s
GRHV1RW8QGHUVWDQG� mechanism to gain control.

5. Existing Approaches

Many systems provide ways for programs to
augment or preempt the behavior of existing
functions. Programmers invariably exploit these
facilities wherever they are found. If the language
itself does not permit such modifications, pro-
grammers will often resort to low-level, imple-
mentation specific schemes to achieve their ends.

Wrapping strategies are not limited to languages.
For instance, all the routines in the Macintosh
Toolbox can be wrapped. The architects of the
Toolbox designed it so that calls to the ROM-
based built-in Toolbox functions were accessed
indirectly through a table in RAM. This indirec-

tion allowed Apple to ship patched copies of
Toolbox entries to correct or supplement the
existing routines. It also gave third-party soft-
ware designers the opportunity to change the
routines from which the system was built.

Over the years, Macintosh programmers have
shown remarkable ingenuity in the ways they’ve
exploited these hooks into the system. For in-
stance, applications like wide-desktops and
screen savers were built by wrapping the Tool-
box. This shows the wisdom of designing sys-
tems with flexible foundations.

Programmers using Microsoft Windows have
achieved similar results with the dynamic linking
mechanism used to implement Dynamic Link
Libraries (DLLs). A function can be wrapped by
providing a wrapping implementation for it in a
DLL that is referenced before the wrapped DLL.

C++ provides no explicit mechanisms for allow-
ing programmers to intercept calls to C++ func-
tions, virtual or otherwise. However, some pro-
grammers have exploited the most common im-
plementation mechanism for dispatching C++
virtual functions, the “v-table” [ES90] to gain
such access [Tie88]. By falling back on unsafe C
code, and treating v-table entries as simple C
function pointers, programmers can dynamically
alter the contents of the v-table entry for a class
of objects. By substituting another function with
the same signature for a given v-table entry, that
entry can be wrapped with code that can add
before and after actions before calling (or not
calling) the original method.

Since the v-table mechanisms are not a part of
the C++ standard, and since more complex fea-
tures of C++ such as multiple inheritance and
virtual bases often employ more elaborate im-
plementations, programmers cannot write port-
able code that depends on “v-table surgery”. In-
terestingly, C with Classes contained a mecha-
nism [Str94] that allowed programmers to spec-
ify a function that would be called before every
call to every member functions (except con-
structors) and another that would be called be-
fore every return from every member function.
These call and return functions resemble
dispatching wrappers.

In contrast to C++, the Microsoft Common Ob-
ject Model (COM) [Bro95] defines an explicit
binary format that is similar to, and based upon,

14

the customary implementation of simple v-tables.
Since any COM object must adhere to this for-
mat, it provides a potential basis for v-table ma-
nipulation.

6. Conclusion

The original Smalltalk designers did a wonderful
job of building a language out of objects that
users can change. We rarely run into the “keep
out” signs that so often frustrate users of other
languages. This lets us add new tools to the pro-
gramming environment, keep up with the latest
database and network technology, and maintain
and enhance our own systems as they evolve.

Smalltalk’s reflective facilities, together with our
wrappers, allowed us to construct powerful pro-
gram analysis tools and language extensions with
relative ease. The ease with which we can and
remove wrappers at runtime makes tools like our
interaction diagramming tool possible.

By contrast, adding dynamic coverage analysis,
for example, to an existing program at either the
source or binary level is impossible for users of
traditional systems, and next to impossible for
the vendors of such tools.

We feel that if the next generation of object-
oriented software is to fulfill its promise, that
tools like the ones we’ve described, and flexibil-
ity of the sort we’ve demonstrated, will be in-
strumental in its construction. This in turn, ar-
gues that we should think twice before letting the
next round of object-oriented languages go for-
ward without facilities of the sort we’ve exam-
ined here.

When we needed a way to trap object interac-
tions, or to build synchronized methods, wrap-
pers came to the rescue. We must remain vigi-
lant if programmers in the next century’s lan-
guages are to be similarly fortunate. The design
of the reflective facilities for these languages
cannot be taken lightly.

Acknowledgements

The interaction diagramming tool was originally
a project done by David Wheeler, Jeff Will, and
Jinghu Xu for Prof. Johnson's CS497 class.
Their report on this project can be found at:

http://radon.ece.uiuc.edu/~dwheeler/interaction.h
tml.

References

The code referenced in this article can be found
at:

http://st-www.cs.uiuc.edu/~brant/wrappers.html

[BDG+88] Dan G. Bobrow, Linda G. DeMi-
chiel, Richard P. Gabriel, Sonya
E. Keene, Gregor Kiczales, and
David A. Moon. Common lisp
object system specification.
SIGPLAN Notices, 23, Septem-
ber 1988.

[Bec95] Kent Beck. Using demand load-
ing. The Smalltalk Report,
4(4):19-23, January 1995.

[Ben87] John K. Bennett. The design and
implementation of distributed
Smalltalk. In Proceedings OOP-
SLA ’87, pages 318-330, De-
cember 1987. Published as ACM
SIGPLAN Notices, volume 22,
number 12.

[Bro95] Kraig Brockschmidt. Inside
OLE, second edition, Microsoft
Press, Redmond, Washington,
1995.

[BS83] Daniel G. Bobrow and Mark
Stelik. The LOOPS Manual.
Xerox PARC, 1983.

[C90] Pierre Cointe, The Classtalk
System: a Laboratory to Study
Reflection in Smalltalk, OOP-
SLA/ECOOP ’90 Workshop on
Reflection and Metalevel Archi-
tectures in Object-Oriented Pro-
gramming, Mamdouh Ibrahim,
organizer.

[CCGMP94] Manuela Carrillo-Castellon, Je-
sus Garcia-Molina, and Ernesto
Pimentel. Eiffel-like assertions
and private methods in Smalltalk.
In TOOLS 13, pages 467-478,

15

1994.

[ES90] Margaret A. Ellis and Bjarne
Stroustrup. The Annotated C++
Reference Manual. Addison-
Wesley, Reading, Massachusetts,
1990.

[FJ89] Brian Foote and Ralph E. John-
son. Reflective facilities in
Smalltalk-80. In Proceedings
OOPSLA ’89, pages 327-336,
October 1989. Published as
ACM SIGPLAN Notices, vol-
ume 24, number 10.

[GJS96] James Gosling, Bill Joy, and Guy
Steele, The Java™ Language
Specification, Addison-Wesley,
1996

[HJ92] Bob Hinkle and Ralph E. John-
son. Taking exception to Small-
talk. The Smalltalk Report, 2(3),
November 1992.

[HJJ93] Bob Hinkle, Vicki Jones, and
Ralph E. Johnson. Debugging
objects. The Smalltalk Report,
2(9), July 1993.

[KdRB91] Gregor Kiczales, Jim des
Rivieres, and Daniel G. Bobrow,
The Art of the Metaobject Proto-
col, MIT Press, 1991

[KL92] Gregor Kiczales and John
Lamping, Issues in the Design
and Implementation of Class
Libraries, OOPSLA ’92, Van-
couver, BC, SIGPLAN Notices
Volume 27, Number 10, October
1992

[KMMN] Bent Bruun Kristensen, Ole
Lehrmann Madsen, Birger Mol-
ler-Pedersen, and Kristen
Nygaard, Object-Oriented Pro-
gramming in the Beta Language,
8 October, 1990

[LG88] Wilf R. LaLonde and Mark Van
Gulik. Building a backtracking
facility in Smalltalk without ker-

nel support. In Proceedings
OOPSLA ’88, pages 105-122,
November 1988. Published as
ACM SIGPLAN Notices, vol-
ume 23, number 11.

[MB85] Steven L. Messick and Kent L.
Beck. Active variables in Small-
talk-80. Technical Report CR-
85-09, Computer Research Lab,
Tektronix, Inc., 1985.

[McC87] Paul L. McCullough. Trans-
parent forwarding: First steps. In
Proceedings OOPSLA ’87, pages
331-341, December 1987. Pub-
lished as ACM SIGNPLAN No-
tices, volume 22, number 12.

[Mey92] Bertrand Meyer. Eiffel: The Lan-
guage. Prentice-Hall, 1992.

[MW81] D. Weinreb, and D. Moon. Lisp
Machine Manual, Symbolics,
1981

[Pas86] Geoffrey A. Pascoe. Encapsula-
tors: A new software paradigm in
Smalltalk-80. In Proceedings
OOPSLA ’86, pages 341-346,
November 1986. Published as
ACM SIGPLAN Notices, vol-
ume21, number 11.

[Riv96] Fred Rivard. Smalltalk: a re-
flective language. In Proceedings
Reflection ’96.

[Str94] Bjarne Stroustrop. The Design
and Evolution of C++. Addison-
Wesley, Reading, MA 1994

[Tie88] Michael D. Tiemann. Solving the
RPC problem in GNU C++. In
1988 USENIX C++ Conference,
pages 17-21, 1988.

