
The dominant force driving software development in the 90’s is the need to
confront rapid change.  Software that cannot adapt as requirements change will
perish.  This paper presents three patterns that address these forces.
SOFTWARE TECTONICS shows how continuous evolution can prevent
cataclysmic upheaval.  FLEXIBLE FOUNDATIONS catalogs the need to
construct systems out of stuff that can evolve along with them.
METAMORPHOSIS shows how equipping systems with mechanisms that
allow them to dynamically manipulate their environments can help them better
integrate into these environments.
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This paper presents a trio of patterns that had their genesis in an unusual
collaboration between the authors.  The second author is involved in a project
to investigate new approaches to software development for Caterpillar, one of
the worlds largest manufacturers of heavy construction equipment, and, not
incidentally, a major consumer and developer of software.  The first author is
involved in research on object-oriented reflection and metalevel architectures,
an area that has earned for itself a not altogether undeserved reputation for
abstruseness.  This collaboration was suggested by Ralph Johnson, who noticed
an unusual and interesting connection between what the Caterpillar group was
doing to try to get beyond traditional approaches to software design and
development, and some of the little-known findings coming out of the
reflection community.  This paper represents an effort to cast these
commonalties as patterns.

The ultimate focus of the paper will be on two patterns that attempt to show
how the forces that drive contemporary software development lead to more
reflective systems.  However, it is difficult to properly comprehend the forces
that give rise to these patterns without setting them in the broader contexts of
software reuse and evolution.  As a result, this paper begins, in the Alexandrian
tradition, with a high-level pattern, SOFTWARE TECTONICS, that pertains to
evolution and reuse.  It casts the need to cope with unrelenting change as one
of the principal forces driving the software development process, and shows
how this force can be dealt with.  The second pattern, FLEXIBLE
FOUNDATIONS, attempts to resolve some of the forces unleashed by the first
by showing how to construct systems that can cope with change.  The third
pattern, METAMORPHOSIS, shows how the need for flexibility is
omnipresent, and often can only be resolved dynamically.   Our hope is that
these patterns, taken together, will help the reader to perceive how objects,
with their continuous, highly iterative lifecycles, encourage the emergence of
the highly flexible and dynamic structural relationships that are characteristic
of reflective architectures.  We hope to show as well that these patterns are of
genuine utility to real developers, and not mere academic curiosities.

It is becoming increasingly clear that software architectures evolve in ways
that are distinct from other, more traditional forms of architecture.  The pace of
evolution in building styles can be measured in decades, or even centuries.
The pace of software evolution is increasingly measured in months.  The

Introduction
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ubiquitousness of change is one of the most striking factors that distinguishes
software architecture.  The possibility of change is one of the things that gives
software its power.  The need to confront and accommodate it, is, therefore, an
issue that every software designer must address.

Change pervades the lifecycle.  Systems stop evolving only when they are no
longer used.  Indeed, the most volatile and interesting part of system’s
evolution frequently takes place during what was traditionally called the
maintenance phase.  Brad Cox [Cox 1986] observed the following about
maintenance in 1986:

Software is not at all like wood or steel.  Its paint does not chip and it does not

rust or rot.  Software does not need dusting, waxing, or cleaning.  It often does

have faults that do need attention, but this is not maintenance, but repair.

Repair is fixing something that has been broken by tinkering with it or

something that has been broken all along.  Conversely, as the environment

around software changes, energy must be expended to keep it current.  This is

not maintenance; holding steady to prevent decline.  Evolution is changing to

move ahead.

Objects support fine-grained, graceful evolution in a way that no other
technology to-date does.

The paper presents examples drawn from the literature, and from our
experience with the development and evolution of a significant application in
an academic/industrial setting.

Caterpillar, Inc. joined the National Center for Supercomputing Applications at
The University of Illinois as an Industrial Partner in December 1989.  This
partnership has spawned various projects, including an evaluation of
supercomputers for analysis, and the investigation of virtual reality as a design
tool.

The partnership with NCSA has provided Caterpillar with a glimpse of an
approach to software development that is radically different from traditional
approaches.  This approach involves rapid application development through
incremental prototyping and continual evolution.

The most recent Caterpillar project, the Business Modeling project, is a pilot

project to demonstrate how an appropriate tool might support financial analysis
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and business decision making more effectively.  This project aims to provide
managers with a tool for making decisions about such aspects of the business
as: financial decision making, market speculation, exchange rates prediction,
engineering process modeling, and manufacturing methodologies.  It is very
important that this tool be flexible, dynamic, and be able to evolve along with
business needs.  Therefore, it must be constructed in such a way so as to
facilitate change.  It must also be able to coexist and dynamically cope with a
variety of other applications, systems, and services.

The style in which these patterns are presented closely follows that used by
Alexander [Alexander et. al 1977] in A Pattern Language.  (In particular, this

is where the diamond separators came from.)
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also known as
EVOLVE OR DIE

EVOLUTION NOT REVOLUTION
GROW SOFTWARE, DON’T BUILD IT

PERPETUAL INCREMENTAL DEVELOPMENT

We like it when people always want more! Otherwise, we’d be out of the

upgrade business.  Sometimes, people ask me what I will do when the compiler

is done.  Done?  No software program that is selling is ever done!

Walter Bright, C++ compiler architect

There are a variety of forces that drive software evolution.  That software
evolves in response to changing technology, and market forces is beyond
dispute.  However, the granularity at which software evolves can differ
tremendously.  A large, mature application may change slowly, if at all, only
to be replaced by a more nimble successor.  In these cases, the extinct
application influences the designs of its successors only indirectly.  At the
other extreme, consider the notion that programs should be short, disposable
artifacts, that can be produced so cheaply that they may be run once and
thrown away.  These two evolve only to the extent that they influence
subsequent programmers.

This pattern considers the broad middle ground, wherein software artifacts
themselves are durable enough to be cultivated over a long period of time.  We
believe that this encompasses the quick, disposable case above, since these
programs must rely on an infrastructure of relatively high-level, reusable
elements.

v v v

Different people and organizations have different needs, and requirements
change over time.

As software becomes increasingly complex, it can become more difficult to
change.  This ossification can become an obstacle to the system’s evolution,
and impede the system’s ability to cope with changing requirements.  The

SOFTWARE TECTONICS
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inability of the system to adapt to the changing needs of its users can cause
strain to accumulate.  Eventually, something must give.

It is becoming increasingly clear that the way in which software evolves today
is at odds with the traditional, front-loaded, coarse-grained way of thinking
about the process.  Successful programs are no longer built from scratch, atop a
simple programming language and a small runtime library.  Instead, they draw
heavily from existing code, components, frameworks, and applications.  It is
no longer enough for programmers to merely learn the language and runtime
vocabularies underlying their development tools.  Today’s programmers must
comprehend and comply with a variety of interfaces in order to integrate the
work of others.  These interfaces are frequently moving targets.

Successful systems face unrelenting pressure to change.  These pressures come
from defect repair, hardware evolution, operating system evolution, market
competition, increasing user sophistication, etc.  It is impossible to predict and
cope with these forces in a front-loaded fashion.  The system must be able to
evolve to address these forces.

Traditional waterfall approaches to software development place the analysis,
design, and implementation early in the lifecyle.  This is followed by a lengthy
maintenance phase.  During the maintenance phase, a variety of activities
occur.  Bugs are repaired, and requests to accommodate new hardware or new
features are serviced.  After a while, a set of patches and enhancements may be
bundled together as a new release.  However, this phase is usually
characterized by a gradual erosion of program structure.  The following
passage by Fred Brooks from The Mythical Man-Month [Brooks 1975]

illustrates this inexorable decline:

All repairs tend to destroy the structure, to increase the entropy and disorder

the system.  Less and less effort is spend on fixing original design flaws; more

and more is spent on fixing flaws introduced by earlier fixes.  As time passes,

the system becomes less and less well ordered....

Maintenance, it would seem, is like fixing holes in a failing dike.  Eventually,
it fails, and must be rebuilt.  Only then can the lessons learned during it’s
tenure be exploited.
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For nearly a generation, researchers in a number of quarters have promoted an
alternative view of the software lifecycle.  A number of these views came from
the researchers in the object-oriented vanguard of the 1970s.  One such view is
the notion of incremental perpetual development proposed by Carl Hewitt

[Hewitt 1977]:

The development of any large system (viewed as a society) having a long and

useful life must be viewed as an incremental and evolutionary process.

Development begins with specifications, plans, domain dependent knowledge,

and scenarios for a large task.  Attempts to use this information to create an

implementation have the effect of causing revisions: additions, deletions,

modifications, specializations, generalizations, etc.

Different people and organizations have different needs. One of the most
difficult design challenges facing the software designer is how to balance the
potential for generality with the need to confront a wide range of disparate
individual concerns.  An all too common approach to coping with individual
needs is to simply force everyone to adapt to a single way of doing things.
However, one size does not fit all.  Therefore, it is better to take advantage of
the malleability of software to allow it to be tailored to better meet individual
needs.

Designing a system to meet the needs of a wide range of individuals or
organizations can be an overwhelming task.  It is better instead to provide
ways by which individuals can customize their systems to address their
specific requirements.  Such systems might be said to be customizable or
tailorable.

When faced with a system that almost, but not quite, meets one’s needs, the
availability of a customization mechanism can permit that system to be reused.
The alternative might be to construct an entirely new system.  Making a
system tailorable can greatly increase its reuse potential.

Tailorability can operate at several levels.  Users can customize their desktops,
or provide shortcuts for commands they commonly use.  Software architects
can tailor existing abstract classes, frameworks, or components so that they
precisely meet their needs.  The mechanisms for achieving this can take
several forms.  A system that can be adapted to meet a designers needs via
simple parameter manipulations might be thought of as an off-the-rack
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solution.  In traditional systems, when such a perfect fit was not achieved, the
designer might have to resort to a cut-and-paste job on the original code.  This
practice though initially effective, and (alas) still widespread, leads to a
proliferation of sloppy, difficult to maintain copies of the original code.  The
proliferation of such expediently borrowed scraps of code was dubbed
metastisization in [Foote 1988].

By using objects, designers can tailor existing code without disrupting the
integrity of the original code.  Instead, customizations can be made using user-
specific subclasses via inheritance.  This practice, though a great advance over
slash-and-burn tactics, is not without its shortcomings.  In particular, a good
deal of knowledge is needed to use inheritance to wisely subclass existing
objects.  [Johnson & Foote 1988] called this practice white-box reuse.

An alternative is to specify the protocol for a component that is supplied to an
existing framework as a black-box.  The framework then calls the component

back when its services are required.  This approach has two benefits: First, the
interface between the framework and the component is specified in terms of
the component’s public protocol.  The designer need not know the internals of
the existing code to design it.  Second, any object that adheres to the
framework/component protocol may be substituted for any other, even at
runtime.

White-box, inheritance-based relationships can have a static, per-class quality,
while black-box, component-based relationships can have a dynamic, per-
instance character.  We have observed that as a system matures, black-box
component-based reuse supplants white-box reuse.  Because components are
the end product of this evolution, some designers are tempted to attempt to
design components directly, and skip the evolutionary process.  Components
designed in this fashion are seldom reusable.  Attempting to short-circuit the
evolutionary process by designing components directly most often results in
components that resemble first-pass prototypes, not the mature, truly reusable
components that emerge from an evolving system.

Therefore, give people the ability to tailor their systems to meet their  
individual needs.  Build systems that can adapt to change as requirements
change.  Allow systems to change in a series of small, controlled   steps  , in  
order to stay the potential upheaval that can result from change deferred.
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One size does not fit all.  Allowing a system to be customized or tailored can
broaden it’s potential applicability and reuse potential.  Building it to
accommodate evolution can forestall premature obsolescence.

Seismologists have found that if tectonic plates release their energy in a series
of small earthquakes, the strain that might have led to a major catastrophe is
relieved.  So it is with software as well.  Systems that are permitted to evolve
gracefully in a series of small, controlled stages can stay the seismic upheaval
that can result from deferring change.

Not all software will be built to last.  Disposable programs have their places.
Simple tutorial prototypes, quick-and-dirty macros, and small, one-shot
applications often do not, or cannot evolve beyond their initial incarnations.
Even here, however, a substantial infrastructure of reusable elements needs to
be present to facilitate the productions of such disposable code.  This
infrastructure, in turn, is most often the result of the sort of evolutionary
process described herein.

v v v

One way to keep a system flexible is to build it out of flexible materials.  This
is the FLEXIBLE FOUNDATIONS pattern.

FLEXIBLE FOUNDATIONS, in turn, encourages refactoring, which allows

systems to confront and reverse the entropic pressures that Brooks warned
against.  The Fractal Model describes a set of evolutionary phases that embody

this process.  The heart of this process is a CONSOLIDATION PHASE, in
which the system is refactored to better reflect structural insights that have
accrued as it has evolved.  [Foote & Opdyke 1994] describes a nascent pattern
language, that encompasses this process, and the refactorings that drive it.  The
reader should refer that paper for information on these, and other, evolutionary
and refactoring patterns that help to complete this pattern.

METAMORPHOSIS encourages the construction of systems that retain enough
runtime mechanics to allow themselves to be dynamic instruments of their own
evolution.
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v v v

The Business Model project is an excellent example of a system that was
designed from the onset to cope with change.  This project focuses on the use
of object-oriented technology, and specifically on the development of object-
oriented frameworks, as a key strategy for reusing code and design.

Why is it inevitable that the requirements placed on this tool will evolve, and
desirable that the tool be able to cope with this change?

First, Caterpillar is a world-wide enterprise and has many different business
units and marketing companies.  In the mid-80’s Caterpillar made the bold
decision to decentralize and let all business units function with a certain degree
of autonomy.  Nonetheless, these units must share the same tools and
databases.  Therefore, the business modeling tool must be able to adapt to each
business unit’s needs, while remaining compatible with shared, company-wide
resources.  Also, as the business climate changes, the software needs to be able
to keep pace.

To meet these requirements, our tool was developed around a object-oriented
framework written in Smalltalk [Goldberg & Robson 1983].  Smalltalk
allowed us to quickly develop working prototypes, and get immediate feedback
from our users.  Since VisualWorks is robust enough for production use, these
prototypes were able to gracefully evolve into production applications.

Smalltalk is a pure object-oriented language that was chosen because of its
extensibility, open-architecture, tailorability, and ease of reuse.  The use of
Smalltalk has lead to the development of a financial framework where key
components have been re-used and integrated into all the financial applications
developed for the different business units.  The specific needs of the individual
business units have been realized by either making "small" changes to this
framework, or by adding new modules to the framework.

Systems that cannot cope with change will quickly be left behind by the
marketplace.  The same is true, of course, of corporations as well.



YODER | 11

also known as
OPEN ARCHITECTURES

OPEN IMPLEMENTATIONS
GETTING UNDER THE HOOD

OBJECT-ORIENTED OBJECT-ORIENTED SYSTEMS
COEVOLUTION

Building software with FLEXIBLE FOUNDATIONS helps to resolve the need
for continual, incremental evolution described by the SOFTWARE
TECTONICS pattern.

v v v

As systems confront changing requirements, they must change as well.
Tools, languages, and frameworks which cannot change along with these
systems will eventually become impediments to their evolution.
Excessively rigid systems can be obstacles to their own evolution.  It is not
appropriate to expose the same face to every client.

Systems, tools, and languages that cannot themselves evolve can eventually
become obstacles to the evolution of the systems that use them.

A good way to open the architecture up is to selectively expose the internal
architecture of the system so that the elements of this architecture can serve as
basis for changes and extensions.  Note that the focus is on the substructure of
the system, not on the source code itself.  It is the architecture which is being
opened up, not the entire implementation.

The views of a system that are exposed in this fashion are distinct from the
primary public protocol through which the system is normally used.  These
views can be thought of as ways of getting under the hood, when necessary.

For instance, primary tasks such as variable definition or assignment, in the
case of programming languages, or window definition, in the case of window
systems, are usually considered base-level, rather than metalevel operations.
However, facilities that allowed either a language or window system to be

FLEXIBLE FOUNDATIONS
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queried to determine how much memory it was using usually would be
considered metalevel facilities.

Of course, a goal of those charged with shepherding the evolution of such a
system should be to accommodate as wide a range of requirements as possible
using the system’s public interface.  Modifications made via the reflective
interfaces of a system may, if they are deemed to be of general interest,
incorporated into the public interface.  Some will be sufficiently exotic,
mundane, or specific as to be not deemed worthy of general exposure.

The reflection community has garnered a not altogether undeserved reputation
for abstruseness, due in large part to its penchant for producing dense prose,
and to a certain self-important zeal it has displayed in coining exotic new
terminology to attempt to exalt otherwise mundane self-referential
architectural insights.  (The preceding is an attempt at constructing a self-

referential sentence of sorts.)  What we hope to convey here is that a reflective

object-oriented system is simply one which:

• is constructed from parts and tools that are also built from objects,

• and that has access to the objects that comprise these parts and tools.

To do this, it is useful to examine some of the traditional criteria for reflection.
One premise of Smith’s early reflection research [Smith 1983] was that a
computational system is about something.  For instance, an airline reservation
system is about passengers, airplanes, arrivals, and departures, and an
accounting system is about financial transactions of various sorts.  A reflective
system is one that has itself as its subject mater.  The distinction between the
model and the medium dissolves.

Maes [Maes 1987] identified three steps that one must take to make a
computation system reflective:

I. Build a self-representation of the system.

II. Provide a means by which this self-representation may be
manipulated.

III. Make sure such manipulations really do immediately affect the
underlying system.
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The third requirement enforces the so-called causal connection requirement.  A
system’s self-representation is said to be causally connected to the system itself
when any operation performed on this representation is indistinguishable in its
effect from one performed directly on the system itself.  In other words, the
self-representation should either be the system, or should be implemented in
such a way so as to make it impossible to tell that it isn’t.  Systems in which
the self-representation actually comprises the implementation of the underlying
system are said to be procedurally reflective systems.  Systems in which this
mechanism is less direct are called declaratively reflective.

Therefore, give tools, languages, or frameworks the ability to manipulate  
themselves.  To do this, build these elements out of first-class objects.

Another way to think of this is to consider that self-manipulation might be a
good test of whether a system’s design has the power and flexibility to permit
graceful evolution.  If the underpinnings of a system are built from well-
designed first-class objects, they get this power more-or-less for free.

When a system and the substrates from which it is built, including its
languages and tools, are all built from objects, variants of these substrates can
coevolve with the system.  When the architecture of these elements is open,
their potential for reuse is greatly increased.  This can help the programmer
avoid duplication in cases where the underlying system elements almost, but
not quite, meet his or her requirements [Kiczales 1994].

Providing flexibility of this sort in systems built of traditional, compiled code
can be difficult.  Where only such tools are available, the cost of providing
flexible foundations may be prohibitive.  Fortunately, modern object-oriented
languages and environments provide viable alternatives to these antiquated
approaches.

v v v

VisualWorks is a powerful object-oriented development environment for
graphical, client-server applications.  It includes an application framework and
visual interface builders to help design graphical user interfaces (GUI’s).
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Visual interface builders such as those provided by Smalltalk vendors today,
let you quickly outline an interface as long as it is composed of basic widgets
such as buttons, text-fields, menus, and scrolling fields.  They generate empty
methods that you can fill in later to invoke the desired behaviors.  One can also
develop more complicated interfaces by grouping these widgets together and
ading in the appropriate behaviors, constraints, and tie-ins to databases.

Visual languages like this are an important feature that allows software
developers to be more productive in not only the early development/prototype
stage, but also in the production stage of code writing.  The primary
development of the financial aspect of the "Business Model" has been directed
toward building or extending visual languages for the quick development of
financial applications.  Most of the code is automatically generated by the
drawing of the interface and the data-flow of the program.

The DuPont Model [Johnson & Kaplan, 1987] (illustrated below) is a

graphical model of a view of Profit/Loss statements for businesses.   It
provides a quick way for managers and accountants to view their return on
assets.
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As can be seen by the DuPont model example, their is a common interface
widget that is used many times.  By adding a "DuPont widget" to the visual
builder with methods for the automatic generation of related code, the
developer can quickly tailor different DuPont models to meet the needs of
different users.

When building a DuPont Model as in the Caterpillar example, there are
formulas and database queries that are associated with each graphical box on
the screen.  Normally this would require a lot of back end coding.  The
developer would first use the Visual Works Interface Builder to draw in all of
the text fields and buttons and then add in the associated behaviors such as
defining all of the queries/formulas along with all of the associated constraints.
If this only needed to be done once, then it probably would be advantagous to
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develop the software this way.  However, every business unit was looking at
developing a DuPont model with minor tweaks which included different boxes,
constraints, formulas, and database queries.  This along with the fact that the
data structure and layout will be somewhat different for each business unit,
prompted us to extend the Visual Builder framework.

We were able to extend the Visual Builder framework to allow for the re-use
of code and easy extension of the DuPont model by creating another interface
widget like the DuPont box which has all of the fields and the associated
button, the developer can then draw the DuPont boxes quickly on the screen
and use the property editor along with the builder’s automatic define method to
automatically generate the formulas, the default query methods, and the
needed constraints.

Many programming languages have been developed to provide developers with
many built-in functions/capabilities/tools that allow for the quick and accurate
development of software projects.  Most often these languages are developed
with specific needs in mind.  If the software being developed maps easily into
the domain of the language being used, then the developer can easily develop
the desired software.  However, most large development projects do not easily
map directly into the limited domain provided by the programming language.
VisualWorks is a language that allows the developer to modify the language to
map to different domains.

Since VisualWorks allows one to get their hands on the insides of the visual
builder, it opens up the system for easily adding a new interface widget.  We
usually think of the frameworks in VisualWorks as being the View and
ApplicationModel subclasses.  But the visual interface builder itself is

comprised of a set of frameworks that can be extended.  These frameworks
provide the reflective interfaces that make it possible for the developer to
easily extend the Visual Builder.  Extending the visual interface builder is
often the quickest way to make flexible and powerful software that maps to the
domain.

The Smalltalk-80 system is constructed from a set of objects which are
themselves subject to modification.  The language, framework, and tools with
which the system is built all reside in the default system image, and hence may
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be changed.  These changes are usually done using abstract classes available
within the Smalltalk image thus allowing for a lot of reuse.
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also known as
CHANGING THE RULES

CHANGING THE PERFORMANCE
DYNAMIC SCHEMA

DYNAMIC OBJECT INCORPORATION
DYNAMIC LANGUAGES

METAINFORMATION
LATE BINDING

REMOVING YOUR OWN APPENDIX

METAMORPHOSIS helps to resolve the forces that arise in evolving systems
by providing a means by which a system’s behavior can be augmented without
changing its primary interface.  These forces are described in the SOFTWARE
TECTONICS pattern.  Providing the means by which a system may
dynamically extend itself also resolves the gradual evolution criteria of that
pattern.

v v v

It is difficult for statically compiled applications to manipulate objects that
were unknown when an application was compiled.  Sometimes it is
necessary to augment or change a running system.  

A mutable system is one in which the behavior of existing parts of the system
can be changed.  This is in contrast to an extensible system, which allows new

elements to be added to a system, but does not allow the modification of
existing parts.

One example of a mutable system is one where extensions to existing tools can
be incorporated in the menus for those tools.  One does not create a new tool.
Instead one adds capabilities to the existing tool.  In order to do this, the tool’s
menus must be mutable.

A mutable language allows the behavior of existing constructs to be changed.
Debugging tools can make use of such facilities.  Because of the potential for
circularity, programmers must exercise extreme care when they change the
way existing language constructs behave.  Typical programming environments

METAMORPHOSIS
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implement debugging facilities in an ad-hoc fashion beneath the language
level.  Hence, programmers cannot access and augment these facilities.

An extensible system allows users to add features.  A mutable system allows
users to change existing features.

Consider an analogy drawn from the theater world.  There are two ways to
change what happens on-stage during a play.  The most direct way is to change
the script.  When that is not desirable, there is an alternative: you can change
the performers, or the nature of the performance.  Most readers will, I trust,
concede that a performance of MacBeth might take on a different character
with someone like Jerry Lewis rather than Sir Laurence Olivier in the title role,
even though the script is unchanged.  Similarly, productions of MacBeth in
Kabuki-style have a decidedly different character than do traditional
productions.

What has this to do with software?  If one wants to change the way a program
works, one could change its code or data directly.  However, sometimes this is
not desirable, or even possible.  For, instance, assumptions about a subsystems
primary interface may pervade the system.  When this is the case, one can
intervene indirectly, by changing the way that some underlying element of the
system on which the application depends works.

One layer that underlies every system is the machinery associated with the
programming language in which it is written.  Were one interested in changing
all the formatted I/O in a C program, one can either change every call to printf
in one’s program, or provide a new printf.  However, other linguistic facilities
are more difficult to modify.  Languages that do provide full, runtime access to
such mechanisms are said to be reflective.

This sort of relationship between an application and its substrates is not limited
to the language layer.  Facilities such as operating system calls, window
systems, network services, mathematics libraries, or even other user written
layers can all have the sort of relationship with an application such that these
kinds of interventions are possible.  When this is the case, and when this is the
easiest place to get at these facilities, changing the performance rather than
changing the script can be an effective way of solving otherwise intractable
design problems.
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Not only must systems provide a way for programmers to get under the hood,
they must provide user-serviceable parts as well.  What’s more, they should
ensure that these parts retain this serviceability in the field.  For instance,
languages without significant metalevel architectures such as C++ trap objects
in binary object files.  Once C++ programs are compiled, information
pertaining to layout, object and class identity and the like is usually completely
discarded.  Some more modern systems have found it useful to retain some of
this information in vendor-specific browsing and debugging structures.  The
growing movement to standardize runtime type information (RTTI) in the C++
community is evidence of a genuine need for metainformation.  Some of these
proposals go so far as to all but establish what are in effect first-class class
objects in C++.  This movement is driven not by linguistic purists, but by the
requirements of real programmers in the field.  There is frustration that often
programmers must construct mechanisms themselves to reestablish information
that the compiler knew in the first place, but threw away.  A good sign that a
linguistic facility is necessary is that a number of people go to a great deal of
trouble to independently invent it.  This would seem to be the case with
metainformation.  One can make the case that the extraordinary success of
Visual Basic is due in part to that fact that the language is more reflective than
C++.

Languages such as Smalltalk-80 and CLOS have what is in some ways the
opposite problem.  These languages provide fairly complete metalevel
architectures, but usually imprison objects in snapshots or images.

For truly autonomous objects to break the umbilicals that tie them to single

processes and images, the traditional division of responsibilities among system
components must be refactored.

Autonomous objects must have access to global namespace services, so that
they can find the other objects to which they are tied.  Autonomous objects that
interact with object-bases would benefit from the knowledge that truly first-
class objects can glean about their own layouts.

For autonomous objects to function on platforms other than their home
platforms, code must be bound to them at runtime.  Smalltalk, Self, and Java
provide code portability by defining code in terms of byte codes for a virtual
machine.  Dynamic translation of the sort found in Smalltalk-80 [Deutsch &
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Schiffman 1984] and Self [Chambers et. al 1989] might be factored into the
operating system, or provided as a runtime service, so that native code can be
made available to any object on demand.

A vital factor in realizing autonomous objects is genuine first-classness.  They
will require a system-wide object model with a fully realized metalevel
architecture, and not one based exclusively on v-tables.

A good sign that a programming language feature is needed is when a lot of
people go to a great deal of effort to build it themselves atop or beside existing
languages.  There is abundant evidence that first-class, dynamic, metalevel
objects are such a feature.

Most programming systems that support graphical user interfaces now support
mapped, dynamic data structures called resources.  These are usually cast at

about the level of C structs.  However, since they often are created and
manipulated by using resource editing tools, they must usually employ their
own conventions for manipulating what is, in effect, metainformation.  Some
realizations add unique symbolic objects that resemble Lisp atoms, and

powerful, dynamic evaluators to allow runtime resource expressions to be
processed.  Often, elaborate schemes must be devised to set up runtime
correspondences between names for routines in the resource namespace, and
the same routines as they were known to the compiler and linker.  The irony
here is that all the facilities that have to be created in an ad-hoc,
implementation specific fashion by the architects of these systems are
essentially duplicating things that the original programming system knew how
to do as well.  In fact, the information that the programmer must redundantly
recreate for these systems is often information that the compiler knew in the
first place, but compiled away.

For similar reasons, many applications are adding, simple interpreted macro
languages to their applications, while building these applications in a more
powerful object-oriented language that by virtue of the system’s architecture
cannot be reused, and is hence out of reach.

Consider the difficulty one encounters in trying to construct a query for an
object in an object-oriented database for an object one has not encountered
before using C++.  The only way to address this issue is to once again
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construct a dynamic language, with its own metalevel data structures, atop of
C++.

The potential for Balkanization can be seen most acutely in current efforts to
define object brokering services and object models.  In many respects, these
seem to be architectural end-runs around the linguistic community.  This
evasiveness is justified, given the degree to which mainstream language
designers have avoided the issues these efforts are trying to address.  In the
end, it will be objects themselves, and not languages that will be the central
focus of system design efforts.

Therefore, provide mechanisms so that the behavior of an object or system  
can be augmented, without changing fundamental interface or behavior.
Systems that allow dynamic access to compilation facilities, or that allow
late binding of the namespaces in which objects reside, can allow foreign
objects to be incorporated into running applications at runtime.

When both applications and their substrates are built from objects, they can
evolve together as requirements evolve, or as specific users present specific
needs.  When the runtime mechanics of a system are thus accessible, that
system can integrate better into a changing community of applications and
services than a system that is set in concrete.

Metamorphosis is a powerful technique.  However, many conventional systems
will place a premium on support for these facilities, if they provide them at all.
When they are not provided, runtime support for them will have to be provided
by the user.  Therefore, this technique should not be employed cavalierly.
When objects can be redesigned so that their layouts are knowable in advance,
such a redesign should be considered, and weighed against any loss of
potential generality.  In those cases where applications simply cannot be given
prior knowledge of certain kinds of objects, metamorphosis can be the only
viable solution.

v v v

In order to stay competitive, Caterpillar has noticed that they must be able to
quickly evolve to new ways of doing business.  They need ways to be able to
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make new decisions quickly and change the way they do business according to
those decisions.  In order to do this they need to be able to dynamically choose
their variables and business logic and then query from their data sources
accordingly.

VisualWorks by ParcPlace has provided a framework for creating static SQL
database queries.  The framework allows for the developer to graphically
create SQL queries that map to Oracle and Sysbase Databases.  These queries
then gets converted into a Smalltalk method that can be called upon when
desired. Smalltalk objects can also be passed into the generated methods and
conversions and comparisons are supported by the framework.  This
framework can also query the database for the current data model the
developer is interested in and then create objects to map to the desired tables
within the database.  It is also easy to extend the framework to add
undeveloped database functions or extend the mapping to other Database
vendors.

Basically what happens is that the generated methods are parsed and SQL code
is generated that includes the joins, projections, select-where, group-by, and
order-by clauses.  The generated SQL code is then packed up and shipped
across the network via SQLNET.  The returned database values are converted
into objects that describe the attributes for each table within the database.
These returned values can then be displayed, evaluated, or processed
dynamically just like any Smalltalk object.

The problem arises when one wants to dynamically change or create SQL
queries during run time.  Since the SQL framework supplied by ParcPlace only
provides ways to pre-defined static queries we built a framework of SQL
Query objects that allows for the creation of dynamic SQL queries through the
use of Smalltalk expressions.  For example, the experienced Smalltalk
Programmer might desire to be able to write code very similar that portrayed in
H[DPSOH�.
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H[DPSOH�

�3HUIRUP�D�QDWXUDO�MRLQ�RQ�0RGHOV�DQG�3URGXFW)DPLO\

SURMHFWLQJ�PRGHO�QXPEHU�DQG�IDPLO\�GHVFULSWLRQ�

7KHQ�UHWXUQ�WKH�YDOXHV��

���_�PRGHOV�SURGXFW)DPLO\�WPS4XHU\_

���PRGHOV�� �7DEOH4XHU\�WDEOH)RU���0RGHOV�

���SURGXFW)DPLO\�� �7DEOH4XHU\�WDEOH)RU���3URGXFW)DPLOLHV�

���WPS4XHU\�� �PRGHOV�QDWXUDO-RLQ��SURGXFW)DPLO\�

���WPS4XHU\�� �WPS4XHU\�RUGHU%\���PRGHOV�ILHOG)RU��
PRGHO1XPEHU
���

���WPS4XHU\�� �WPS4XHU\�SURMHFW��PRGHOV�ILHOG)RU��
PRGHO1XPEHU
��

��������� �SURGXFW)DPLO\�ILHOG)RU��
IDPLO\'HVFULSWLRQ
��

���AWPS4XHU\�YDOXHV

Also, it might be nice to take a query that is formed as above and then "wrap"
some new constraints on the query such as select only those in the above query
for the current month.  Adding new constraints to the queries such as this
might only be realized during run-time, thus making the static creation of
queries insufficient.

Our solution to allowing for the dynamic creation of SQL objects was to define
GroupQuery, OrderQuery, ProjectQuery, SelectionQuery, and TableQuery
classes which are all subclasses of the QueryObject abstract class.  We also
created QueryExpression objects that allow for the developer to build query
expressions as in the example above.

The Query objects know how to respond to the appropriate message to build
the queries and wrap constraints to themselves during run-time. The design
pattern that fits here is the interpreter pattern from Design Patterns [Gamma et.
al, 1995].

We were able to reuse all of the code from VisualWorks original framework of
parsing a method into SQL and submitting the SQL across the net and then
creating objects representing the desired values returned from the database.

Our dynamic SQL framework has allowed for late binding of constraints to the
SQL objects by allowing the developer to build a parser for developing queries
and "wrap" additional constraints to SQL objects as the application runs.
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This example demonstrates the principles of reuse, extensions, and
modifications.  Reuse by the simple approach of blindly reusing the framework
for generating the SQL code and using SQLNET to get the desired results and
populate objects with them.  Extensions are based upon the addition of the
"Query Expression" objects for allowing the developer to write queries in
Smalltalk like expressions and to also allow for the ease of extending these
objects dynamically by wrapping additional constraints before the SQL code is
generated.  Modifications can be done to the existing framework by adding in
behaviors for additional desired SQL functionality or the framework can also
be extended by adding database drivers not supported in the default image
provided by ParcPlace.

Smalltalk allows dynamic translation of the sort done in our SQL Object
example.  Our example parses a field of possible queries and simply wraps
additional constraints, that the end user can create, around SQL Objects that
are passed around.  The dynamic translation is done through the simple parsing
of strings that build the SQL Objects with the desired constraints and wraps
them around the original SQL Object.
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It is no longer possible to avoid the fact that to be successful, software has to
be able to rapidly adapt to changing conditions and requirements.   To cope
with this fact, software researchers and developers must find new ways to
confront the need for continual evolution.  Software can no longer be designed
up-front, and left to drift as the marketplace passes it by.  Nor can it be set in
concrete, unable to adapt to the differing needs of different people or
organizations.  Instead, software must be designed so that it can change along
with the requirements that drive its evolution.

One way to do this is to build software out of objects.  Objects can help an
evolving system cope with change, by confining variants to subclasses using
inheritance, and by promoting the emergence of abstract classes and
frameworks.  Because objects can be refactored, the emergence of new
components and better, more reusable frameworks is promoted too.  When a
system is built from elements that are themselves objects, such as languages or
tools, these objects can evolve along with the applications that use them, rather
than presenting obstacles to such evolution.

Today, no application is an island.  Today’s applications live in a world where
they must integrate with a variety of other objects, frameworks, services, and
databases.  Systems that can dynamically access the mechanisms with which
they interact with the world can more effectively adapt to the environments in
which they are embedded than those that cannot.

We were gratified to discover that the cross-pollination of Caterpillar’s effort to
cultivate new approaches to software development with the heretofore
Laputian world of reflection has lead to what we think are genuinely useful,
practical, and valuable ideas about how to build programs.  In patterns, we
think we’ve found the ideal medium for capturing and disseminating these
ideas.

This collaboration was initiated by Ralph Johnson, who first noted the
connection between what the second author’s group was doing, and the often
arcane claims of  the reflection community.  Professor Johnson also provided
invaluable insights and observations as the paper progressed.

Conclusion
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