
Object-Oriented Reflective Metalevel Architectures:
Pyrite or Panacea?

A Position Paper for the ECOOP/OOPSLA ’90 Workshop
on Reflection and Metalevel Architectures

Brian Foote

Dept. of Computer Science
1304 W. Springfield
Urbana, IL 61801

(217) 333-3411
foote@cs.uiuc.edu

31 July 1990

- 2 -

Introduction

Recent research on reflective object-oriented languages and metalevel
architectures has generated a great deal of excitement, as well as a certain
degree of skepticism among members of the object-oriented community.
Reflective approaches appear to hold out the promise of dramatically changing
the way that we think about, implement, and use programming languages and
systems. There are those who fear, however, that by opening the door to
unrestricted language level access to the unwashed masses, we are opening up
a Pandora’s Box.

It is customary at functions such as this one to attempt to stake out an extreme
position on the matter at hand so as to properly highlight the issues and provoke
discussion. In this instance, I intend to align myself squarely with the zealots.

Programming with programmable objects

Object-oriented programming languages and systems are having a profound
impact on the way that we organize, design, implement, and maintain software.
These techniques allow us to treat software components and systems alike as
durable, yet malleable artifacts, which evolve along with their requirements
[Foote 1988] [Johnson 1988a]. It is, I trust, unnecessary to further elaborate
upon the general benefits of object-oriented approaches given the nature of this
group.

The current surge of interested in object-oriented reflection and metalevel
architectures is, I believe, based on the observation that object-oriented
languages and programs are as much themselves an appropriate domain for
object-oriented techniques as are windowing systems, operating systems, or
accounting systems. The vision underlying this observation is one of a
programming system in which the language definition itself is distributed across
a constellation of objects which are themselves subject to dynamic scrutiny and
modification.

Such a system would allow users to construct new language level objects which
would stand on an equal footing with previously existing features. A language
built of such programmable objects would be arbitrarily extensible, and would
permit language as well as application level objects to be utilized to help the
system adapt and evolve as requirements change. This is far from the only
potential consequence of such an organization, however. Reflective approaches
offer the possibility of bringing areas as disparate as programming language
design, compiler construction and code generation, programming environments,
debugging, tracing, parallel programming, database systems, operating systems,
computation theory, and programming language semantics together under a
single umbrella.

- 3 -

A particularly intriguing consequence of this approach is that the components of
such a system can themselves serve as the basis for a uniform (pure) object-
oriented framework that can support an evolving family of different programming
approaches and paradigms. The exploration of the properties of such a
framework is a central focus of my own current research [Foote 199?].

Existing programming languages limit extensibility

Modern programming languages owe much of their power to their ability to allow
programmers to compose new abstractions using a handful of built -in facilities.
This is particularly true of object-oriented languages. However, in most
languages, there is a point beneath which the programmer cannot reach [Foote
1989]. The fundamental structures that define how the language itself is
implemented are usually either implicit, immutable, or entirely hidden from view.
It is useful to think of these objects as comprising the metaarchitecture of the
language. Those structures that are explicitly manipulated by a typical program
can be thought of as comprising a languages manifest architecture (or simply,
architecture).

An object-oriented language with a reflective metalevel architecture can allow
this goal to be achieved. A collection of such objects can server as a framework
for a family of related metaarchitectures, and hence can facilitate
experimentation with such architectures, as well as their orderly evolution.

Reflection permits dynamic metalevel access

A reflective computational system [Smith 1983] is one that is able to inspect,
manipulate, and alter a full, explicit, active, causally connected representation of
its own internal structures. The components of this representation are called
reifications of this underlying structure [Friedman 1984]. "Causally connected"
means that any changes made to part of a process’s self-representation are
immediately reflected in its actual state and behavior. The ability to inspect (but
not alter) the objects that implement a system is sometimes referred to as
introspection.

A system’s metalevel is comprised of those entities that pertain to, represent, or
support other computational objects. In systems constructed using metacircular
interpreters [McCarthy 1965] [Sussman 1978] these interpreters are programs,
written in the system’s underlying tongue, that define the meaning of programs
running beneath them. However, programs running at a given level were usually
incapable of inspecting or affecting the structures of that defined their
interpreters.

Smith’s 3-LISP language [Smith 1982] [Smith 1983] demonstrated how reflection
could be incorporated into a Lisp-based language. In 3-LISP, user level code
may specify code that is run at the level of its interpreter. This code may gain

- 4 -

explicit access to aspects of its state at this level that are implicit at the user
level.

Object-oriented reflection permits a distributed metalevel architecture

Maes’s 3-KRS [Maes 1987a] [Maes 1987b] was the first language to incorporate
reflection into an object-oriented framework (or vice versa). The combination of
reflection with an object-oriented metalevel architecture dramatically increases
the power and practicality of reflection. The metalevel of an object-oriented
system can be distributed across a constellation of objects, each of which reifies
certain aspects of the overall structure. By contrast, Lisp-based metacircular
interpreters must often funnel the interpretation process through a single
monolithic case statement in their basic eval functions.

A distributed architecture allows local customization

A metalevel architecture that distributes its structure across a family of
interacting objects thereby permits individual constituents of this structure to be
specialized or pre-empted in the same way as user level objects. That is to say,
the full power of the object-oriented approach can be brought to bear on the
metalevel. Such an architecture can permit modifications to a language’s
default behavior to be made on a localized, or even per-object basis.

A useful way to think about this distinction is this: Dynamically modifying a
component of a distributed representation is a little like removing your own
appendix. Constructing and invoking a new metacircular interpreter is like
swallowing yourself whole.

Language Design: the Hamiltonians vs. the Jeffersonians

Allowing the programmer to make local modifications to the existing components
of a programming language reflects a distinctly Jeffersonian philosophy towards
language design. It is undeniable that such power has a high abuse potential.
The price of freedom, after all, is responsibility.

One can make the case that the Hamiltonian view that the definition of the
language itself should beyond the reach of the programmer has unnecessarily
hamstrung language as well as application evolution. The traditional view of
language design has been that a programming language emerges, fully formed
and carved in stone by a single hand, from some castle in the Alps. Mistakes
made by the designers of such languages may persist for a generation, until
such languages are supplanted altogether. Consider Pascal’s inflexible array
dimensions. The programs written in these languages must then be translated
somehow, or die ignominious deaths. This approach makes it impossible for a
language to attempt to cope with new challenges, such as the need to support

- 5 -

parallelism, or a persistent object store, or to support application specific
extensions.

I believe the argument that reflection is dangerous because it gives
programmers too much power is a specious one. Existing programming
languages already give clumsy programmers more than ample opportunities to
shoot themselves in the foot. I’ll concede that reflective systems allow the
clumsy programmer to fire several rounds per second into his foot, without
reloading. Still, I’m confident that, as is the case with features such as pointers,
competent programmers will make appropriate use of the power of reflection
with care and skill. Potential abuse by inept programmers should not justify
depriving the programming community of a potentially vital set of tools.

Certainly, metaprogramming is not for everyone. Most users will not need to
resort to designing and building, as opposed to using, reflective facilities.
Metaprogramming should not be undertaken frivolously. However, a language
shold not be an obstacle to its users, or to its own evolution. The age of
Software Stalinism is past.

Metaobjects and Metainstances

A characteristic of any expanding line of research is a certain amount of
terminological inconsistency. So it is in this area. For instance, the term
metaobject is use by some researchers [Maes 1987a,b] [Watanabe 1988]
[Ferber 1989] to refer to a metalevel object that represents and implements its
referent. Researchers in the CLOS community [Bobrow 1988] [Kiczales 1990]
[Des Rivieres 1990] use the term metaobject as a generic term to refer to a
whose range of different metalevel entities. I’ve found myself subscribing to the
latter usage of late, since an ability to loosely use a term to refer to generic
metalevel entities seems to be a useful one. I’ve been using the term
metainstance to refer to the former notion. This notion retains the meaning of
the original term, and may be slightly more precise, and liberates the term
metaobject so that we are free to use it as terminological vulgate. This name
change is by no means intended to disparage the importance of metainstances.
This notion, as exemplified in ABCL/R, for instance, is central to the construction
of meaningful metaarchitectures.

A related issue surrounds the persistent confusion that results from the different
ways in which the term metaclass is used. Is metaclass a relation between two
objects, i.e. class of the class of x? Is a metaclass any instance of the class
Metaclass? Does the :metaclass option in CLOS define the class or metaclass
of the class with which it is used? My current feeling is that the term is so
inherently subject to confusion that it should be banned in all contexts except the
first one above.

- 6 -

Another interesting definitional issue is the precise boundary between the
application and metalevels. As an extreme example, one can ask the question:
Is assignment itself an operation that allows a program to modify a causally
connected representation of some aspect of its own state?

Manifest Architecture vs. Metaarchitecture

It is useful to think about programming languages as being implemented in terms
of a set of metaobjects which are manipulated by programmers to compose
programs. Such an analysis is instructive even with those languages that were
defined in terms of the traditional declarative/linguistic metaphor. For instance,
once can talk about the properties of a procedure object in Pascal, even though
the only meaningful operations on such an object might be declaration (or
instantiation)

The manifest architecture (or application architecture, or just plain architecture)
of a programming language is comprised of those elements of a programming
language that are employed by a programmer to address a problem in the
application domain at hand.

The metaarchitecture defines the nature of the palette of objects which a
programmer defines to construct an application program. The metaarchitecture
defines how elements of the application architecture are implemented.

Most all languages have both a manifest architecture and a metaarchitecture of
some sort. In many traditional languages, the only metaoperations supported for
most metaobjects are definition and redefinition.

In some languages, the metaarchitecture is implicit, and in others it is explicit. A
language with an implicit metaarchitecture is one in which the programmer is
encouraged to think about the program as being implemented in terms of notions
with a certain sort of mechanics, even though these objects are not part of the
language specification itself, and are nowhere to be seen. A language with an
explicit metaarchitecture overtly acknowledges the existence of such elements in
its metaarchitecture.

Metaobjects may be accessible or inaccessible. Inaccessible metaobjects are
those for which no operations (with the possible exception of instantiation) are
defined. Accessible metaobjects are those for which a set of explicit operations
are available to the programmer. Access to such objects may be introspective or
reflective.

A malleable self-representation is important

One of the best known reflective facilities in any programming language is the
ability of (most) languages in the Lisp family to treat users composed data
structures as code. Lisp programmers are far less reluctant to devise solutions

- 7 -

to problems that entail computing new code than are programmers in other
languages. One explanation for this is that Lisp’s self-representation is couched
an an appropriate level, that is, approximately that of an abstract syntax tree.
(Of course, given the syntax of Lisp, this is a relatively easy). Lisp S-
expressions are malleable aggregates that can be composed, indexed,
decomposed, and inspected.

In contrast, Smalltalk-80 programs can, in principle, compute code as well.
However, to do so, they must manipulate either source strings, or byte codes.
The former representation is at too high a level, and the latter at too low a level
to be convenient. Smalltalk-80 employs parse trees, but they are not set up to
play the role necessary to be useful as a reflective self-representation. Such a
representation, with a two-way mapping between it and source code (Smith’s O
and O**-1), as well as between it and whatever machine level representations
are used, seems desirable. An example of a language that explicitly represents
abstract syntax level objects is KSL [Ibrahim 1988].

Metaobjects should mirror the metaarchitecture

A key requirement in the design of a set of metaobjects is that elements in this
architecture mirror the structure of the language model (or programming model,
or metaarchitecture) itself to as great a degree as is possible. The language
model can be thought informally as the story that is told by the language’s
defining documents to programmers about how the structures and operations
that comprise the language fit together (i.e. its semantics). When the metalevel
architecture’s structures parallel the language model, they provide a natural
locus for information pertaining to the language’s semantics, and hence its
translation. This model can serve as the basis for self-analysis tools that would
otherwise have to be constructed in a more cumbersome fashion as part of an
external environment or collection of tools. Furthermore, such self-analysis
capabilities might be mobilized by a system itself to evaluate and optimize its
own structure.

Indeed, since the the metaobjects can be thought of as constituting the
language’s implementation, the degree to which the language model can be
expressed in the metalevel architecture can serve as a test of the model’s
comprehensiveness. Questions of both completeness and granularity1 arise in
this assessment. The decisions the language architect makes regarding what
structures can be made explicit (reified) and modified (reflected upon) from the
user level, and what features are implicitly absorbed [Smith 1983] by the
language naturally dictate limits (or lack thereof) on the power of user-level
extensions. The story you tell, and the nature of the architecture that
corroborates it, is of premier importance.]

1[Smith 1983] referred to a related notion of "vantage point".

- 8 -

A metaobject palette

A reflective object-oriented metalevel architect might elect to reify a variety of
different notions. A decision to include or exclude an element of the list below
may have surprising and far reaching consequences with regard to the
architecture’s ultimate scope. A discussion of these consequences is beyond
the scope of this paper. Here, in no particular order, is a palette of possible
metaobjects:

Variables/Slots
Selectors/Generic Functions/Keys/Operators

Messages
Evaluators/Processors/Interpreters

Method Dictionaries/Script/Scripts Sets/Role//Containers/Behaviors
Records/Repertoire/Relation/Table/Index

A-List/Association/Pair/Tuple/Entry
Handles/Pointers/Names/Addresses/Locations/References/OOPs

Environments
Continuations

Contexts (Method, Block)
Mailboxes/Message Queues
State Memory/Stores/Storage

Blocks/Closures
Classes
Types

Prototypes/Traits
Signatures/Protocols

Methods (Primitive and otherwise)
Code/Expressions/Parse Trees/Byte Codes/Forms

(Denotations?)
Processes/Threads/Engines

...and last but not least:
Objects

Integers/Floats/Reals/Strings
Arrays/Aggregates/Structures/Collections/Lists

(other primitive objects)

Some design principles

The following design principles seem to be of utility in designing a maximally
flexible uniform reflective object-oriented metalevel architecture:

Message Passing at the Bottom

- 9 -

All computation shall be conducted via message passing. This is particularly
important when designing the kernel objects. This design philosophy is
reminiscent of the Self language [Ungar 1987].

Object-Oriented Uniformity
Everything shall be an object including variables, "code", contexts, oops? A
successful architecture should be cleanly layered, with a simple object-oriented
kernel at the bottom.

Malleable Self-Representation
Computations shall be represented by first class objects at a semantically
interesting level

Extensionality
Behavior only shall determine an object’s identity (The Duck Test)

Inheritance is signature composition
at least from an extensional standpoint

State and Behavior
Shall be externally indistinguishable (state is, of course, architecturally
significant at certain levels) Hiding state behind accessors is an effective way of
maintaining an appropriate level of external abstraction in many cases.
However, state emerges as an appropriate local focus as an end in itself for
applications such as constructing inspectors, debuggers, and as a locus for
allowing objects to migrate to distributed systems or secondary storage.

Active Dispatching vs. Passive Lookup
Shall be externally indistinguishable This permits users to customize the
behavior of objects by intercepting messages sent to them on a per object basis.

Dynamic vs. Static Scope
(Operational vs. Denotational Scope) Static scope shall be dynamically
implemented (as it usually is, anyway)

Reflection subsumes inheritance

Reflection subsumes inheritance (and a variety of other sharing mechanisms). A
reflective architecture can serve as the basis for the construction and evaluation
of sharing mechanisms. Indeed, the distributed nature of an object-oriented
metalevel architecture can allow several such mechanisms to coexist in the
same system. New sharing mechanisms are among a host of different artifacts
that can be constructed using a well designed reflective language.

An object, during the course of its lifetime, may enter into a number of different
relationships with other objects in its environment. Some of these relationships

- 10 -

will be permanent, or at least relatively static, and others might be quite
ephemeral. Some of these relationships might be quite complex. In
conventional object-oriented systems, one such relationship, inheritance, is well
supported. However, the facilities for allowing the programmer to construct
similarly powerful mechanisms of this sort of his or her own are limited.
Appropriate metalevel architectures can permit the construction of sharing
mechanisms that support , for instance, dynamic, domain-level object
composition as well as static code sharing.

Reflective applications: The Class Menagerie

Reflective object-oriented metalevel architectures would be of little interest if
they did not permit programmers to address problems they could not address in
any other way. There is a extremely broad range of important problems that
reflective techniques can address.

Reflection may prove particularly valuable in environments that must confront
rapidly changing, highly volatile requirements, and in applications that make use
of concurrency. Object-oriented techniques allow reflective embellishments to
affect only localized parts of a system, or to remain in effect for only a short
period of time (as might be required for debugging, for example).

Among the areas that can be addressed are: inheritance and sharing schemes,
including the object composition and the construction of dynamic aggregates,
maintenance, including debugging and tracing, constraint satisfaction and
maintenance, the construction of intelligent agents, persistent object bases
distributed systems, and concurrent systems.

Indeed, it is probably in the realm of concurrency, where metalevel issues such
as processor assignment, load balancing scheduling, performance monitoring,
and synchronization must be dealt with along side of object-level computation,
that reflection may come into its own.

Reflection must be efficient to be practical

It is imperative that reflective extensions to a language be implemented
efficiently if they are to win practical acceptance. For the sake of efficiency,
reflective extensions to an object-oriented language should be built into the
existing language, not built on top of it.

One strategy for achieving this end is to make sure that representations of
existing low-level language structures are made concrete (reified) only when
they are explicitly needed. Des Rivieres and Smith, and Maes have discussed
how this strategy can be used to retain efficiency in reflective systems.

Another is to use a technique like customization [Chambers 1989] to dynamically
provide efficient expansions of reflective code. Some of the implementation

- 11 -

techniques used in the Self language to achieve efficiency seem applicable to
reflective extensions as well. Our group at the University of Illinois [Johnson
1988b] has been investigating methods for efficiently compiling Smalltalk-80
code. There are strategies for using memory management units that can play a
role in implementing reflective facilities as well.

Other promising strategies include inline caching and multiple representations
[Deutsch 1984] [Foote 1989] discusses how inline caching might be used to
implement alternative message dispatching schemes. The work by Deutsch and
Shiffman emphasizes the extremely valuable notion of a dynamic change of
representation to implement Smalltalk-80’s highly reflective Context objects.

Ultimately, thought, the key to providing for the efficient implementation of
reflective facilities may be to exploit the distributed nature of the language’s self-
representation. A well designed self-representation will provide appropriate loci
for information that can facilitate the efficient implementation of user supplied
features. The elements of this representation that are specialized to represent
and implement user extensions can serve as repositories for information that can
be used by the system to generate good code.

Conclusion: We must build atop a flexible foundation

I believe that we in the object-oriented programming community are discovering
a principle that Pacific Rim architects already know. That is: To stay the
seismic upheaval that confronts a system during the course of its lifetime, it must
be built atop a flexible foundation. We can no longer think of our programming
languages and systems as rigid structures that will withstand generations of
buffeting in this face of changing requirements. We must instead construct
systems that not only build on past experience, but are able to adapt and evolve
as well. We must build our houses of brick rather than straw, but make sure that
there is shock absorbing material in place in their foundations as well.

References

[Agha 1986]
Gul Agha
ACTORS: A Model of Concurrent

Computation
in Distributed Systems
MIT Press, 1986

[Bawden 1988]
Alan Bawden
Reification without Evaluation
Proc. Symposium on Lisp and Functional
Programming, 1988
pages 342-248

[Bobrow 1988a]
D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel,
S. E. Keene, G. Kiczales, and D. A. Moon
Common Lisp Object System
Specification X3J13
Document 88-002R
SIGPLAN Notices, Volume 23,
Special Issue, September 1988

[Bobrow 1988b]
Daniel G. Bobrow and Gregor Kiczales
The Common Lisp Object System
Metaobject Kernel -- A Status Report
Proceedings of the 1988 Conference on Lisp
and Functional Programming

- 12 -

[Briot 1989]
Jean-Pierre Briot
Actalk: A Testbed for Classifying and
Designing Actor Languages in the
Smalltalk-80 Environment
LITP 89-33 RXF, Rank Xerox
ECOOP ’89

[Chambers 1989]
Craig Chambers, David Ungar, Elgin Lee
An Efficient Implementation of SELF
a Dynamically-Typed Object-Oriented
Language Based on Prototypes
OOPSLA ’89 Proceedings
New Orleans, LA
October 1-6 1989, pages 49-70

[Des Rivieres 1984]
Jim des Rivieres and Brian Cantwell Smith
The Implementation of Procedurally
Reflective Languages
Proc. of the 1984 ACM Symposium
on Lisp and Functional Programming
August, 1984, pages 331-347

[Des Rivieres 1990]
Jim Des Rivieres and Gregor Kiczales
The Art of the Metaobject Protocol
(in preparation)

[Deutsch 1984]
L. Peter Deutsch and Allan M. Schiffman
Efficient Implementation of the
Smalltalk-80 System
Proceedings of the Tenth Annual ACM
Symposium on Principles of Programming
Languages,
1983, pages 297-302

[Ferber 1989]
Jacques Ferber
Computational Reflection in Class-Based
Object-Oriented Languages
OOPSLA ’89 Proceedings
New Orleans, LA
October 1-6 1989, pages 317-326

[Foote 1988]
Brian Foote
Designing to Facilitate Change with
Object-Oriented Frameworks
Masters Thesis, 1988
University of Illinois at Urbana-Champaign

[Foote 1989]
Brian Foote and Ralph E. Johnson
Reflective Facilities in Smalltalk-80
OOPSLA ’89 Proceedings
New Orleans, LA
October 1-6 1989, pages 327-335

[Foote 199?]
Brian Foote
A Framework for Object-Oriented
Reflective Metalevel Architectures
Ph. D. Thesis (in progress)
University of Illinois at Urbana-Champaign

[Friedman 1984]
D. P. Friedman and M. Want
Reflection without Metaphysics
Proc. Symposium on Lisp and Functional
Programming, pages 348-355, August 1984

[Goldberg 1983]
Adele Goldberg and David Robson
Smalltalk-80: The Language and
its Implementation
Addison-Wesley, Reading, MA, 1983

[Ibrahim 1988]
Mamdouh H. Ibrahim and Fred A. Cummins
KSL: A Reflective Object-Oriented
Programming Language
Proceedings of the International
Conference on Computer Languages
Miami, FL, October 9-13 1988

[Johnson 1988a]
Ralph E. Johnson and Brian Foote
Designing Reusable Classes
Journal of Object-Oriented Programming
Volume 1, Number 2, June/July 1988
pages 22-35

[Johnson 1988b]
Ralph E. Johnson, Justin O. Graver, and
Laurance W. Zurawski
TS: An Optimizing Compiler for Smalltalk
OOPSLA ’88 Proceedings
San Diego, CA, September 25-30, 1988
pages 18-26

[Kiczales 1990]
Gregor Kiczales et. al.
CLOS Metaprotocol Specification
(in preparation)

[LaLonde 1988]
Wilf R. LaLonde and Mark Van Gulik
Building a Backtracking Facility in
Smalltalk Without Kernel Support
OOPSLA ’88 Proceedings
San Diego, CA, September 25-30, 1988
pages 105-122

[Maes 1987a]
Pattie Maes
Computational Reflection
Artificial Intelligence Laboratory
Vrije Universiteit Brussel
Technical Report 87-2

- 13 -

[Maes 1987b]
Pattie Maes
Concepts and Experiments in
Computational Reflection
OOPSLA ’87 Proceedings
Orlando, FL, October 4-8 1977 pages 147-

155

[Smith 1982]
Brian Cantwell Smith
Reflection and Semantics in a
Procedural Programming Language
Ph. D. Thesis, MIT
MIT/LCS/TR-272

[Smith 1983]
Brian Cantwell Smith
Reflection and Semantics in Lisp
Proceedings of the 1984 ACM
Principles of Programming Languages
Conference
pages 23-35

[Ungar 1987]
David Ungar and Randall B. Smith
Self: The Power of Simplicity
OOPSLA ’87 Proceedings
Orlando, FL, October 4-8 1977 pages 227-

242

[Watanabe 1988]
Takuo Watanabe and Akinori Yonezawa
Reflection in an Object-Oriented Concurrent
Language
OOPSLA ’88 Proceedings
San Diego, CA, September 25-30, 1988
pages 306-315

