
Meta-level Programming with CodA

Je� McA�er

Department of Information Science
The University of Tokyo

and
Object Technology International

jeff@acm.org

Abstract. Meta-levels are complex pieces of software with diverse de-
mands in both the computation and interaction domains. Common tech-
niques using just code to express behaviour fail to clearly assign responsi-
bility for a particular behaviour's de�nition or to provide support for the
reuse or integration of existing behaviour descriptions. The techniques
of �ne-grained decomposition of meta-level behaviour into objects and
their subsequent composition into object models provides a framework
for creating, reusing and integrating complex object behaviours. Using
such a framework, we show that users can develop and integrate quite
di�erent object models while retaining a high degree of abstraction and
fostering meta-level component reuse.

1 Introduction

Meta-levels are potentially complex pieces of software. They have diverse re-
quirements both for computation and for interaction. Building open meta-level
architectures is particularly challenging because of the diversity of behaviours
we may wish to describe while maintaining a uniform base-level view of object
behaviour.

Many of the current architectures are open but in a restricted sense. They
reify various aspects of a particular language or object model and provide infras-
tructure for change within the scope of that domain. If this is called a `top-down'
approach, we have taken a `bottom-up' approach. Rather than starting with and
then opening a particular object model, we start by describing various notions or
views of generic object behaviour and then provide infrastructure for composing
these behaviours into speci�c object models.

This is somewhat related to a basic concept of object-oriented software en-
gineering | decompose a speci�c problem into generic components and then
compose the pieces to solve the problem. From this we get both a solution to
our problem and a set of reusable components. In addition, the �ne-grained de-
composition approach fosters a clear separation between, and de�nition of, the
various components.

Using these techniques at the meta-level, we have developed CodA, a meta-
level architecture for describing a wide range of object behaviour models. CodA
can be thought of as a generic object engine framework in which users de�ne,

on a per-object or even per-use basis, how object's behave computationally.
To demonstrate this we present three object models from di�erent computing
domains, speci�cally; concurrency, distribution, and communication.

The abstraction of behaviours into objects encourages reuse and simpli�es
the combination of object behaviours. While in CodA, object model combination
is still a somewhat manual process, we propose that the architecture inherently
provides for; the easier identi�cation of points of conict, isolation of the e�ects
of changing a component, increased reusability of components derived from the
combination of object models and easier management of the behaviour space.
The addition of some simple annotations for describing component properties

further enhances these qualities.
The remainder of the paper is organized as follows. The next section details

the CodA architecture and in particular, our approach to meta-level factoring.
Sections 3, 4 and 5 detail three object models implemented in CodA and section
6 discusses the combination of object models. We relate CodA to other work
throughout the paper and summarize these relations in section 7. A further
section concludes the paper and points out some directions for future work.
Appended to the paper are the standard interface and default implementations
for many of the meta-components discussed.

2 The CodA Meta-Architecture

The key concept in the design of the CodA meta-level architecture is the `de-
composition' or `factoring' of the meta-level into �ne-grained objects or meta-

components. When programming base-level object-oriented systems we typically
factor out behaviour, create objects for each factor and then compose these ob-
jects into applications. The only di�erence here is that our `applications' are
object models which describe the operation of objects. That is, the meta-level is
just an application whose domain happens to be the behaviour1 of objects.

In factoring the meta-level we developed a relatively generic model of object
execution. The meta-level is de�ned as playing a number of roles in the descrip-
tion of base-level object behaviour. Each role is �lled by a meta-component and
corresponds to some behaviour such as; object execution (both mechanisms and
resources), message passing, message to method mapping and object state main-
tenance. Roles may be �lled by many di�erent components and components can
sometimes �ll several roles. An object's behaviour is changed by explicitly re-
de�ning components or by extending the set of roles. Examples in later sections
highlight this process.

The CodA meta-level architecture is largely run-time oriented. It does not
provide integral support for language constructs like classes which are required
for the static description of object behaviour. Rather, these constructs are bor-
rowed from whatever language is used to implement CodA. For example, in the

1 We use the term behaviour to denote how an object acts as opposed to what it does
and so by nature, behaviour is a meta-level concept.

Smalltalk implementation, Smalltalk metaclasses are used to de�ne a nice inter-
face for particular object models (i.e., sets of meta-components) which are shared
by instances. These interfaces determine which components can be modi�ed and
what con�gurations the meta-level can take. CodA is perhaps `lower-level' than
other systems but this approach allows us to gain a certain measure of language
independence while retaining the potential of the architecture.

This is in contrast to the meta-level facilities found in systems like CLOS[7]
and ClassTalk[4, 5]. The focus of these systems is di�erent in that they intend to
open or extend the functionality of particular language facilities or constructs.
As such, they deal with somewhat more static issues and it is natural that their
capabilities and constructs be language speci�c.

CodA di�ers in two other related ways; granularity and decomposition into
objects. A common approach to factoring object execution behaviour (e.g., mes-
sage sending or method execution) is to create public interface methods on a
small number of meta-level objects [8, 6, 7]). That is, object behaviour is de-
composed into code at the meta-level. Changes to a behaviour are made by
modifying its related interface methods.

Unfortunately, code is inherently more di�cult to deal with than objects.
Method objects have little support or infrastructure for interaction, change or
extension. Without this, describing complex interactions between several be-
haviours (i.e, groups of interface methods) is confusing. Behaviours are not en-
capsulated into atomic units and overall responsibility for a behaviour is not
clear. Unanticipated behaviours have no clear home for their description and/or
state.

Decomposition into objects gives us a higher-level view of behaviour. Objects
abstract code, de�ne points of interaction and ease integration. They remove us
from the details of implementation code. The boom in micro-kernel operating
systems is also witness to these ideas. Rather than creating one large, all encom-
passing kernel with many functions, we de�ne a small and simple infrastructure
and build/use the OS components as needed.

Forming meta-levels by composition has some advantages over techniques
such as multiple inheritance (e.g., ClassTalk[4, 5]). The issue here is similar to
the \parameterization vs. subclassing" issue | Should we create a generic object
which we parameterize by plugging together pieces, or do we create a class hier-
archy covering all possible parameter con�gurations? Unfortunately, the number
of possible con�gurations is a combinatorial function with explosive potential.
Just the small number of behaviours we will discuss in this paper translates into
hundreds of possible combinations. Apart from the class/metaclass name-space
explosion (which can be partially covered up using anonymous metaclasses), we
also encounter a method name-space problem where methods from metaclasses
which describe di�erent behaviours, collide.

To put this design discussion in more concrete terms, below we give de-
scriptions of the major elements in the CodA object system. In addition to the
meta-level infrastructure, there is the set of seven components each of which
describes some behaviour in the basic execution model.

2.1 The Meta-level

CodA speci�es that every object has a conceptual meta-level. The meta-level is
not a single object but rather a set of meta-components each of which describes
some aspect of base-level object behaviour. The implementation of the meta-level
(i.e., these sets of components) is not de�ned except to say that a particular set,
and thus a particular meta-level, can optionally be: �xed and allow no changes,
changeable in that existing components can be replaced or extensible by allowing
new roles and components to be added to the meta-level.

Meta-level programmers need some way of shifting to the meta-level and
of accessing an object's meta-components. This can be done using language
constructs as in ABCL/R2's " (up arrow) [8] or by making explicit meta-level
objects which are accessed via normal message passing (e.g., CLOS). In CodA
we adopt the technique best suited to the base-level language. For example, in
the Smalltalk implementation an object's meta-level as a whole is `represented'
by the result of sending meta to some object (e.g., anObject meta). The meta is
used for both shifting and accessing. All messages sent to a meta are executed
at the meta-level and metas `broker' (i.e., provide access to) meta-components.

In the implementation, the meta may take many di�erent forms. It may
store internally the meta-components it brokers, it may simply fetch them from
somewhere or it may create new ones for each request. This is transparent to the
user/programmer. When asked, a meta will return the actual component which
�lls the speci�ed role. Similarly, a meta can be requested to use a particular
component for a particular role.

2.2 Meta-level Components

As a basis, CodA de�nes a default set of seven components which are present at
the meta-level of all objects; Send, Accept, Queue, Receive, Protocol, Execution
and State. While they do not cover every possible aspect of object behaviour,
the set is extensible and the standard seven cover the behaviours essential to
common object models. Readers should note that these meta-components are
logically distinct. In reality, one entity may �ll multiple roles. For example, the
Queue and Receive components may, in a particular case, be implemented as one
physical object. Meta-components can also be shared between objects.

In our discussion below, details such as message selectors are taken from
the Smalltalk implementation of CodA. A simpli�ed speci�cation of these meta-
component's execution interface is provided in an appendix.

Send. A Send's main role is to manage the potentially complex series of in-
teractions between message sender and receiver ensuring proper transmission
and synchronization. This includes protocol negotiation, synchronization and
resource management. For example, when sending a synchronous message, the
sender's Send must inform the receiver that a completion signal (e.g., reply) is
required, how and to where the signal is to be transmitted, and also block the

sender until the completion signal is received. The PortedObject model discussed
below contains a Send which diverges substantially from the default model.

An object's Send is accessed using anObject meta sendf:g. It invokes the
message receiver's Accept.

Accept. Accepts de�ne the receiver side of the message passing protocol negotia-
tion and synchronization. They are also responsible for determining if a message
is valid and how it should be handled (e.g., queued, processed immediately).
Note that accepting a message is di�erent from receiving a message. Acceptance
concerns the interaction between the sender and receiver while receiving is the
internal act, by the receiver, of picking the message for processing.

An object's Accept is accessed using anObject meta acceptf:g. It is invoked
by the message sender's Send and invokes the message receiver's Queue.

Queue. Queuing is the main mechanism of decoupling the execution of message
senders and message receivers. Messages which have been accepted but can-
not yet be processed must be queued. Once queued, the message's sender can
be released to continue executing if the message's protocol allows. There are a
great variety of possible queuing policies using a variety of factors to determine
in which queue a message should be stored (e.g., by sender or type) and the
message's place in that queue (e.g., FIFO, priority).

An object's Queue is accessed using anObject meta queuef:g. It is invoked by
the message receiver's Accept and by an object's Receive.

Receive. As noted above, receiving and accepting are di�erent operations. Re-
ceiving refers to the actual fetching of the next message for execution. In other
words, while Accepts are concerned with how objects synchronize and interact
with each other (i.e., inter-object synchronization), Receives deal with intra-
object synchronization. When a Receive is asked for the next message to process,
it may consider many di�erent physical queues and consult various constraint
speci�cations before determining the next appropriate message. The PortedOb-
ject model discussed in section 5 details an example of such a situation.

Note that many architectures implicitly combine the operations of Accept,
Queue and Receive into the same object with quite a narrow interface. As such,
the implementation or integration of a new scheme for one of these behaviours
necessarily impinges on the others. Making them explicit and concrete simpli�es
the construction of complex behaviours.

An object's Receive is accessed using anObject meta receivef:g. It is invoked
by objects when they are looking for the next message to process and invokes
the object's Queue.

Protocol. A message, having been received, is translated into a method for ex-
ecution. This is the primary responsibility of an object's Protocol. The most
common mapping is an exact message selector to method name match where

methods are examined according to some inheritance scheme. Protocols de�ne
both the selection criteria (e.g., exact match) and the search scheme (e.g., sin-
gle/multiple inheritance). In more complex cases, Protocols may maintain mul-
tiple method tables and determine which to use based on some aspect of the
base-level or system state.

An object's Protocol is accessed using anObject meta protocolf:g. It is invoked
by objects when they need to map a message to a method to execute. That is,
typically from an object's Execution.

Execution. For an object to execute methods, it must interact with some system
resources (e.g., virtual machines, processes). Executions describe how this inter-
action occurs. By manipulating its Execution, a programmer can control where
and when an object runs as well as its overall importance (e.g., priority) and
independence.

Having an explicit execution model also enables methods to be somewhat
more abstract and to be executed in di�erent ways depending on the situation.
For example, if we are debugging an object, we may wish to execute its methods
on a special debugging virtual machine or interpreter whereas normally methods
are executed as native machine code. It is the Execution's role is to determine
how to execute methods and then execute them.

An object's Execution is accessed using anObject meta executionf:g. Executions
are generally invoked by either the Accept or Queue (in the passive case) or by
the explicit or implicit invocation of a receive operation (in the active case).

State. Though not directly involved in execution, state is an essential part of an
object. The role of a State is to organize and maintain object state. It de�nes
both what slots the object has as well as how the data in those slots is stored. The
State does not actually hold the data. It simply knows how it can be accessed.

An object's State is accessed using anObject meta statef:g. States are invoked
whenever one of the object's slots is accessed.

2.3 Example Meta-level

In Figure 1 we depict the events, meta-components and interactions involved in
the sending of a message M from object A to object B (as indicated by the
heavy dashed arrow). The shaded areas contain meta-components. Each light
arrow is an interaction event (dashed for A's execution thread, solid for B's).
The heavy solid arrows indicate the base/meta relationship and go from base-
level to meta-level. We have labeled only those meta-components relevant to this
particular interaction.

We see that A sends M by interacting with it's Send (1). The Send then
transfers M to B's Accept (2) which queues it with the Queue (3). At some point,
B will execute a receive operation which invokes the Receive (4) and fetches the
next message from the Queue (5). The message is mapped to a method by the
Protocol (6) and �nally, the message is processed by executing the found method
(7). In this way, every aspect of basic execution is rei�ed.

Send
Accept

Protocol

Queue

Execution

Receive

A B

Fig. 1. Sample meta-level con�guration and interaction

2.4 Implementation

CodA has been implemented in Smalltalk and much of the remaining discussion
draws from that experience. Because CodA deals largely with execution rather
than language issues, we have been able to fully integrate it into Smalltalk.
For each Smalltalk object we transparently and lazily add the meta-level infras-
tructure and default meta-components which describe the standard Smalltalk
object model. In this implementation, a standard CodA object behaves just like
a standard Smalltalk object. Having opened the implementation of a Smalltalk
object, we can adjust its behaviour as needed. Objects generally retain their
base-level semantics but gain some additional behaviour such as concurrency or
distribution.

Using the CodA framework as described above, we have created a library of
components with which we have built a number of object models. The following
sections describe the design and implementation of three models; ConcurrentOb-
ject, DistributedObject and PortedObject as demonstrations of the CodA concepts
and design. An appendix contains example implementations of the default be-
haviours for some meta-components. Our discussion is set in terms of changes
to these behaviours.

3 Concurrent Objects

Passive objects are reactive in that they simply respond to external stimulus
or input and `borrow' processing resources from message senders. In the Con-
currentObject model, objects have their own internal activity and processing

resources (threads). This behaviour is described by a ConcurrentExecution com-
ponent which �lls the Execution role.

A ConcurrentExecution's idling execution behaviour (i.e., what objects do
when they are not driven by user code) is similar in intent to that of Actors as
seen in [1, 3, 10]. While formal Actors rede�ne their execution behaviour after
every execution, in practice the replacement behaviour is the same; receive and
process a message. Our basic activity model is similar; an endless loop, receiving
and processing messages. For passive objects, the activity loop is implicit in the
runtime system. For ConcurrentObjects, the loop runs explicitly in the threads
associated with an object's ConcurrentExecution. The following is an example of
such a loop for an object base.

| message result |

[true] whileTrue: [

message := base meta receive receiveFor: base.

result := self process: message for: base.

base meta send reply: result to: message for: base]

When a message arrives, a passive object's Queue actually calls the object's
Execution and directly triggers the processing of the message. That is, there is
no queuing, only immediate processing. The Receive is never called explicitly
as objects are always implicitly receiving incoming messages. Adding explicit
thread(s) and an activity to an object both invokes its Receive and raises the
possibility the sender and receiver of a message may be disjoint with respect to
execution threads.

In addition to the activity loop, ConcurrentObjects change the Queue to en-
sure that messages are actually queued rather than passed on to the Execution.
StandardQueue (shown below) is an example of such a Queue. It maintains an
internal queue structure on which it implements the Queue interface. The actual
queuing model used (e.g., FIFO) depends entirely on how we want incoming
messages to be ordered (i.e., the object's queuing policy). This is speci�ed by
the user in the creation of the StandardQueue.

StandardQueue>>nextFor: base

^queue next

StandardQueue>>enqueue: message for: base

queue add: message

The ConcurrentObject model does not need to de�ne new message sending
mechanisms as the default Send components already include the notions of syn-
chronous, asynchronous and future messages. In the default, passive object case,
synchronous sending is the default, future messages represent a promise to com-
pute similar to closures or blocks, and asynchronous messages are mapped to
synchronous messages where the result is ignored.

These ideas are included in the default behaviour for two reasons; they are
useful in normal object behaviour description and they are relevant to system

parallelism, not object concurrency. For example, a distributed system can con-
tain no ConcurrentObjects but still require asynchronous sends.

4 Distributed Objects

The DistributedObject model is a somewhat larger change to object behaviour.
In the model, objects live in spaces. An object's Execution and State can live in
di�erent spaces and can be independently copied, replicated or moved between
spaces. Inter-space messaging �ts naturally into the normal object model through
the use of RemoteReferences or Proxies [14]. The model contains a sophisticated,
uniform mechanism for describing how objects are transmitted from space to
space (marshaling). The model is equally applicable to passive and active objects
and is built largely out of new components/roles (e.g., Marshaling, Replication
and Migration) and infrastructure objects (e.g., RemoteReference and Space).
Here we present a few of these new structures. More detailed coverage of the
DistributedObject model can be found in [9].

Spaces are places in which objects exist (store their state) and execute. A
Space is known to every other Space and can be addressed (i.e., sent messages)
directly from anywhere in the distributed machine. They manage the map-
ping between global object ids and local representatives (e.g., RemoteReferences,
replica).

A RemoteReference is a local representative or Proxy [14] for some remote
object. Locally they are just like any other object. They can be stored in instance
slots, assigned to variables, passed as arguments, etc. When they are sent a
message, the simplest RemoteReference just forwards it to the space containing
the real object | the target . More sophisticated RemoteReferences process some
messages locally while forwarding others to the target.

RemoteReferences are themselves implemented using modi�ed CodA meta-
components. According to the CodA execution model, when a message is sent
to an object, the sender's Send and the receiver's Accept interact to e�ect the
message transfer. In the DistributedObject case, these meta-components are in
di�erent spaces. Local to the sender, the receiver is a RemoteReference and the
receiver's Accept is an intelligent RemoteReference to the target's Accept. Rather
than performing the normal accept operation, the local Accept marshals the
message into a stream of bytes and transmits it to the remote space. Once
there, it is reconstructed and accepted by the target's Accept. In this way, the
DistributedObject model is uniformly applied to all objects in the system, even
those at the meta-level.

4.1 Replication

The basic idea of replication is that an object's state can exist in multiple Spaces
at the same time. Furthermore, through the use of some distributed consistency
schemes, we can maintain the proper semantics of our programs. Schemes for

replication range from simple one-o� copying (not technically considered repli-
cation here) to fully coherent replication. Since this is an entirely new behaviour
for objects, it is a new role (Replication) for the meta-level and requires new
meta-components for its implementation (The addition of new roles is covered
in Section 6). As we will see, the role of the Replication is quite independent of
the object's execution and the actual structure of an object's state variables.

To demonstrate replication we develop the partial replication scenario shown
in Figure 2. The �gure shows two objects, original (in Space 0) and replica (in
Space 1). Though not shown, original is actually a 2D N-Body [2] problem solver
which calculates the forces exerted by, and movements of, a collection of bodies
or particles in a 2D plane. N-Body solvers arrange a set of particles in a Quad
tree structure according to their physical location and then process each particle
individually. Overall, processing consists of a couple tree scans and iterations
over the collection of particles.

To distribute this algorithm we divide the particles into subsets which are
worked by di�erent solvers, one per Space. The sets however, are not entirely
independent since all particles potentially exert forces on all others. As the tree is
the central data structure for relating particles to one another, it must be globally
known and unique. The solver is a prime candidate for partial replication.

original
tree

particles

replica
tree

particles

Space 0 Space 1

Default meta-
components

Master
Replication

replicas

descriptor

Default meta-
components

Client
Replication

master

descriptor

Fig. 2. Distributed object layout

As shown in Figure 2, original, the solver, has two slots; particles and tree.
replica is a partial replica of original where the tree slot is consistency managed

and the particles slot is not. Every replica in the system shares the same tree but
has an independent particle set. The replication of original is done in a series of
six steps. Figure 3 shows the required code while the discussion below explains
each step.

1) original meta replication asMasterUsing: #('tree') for: original.

2) original meta replication replicateIn: (Spaces at: 1) for: original

MasterReplication>>replicateIn: space for: base

3) space replicate: base using: descriptor for: base.

6) replicas add: space

Space>>replicate: copy using: descriptor for: master

4) copy meta replication asClientOf: master using: descriptor for: copy.

5) master become: copy

Fig. 3. The making of a replica

1. Ensure that the original's Replication is compatible with the behaviour de-
scribed by the MasterReplication component. It should be able to detect state
changes in the appropriate slots and maintain a list of replicas. The �rst ar-
gument is a marshaling descriptor which speci�es how the slots of original
are to be copied to the remote space and as a result, how original is to be
replicated. Simply giving a slot name indicates that the slot is to be repli-
cated using whatever marshaling technique is appropriate at the time (i.e.,
the default).

2. Invoke the replication operation and specify which spaces are to receive
replica. In keeping with our example, only Space 1 is speci�ed.

3. Copy the relevant slots of original to all of the speci�ed Spaces. The repli-
cate:using:for: message has three arguments. Though the �rst and third ap-
pear redundant, they are not | they are marshaled di�erently. The �rst
argument is marshaled according to the speci�cation in descriptor while the
third is marshaled as a reference. This di�erence is critical for the next two
steps. When the message gets to the remote space, the �rst and third ar-
guments will no longer be identical. The �rst will be a copy of base while
the third will be a reference to base. Note that though marshaling descriptor
speci�cation is a simple addition to the messaging syntax, the details are
omitted from this example to improve clarity.

4. Make the remote copy into a replication client of original. This is similar to
step 1 and executes in the remote Space which will contain replica. copy's
meta-level is modi�ed such that all state changes are delegated to master
and the Replication knows the identity of its master for future reference.

5. Convert any preexisting remote references to original to be local references to
replica. Remote spaces may contain references to master prior to replication.
To maintain a consistent view of the world, these remote references should
be changed into local references to the newly created replica.

6. Invoke consistency management on the replicated slots of original by adding
the Space to the list of consistency controlled replica locations.

In step 1 we hooked the relevant state change operations for original. Note
that we do not require a new State component. The existing component's meta-
level is manipulated to hook state accesses. This both isolates replication from
representation and reduces the possibility of object model conict. When origi-
nal's replicated state is changed, its Replication's update:with:for method (shown
below) is invoked by the hook. The method simply broadcasts the change in slot
to all of original's clients. Typically this would be done by multi-cast messaging
for e�ciency though here we specify an iterative approach for clarity.

MasterReplication>>update: slot with: value for: base

replicas do: [:space | | rep |

rep := (base in: space).

rep meta replication update: slot with: value for: rep]

In this example we have shown a relatively lax model of consistency. To
implement strict consistency requires only the addition of a two phase update
protocol between masters and clients and the hooking or delegation of both
read and write state accesses on masters and clients rather than just writes.
Both of these changes are straightforward and are done using existing meta-
level structures and mechanisms.

4.2 Summary

The DistributedObject model, and this example in particular, highlight a central
theme to our work | the addition to, or modi�cation of, an object's computa-
tional behaviour without changing its base-level code. The result is the ability
to use standard class libraries in many di�erent environments. For the N-Body
application, the original uniprocessor sequential version required a code change
only where a new tree node was created and we wished to explicitly direct its
location. Other changes were done to take advantage of the newly introduced
concurrency but were not essential.

In terms of distributed object-oriented computation, our model also high-
lights something which we feel is essential | the ability to talk about distribu-
tion on a per-use basis rather than just on a per-class or even per-object basis.
In the N-Body application (replica creation step 3) we demonstrate the need for
use-based marshaling. Also, while our distribution scheme calls for partial repli-
cation of the solver objects, someone else's might use a di�erent scheme. Using
this architecture, all they need program is the meta-level of individual objects
as they are used.

5 Ported Objects

PortedObjects are objects which communicate and behave in a dataow-like way.
They have ports or channels over which data ows and when data is available for
processing, processing is done. This style of behaviour is interesting in a number
of areas. People working in concurrency formalisms like the �-calculus [11] have
found channels and ports to be useful in specifying object communication. Most
popular data visualization and analysis systems like AVS [16], IRIS/Explorer
[15] and parallel system analysis tools like Pablo [13] have dataow or analysis
graph architectures. The model is interesting to us in both regards.

Ported behaviour should be as transparent as possible to the base-level code.
For example, in an analysis system we developed, we used a set of generic ob-
jects which describe various analysis operations (e.g., �lters, collectors, expert
systems, DSP processors) and added a set of meta-components which gave these
analysis objects ported behaviour. The idea was that users (analysts) could then
build their own analysis tools by simply connecting existing analysis objects to
form the desired analysis graphs.

The addition of porting is done by identifying the parameters and results of
each analysis object. Each parameter or result is made into a port on the surface
of the object. Users program with PortedObjects by building connections between
these ports. `Programs' are run by feeding data to some of the free parameter
ports. Values put in a port are automatically broadcast to all objects connected
to that port. When some object in the graph has su�cient input, it processes
the data and stores the results in its result ports and so, passes it to the next
object. This process continues and data ows through the graph.

5.1 Meta-level Design

The PortedObject meta-level design in CodA is done entirely via modi�cations to
the following �ve meta-components; Send, Accept, Queue, Receive and Execution.

Send. At the inter-object level, PortedObjects cannot explicitly send messages.
They can only store values in their logical output (result) ports. An object
cannot tell whether or not storing a result will cause the value to be transmitted
to some other object. The meta-level however, can detect the result setting
operations and trigger the broadcasting of the new value to all objects connected
to the modi�ed port. So, while base-level PortedObjects have no explicit send
operations, they implicitly use message sending in their implementation.

A PortedObject's Send behaviour is de�ned by a generic MultiSend object
which provides infrastructure for multi-casting messages to a known set of re-
ceivers. For PortedObjects these receivers are represented by ports and connec-
tions.

Accept. PortedObjects useMultiAccepts whose behaviour di�ers from that of nor-
mal Accepts only in their support for manipulating ports and connections. This

consists mostly of add/remove and connect/disconnect methods in various forms.
Also, as messages arrive (via accept:for:), the MultiAccept marks them with the
port over which they came and queues them as per normal operation.

Queue. The PortedObject model uses MultiQueues for their Queue component.
A MultiQueue supports the sorting of elements into one of many logical queues
as de�ned by some discriminator, in this case, the arrival port. The default
Queue interface is augmented with duplicate operations which take an additional
parameter, a port identi�er.

Receive. A PortedObject's Receive is concerned more with parameter coordina-
tion than ports and connections. Some PortedObjects require several inputs to be
present before processing can take place. In some cases, processing only makes
sense if some set of these parameters are reset from iteration to iteration. In
others, a change of one parameter is cause for recalculation. To manage these
constraints, PortedObjects use CoordinatedReceives.

When a CoordinatedReceive is asked to receiveFor: by an Execution, it pro-
duces the next available message which satis�es the current set of coordination
constraints, cSet (see code below). Here cSet represents a very simple system
of constraints based on a collection of port identi�ers from which it is valid to
take a value. As values arrive, their port is removed from cSet. When the set is
empty, we know that we have received all the required values and so the object
is ready for processing. That is, the receiver is coordinated . The initial values
for the cSet are derived from information supplied by the programmer as part
of the PortedObject de�nition scheme.

CoordinatedReceive>>receiveFor: base

| message |

message := base meta queue nextSatisfying: cSet for: base.

cSet remove: message arrivalPort.

^message

Execution. Since PortedObjects do not have explicit message passing, we draw
a distinction between the implementation receiving and executing a message,
and the base-level object itself actually being evaluated. PortedObject evaluation
can only happen when the object is coordinated. The messages handled by the
Sends and Receives are infrastructure related and serve to transfer data (i.e.,
parameters and results) and determine coordination.

CoordinatedExecution>>process: message for: base

| method |

method := base meta protocol methodFor: message for: base.

self execute: method with: message for: base.

base meta receive isCoordinated ifTrue: [

self evaluate: base.

base meta receive resetCoordinationSet]

The main change in a PortedObject's Execution is highlighted by the modi�ed
process:for: method shown above. After executing an infrastructure message, the
Execution tests for coordination. If the object is coordinated, it is evaluated.
After evaluation, the coordination set is reset.

5.2 Compound PortedObjects

In complex PortedObject graphs we would like to be able to think of and manip-
ulate a group of PortedObjects as one. The encapsulation should be completely
transparent to objects both inside and outside the group. By taking a generic
analysis object and reusing some of the meta-components already described, we
can create a compound PortedObject as shown in Figure 4.

A C

B

Compound

p1

p2

r2

r1

Fig. 4. Compound object example

In the diagramwe see three objects (A, B and C) encapsulated in Compound.
Compound is itself just a generic analysis object which by default has no ports
or particular evaluation behaviour. We have added parameters p1 and p2, and
results r1 and r2. The parameters and results are logically linked, as appropriate,
to those of the contained objects.

In accordance to the PortedObject model, data values coming to A should
come from some PortedObject's Send (e.g., a MultiSend). Compound's Send �ts
those requirements but it manages the external connections for Compound and
has no facilities for managing a separate set of internal connections. The situa-
tion is similar for Compound's result ports and Accept.

An obvious solution is to implement new Send and Accept components which
keep two connection lists, one internal and one external. But this would just be
duplicating existing behaviour and adding special cases in connection manage-
ment. An alternative is to use two PortedObjects instead of the single Compound.
One would handle the group's parameters and one its results. This however goes
against our goal of having the group act as one object.

We take a somewhat novel approach and extend Compound's meta-level to
have two new roles, InternalSend and InternalAccept. These roles are actually �lled

by normal MultiSend and MultiAccept components. Compound's original Accept
and Send components remain unchanged and continue to handle all external con-
nections while InternalSend and InternalAccept handle the internal connections.
Figure 5 shows the con�guration for the parameter side of Compound from Fig-
ure 4. Note that p1 and p2 in the two �gures are the same.

Accept

p1

p2

Internal
Send

p1

p2

Fig. 5. Compound object parameter handling

Compound's Accept has two ports, p1 and p2, corresponding to its two pa-
rameters. Values arriving at those ports are tagged as described above and then
passed, at the meta-level, to the corresponding port of Compound's InternalSend.
From there they are, as per normal operations, broadcast over the appropriate
port's connections to the objects contained in Compound. The structure of the
result side is analogous though reversed.

This model is simple and appealing. From a porting and communication
viewpoint, all objects have a consistent and uniform model. From a meta-level
architecture point of view, it demonstrates how the meta-level is completely
extensible and how meta-component de�ned behaviour is reused. In our original
architecture design we never imagined a requirement for having multiple Send
or Accept components. In this situation however, it is not only convenient and
reusable but is aesthetically pleasing.

6 Putting the Pieces Together

As we have seen, in building object models, we may need to extend the set
of roles that the meta-level plays. To do this, we generally create the role and
develop at least two components; one which de�nes some default behaviour and

one which de�nes the new behaviour we speci�cally want to add to objects. The
default component is used when an object's role is accessed but no behaviour
(e.g., component) has been explicitly provided. Using this technique, as soon
as it is added to the system, all objects have some de�ned behaviour for the
role. Developers are then free to create variations on this default behaviour and
substitute them for the default component on individual or groups of objects.
For example, the DistributedObject model de�nes several new roles and we have
shown that one of them, Replication, can be �lled by three di�erent components;
DefaultReplication, MasterReplication and ClientReplication.

Until now we have only discussed how to build object models from scratch.
We have not looked at composing new object models from others. The com-
bination of object models in CodA is still largely a manual process but the
architecture itself reduces considerably the work to be done.

Combining disjoint (i.e., non-overlapping) object models is straightforward.
The new model simply contains the union of the non-default components from
the originals. As long as all the components provide the standard CodA inter-
faces, the new model will run �ne.

Combining overlapping object models requires programmer intervention. The
general approach is to build new components which merge the behaviour of those
being combined. CodA's �ne-grained decomposition into objects helps in several
ways here. First, the �ner granularity gives a more precise indication of where the
models collide. Second, the object-orientedness of the decomposition limits both
the scope of the conict and the spread of the change required for its resolution.

Objects also give us an abstraction of behaviour which is easier to use and
reuse. Consider two object models X and Y which both rede�ne the Send com-
ponent. If we wish to create a modelXY (the combination of X and Y) we have
to resolve the conicts between XSend and YSend. If we assume that this reso-
lution creates XYSend, a Send with the properties of both the X and Y models,
then the conict between XSend and YSend has been resolved and need never be
resolved again. If the conict is encountered in the combination of some other
models, we can simply reuse XYSend. As we build a library of components, con-
ict resolution will become more a problem of identifying the existing component
with the correct properties than of actually writing code.

The �ne-granularity of our design is double edged however. Ad hoc groups
of meta-components do not present as nice a package of object behaviour as a
single `meta-object'. Users are faced with a potentially large choice of possible
components to �ll a particular role. We address this in a number of ways. Rel-
atively simple object models like ConcurrentObjects are represented by methods
which con�gure meta-levels. To use that model, a user just applies the method
to the object in question (see the example code below). This simply overwrites
any preexisting behaviours.

configureAsConcurrentObject: base

base meta queue: (StandardQueue for: base).

base meta execution: (ConcurrentExecution for: base)

More sophisticated models use base-level language constructs (e.g., classes
and metaclasses) as object model representatives. This has the bene�t of being
integrated with the environment but the drawback of still requiring user-written
code.

Using the notion of properties, we address both the composition and combi-
nation problems. A property is a simple declarative token which points out one
way in which a component is di�erent from the default. For example, some of
the PortedObject model components are multi . Comparing property lists allows
us to even more precisely identify conicts in components. Properties are also
used in object model speci�cation. Rather than hardcoding the use of particular
components in a model, programmers declaratively specify that, for example,
they want a Send with a certain set of properties. Whether a change is required
and which actual Send is used is determined dynamically.

Properties, like many categorization systems, su�er from naming problems.
De�ning and guaranteeing the semantics of a particular property is di�cult at
best. So, while they do not solve the composition or combination problems,
these operations, in a su�ciently rich and consistent component environment,
are reduced to property constraint satisfaction.

A completely di�erent approach is component generalization and parame-
terization. Looking at the models we have de�ned here, only ConcurrentObjects
and PortedObjects overlap in the component domain. Initially we applied the
above techniques with success. Then, as we developed other models which also
overlapped, we found ourselves generalizing and parameterizing the various com-
ponents to be more reusable. For example, Executions were changed to take a
user supplied code block to de�ne their execution activity. The result was a li-
brary of general components which can be setup in many di�erent ways and so
can be used in many di�erent situations.

7 Related Work

There are several projects related to our work. We have already mentioned some
and relate to a few more below. In general, most previous e�orts have either a
di�erent focus or di�erent approach with respect to the issues in object behaviour
description.

RbCl [6] is similar to CodA in that explicitly supports active objects and
factors the meta-level into objects. However, it factors out only a limited set
of components and does not provide a framework for their composition and
interaction.

The Apertos operating system [17, 18] di�ers mainly as a result of a dif-
ferent target domain than of the overall architecture. Apertos rei�es aspects
of object behaviour at the operating system level (e.g., memory management,
page faults and device drivers). This level is mostly orthogonal to the current
CodA meta-components. It would be interesting to combine the two domains
in one framework to get a more complete and far-reaching rei�cation of object
behaviour.

Recent work in AL-1/D with distribution control at the meta-level [12] is also
similar to ours. They focus on a set of meta-level concepts directly related to
distribution requirements. We feel that in fact, in real systems, the issues related
to distribution are more far-reaching. They involve heterogeneous state repre-
sentations and update policies, and demand mechanisms for the control of the
intra-object concurrency implicitly introduced by remote referencing. Further-
more, all of this should be possible on a per-use basis. As such, it is appropriate
to use a meta-architecture with wider scope. It also appears that the CodA
infrastructure and interface is more clearly de�ned.

Over the years we have been inuenced by Actalk [3]. It provides a testbed for
describing object behaviours in areas relating primarily to concurrent execution
and message passing. Though recent versions are more and more component-
based at the meta-level, it is still somewhat monolithic and code-based. Having
said that, we are very interested in implementing in CodA, many of the object
models available in Actalk.

8 Conclusions and Future Work

By treating the meta-level as \just another application" and applying typical
software engineering practices, namely �ne-grained decomposition into objects,
we have created an extensible, uniform framework for object behaviour descrip-
tion. Object model de�nition by composition and extension was demonstrated
through the development of three object models; ConcurrentObject, Distribute-
dObject and PortedObject. These models show that in CodA, quite diverse object
behaviours can be created with relatively minor changes to the meta-level and
almost no changes to the base-level.

We have found that the decomposition of behaviour into objects as opposed
to code gives meta-level users a higher-level abstraction in which to program.
Responsibility for the de�nition of particular behaviours rests with identi�able,
discrete objects rather than being spread through the meta-level code. Individual
meta-components have a narrower domain and so are more easily reused. The
unruliness of groups of meta-components (as opposed to single `meta-objects')
is addressed via the use of properties and the constructs (e.g., classes and meta-
classes) available in the implementation environment.

While we have not solved the general object model composition and com-
bination problem, the CodA architecture helps to identify and isolate points of
conict between models. Meta-components provide �rewalls which limit both
the scope of potential conict and the spread of the changes resulting from its
resolution. Components developed to resolve a particular conict can be reused
wherever that conict occurs so the conict need only be resolved once. In addi-
tion, we propose some simple but potentially useful concepts such as properties
which ease the burden on meta-level users.

An interesting avenue of future work is to look for techniques which allow
the dynamic compression and expansion of meta-levels. While the separation of
meta-level roles into individual objects is logically e�cient, it may be less than

optimal in implementation. By providing some sort of declarative description of
each meta-component's behaviour and expected interactions (e.g., properties),
we can automatically combine several components into one. This is analogous to
some problems in typing, partial evaluation and code generation. Similarly, by
remembering something of their original structure, compressed meta-structures
can be expanded into their original form. Using a combination of expansion and
compression, monolithic (e.g., compressed) structures can be made open. To
change a monolithic meta-level structure, it is �rst expanded, then changed and
�nally re-compressed. We believe that this direction holds great promise in the
battle to make systems more open and to make open systems more e�cient.

9 Acknowledgements

We gratefully thank Jean-Pierre Briot, Pierre Cointe, Nick Edgar and Laurent
Thomas for discussions and helpful comments on drafts of this paper.

References

1. G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
Series in Arti�cial Intelligence. MIT Press, 1986.

2. J. Barnes and P. Hut. A hierarchical O(N logN) force-calculation algorithm. Na-
ture, 324:446{449, 1986.

3. Jean-Pierre Briot. Actalk: A testbed for classifying and designing actor languages
in the Smalltalk-80 environment. In S. Cook, editor, Proceedings ECOOP '89,
pages 109{129, Nottingham, July 1989. Cambridge University Press.

4. Jean-Pierre Briot and Pierre Cointe. Programming with explicit metaclasses in
Smalltalk-80. In Proceedings of OOPSLA '89, pages 419{431, October 1989.

5. Pierre Cointe. CLOS and Smalltalk: A comparison. In Andreas P�pcke, editor,
Object-oriented programming: The CLOS perspectives, pages 215{250. MIT Press,
1993.

6. Yuuji Ichisugi, Satoshi Matsuoka, and Akinori Yonezawa. RbCl: A reective
object-oriented concurrent language without a run-time kernel. In Proceedings
of the International Workshop on Reection and Meta-level Architecture, pages
24{35, November 1992. Tokyo, Japan.

7. Gregor Kiczales, Jim des Rivi�eres, and Daniel Bobrow. The Art of the Metaobject
Protocol. MIT Press, Cambridge, Massachusetts, 1991.

8. Hidehiko Masuhara, Satoshi Matsuoka, Takuo Watanabe, and Akinori Yonezawa.
Object-oriented concurrent reective languages can be implemented e�ciently. In
Proceedings OOPSLA '92, ACM SIGPLAN Notices, pages 127{147, October 1992.
Published as Proceedings OOPSLA '92, ACM SIGPLAN Notices, volume 27, num-
ber 10.

9. Je� McA�er. Meta-level architecture support for distributed objects. In prepara-
tion.

10. Je� McA�er and John Duimovich. Actra - An industrial strength concurrent
object-oriented programming system. ACM SIGPLAN OOPS Messenger, 2(2):82{
85, April 1989. Proceedings of the ACM SIGPlan OOPSLA Workshop on Object-
Based Concurrent Programming.

11. Robin Milner. The polyadic �-calculus: A tutorial. In Logic and Algebra of Speci-
�cation. Springer Verlag, 1992.

12. Hideaki Okamura and Yutaka Ishikawa. Object location control using meta-level
programming. In Proceedings of the European Conference on Object-Oriented Pro-
gramming (ECOOP), LNCS 821, pages 299{319. Springer Verlag, July 1994.

13. Daniel A. Reed. An overview of the Pablo performance analysis environment. De-
partment of Computer Science, University of Illinois, 1992.

14. Marc Shapiro, Yvon Gourhant, Sabine Habert, Laurence Mosseri, Michel Ru�n,
and Celine Valot. SOS: An object-oriented operating system { Assesment and
perspectives. Computer Systems, 2(4):287{337, Fall 1989.

15. Silicon Graphics Inc. Explorer User's Guide, 1992.
16. Stardent Computer Inc. Application Visualization System, User's Guide, 1989.
17. Yasuhiko Yokote. The Apertos reective operating system: The concept and its

implementation. In Proceedings OOPSLA '92, ACM SIGPLAN Notices, pages
414{434, October 1992. Published as Proceedings OOPSLA '92, ACM SIGPLAN
Notices, volume 27, number 10.

18. Yasuhiko Yokote, Fumio Teraoka, and Mario Tokoro. A reective architecture for
an object-oriented distributed operating system. In S. Cook, editor, Proceedings
ECOOP '89, pages 89{106, Nottingham, July 1989. Cambridge University Press.

A Meta-component Speci�cation

The following is a description of the essential meta-components in CodA. Only
the protocols needed for actual execution are speci�ed. Others such as those
required for con�guration are not included as they will vary depending on the
capabilities or properties of the component. All speci�cations are presented in
terms of the Smalltalk implementation. The interface also supports a number
of convenience methods which combine frequently used operations under one
simpler protocol. These are not generally included in the speci�cation. Readers
are referred to the body of the paper for explanations of the component's roles.

Note that throughout the interface, the base-object (typically referred to as
base) is explicitly speci�ed as an argument. This is done for two main reasons:
It allows for meta-components which have a one-to-many relationship with the
base-level and it removes the requirement for implicit assumptions regarding the
behaviour and arguments associated with an interface. For example, it may not
be the case that the sender �eld of a message being sent is actually the object
doing the send operation. As a general rule, if a meta-component maintains a
one-to-one relationship to the base-level then the base argument is ignored.

A.1 MetaComponent

All meta-components respond to the following messages:

isDefaultBehaviour Answer true if the receiver represents the default behaviour
for the role in which it was cast. Answer false if it has been explicitly set by
the user.

A.2 Send

Fundamentally there are three di�erent kinds of message sending: synchronous,
asynchronous and future. These are realized as di�erent protocols. Variations on
the message argument introduce orthogonal concepts such as; express and system
messages. Sends also explicitly support the transmission of reply messages as
their requirements may be di�erent from that of other message sends.

send: message for: base Send message for base. De�nes the default sending be-
haviour and is typically, though not necessarily, mapped to one of the send
operations given below.

sendfAsync/Sync/Futureg: message for: base Send message for base. The sender
and receiver are synchronized according to the speci�ed mode (i.e., Async,
Sync or Future).

reply: result to: message for: base Reply result to the reply destination listed in
message for base. Replies are normal messages but may need to be treated
di�erently to facilitate synchronization and other schemes.

A.3 Accept

accept: message for: base Determine if message can be accepted by base. To ac-
cept a message is to promise to consider performing computation based on
its contents. It is not an implicit guarantee that the message will be pro-
cessed but rather that the message has arrived at the destination. The act of
accepting a message also involves a preliminary determination of what is to
be done with the message. For example, if the message is marked as express
then it should be considered for immediate execution.

acceptReply: message for: base Replies are normal messages but may need to be
treated specially to facilitate synchronization and other schemes.

A.4 Queue

There are a great variety of possible queuing policies and factors in determining
in which queue a message should be put and where it should be placed. These
policies and factors are generally established via setup parameters on the Queue.
The Queue protocol supports methods for enqueuing and dequeuing messages
and various forms of message retrieval.

dequeue: message for: base Remove message from the receiver.
enqueue: message for: base Add message to the receiver.
nextFor: base Remove and answer the next available message from the receiver.

This de�nes the default dequeuing behaviour and is typically, though not
necessarily, mapped to one of the next operations given below.

blockingNextFor: base Remove and answer the next available message from the
receiver. An answer is not given until a message is available.

nonBlockingNextFor: base Remove and answer the next available message or nil
if none is available. An answer is always returned immediately.

nextSatisfying: constraints for: base Remove and answer the next available mes-
sage from the receiver which satis�es the constraints. An answer is not given
until such a message is available.

peekFor: base Answer the next availablemessage from the queue or nil if none are
available. No messages are removed from the receiver. An answer is always
returned immediately.

A.5 Receive

receiveFor: base Answer the next available queued message. This de�nes the de-
fault receiving behaviour and is typically, though not necessarily, mapped to
one of the receive operations given below.

nonBlockingReceiveFor: base Answer the next available queued message or nil if
none are available. Subsequent calls will not return the same message. An
answer is always returned immediately.

blockingReceiveFor: base Answer the next available queued message. Subsequent
calls will not return the same message. An answer is not given until a message
is available.

A.6 Protocol

methodFor: message for: base Answer the method best suited to processing mes-
sage. If a method cannot be found then answer some method which will
handle the error condition.

A.7 Execution

Executions describe the basic processing activity of an object. How and when
they receive, lookup and execute messages. For passive objects this is determined
largely by the external thread of control and when other objects send messages
to the Execution's base-object(s).

For active objects, the Execution has complete control over these aspects. It
must also de�ne what the object does when it is not processing some received
message as well as how the object's execution maps onto physical computational
resources (e.g., processes and processors). In short, the Execution provides an
encapsulation of processing power for the exclusive use of its base-level object(s).

execute: method with: arguments for: base Execute method with arguments on re-
ceiver base.

process: message for: base A convenience protocol which combines message to
method mapping and method execution. message is processed by �rst send-
ing methodFor:for: to the relevant Protocol and then execute:with:for: to the
receiver.

processImmediately: message for: base Similar to process:for: but the any normal
execution currently underway is interrupted with the processing of message.

activityFor: base Answer an evaluable description of base's activity loop.

A.8 State

States describe the physical storage and structure of objects. It is important to
note that they do not actually contain the base-level state but simply know how
to store and retrieve it. State slots can be named or numbered.

at: id for: base Answer the current value of slot id in base.
at: id put: value for: base Store value in slot id of base.
slotIdsFor: base Answer a list of all the ids for the slots available in base.

B Default Meta-component code

The following are the default implementations for many of the methods men-
tioned in the body of the paper. They are given as a point of reference so readers
can judge the amount of change required to e�ect the behaviours described.

DefaultSend>>send: message for: base

^message receiver meta accept

accept: message for: message receiver

DefaultSend>>reply: result to: message for: base

| reply |

reply := message asReply.

reply arguments: (Array with: result).

^reply receiver meta accept

acceptReply: reply for: reply receiver

DefaultAccept>>accept: message for: base

^base meta queue enqueue: message for: base

DefaultAccept>>acceptReply: message for: base

^base meta execution processImmediately: message for: base

DefaultQueue>>enqueue: message for: base

^base meta execution process: message for: base

DefaultQueue>>nextFor: base

^nil

DefaultReceive>>receiveFor: base

^base meta queue nextFor: base

DefaultProtocol>>methodFor: message for: base

^self lookupTable at: message selector

DefaultExecution>>execute: method with: arguments for: base

^method executeFor: base withArguments: arguments

DefaultExecution>>process: message for: base

| method |

method := base meta protocol methodFor: message for: base.

^self execute: method with: message args for: base

DefaultExecution>>processImmediately: message for: base

^self process: message for: base

DefaultState>>at: id for: base

^self slots at: id

DefaultState>>at: id put: value for: base

^self slots at: id put: value

This article was processed using the LaTEX macro package with LLNCS style

