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Abstract
The creation of distributed applications is often hin-

dered by a lack of a priori knowledge of distributed ob-
ject behaviour. Designers and builders of distributed
systems can bene�t from an environment which al-
lows them to explore and experiment with various com-
putational and structural models for application ob-
jects. Our ability to do this is limited by traditional
distributed systems' tendency to mix domain-speci�c
object description and distributed behaviour speci�ca-
tion. By using an explicit meta-level architecture, we
can transparently add a wide variety of distributed be-
haviours to objects with little e�ect on their base-level
behaviour or code. In this paper we outline such an
architecture and detail the design of various distribu-
tion mechanisms and policies (e.g., marshaling and
replication). These are shown to be independent of
base-object behaviour to such a degree that they can
be recursively applied to the architecture in which they
are implemented.

1 Introduction
The creation of distributed applications is often

hindered by a lack of a priori knowledge of how ob-
jects will react to distribution. The use of strongly
typed languages can help static analysis techniques
determine call graphs and interaction patterns but it
is di�cult to account for the dynamic nature of dis-
tributed systems (e.g., the same application may run
di�erently depending on the machine topology).

In our approach, the separation of the base-level
application code from the meta-level object behaviour
(e.g., distribution) code plays a key role. This sep-
aration enables distributed application developers to
prototype their applications and experiment with dis-
tribution models while minimizing the e�ects on the
application's code. Normal objects are reused in a dis-
tributed environment by transparently adding distri-
bution behaviour to their meta-level. In addition, new
distribution mechanisms are more easily integrated
with existing object behaviours.

We have developed Tj, a platform for describ-
ing distributed object behaviour. Tj is built on top
of CodA[11], a general meta-level architecture which

opens the implementation of an object's fundamental
computational behaviours (e.g., state accessing, mes-
sage sending, queuing, method execution). This power
is required because describing distributed object be-
haviour is more than just implementing remote refer-
ences. Tj's DistributedObject model contains compre-
hensive notions of object spaces, machines, topologies,
remote references, object marshaling, replication and
migration. These mechanisms are implemented in an
open and extensible way so as to accommodate user
changes and additions. The mechanisms themselves
are rei�ed as meta-level components and provide a
place to de�ne both their implementation and their
use (i.e., policies).

Particular emphasis is placed on argument and
return value passing techniques (i.e., marshaling).
While most systems provide a means of specifying
marshaling on a per-object or per-object group (e.g.,
class) basis, this is not enough. Objects are often
used simultaneously in many di�erent contexts. We
must be able to specify marshaling on a per-use basis.
Tj provides an open, extensible marshaling framework
based on declarative marshaling descriptors which are
speci�ed by users or by the system via automatic anal-
ysis.

This paper deals mostly with design topics and
leave implementation and performance issues to a
companion paper which is in preparation. The re-
mainder of this paper is organized as follows. Section
2 outlines the CodA meta-level architecture while sec-
tion 3 details our proposed distributed object model.
A further section describes object mobility within our
model and section 5 gives an example of object repli-
cation. Finally, in section 6 we draw some conclusions
and discuss possibilities for future work.

2 The CodA Meta-level Architecture
CodA1 is a general-purpose, extensible framework

which opens or exposes various aspects of an object's
implementation. As such it is part of the emerging
�eld of open implementations[13] with other work such

1We give a brief sketch here and refer interested readers to
a fuller description in [11]



as; CLOS MOP [9], ABCL/R2 [10] and RbCl [7] to
name but a few.

The key goal in all of this work is to separate what
and object does (its base-level) from how it does it
(its meta-level). Having done this, we can alter the
computational characteristics of objects in isolation of
their base-level semantics. Sequential objects can be
run in concurrent environments, state storage strate-
gies can be altered etc. All without changing the main
code of the object. In this paper we present the ap-
plication of the CodA architecture to the area of dis-
tributed computing.

In CodA, the meta-level is decomposed into a num-
ber of facets corresponding to particular areas of ob-
ject behaviour such as; execution (both mechanisms
and resources), message passing, message to method
mapping and state maintenance. Each facet is �lled
or described by a meta-component . Facets may be
�lled by one of many di�erent components and one
component can describe several facets. An object's
behaviour is changed by explicitly rede�ning compo-
nents or by extending the meta-level's set of facets.

Components are typically small and simple and de-
�ne a clear programmer's interface (what some might
call a Meta-Object Protocol or MOP). They represent
a �ne-grained decomposition of object behaviour. An
object's behaviour is modi�ed by adding or substitut-
ing di�erent components for the relevant facets of its
meta-level. For example, if we would like to change the
way an object looks up messages (e.g., inheritance), we
change its Protocol component.

If the current component supports some sort of pa-
rameterization, it may be enough to simply modify
it's settings. If not, we substitute a completely new
Protocol object. If we need to describe a completely
new behaviour then we can add facets to the meta-
level and implement new components to �ll them. It
should be noted that not all combinations of compo-
nents are useful or possible.

Sets of meta-components are grouped together into
object models or higher-level descriptions of object be-
haviour (e.g., concurrent or distributed objects). They
form consistent, coherent wholes which can be manip-
ulated as a unit.

As a basis, CodA de�nes a default set of seven com-
ponents which are present for all objects.

Send De�nes how an object handles outgoing mes-
sages. This includes protocol negotiation and
synchronization.

Accept Implements the external interface for incom-
ing messages. Accepts interact with the sending
object's Send to determine if a message is valid
and concerns the base-object. Note that this is
di�erent from receiving.

Queue Organizes and holds messages which have
been accepted but not yet received or processed.
Queues are the main mechanism for decoupling
sender and receiver.

Receive De�nes the operations related to fetching ac-
cepted and queued messages for processing. To

receive a message is to consider processing it.
Even though a message has been accepted by
the Accept, it can later be ignored by the Re-
ceive. When asked for the next message to pro-
cess, a Receive may consider messages from many
queues and various synchronization constraints
before taking a particular message.

Protocol Maps messages onto methods for execution
using some scheme (e.g., inheritance).

Execution Describes how an object executes methods
both in terms of the execution model and the pro-
cessing resources.

State De�nes what state an object has and how that
state is stored and retrieved. Note that a State
does not actually hold the data, it simply knows
how it can be accessed.

2.1 Example Meta-level
In Figure 1 we depict the events, meta-components

and interactions involved in the sending of a message
M from object A to object B (as indicated by the
heavy dashed arrow). The shaded areas contain meta-
components. Each light arrow is an interaction event
(dashed for A's execution thread, solid for B's). The
heavy solid arrows indicate the base/meta relation-
ship and go from base-level to meta-level. We have
labeled only those meta-components relevant to this
particular interaction.

We see that A sendsM by interacting with it's Send
(1). The Send then transfers M to B's Accept (2)
which queues it with the Queue (3). At some point, B
will execute a receive operation which invokes the Re-
ceive (4) and fetches the next message from the Queue
(5). The message is mapped to a method by the Pro-
tocol (6) and �nally, the message is processed by exe-
cuting the found method (7). In this way, every aspect
of basic execution is rei�ed.

2.2 Implementation
CodA has been implemented in Smalltalk and much

of the remaining discussion draws from that expe-
rience. Because CodA deals largely with execution
rather than language issues, we have been able to fully
integrate it into Smalltalk. For each Smalltalk object
we transparently add the meta-level infrastructure and
default meta-components which describe the standard
Smalltalk object model | A standard CodA object
behaves just like a standard Smalltalk object. Hav-
ing opened its implementation, we can adjust the ob-
ject's behaviour as needed. Objects generally retains
its base-level semantics but gains some additional be-
haviour such as concurrency or distribution.

3 The Distributed Object Model
There has been relatively little work done using the

meta-level for implementing distributed object sys-
tems. AL-1/D [12], Apertos [16] and GARF [5] be-
ing notable exceptions. As systems get more complex,
diverse and dynamic, issues of object behaviour be-
come more and more important. We must be able to
describe objects which move and adapt in many ways.
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Figure 1: Sample meta-level con�guration and interaction

Meta-level architectures give us \a place to stand"
and describe both the mechanisms for implementing
this behaviour and the policies for their use. Having
a clear separation between the base and meta-levels
isolates unrelated, application domain (i.e., base-level)
code from the dynamic behavioural (meta-level) code.
Objects can be reused in a variety of computational
environments with little or no change and common
object behaviour descriptions can be used on a vast
array of domain objects.

Using the meta-level facilities provided by CodA,
we have implemented a distributed object system
called Tj. Tj provides both a distributed computation
model with remote references, replication, migration,
etc. and a set of distributed system infrastructure
objects. A Tj distributed system is a collection of Dis-
tributedObjects living in object spaces running on ma-
chines and interconnected by transport mechanisms in
some system topology .

Our approach di�ers from existing systems in the
followingways. The GARF architecture, while provid-
ing much of the functionality required for distributed
systems, is limited to two levels, base and meta and
the domain of distribution. That is, it is not based on
a fully general meta-level architecture.

AL-1/D uses a somewhat coarser (compared to
CodA) decomposition of the meta-level into mod-
els. The bulk of CodA's standard components would
make up just one of AL-1/D's models (the Operation
Model). Furthermore, the decomposition is not bal-
anced. Some models are large and signi�cant (e.g.,
Operation) while others are small and contain little
functionality (e.g., Statistics). There also appears to
be no general framework for managing the models.

Apertos has many good features but is somewhat
lower-level than our work. This is a result of their
focus on operating system issues. For example, while
their meta-level is concerned with contexts, memory
page faults and the like, CodA/Tj deals in message
sends, slot accesses etc, in a sense, object OS issues.

We do not claim that one approach is superior to the
other. They are somewhat orthogonal and are both
required for completely open distributed computing.

SOS and its Fragmented Objects[14] is also related
to our work despite its lack of an explicit meta-level
or framework for meta-level concept description. The
ability to transparently `fragment' objects over pro-
cessors smacks of meta-level behaviour description. It
was through looking at these issues that we discov-
ered one of the most important properties of our dis-
tributed system; the rei�cation of an object's state
and execution behaviours into distinct objects.

This property is a direct consequence of the CodA
object model's explicit de�nition of the State and Ex-
ecution meta-components. In the distributed domain
it means that an object can store its state in one
space but execute in another. Extending this prop-
erty, an object's state and execution can migrate in-
dependently. Having enabled this, it is a simple step
to fragment the actual state storage over multiple ob-
ject spaces. Such relationships and properties are ex-
ploited throughout Tj's distribution mechanisms.

3.1 RemoteReference

Also fundamental to the distributed architecture
is the RemoteReference. A RemoteReference is a lo-
cal representative or Proxy [14] for some remote ob-
ject. Locally they are just like any other object. They
can be stored in instance slots, assigned to variables,
passed as arguments, etc. When sent a message, the
simplest RemoteReference just forwards it to the space
containing the real object | its target . More sophisti-
cated RemoteReferences process some messages locally
while forwarding others to the target.

RemoteReferences are themselves implemented us-
ing modi�ed CodA meta-components. According to
the CodA execution model, when a message is sent
to an object, the sender's Send and the receiver's Ac-
cept interact to e�ect the message transfer. In the
distributed case, these meta-components are in dif-



ferent spaces. Local to the sender, the receiver is a
RemoteReference and its Accept is an intelligent Re-
moteReference to the target's Accept.

Rather than performing the normal accept oper-
ation, the local Accept marshals the message into a
stream of bytes and transmits it to the remote space.
Once there, it is reconstructed and accepted by the
real Accept. In this way, the DistributedObject model
is uniformly applied to all objects in the system, even
to those of the meta-level architecture in which it is
implemented!

3.2 Execution model
In general, the execution model of Tj objects is ei-

ther active or passive. An active object has a thread
of its own while passive objects do not. Normally,
when a passive object receives a message, it borrows
the thread of the sender method for the duration of
the corresponding method execution. However, when
a message is received from remote object, there is no
local thread to borrow. The system provides a thread
which does not belong to a particular object but sim-
ply executes a set of message sends from some root
method. When that method exits, the thread dies or
can be reused.

Active objects can have active methods. An active
method is a method which is executed exclusively by
the object's thread. On the other hand, passive meth-
ods can be executed by any thread. These facilities are
used largely in support of controlling concurrency and
synchronization in a way similar to Emerald's moni-
tors [8]. CodA also supports more sophisticated intra-
object synchronization mechanisms but these are not
discussed here.

3.2.1 Parallelism

Distribution is introduced into a system for a number
of reasons; because it �ts the problem domain, for fault
tolerance or for increased performance. We can gain
performance through concurrent or parallel execution
of distributed objects. To describe parallelism within
a distributed object, Tj includes notions of distributed
message arrival and distributed method execution.

Distributed message arrival is the idea that when
a message arrives at some object, it is simultaneously
distributed to all versions (e.g., replicas) of the ob-
ject. This is di�erent from traditional message mul-
ticasting in that it is de�ned by the receiver rather
than sender. Distributed method execution implies
that when a method is invoked (i.e., actually run), it
is invoked for all versions (e.g., replicas) of the object.

These notions are di�erent in two ways. First, mes-
sage arrival does not imply the execution of a partic-
ular (or any) method. This mapping is determined
by the receiver's meta-level. Second, since messages
may be queued before being processed, message ar-
rival and the method execution which may follow are
temporally decoupled events.

3.3 Marshaling
Marshaling, or the packaging of objects for inter-

space transmission, can have a profound e�ect on

the expressiveness and e�ciency of a distributed sys-
tem. The Tj marshaling scheme allows programmers
to specify object form in a clear and simple way but is
sophisticated enough to handle complex behaviours.

Marshaling is required for passing receivers and pa-
rameters in message sends and return values in mes-
sage replies. In Tj, an object's marshaling policies
are de�ned at the meta-level by the component �lling
the newly created Marshaling facet. These policy de-
scriptions are an interface to the general marshaling
mechanisms supplied by Tj.

3.3.1 Marshaling mechanisms

To build a distributed system, it is technically suf-
�cient to supply just a pass-by-reference mechanism.
Unfortunately, the exclusive use of referencing leads to
a dramatic increase in cross-space references and mes-
sages. This in turn leads to a decrease in performance
of both user code and system code (e.g., distributed
GC).

Passing parameters by value (i.e., by copying) re-
duces cross-space messages but at the expense of in-
creased message size. There is also a loss of gener-
ality as copying is typically only applicable to im-
mutable objects where it will not a�ect semantics.
Work with Emerald [8] has explored more sophisti-
cated techniques such as pass-by-move and pass-by-
visit and found them to be useful.

We have developed a generalized marshaling mech-
anism based on the notion of marshaling descriptors.
These descriptors give hints as to how an object should
be marshaled. Examples are: reference, shallow/deep
copy, replica, etc.

An object's Marshaling de�nes a default descriptor
which is used if no other descriptor is speci�ed or de-
rived. In general, user-supplied descriptors can over-
ride a default however it is possible to prevent or con-
strain this. Descriptors are also descriptor generators
in that they produce descriptors for the various parts
of the object whose marshaling they describe.

At the heart of the marshaling mechanism is a
generic object graph walker or marshaler . The mar-
shaler walks object graphs according to a series of mar-
shal descriptors. At each object in the graph it invokes
the operations speci�ed by corresponding descriptor.
The marshaler maintains the minimum desired, cur-
rent and maximum desired traversal depths as well
other global information such as a marshaled object
registry used for cutting cycles. These combine to give
descriptors a global view of the marshaling process for
use in determining how to proceed.

In addition to several low-level system descriptors,
there are some ten to �fteen di�erent ways to marshal
an object. A partial list of these is given below. This
set is completely extensible allowing users to add new
marshaling techniques in support of new distributed
object behaviours.

Value Substitute some value held by the descriptor
for the actual object being marshaled. Marshal
the value according to a descriptor also held in-
ternally.



Basic Marshal the object's instance variables accord-
ing to its contents' default descriptor.

Depth Traverse the object graph from the current
object to a minimum and maximum depth as
speci�ed by the descriptor. Using this mechanism
we can specify an in�nite range from shallow to
deep copy.

Reference Marshal a global reference to the object.

Cached Reference Marshal a global reference such
that the �rst time it is accessed, the reference is
resolved locally according to a descriptor held by
the reference. Note that this resolution descriptor
can take any form.

Replica Replicate the object in the receiver's space.
The object is replicated according to a further
descriptor held internally.

Move Move the object to the receiver's space. The
object is moved according to a further descriptor
held internally.

Use Consult the receiver to determine the marshal-
ing form which best suits the use of the object.
Having invoked some sort of automatic analysis
system to analyze method argument use, objects
can export this informationvia their Accepts. Ob-
jects sending messages then determine, before the
message is sent, how the arguments will (may) be
used and marshal them accordingly.

Attach Transparently marshal and thus transport a
given set of objects with the annotated object.

Descriptors for these attached objects may also be
speci�ed. This is equivalent to object attachment
as seen in Emerald (see below).

Slot Specify, on a per-slot basis, the inclusion or ex-
clusion of slot contents and the descriptors to use
in their marshaling.

Operation Specify a block of code to be used in mar-
shaling the object. This is the escape mechanism
which enables arbitrarily complex marshaling.

Descriptors can be computed or declared. Com-
puted descriptors are often the result of some analysis
process while declared descriptors occur as annota-
tions to messaging operations. A message annotated
with a declarative marshaling descriptor is shown be-
low. Note that computed and supplied descriptors are
handled in the same way by the system. They are just
derived and attached di�erently.

someObject <-
foo: arg1 {deep}
bar: arg2 {replica}

The above sequence sends the foo:bar: message
to someObject and marshals the �rst argument using
deep copy. The second argument is replicated in the

receiving space. In this case it is replicated according
to the arg2's default marshaling descriptor.

If we wish to specify how the replication will take
place (i.e., the form of the replicas), we can specify a
further, nested , descriptor such as, freplica: (-3 20)g.
This speci�es that the argument is passed as a replica
which is a traversal of the argument's object graph to
a minimum of depth 3 and a maximum of depth 20.

This notion of nesting descriptors can be applied
in many situations. For example, when using cached
reference marshaling we also specify a descriptor to be
used to resolve the remote reference when it is located.
We may even choose to resolve the reference with a
replica (e.g., fcached: replicag). Variations on this
nesting theme can be as complex as required and can
involve almost any of the descriptors mentioned above.

3.3.2 Policies

A rich, extensible set of marshaling mechanisms is
only part of the answer. We must also be intelligent
about how we determine which mechanism to use for
a particular object in a particular situation. The op-
timal strategy can be determined by looking at user-
supplied information, the objects (arguments) them-
selves or the message being sent. This is the role of
the Marshaling component.

An object with no marshaling descriptor annota-
tions uses the defaults supplied by its Marshaling. The
default is generally determined by some internal prop-
erty (e.g., class or type). For example, most systems
pass objects as references unless they are immutable,
in which case they are passed as values. Tj objects
generally follow this model.

Systems like Emerald support object-speci�c mar-
shaling speci�cation using object attachment . Under
the attachment mechanism, users explicitly attach ob-
jects to one another. When an object is copied, all of
its attached objects are copied. Tj supports this in the
form of attach marshaling descriptors. It also supports
slot-based attachment. Under this model, marshaling
descriptors specify the attachment of objects by virtue
of the slot in which they are held (see slot descriptor).

Many systems have a uniform view of marshaling
on all instances of a particular type of object | all ob-
jects of typeX are passed using the same technique(s).
Other systems allow the speci�cation of marshaling on
a per-object basis (e.g., object attachments). In con-
trast, the Tj marshaling system supports descriptor
speci�cation on a per-use basis. This is important in
realizing optimizations and system-level mechanisms.

3.3.3 Analysis and Optimization

The automatic optimization of user-level code depends
largely on the analysis of particular sends to determine
how parameters and return values should be passed |
It is, by de�nition, use-case speci�c.

Systems which support use-case marshaling speci-
�cation, generally do so via automatic analysis tech-
niques. Static analysis with strong-typing can deter-
mine a method's marshaling requirements quite accu-
rately by looking at its parameter and return value



types and references, and examining the call-graph.
Systems like Orca [1, 15] and Munin [3] use such tech-
niques. Essentially they treat strong-typing informa-
tion as variable use-case information.

The situation is not so good for untyped systems
like Smalltalk. Unfortunately, classes (or even types)
are not su�cient to enable analysis or runtime systems
to determine the best or correct marshaling strategy.
This is particularly true of polymorphic and system-
level code (e.g., the implementation of a replication
mechanism).

Polymorphic variables default to the most general
type or class of all possible uses. As such, structural
information essential to the marshaling analysis is re-
moved from the system.

System-level code often functions `underneath' ob-
jects and so should not be subject to the same ab-
stractions as normal object clients. In these situa-
tions, marshaling must be speci�ed in a way which
is independent of the objects' normal behaviour and
speci�c to the particular use. These speci�cations can
come from static programmer declarations or be dy-
namically derived.

For example, suppose we developed a metric for
determining how many times a method argument is
accessed. Using this metric we might suggest that ar-
guments referenced more than X times be passed by
value or by migration so they are local. On the other
hand, at run-time we may �nd that one of those argu-
ments is in fact a very large structure and that copy-
ing or moving of the object would be costly. Clearly
there is a trade-o�. Note that strong typing does not
address this case as the copied size of an object is de-
termined by its type and things like its attachments
which may be dynamically determined.

We propose the use of run-time negotiation to weigh
the accessing costs against the copying/movement
costs and determine the appropriate action. By ne-
gotiation we do not mean some heavy-weight, multi-
iteration conversation between the sender and receiver
over the processor inter-connect channels. Rather, we
use local meta-level information.

By giving out a reference to itself, an object is pro-
jecting a part of its Accept into the remote space. The
sender's Send component can communicate and coop-
erate locally with the receiver's projected Accept to
determine the best communication strategy.

By implementingTj using a rich meta-level environ-
ment (i.e., CodA), we expose implementation informa-
tion and allow the system to make informed choices.
This exposure does not violate encapsulation because
it is the object's choice to provide information. Tj
provides the mechanisms and framework for using the
available information to calculate declarative marshal-
ing speci�cations which suit the needs of a particular
object interaction. The mechanisms scale to handle a
full range of marshaling descriptors from broad hints
to precise forced speci�cations.

4 Object mobility
As discussed in the overview of Tj's distributed ob-

ject model, an object's state and execution are inde-
pendent. As such, the issues related to the mobility of

their state and execution are somewhat orthogonal. In
fact, since an object's Execution is just another object,
the implementation of its mobility is largely the same
as that of any other object. To control the mobility of
an object, we create two new facets for the meta-level;
Replication and Migration.

4.1 Execution mobility
In terms of mobility, we do not consider the possi-

bility of Execution replication since replication gener-
ally comes with some level of global consistency. Tj
assumes a MIMD computing model and expects the
various copies of an object's Execution to evolve inde-
pendently making global consistency undesirable.

Instead, an object's Execution can be copied or mi-
grated to remote spaces in a way similar to the compu-
tational migration seen in [6]. Note that an object can
have Executions in many spaces and still only maintain
one version of its state. This exibility is a direct con-
sequence of the separation of the State and Execution
behaviours of objects and gives rise to the following six
possible relationships between versions of an object's
State and its Execution:

1 : 0 Normal passive object. This is the default
case. Objects have one state location and bor-
row threads from their senders.

1 : 1 Normal active object. Objects have one state lo-
cation and a dedicated thread for their execution.
These may be remote from each other.

1 : N Parallel object with single state. Useful where
the object makes many accesses to remote objects
and few to itself. Simply copy the Execution to
all the relevant spaces and the methods execute
locally. Optional method distribution will result
in all copies of the Execution executing the same
method though not necessarily in lock-step. State
accesses are serialized through the one copy of the
state.

M : 0 Replicated passive object. Each replica is pas-
sive and borrows threads local to its state. This
results in a degree of implicit parallelism. State
accesses are controlled according to the replica-
tion consistency model.

M : 1 Replicated active object. Use cases for this may
seem somewhat contrived but they are nonethe-
less feasible as potential behaviours. Consider the
case where a particular object is large, as is the
number of references it does to itself and the ob-
jects in any given space. The object's execution is
such that it processes data in one space discretely
and then moves to the next. In this case, it may
be more e�cient to replicate the state once in
each space. Then we can avoid the iterative state
migration and execution synchronization cost by
migrating a single Execution among the replicas.

M : N Replicated parallel object. This is a mixture
of the above models.



Methods for an object executing remotely, do so
such that the receiver (i.e., self) is a RemoteRefer-
ence to the object which is the master copy of the
object's state. All instance variable accesses are con-
verted to remote message sends to the nearest space
which maintains state for the object. Depending on
how the Execution was created, the local version of the
object may also maintain local versions of the object's
other meta-components such that some messages can
be handled locally.

Tj does not support full thread migration in the
sense that arbitrary threads cannot be migrated at
arbitrary points in time. There is no design limitation
imposing this restriction, it simply has yet to be im-
plemented. As it is, migration (and in fact copying)
can only be done on message processing boundaries.
This is to avoid the need to copy and recreate portions
of the stack. Since we are on a message boundary, we
can simply construct the appropriate stack base for
the execution in the new space. There are some out-
standing technical issues relating to the migration of
active objects which will be addressed in future work
as the need arises.

4.2 State Replication
When an object's state is replicated, the master

(the original) is copied to one or more remote spaces
creating a number of clients. The master's meta-level
is modi�ed such that state changes are trapped by the
Replication component. Replication is in fact indepen-
dent of state form and can accommodate radically dif-
ferent representations in di�erent spaces. Replication
components themselves are quite simple.

The master's Replication maintains a list of spaces
which contain replicas. On state change, it coordi-
nates with those spaces to update the clients according
to some consistency model. The clients' meta-levels
contain a counterpart Replication component which
has agreed to an update protocol and knows the iden-
tity of the master object. Depending on the consis-
tency model, state reads are also routed through the
Replication.

The replication model for an object is speci�ed via
a descriptor. In section 3 we presented a subset of the
marshaling descriptors available in Tj. Readers will
note the presence of a replica marshaling descriptor.
This uniform mechanism admits the following possi-
bilities:

� Parameter passing by replication. This is a novel
mechanism in which the argument is copied with
an indication that when it is received in a space, it
should report back to the master for consistency
management.

� Varying consistency models by slot. Allowing dif-
ferent consistency models recognizes the fact that
objects may have di�erent use patterns from ap-
plication to application and that the demands
they place on their state variables may not be
homogeneous.

� Slot form speci�cation. While the consistency
model describes how and when replicas are up-
dated, specifying the form is directly analogous

specifying the parameter marshaling descriptor
used when updating a remote value. In message
passing, a use-case may demand that a particu-
lar slot of an object be passed in a certain form
(e.g., copied to a particular depth). In replica-
tion we may encounter the same use-case and
would expect that slot of the object be replicated
in the same way (i.e., as a copy to a particular
depth). Here we allow the full range of marshal-
ing mechanisms for use in specifying remote slot
form. Replicated slots can even be updated by
further replicating the value in the slot!

4.3 State Migration
The mechanisms for State migration are quite sim-

ilar to those for replication. Migration is essentially a
copy operation followed by a global pointer update. It
does not place any \after operation demands" on the
originating space other than the need for a migrated
object location mechanism [4].

As with replication, objects are migrated according
to the speci�cations given in the supplied descriptor.
An object can be migrated in almost any form. For
example, specifying fmoveg for a message argument
or object slot invokes the default migration. fmove:
descSpecg moves the object in the form given by de-
scSpec, another descriptor. fcache: moveg describes a
cached reference which will move an object only if it
is accessed in the remote space.

There are also some issues related to the threads
executing in an object when it is migrated. By in
large, these are handled by the local object replace-
ment mechanism. When an object's state is migrated,
the local version of the object is replaced by a remote
reference to the object in its new location. As such,
any references or messages to the object will be for-
warded to its new location.

In addition to specifying the form of the migration,
the Migration also de�nes the policies for migration.
For example, where and when the object is to be mi-
grated. In many cases, the user/programmer may hint
that an object should be migrated. Say in a parameter
passing marshal descriptor. It is then up to the pa-
rameter's Migration to provide additional information
(e.g., cost, size, complexity) in support of the param-
eter passing negotiation techniques discussed above.
This is also true of Replications.

5 Replication Example
To demonstrate replication we develop the partial

replication scenario shown in Figure 2. The �gure
shows two objects, original (in space 0) and replica (in
space 1). Though not shown, original is actually a 2D
N-Body [2] problem solver which calculates the forces
exerted by, and movements of, a collection of bodies or
particles in a 2D plane. N-Body solvers arrange a set
of particles in a Quad tree structure according to their
physical location and then process each particle indi-
vidually. Overall, processing consists of a couple tree
scans and iterations over the collection of particles.

To distribute this algorithm we divide the particles
into subsets which are worked by di�erent solvers, one
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Figure 2: Distributed object layout

per space. The sets however, are not entirely inde-
pendent as all particles potentially exert forces on all
others. The tree is the central data structure for re-
lating particles to one another and must be globally
known and unique. Here we detail the partial replica-
tion of the solver.

As shown in Figure 2, original, the solver, has two
slots; particles and tree. replica is a partial replica of
original where the tree slot is consistency managed and
the particles slot is not. All the replicas in the system
share the same tree but have independent particle sets.
The replication of original is done in a series of six
steps. Figure 3 shows the required code while the
discussion below explains each step.

1. Ensure that the original's Replication compatible
with the behaviour described by the MasterRepli-
cation component. It should be able to detect
state changes in the appropriate slots and main-
tain a list of replicas. The �rst argument is a mar-
shaling descriptor which speci�es how the slots of
original are to be copied to the remote space and
as a result, how original is to be replicated. Simply
giving a slot name indicates that the slot is to be
replicated using whatever marshaling technique is
appropriate at the time (i.e., the default).

2. Invoke the replication operation and specify
which spaces are to receive replicas. In keeping
with our example, only space 1 is speci�ed.

3. Copy the relevant slots of original to all of the
speci�ed spaces. The replicate:using:for: message
has three arguments. Though the �rst and third
appear redundant, they are not | they are mar-
shaled di�erently. The �rst argument is mar-
shaled according to the speci�cation in descriptor
while the third is marshaled as a reference. This

di�erence is critical for the next two steps. When
the message gets to the remote space, the �rst and
third arguments will no longer be identical. The
�rst will be a copy of base while the third will be
a reference to base. Note that though marshal-
ing descriptor speci�cation is a simple addition
to the messaging syntax, the details are omitted
from this example to improve clarity.

4. Make the remote copy into a client of original.
This is similar to step 1 and executes in the
remote space which will contain replica. copy's
meta-level is modi�ed such that all state changes
are delegated to master and its Replication knows
the identity of its master for future reference.

5. Convert any preexisting remote references to orig-
inal to be local references to replica. Remote
spaces may contain references to master prior to
replication. To maintain a consistent view of the
world, these remote references should be changed
into local references to the newly created replica.

6. Invoke consistency management on the replicated
slots of original by adding the space to the list of
consistency controlled replica locations.

In step 1 we hooked the relevant state change op-
erations for original. Note that we do not require
a new State component. The existing component's
meta-level is manipulated to hook state accesses. This
both isolates replication from representation and re-
duces the possibility of object model conict. When
original's replicated state is changed, its Replication's
update:with:for method (shown below) is invoked by
the hook. The method simply broadcasts the change
in slot to all of original's clients.



1) original meta replication asMasterUsing: #('tree') for: original.
2) original meta replication replicateIn: (Spaces at: 1) for: original

MasterReplication>>replicateIn: space for: base
3) space replicate: base using: descriptor for: base.
6) replicaSpaces add: space

Space>>replicate: copy using: descriptor for: master
4) copy meta replication asClientOf: master using: descriptor for: copy.
5) master become: copy

Figure 3: The making of a replica

MasterReplication>>
update: slot with: value for: base

replicaSpaces do: [:space | | rep |
rep := (base in: space).
rep meta replication

update: slot with: value for: rep]

In this example we have shown a relatively lax
model of consistency. To implement strict consistency
requires the addition of a two phase update protocol
between masters and clients and the hooking or dele-
gation of read state accesses on masters and clients as
well as writes. Both of these changes are straightfor-
ward and are done using existing meta-level structures
and mechanisms.

6 Conclusions and Future Work
We have detailed the DistributedObject model pro-

vided by Tj. It is a comprehensive distributed en-
vironment suitable for prototyping applications and
experimenting with distribution mechanisms. Tj is
based on the idea of object behaviour change at the
meta-level. It uses the CodA meta-level architecture
to open the implementation of objects and provide a
framework in which to describe sophisticated distribu-
tion mechanisms such as marshaling, replication and
migration.

The clear separation of base- and meta-levels fa-
cilitates the distribution of objects which were never
intended to be distributed. In general, this requires
very little change at the base-level. As such, program-
mers can reuse entire class libraries and experiment
with quite di�erent distribution models without ma-
jor concern for base-level behaviour.

Tj provides a powerful framework for describing ob-
ject marshaling on a per-object, per-object-group and
per-use basis. Our model of marshaling descriptors
presents the user/programmer with a single, clear and
consistent model of interspace object transport speci-
�cation. The descriptors are used both for parameter
passing and mobility operations (e.g., replication and
migration). They are uniform and recursive.

Overall, Tj addresses problems related to introduc-
ing distribution to systems which previously had none
and in the description of complex distributed object

behaviour. The framework itself is robust and exten-
sible and we have found it to provide an excellent plat-
form for application prototyping and behaviour exper-
imentation.

The current version of Tj is implemented in
Smalltalk and runs on the Fujitsu AP1000 MPP ma-
chine with up to 1024 nodes. It also runs on clusters
of Unix workstations using MPI messaging. All of
the mechanisms and models described here are imple-
mented and running with several more in the design
and implementation stage.

Future work in this area will be directed at the ad-
dition of distribution mechanisms (e.g., new replica
coherency strategies) and automatic analysis of appli-
cation code to direct the use of distributed mecha-
nisms such as marshaling.
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