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Part 2

Last month we described the system-independent parts of our
implementation of an exception-handling system. This month’s article
describes those parts of our implementation that rely on Smalltalk /286
specifics, with special emphasis on contexts. As a result, this article should
interest anyone needing to do low-level hacking in /286, since it describes
the architecture of process stacks, how contexts fit onto that stack, and how
temporaries are layed out in contexts. The ability to examine and
manipulate contexts is both powerful and useful, and it's been exploited in
two non-exception-handling efforts that we know about. The first and
foremost is the system debugger, which uses all of contexts’ capabilities,
including the modification of local variables and the resumption of
execution at any point in the stack. The other example is a backtracking
system for Smalltalk developed by Wilf LaLonde and Mark Van Gulik [1],
which, like our exception handler, uses contexts to implement non-
standard control flow.

The last few pieces to our implementation are the system-specific
methods in class Exception, extensions to the fundamental classes
Process, Context, and HomeContext, and the addition of three new
context-related classes. The changes in these classes comprise extensions
to Digitalk’s base that make processes and particularly contexts easier to
work with. The same changes are not necessary in ParcPlace’s Smalltalk-
80, which provides all the functionality we need and more.
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The Machine-dependent Implementation

There are three Exception methods we still need to describe:

fetchHandlerBlock:, restart, and return. Each of these methods depends
on some specific aspects of V/286.

We begin with fetchHandlerBlock:, the method used by
propagatePrivateFrom: to find the correct handler for the receiving
exception. FetchHandlerBlock: is implemented as:

fetchHandlerBlock: startContext
startContext sendersDo: [ :ctxt |

(ctxt selector == #handle:do:
and: [ctxt receiver accepts: signal])
ifTrue: [handlerContext := ctxt.

Actxt at: 4]].
Anil

In general, startContext will be the value of the exception’s
signalContext instance variable, which is the context of the raise
message. The message sendersDo: is used to iterate down the context stack

from startContext, applying the block to each context in turn. The block
checks each context looking for a handler for the exception; the correct

handler context will be the first one reached where handle:do: was sent to

the exception’s signal or one of its parents (which is what the accepts:
method checks for). When such a context is found, it's remembered as the

handlerContext, and the object in its fourth slot is returned. This object

will be the block that was passed as the first parameter of the handle:do:
message. It is fourth because of the order Digitalk stores local variables in
contexts, with first slots for block arguments in reverse order of their
appearance, followed by temporaries in reverse order, then parameters in
reverse order. Figuring this out requires some knowledge of the context
layout in V/286; we’ll describe that in more detail when we discuss contexts
below.

The return method is implemented in terms of returnDoing:, which
itself is implemented as follows:

returnDoing: aBlock
“The stack is unwound to the context of the handle:do:
message that caught this Exception, at which point
aBlock is evaluated and its value returned as the value
of the handle:do: message.”

| answer |



answer := aBlock value.
self handlerContext unwindLaterContexts.
(self handlerContext at: 2) value: answer

This is analogous to the implementation for proceedDoing:--the only
difference is in accessing the block that will (when evaluated) return into

the right context. In this case returnBlock is stored in the handler’s

context (recall our definition of handle:do: from Part 1) and is accessible in
the second slot of the context’s array of temporaries. So evaluating the

returnBlock returns from the handle:do: context as desired. As with

proceedDoing:, though, the method must call unwindLaterContexts first
to make sure unwind blocks are evaluated.

Implementing restart relies on restartAt:, a Digitalk-provided
method for class Process, as seen in the following code:

restart
“Restart the #handle:do: context.”

| index process |

handlerContext unwindLaterContexts.

process := handlerContext process.

index := process framelndexOf: handlerContext.
process restartAt: index

This method makes a process restart execution at an arbitrary context in its
context stack. First, as before, the exception unwinds all contexts above its

handlerContext. The exception then finds the handlerContext’s index in
its process, and tell its process to restart execution there.

To motivate the changes to the Process and Context classes, we
need first to describe how these classes relate in the base system. Process
in /286 is a subclass of OrderedCollection; its indexed instance variables
are used to store information about the stack of unresolved message sends.
Conceptually we think of each message send as being represented by a
Context object. However, for optimization purposes, V/286 only creates
HomeContexts for certain method invocations. (In particular, they create a
HomeContext only if the method that's evaluated contains a block.) This
dual representation is potentially troublesome, so we hide it behind two new
context-related classes. Before looking at these classes, though, we need to
understand the layout of Process’ stack. Each message send receives a
stack frame of five or more slots on the stack, with the following layout:
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Figure 2: Process stack layout

Each stack frame begins with the frame address of the previous
message. This frame address is unique for each message send, and it
persists as long as the message is on the stack. In addition to this address,
message sends can be referenced by their frame index, which is the
message send’s position on the stack. The topmost (i.e., most recent) send is
at frame index 0, the previous send is at index 1, and so on.

After the frame address comes the byte array (which is Smalltalk’s
compiled representation of the method), the compiled method, the
instruction counter, and the message’s receiver. If a HomeContext exists
for the frame, it will be stored in the sixth slot. If there is no HomeContext
for the frame then there will be slots for each of the parameters and
temporary variables (in the same order referred to above: block arguments
in reverse order followed by temporaries in reverse order followed by
parameters in reverse order).

The Process class provided by Digitalk comes with a method,
contextFor:, that returns the context for a given frame index. This has
three problems for our purposes: first, the context may not exist, in which
case nil is returned; second, the context returned for blocks (which are
instances of class Context in V/286) is their HomeContext, which is not the
same as their frame on the context stack; and third, since the frame index
changes as execution proceeds, we really need to use the frame address to




identify our contexts. So we added two methods to Process,
indexOfAddress: and groundedContextFor:. The method

indexOfAddress:, which converts a frame address into a frame index, first
checks if the input frame address matches the address of its top frame. If it
IS, the receiving process returns 0 as the associated frame index. Otherwise
the process returns the index of the first frame whose frame address
matches the input.

indexOfAddress: frameAddress
| index address |

frameAddress = topFrame
ifTrue: [AOQ].

index := 1.
[address := self frameAt: index - 1 offset: O.
frameAddress = address]

whileFalse: [

address = 0
ifTrue: [Anil].
index := index + 1.
].
Aindex

The other addition to Process is a method called
groundedContextFor: that is an extended version of contextFor:. It differs
from contextFor: only in that it always returns a context-like object,
whether or not a real HomeContext exists for the frame requested:

groundedContextFor: framelndex
| frameAddress |

(self methodAt: framelndex) hasBlock
ifTrue: [
(self homeFrameOf: framelndex) = framelndex
ifTrue: [AGroundedContext
forindex: framelndex
forProcess: self
11
APseudoContext
forindex: framelndex
forProcess: self



This method makes use of the two new classes we added. A
GroundedContext object is returned when a real HomeContext is available
for the frame. (We return a GroundedContext rather than the

HomeContext itself because GroundedContexts have additional behavior--
in particular they know the process they belong to.) When a real

HomeContext is not available for the frame, or when the frame

corresponds to a block’s activation, the method creates a PseudoContext
object. This object knows only the frame address of the frame it represents--
but using the frame address it can behave exactly like a normal context.

Thus, PseudoContexts and GroundedContexts seem identical externally,

hiding the difference between frames with HomeContexts and those
without.

PseudoContext and GroundedContext are designed to fulfill the
same interface, so we also created an abstract class called

AbstractContext that is a common superclass for the two.

AbstractContext defines the interface, and it also implements a number of
methods by depending on a few methods from its subclasses. In particular,

AbstractContext defines the method unwindLaterContexts as:

unwindLaterContexts
“Search down the stack, starting with the current
context, evaluating the unwindBlock in every
Context>>valueOnUnwindDo: or
Context>>valueNowOrOnUnwindDo: context. Stop at
the receiver.”

| s |
self thisContext
sendersDo:
[:ctxt |
ctxt == self ifTrue: [Aself].

(ctxt receiver isKindOf: Context)
ifTrue: [(s := ctxt selector) ==
#valueOnUnwindDo:
ifTrue: [(ctxt at: 1) value]
ifFalse: [s == #valueNowOrOnUnwindDo:
ifTrue: [(ctxt at: 2) value]]ll

This is similar to the fetchHandlerBlock: method. It looks down the
message stack starting at the current context, looking for any context for
the valueOnUnwindDo: or valueNowOrOnUnwindDo: messages. If it finds
one, it evaluates the unwind block, which is available in the first slot of the



valueOnUnwindDo: context or the second slot of the valueNowOrUnwindDo:
context.

In addition, AbstractContext defines the sender method as follows:

sender
Aprocess groundedContextFor:
(process indexOfAddress: self address) + 1

AbstractContext defines the at: and at:put: methods to provide

access to its underlying context’s array of temporary variables. The at:
method is implemented as:

at: anlnteger
| index |
index := process indexOfAddress: self address.
Aprocess tempAt: index number: aninteger

At:put: works the same way except that it stores into the slot (using
tempAt:number:put:) rather than reading from it. The definition of the
address method used in sender and at: differs for PseudoContext and
GroundedContext, with the former returning the value of its
frameAddress instance variable and the latter returning the frameOffset
of its underlying HomeContext.

Finally, there is one method, thisContext, we added to Object. Like
sender, this is a feature that's built in to Smalltalk-80. Unlike the sender

method, though, thisContext is supported as a pseudo-variable (like self)
in Smalltalk-80, but we implement it as a method for V/286:

thisContext
Al] homeContext sender

This completes the implementation of our exception-handling
system. After adding this package to your V/286 system, you can introduce
the use of signals to identify common or important errors, and so support
dynamic responses to errors in future work. Besides this practical benefit,
our addition of signal handling to V/286 is important as an illustration.
Because processes and contexts are programmer-manipulable objects, we
were able to extend the functionality of the low-level system to support our

needs as application programmers. In particular, methods for Exception
needed to reflect on the system’s operation by knowing about and accessing
V/286’s representation of contexts and processes. Without that ability, we'd
have been unable to make the necessary changes--only language
implementers could make them, by changing the language and the
compiler themselves.



It's also interesting to compare our implementation with ParcPlace’s
system. While we've provided much of the same functionality, Smalltalk-
80’s exception handling has two advantages over ours. First, their system is
more efficient than ours because it is supported by the virtual machine
instead of being implemented entirely in Smalltalk. They have several
important optimizations to speed up expensive operations such as
traversing the context stack looking for the next exception handler or
unwind block. In addition, the reflective nature of our implementation is
slower because we rely on more layers of message sends and abstractions--
this is a problem that will exist until reflective programming can be
recognized and optimized by the compiler. Smalltalk-80 also behaves better
because, as we noted last month, normal method returns are treated just
like returns from exceptions, so that unwind blocks will be executed if
skipped over either in exception handling or in normal computation. We
couldn’t provide the same function because the semantics of method
returns are hard-wired into the V/286 virtual machine; we would have
benefited from a more reflective implementation in which method returns
could be modified by the programmer. In the future we hope to write other
articles that highlight reflective aspects of Smalltalk, and to see other
practical benefits of objectifying system internals.
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