
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-12. NO. 2. FEBRUARY 1986 251

A Rational Design Process: How and Why to Fake It
DAVID LORGE PARNAS AND PAUL C. CLEMENTS

Abstract--Many have sought a software design process that allows a
program to be derived systematically from a precise statement of re-
quirements. This paper proposes that, although we will not succeed in
designing a real product in that’way, we can produce documentation
that makes it appear that the software was designed by such a process.
We first describe the ideal process, and the documentation that it re-
quires. We then explain why one should attempt to design according to
the ideal process and why one should produce the documentation that
would have been produced by that process. We describe the contents of
each of the required documents.

Index Terms-Programming methods, software design, software
documentation, software engineering.

I. TH E S EARCH FOR THE P H I L O S O P H E R’S S T O N E: WH Y

Do W E W ANT A R A T I O N A L D ESIGN P R O C E S S?

PERFECTLYA rational person is one who always has
a good reason for what he does. Each step taken can

be shown to be the best way to get to a well defined goal.
Most of us like to think of ourselves as rational profes-
sionals. However, to many observers, the usual process of
designing software appears quite irrational. Programmers
start without a clear statement of desired behavior and im-
plementation constraints. They make a long sequence of
design decisions with no clear statement of why they do
things the way they do. Their rationale is rarely explained.

Many of us are not satisfied with such a design process.
That is why there is research in software design, program-
ming methods, structured programming, and related top-
ics. Ideally, we would like to derive our programs from a
statement of requirements in the same sense that theorems
are derived from axioms in a published proof. All of the
methodologies that can be considered “top down” are the
result of our desire to have a rational, systematic way of
designing software.

This paper brings a message with both bad news and
good news. The bad news is that, in our opinion, we will
never find the philosopher’s stone. We will never find a
process that allows us to design software in a perfectly
rational way. The good news is that we can fake it. We
can present our system to others as if we had been rational
designers and it pays to pretend do so during development
and maintenance.

Manuscript received March 18, 1985. This work was supported by the
U.S. Navy and by the National Science and Engineering Research Council
(NSERC) of Canada.

D. L. Parnas is with the Department of Computer Science, University
of Victoria, Victoria, B. C. V8W 2Y2, Canada, and the Computer Science
and Systems Branch, Naval Research Laboratory, Washington, DC 20375.

P. C. Clements is with the Computer Science and Systems Branch, Naval
Research Laboratory, Washington, DC 20375.

IEEE Log Number 8405736.

II. W HY W I L L A S O F T W A R E D E S I G N “ PR O C E S S”

A LWAYS B E AN ID E A L I Z A T I O N ?

We will never see a software project that proceeds in
the “rational” way. Some of the reasons are listed below:

1) In most cases the people who commission the build-
ing of a software system do not know exactly what they
want and are unable to tell us all that they know.

2) Even if we knew the requirements, there are many
other facts that we need to know to design the software.
Many of the details only become known to us as we pro-
gress in the implementation. Some of the things that we
learn invalidate our design and we must backtrack. Be-
cause we try to minimize lost work, the resulting design
may be one that would not result from a rational design
process.

3) Even if we knew all of the relevant facts before we
started, experience shows that human beings are unable
to comprehend fully the plethora of details that must be
taken into account in order to design and build a correct
system. The process of designing the software is one in
which we attempt to separate concerns so that we are
working with a manageable amount of information. How-
ever, until we have separated the concerns, we are bound
to make errors.

4) Even if we could master all of the detail needed, all
but the most trivial projects are subject to change for ex-
ternal reasons. Some of those changes may invalidate pre-
vious design decisions. The resulting design is not one
that would have been produced by a rational design pro-
cess.

5) Human errors can only be avoided if one can avoid
the use of humans. Even after the concerns are separated,
errors will be made.

6) We are often burdened by preconceived design ideas,
ideas that we invented, acquired on related projects, or
heard about in a class. Sometimes we undertake a project
in order to try out or use a favorite idea. Such ideas may
not be derived from our requirements by a rational pro-
cess.

7) Often we are encouraged, for economic reasons, to
use software that was developed for some other project. In
other situations, we may be encouraged to share our soft-
ware with another ongoing project. The resulting software
may not be the ideal software for either project, i.e., not
the software that we would develop based on its require-
ments alone, but it is good enough and will save effort.

For all of these reasons, the picture of the software de-
signer deriving his design in a rational, error-free way
from a statement of requirements is quite unrealistic. No

0098-5589/86/0200-0251$01.00 0 1986 IEEE

252 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-12, NO. 2. FEBRUARY 1986

system has ever been developed in that way, and probably
none ever will. Even the small program developments
shown in textbooks and papers are unreal. They have been
revised and polished’ until the author has shown us what
he wishes he had done, not what actually did happen.

III. WHY Is A DESCRIPTION OF A RATIONAL IDEALIZED

PROCESS USEFUL NONETHELESS ?

What is said above is quite obvious, known to every
careful thinker, and admitted by the honest ones. In spite
of that we see conferences whose theme is the software
design process, working groups on software design meth-
ods, and a lucrative market for courses purporting to de-
scribe logical ways to design software. What are these
people trying to achieve?

If we have identified an ideal process, but cannot follow
it completely, we can still follow it as closely as possible
and we can write the documentation that we would have
produced if we had followed the ideal process. This is what
we mean by “faking a rational design process.”

Below are some of the reasons for such a pretense:
1) Designers need guidance. When we undertake a large

project we can easily be overwhelmed by the enormity of
the task. We will be unsure about what to do first. A good
understanding of the ideal process will help us to know
how to proceed.

2) We will come closer to a rational design if we try to
follow the process rather than proceed on an ad hoc basis.
For example, even if we cannot know all of the facts nec-
essary to design an ideal system, the effort to find those
facts before we start to code will help us to design better
and backtrack less.

3) When an organization undertakes many software
projects, there are advantages to having a standard pro-
cedure. It makes it easier to have good design reviews, to
transfer people, ideas, and software from one project to
another. If we are going to specify a standard process, it
seems reasonable that it should be a rational one.

4) If we have agreed on an ideal process, it becomes
much easier to measure the progress that a project is mak-
ing. We can compare the project’s achievements to those
that the ideal process calls for. We can identify areas in
which we are behind (or ahead).

5) Regular review of the project’s progress by outsiders
is essential to good management. If the project is attempt-
ing to follow a standard process, it will be easier to review.

IV. WHAT SHOULD THE DESCRIPTION OF THE

D E V E L O P M E N T P ROCESS T E L L U s ?
The most useful form of a process description will be

in terms of work products. For each stage of the process,
this paper describes:

1) What product we should work on next.
2) What criteria that work product must satisfy.
3) What kind of persons should do the work.
4) What information they should use in their work.

Management of any process that is not described in

terms of work products can only be done by mindreaders.

Only if we know which work products are due and what
criteria they must satisfy, can we review the project and
measure progress.

V. W H A T Is T H E RATIONAL DESIGN PROCESS?

This section describes the rational, ideal software de-
sign process that we should try to follow. Each step is
accompanied by a detailed description of the work product
associated with that step.

The description of the process that follows includes nei-
ther testing nor review. This is not to suggest that one
should ignore either of those. When the authors apply the
process described in this paper, we include extensive and
systematic reviews of each work product as well as testing
of the executable code that is produced. The review pro-
cess is discussed in [1] and [17].

A. Establish and Document Requirements

If we are to be rational designers, we must begin know-
ing what we must do to succeed. That information should
be recorded in a work product known as a requirements
document. Completion of this document before we start
would allow us to design with all the requirements in front
of us.

I) Why do we need a requirements document?
1) We need a place to record the desired behavior of the

system as described to us by the user; we need a document
that the user, or his representative, can review.

2) We want to avoid making requirements decisions ac-
cidentally while designing the program. Programmers
working on a system are very often not familiar with the
application. Having a complete reference on externally
visible behavior relieves them of any need to decide what
is best for the user.

3) We want to avoid duplication and inconsistency.
Without a requirements document, many of the questions
it answered would be asked repeatedly throughout the de-
velopment by designers, programmers and reviewers. This
would be expensive and would often result in inconsistent
answers.

4) A complete requirements document is necessary (but
not sufficient) for making good estimates of the amount of
work and other resources that it will take to build the sys-
tem.

5) A requirements document is valuable insurance
against the costs of personnel turnover. The knowledge
that we gain about the requirements will not be lost when
someone leaves the project.

6) A requirements document provides a good basis for
test plan development. Without it, we do not know what
to test for.

7) A requirements document can be used, long after the
system is in use, to define the constraints for future
changes.

8) A requirements document can be used to settle ar-
guments among the programmers; once we have a com-
plete and accurate requirements document, we no longer
need to be, or consult, requirements experts.

PARNAS AND CLEMENTS: RATIONAL DESIGN PROCESS

Determining the detailed requirements may well be the
most difficult part of the software design process because
there are usually no well-organized sources of informa-
tion.

2) What goes into the requirements document?
The definition of the ideal requirements document is

simple: it should contain everything you need to know to
write software that is acceptable to the customer, and no
more. Of course, we may use references to existing in-
formation, if that information is accurate and well orga-
nized. Acceptance criteria for an ideal requirements doc-
ument include the following:

1) Every statement should be valid for all acceptable
products; none should depend on implementation deci-
sions.

2) The document should be complete in the sense that
if a product satisfies every statement, it should be accept-
able.

3) Where information is not available before develop-
ment must begin, the areas of incompleteness should be
explicitly indicated.

4) The product should be organized as a reference doc-
ument rather than an introductory narrative about the sys-
tern. Although it takes considerable effort to produce such
a document, and a reference work is more difficult to
browse than an introduction, it saves labor in the long run.
The information that is obtained in this stage is recorded
in a form that allows easy reference throughout the proj-
ect.

3) Who writes the requirements document?
Ideally, the requirements document would be written by

the users or their representatives. In fact, users are rarely
 equipped to write such a document. Instead, the software

developers must produce a draft document and get it re-
viewed and, eventually, approved by the user representa-
tives.

4) What is the mathematical model behind the require-
ments specijcation ?

To assure a consistent and complete document, there
must be a simple mathematical model behind the organi-
zation. The model described here is motivated by work on
real-time systems but, because of that, it is completely
general. All systems can be described as real-time sys-
tems-even if the real-time requirements are weak.

 The model assumes that the ideal product is not a pure
digital computer, but a hybrid computer consisting of a
digital computer that controls an analog computer. The
analog computer transforms continuous values measured
by the inputs into continuous outputs. The digital com-
puter brings about discrete changes in the function com-
puted by the analog computer. A purely digital or purely
hybrid computer is a special case of this general module.
The system that will be built is a digital approximation to
this hybrid system. As in other areas of engineering, we
can write our specification by first describing this “ideal”
system and then specifying the allowable tolerances. The
requirements document treats outputs as more important
than inputs. If the value of the outputs is correct, nobody
will mind if the inputs are not even read. Thus, the key

253

step is identifying all of the outputs. The heart of the re-
quirements document is a set of mathematical functions
described in tabular form. Each table specifies the value
of a single output as a function of external state variables.

5) How is the requirements document organized?
Completeness in the requirements document is obtained

by using separation of concerns to obtain the following
sections:

a) Computer Specification: A specification of the
machines on which the software must run. The machine
need not be hardware-for some software this section
might simply be a pointer to a language reference manual.

b) Input/Output Interfaces: A specification of the in-
terfaces that the software must use in order to communi-
cate with the outside world.

c) Specification of Output Values: For each output,
a specification of its value in terms of the state and history
of the system’s environment.

d) Timing Constraints: For each output, how often,
or how quickly, the software is required to recompute it.

e) Accuracy Constraints: For each output, how ac-
curate it is required to be.

f) Likely Changes: If the system is required to be
easy to change, the requirements should contain a defini-
tion of the areas that are considered likely to change. You
cannot design a system so that everything is equally easy
to change. Programmers should not have to decide which
changes are most likely.

g) Undesired Event Handling: The requirements
should also contain a discussion of what the system should
do when, because of undesired events, it cannot fulfill its
full requirements. Most requirements documents ignore
those situations; they leave the decision about what to do
in the event of partial failures to the programmer.

It is clear that good software cannot be written unless
the above information is available. An example of a com-
plete document produced in this way is given in [9] and
discussed in [8].

B. Design and Document the Module Structure

Unless the product is small enough to be produced by a
single programmer, one must give thought to how the work
will be divided into work assignments, which we call
modules. The document that should be produced at this
stage is called a module guide. It defines the responsibil-
ities of each of the modules by stating the design decisions
that will be encapsulated by that module. A module may
consist of submodules, or it may be considered to be a
single work assignment. If a module contains submodules,
a guide to its substructure is provided.

A module guide is needed to avoid duplication, to avoid
gaps, to achieve separation of concerns, and most of all,
to help an ignorant maintainer to find out which modules
are affected by a problem report or change request. If it is
kept up-to-date, this document, which records our initial
design decisions, will be useful as long as the software is
used.

If one diligently applies “information hiding” or “sep-

254 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-12, NO. 2, FEBRUARY 1986

aration of concerns” to a large system, one is certain to by the software designers, but must allow the subsets
end up with a great many modules. A guide that was sim-
ply a list of those modules, with no other structure, would
help only those who are already familiar with the system.
The module guide should have a tree structure, dividing
the system into a small number of modules and treating
each such module in the same way until all of the modules
are quite small. For a complete example of such a docu-
ment, see [3]. For a discussion of this approach and its
benefits, see [6], [15].

C. Design and Document the Module Interfaces
Efficient and rapid production of software requires that

the programmers be able to work independently. The mod-
ule guide defines responsibilities, but it does not provide
enough information to permit independent implementa-
tion. A module interface specification must be written for
each module. It must be formal and provide a black box
picture of each module. Written by a senior designer, it is
reviewed by both the future implementors and the pro-
grammers who will use the module. An interface speci-
fication for a module contains just enough information for
the programmer of another module to use its facilities, and
no more. The same information is needed by the imple-
mentor.

While there will be one person or small team respon-
sible for each specification, the specifications are actually
produced by a process of negotiation between implemen-
tors, those who will be required to use it, and others in-
terested in the design, e.g., reviewers. The specifications
include:

1) a list of programs to be made invokable by the pro-
grams of other modules (called “access programs”);

2) the parameters for the access programs;
3) the externally visible effects of the access programs;
4) timing constraints and accuracy constraints, where

necessary;
5) definition ‘of undesired events.
In many ways this module specification is analogous to

the requirements document. However, the notation and or-
ganization used is more appropriate for the software-to-
software interface than is the format that we use for the
requirements.

Published examples and explanations include [I], [2],
[5] , [11].

D. Design and Document the Uses Hierarchy
The “uses” hierarchy [13] can be designed once we

know all of the modules and their access programs. It is
conveniently documented as a binary matrix where the en-
try in position (A, B) is true if and only if the correctness
of program A depends on the presence in the system of a
correct program B. The “uses” hierarchy defines the set
of subsets that can be obtained by deleting whole programs
without rewriting any programs. It is important for staged
deliveries, fail soft systems, and the development of pro-
gram families [12]. The “uses” hierarchy is determined

specified in the requirements document.

E. Design and Document the Module Internal Structures
Once a module interface has been specified, its imple-

mentation can be carried out as an independent task ex-
cept for reviews: However, before coding the major design
decisions are recorded in a document called the module
design document [16]. This document is designed to allow
an efficient review of the design before the coding begins
and to explain the intent behind the code to a future main-
tenance programmer.

In some cases, the module is divided into submodules
and the design document is another module guide, in
which case the design process for that module resumes at
step B above. Otherwise, the internal data structures are
described; in some cases, these data structures are imple-
mented (and hidden) by submodules. For each of the ac-
cess programs, a function [10] or LD-relation [14] de-
scribes its effect on the data structure. For each value
returned by the module to its caller, another mathematical
function, the abstraction function, is provided. This func-
tion maps the values of the data structure into the values
that are returned. For each of the undesired events, we
describe how we check for it. Finally, there is a “verifi-
cation,” an argument that programs with these properties
would satisfy the module specification.

The decomposition into and design of submodules is
continued until each work assignment is small enough that
we could afford to discard it and begin again if the pro-
grammer assigned to do it left the project.

Each module may consist of one or more processes. The
process structure of the system is distributed among the
individual modules.

When one is unable to code in a readable high-level lan-
guage, e.g., if no compiler is available, pseudocode must
be part of the documentation. It is useful to have the pseu-
docode written by someone other than the final coder, and
to make both programmers responsible for keeping the two
versions of the program consistent [7].

F. Write Programs
After all of the design and documentation has been car-

ried out, one is finally ready to write actual executable
code. Because of the preparatory work, this goes quickly
and smoothly. The code should not include comments that
are redundant with the documentation that has already
been written. It is unnecessary and makes maintenance of
the system more expensive. Redundant comments in-
crease the likelihood that the code will not be consistent
with the documentation.

G. Maintain
Maintenance is just redesign and redevelopment. The

policies recommended here for design must be continued
after delivery or the “fake” rationality will disappear. If
a change is made, all documentation that is invalidated

PARNAS AND CLEMENTS: RATIONAL DESIGN PROCESS

must be changed. If a change invalidates a design docu-
ment, it and all subsequent design documents must be
faked to look as if the change had been the original design.
If two or more versions are being maintained, the system
should be redesigned so that the differences are confined
to small modules. The short term costs of this may appear
high, but the long term savings can be much higher.

VI. W HAT Is THE R OLE OF D OCUMENTATION IN THIS

P R O C E S S?

A. What is wrong with most documentation today? Why
is it hard to use? Why is it not read?

It should be clear that documentation plays a major role
in the design process that we are describing. Most pro-
grammers regard documentation as a necessary evil, writ-
ten as an afterthought only because some bureaucrat re-
quires it. They do not expect it to be useful.

This is a self-fulfilling prophecy; documentation that has
not been used before it is published, documentation that
is not important to its author, will always be poor docu-
mentation.

Most of that documentation is incomplete and inaccu-
rate, but those are not the main problems. If those were
the main problems, the documents could be easily cor-
rected by adding or correcting information. In fact, there
are underlying organizational problems that lead to incom-
pleteness and incorrectness and those problems, which are
listed below, are not easily repaired.

1) Poor Organization: Most documentation today can
be characterized as “stream of consciousness,” and
“stream of execution. ” “Stream of consciousness” writ-
ing puts information at the point in the text that the author
was writing when the thought occurred to him. “Stream
of execution” writing describes the system in the order
that things will happen when it runs. The problem with
both of these documentation styles is that subsequent read-
ers cannot find the information that they seek. It will
therefore not be easy to determine that facts are missing,
or to correct them when they are wrong. It will not be easy
to find all the parts of the document that should be changed
when the software is changed. The documentation will be
expensive to. maintain and, in most cases, will not be
maintained.

2) Boring Prose: Lots of words are used to say what
could be said by a single programming language state-
ment, a formula, or a diagram. Certain facts are repeated
in many different sections. This increases the cost of the
documentation and its maintenance. More importantly, it
leads to inattentive reading and undiscovered errors.

3) Confusing and Inconsistent Terminology: Any com-
plex system requires the invention and definition of new
terminology. Without it the documentation would be far
too long. However, the writers of software documentation
often fail to provide precise definitions for the terms that
they use. As a result, there are many terms used for the
same concept and many similar but distinct concepts de-
scribed by the same term.

255

4) Myopia: Documentation that is written when the
project is nearing completion is written by people who have
lived with the system for so long that they take the major
decisions for granted. They document the small details
that they think they will forget. Unfortunately, the result
is a document useful to people who know the system well,
but impenetrable for newcomers.

B. How can one avoid these problems?
Documentation in the ideal design process meets the

needs of the initial developers as well as the needs of the
programmers who come later. Each of the documents
mentioned above records requirements or design decisions
and is used as a reference document for the rest of the
design. However, they also provide the information that
the maintainers will need. Because the documents are used
as reference manuals throughout the building of the soft-
ware, they will be mature and ready for use in the later
work. The documentation in this design process is not an
afterthought; it is viewed as one of the primary products
of the project. Some systematic checks can be applied to
increase completeness and consistency.

One of the major advantages of this approach to docu-
mentation is the amelioration of the Mythical Man Month
effect [4]. When new programmers join the project they
do not have to depend completely on the old staff for their
information. They will have an up-to-date and rational set
of documents available.

“Stream of consciousness” and “stream of execution”
documentation is avoided by designing the structure of
each document. Each document is designed by stating the
questions that it must answer and refining the questions
until each defines the content of an individual section.
There must be one, and only one, place for every fact that
will be in the document. The questions are answered, i.e.,
the document is written, only after the structure of a doc-
ument has been defined. When there are several docu-
ments of a certain kind, a standard organization is written
for those documents [5]. Every document is designed in
accordance with the same principle that guides our soft-
ware design: separation of concerns. Each aspect of the
system is described in exactly one section and nothing else
is described in that section. When documents are re-
viewed, they are reviewed for adherence to the documen-
tation rules as well as for accuracy.

The resulting documentation is not easy or relaxing
reading, but it is not boring. It makes use of tables, for-
mulas, and other formal notation to increase the density
of information. The organizational rules prevent the du-
plication of information. The result is documentation that
must be read very attentively, but rewards its reader with
detailed and precise information.

To avoid the confusing and inconsistent terminology that
pervades conventional documentation, a system of special
brackets and typed dictionaries is used. Each of the many
terms that we must define is enclosed in a pair of brack-
eting symbols that reveals its type. There is a separate
dictionary for each such type. Although beginning readers

256 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-12, NO. 2, FEBRUARY 1986

find the presence of !+-terms-+!, %terms%, #terms#,
etc., disturbing, regular users of the documentation find
that the type information implicit in the brackets makes
the documents easier to read. The use of dictionaries that
are structured by types makes it less likely that we will
define two terms for the same concept or give two mean-
ings to the same term. The special bracketing symbols
make it easy to institute mechanical checks for terms that
have been introduced but not defined or defined but never
used.

VII. FAKING THE ID E A L P R O C E S S

The preceding describes the ideal process that we would
like to follow and the documentation that would be pro-
duced during that process. The process is “faked” by pro-
ducing the documents that we would have produced if we
had done things the ideal way. One attempts to produce
the documents in the order that we have described. If a
piece of information is unavailable, that fact is noted in
the part of the document where the information should go
and the design proceeds as if that information were ex-
pected to change. If errors are found, they must be cor-
rected and the consequent changes in subsequent docu-
ments must be made. The documentation is our medium
of design and no design decisions are considered to be
made until their incorporation into the documents. No
matter how often we stumble on our way, the final docu-
mentation will be rational and accurate.

Even mathematics, the discipline that many of us regard
as the most rational of all, follows this procedure. Math-
ematicians diligently polish their proofs, usually present-
ing a proof very different from the first one that they dis-
covered. A first proof is often the result of a tortured
discovery process. As mathematicians work on proofs,
understanding grows and simplifications are found. Even-
tually, some mathematician finds a simpler proof that
makes the truth of the theorem more apparent. The sim-
pler proofs are published because the readers are inter-
ested in the truth of the theorem, not the process of dis-
covering it.

Analogous reasoning applies to software. Those who
read the software documentation want to understand the
programs, not to relive their discovery. By presenting ra-
tionalized documentation we provide what they need.

Our documentation differs from the ideal documenta-
tion in one important way. We make a policy of recording
all of the design alternatives that we considered and re-
jected. For each, we explain why it was considered and
why it was finally rejected. Months, weeks, or even hours
later, when we wonder why we did what we did, we can
find out. Years from now, the maintainer will have many
of the same questions and will find his answers in our doc-
u m e n t s .

An illustration that this process pays off is provided by
a software requirements document written some years ago
as part of a demonstration of the ideal process [9]. Usu-
ally, a requirements document is produced before coding
starts and is never used again. However, that has not been

the case for [9]. The currently operational version of the
software, which satisfies the requirements document, is
still undergoing revision. The organization that has to test
the software uses our document extensively to choose the
tests that they do. When new changes are needed, the re-
quirements document is used in describing what must be
changed and what cannot be changed. Here we see that a
document produced at the start of the ideal process is still
in use many years after the software went into service.
The clear message is that if documentation is produced
with care, it will be useful for a long time. Conversely, if
it is going to be extensively used, it is worth doing right.

VIII. CONCLUSION

It is very hard to be a rational designer; even faking that
process is quite difficult. However, the result is a product
that can be understood, maintained, and reused. If the
project is worth doing, the methods described here are
worth using.

ACKNOWLEDGMENT

R. Faulk, J. Shore, D. Weiss, and S. Wilson of the Na-
val Research Laboratory provided thoughtful reviews of
this paper. P. Zave and anonymous referees provided some
helpful comments.

REFERENCES

[l] D. L. Parnas, D. M. Weiss, P. C. Clements, and K. H. Britton, “In-
terface specifications for the SCR (A-7E) extended computer mod-
ule,” NRL Memor. Rep. 5502, Dec. 31, 1984 (major revisions to NRL
Rep. 4843).

[2] K. H. Britton, R. A. Parker, and D. L. Parnas, “A procedure for
designing abstract interfaces for device-interface modules,” in Proc.
5th Int. Conf: Software Eng., 1981.

[3] K. H. Britton and D. L. Parnas. “A-7E software module guide,” NRL
Memo. Rep. 4702, Dec. 1981.

[4] F. P. Brooks, Jr., The Mythical Man-Month: Essays on Software En-
gineering. Reading, MA: Addison-Wesley, 1975.

[5] P. Clements, A. Parker, D. L. Parnas, J. Shore, and K. Britton, “A
standard organization for specifying abstract interfaces,” NRL Rep.
8815, June 14, 1984.

[6] P. Clements, D. Parnas, and D. Weiss, “Enhancing reusability with
information hiding, ” in Proc. Workshop Reusability in Program., Sept
1983, pp. 240-247.

[7] H. S. Elovitz, “An experiment in software engineering: The architec-
ture research facility as a case study,” in Proc. 4th Int. Conf Soft-
ware Eng., Sept. 1979.

[8] K. L. Heninger, “Specifying software requirements for complex sys-
tems: New techniques and their application,” IEEE Trans. Software
Eng., vol. SE-6, pp. 2-13, Jan. 1980.

[9] K. Heninger, J. Kallander, D. L Parnas, and I. Shore, “Software re-
quirements for the A-7E aircraft, “NRL Memo. Rep. 3876, Nov. 27,
1978.

[10] R. C. Linger, H. D. Mills, B. I. Witt, Structure Programming: The-
ory and Practice. Reading, MA: Addison-Wesley, 1979.

[l I] A. Parker, K. Heninger, D. Parnas, and J. Shore, “Abstract interface
specifications for the A-7E device interface module,” NRL Memo.
Rep. 4385, Nov. 20, 1980.

[12] D. L. Parnas, “On the design and development of program families,”
IEEE Trans. Software Eng., vol. SE-2, Mar. 1976.

[13] -, “Designing software for ease of extension and contraction,” in
Proc. 3rd Inr. Conf Software Eng., May 10-12, 1978, pp. 264-277.

[14] -, “A generalized control structure and its formal definition,” Com-
mun. ACM, vol. 26, no. 8, pp. 572-581, Aug. 1983.

[l5] D. L. Parnas, P. Clements and D. Weiss, “The modular structure of
complex systems, ” in Proc. 7th Int. Conf. Software Eng., Mar. 1984,
pp. 408-417.

[I61 S. Faulk, B. Labaw, and D. Parnas, “SCR module implementation

