

20 Dec 95 DRAFT 1

Table of Contents

Introduction .. 1

1. Foundations .. 5

1.1.

Antecedents.. 5

1.2.

Rules of the Game ... 10

1.3.

Elements of Joule Style ... 12

2. Introductory Examples... 17

2.1.

Forwarding and Expression Syntax.................................... 17

2.2.

Dispatcher

.. 19

2.3.

Continuous compound interest... 21

2.4.

Factorial

... 22

2.5.

Fund

.. 23

3. Simple Execution Model....................................... 27

4. Syntax.. 31

4.1.

Lexical Conventions.. 31

4.2.

Expressions... 33

4.3.

Program Structure ... 34

4.4.

Identifier Scoping .. 35

5. Language Definition .. 37

5.1.

Message Plumbing .. 37

5.2.

Methodical Servers.. 45

5.3.

Procedures .. 50

5.4.

Functions and Expressions... 51

5.5.

Conditionals ... 52

5.6.

Iteration... 54

5.7.

Exception Handling .. 56

5.8.

Standard Protocol .. 58

5.9.

Standard Servers.. 59

5.10.

Module Programming .. 61

5.11.

Parts of a Joule System.. 62

6. Hierarchical Accounts Example 65

6.1.

Hierarchical Accounts Components................................... 66

6.2.

Program Listings ... 74

7. Boundary Foundations .. 77

7.1.

Domains.. 77

2 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

7.2.

Initiation.. 77

7.3.

Export/Import Issues ... 77

7.4.

Debugging Issues .. 77

7.5.

Interoperability .. 78

8. Security... 79

8.1.

Encapsulation... 80

8.2.

Certification.. 80

8.3.

Discretion.. 83

8.4.

Durability.. 84

9. Resource Management... 85

9.1.

Resource Management Fundamentals 85

9.2.

Primitive Resources... 86

9.3.

Agoric Abstractions... 86

9.4.

Improved Computational Model .. 87

10. Distribution ... 89

10.1.

Transparency.. 89

10.2.

Failures in Distributed Systems... 90

10.3.

Explicit Distribution.. 90

10.4.

Frameworks for Automatic Distribution 91

10.5.

Off-line Distribution.. 91

11. Persistence .. 93

11.1.

Page-Based Persistence... 93

11.2.

Server-Based Persistence .. 93

11.3.

Replay-Based Persistence ... 93

A. Language Comparison...A1

A.1.

Language Comparison .. A1

A.2.

Operating Systems ... A2

B. BNF for Joule Syntax ... B1

B.1.

BNF Conventions ..B1

B.2.

Forms...B2

B.3.

Expressions...B3

C. Optional Arguments .. C1

C.1.

Overview ... C1

C.2.

Receiving Messages.. C1

C.3.

Sending Messages .. C2

C.4.

Other Changes .. C2

D. Energetic Secrets..D1

D.1.

Sending Messages .. D1

D.2.

Receiving Messages.. D2

D.3.

Sealer and Unsealer Types .. D2

D.4.

Types and Virtual Un/Sealers.. D3

D.5.

Certifying Requests .. D4

E. Bibliography ... E1

Index .. In-1

Joule:
Distributed
Application
Foundations

300 Third Street
Los Altos, CA 94022

ph 415 941 8224
800 54 JOULE

fax 415 941 8225

Agorics,
Inc.

Agorics Technical Report ADd003.4P

The Joule system is a foundation for building distributed applications. It combines many mecha-
nisms already built and tested in existing products and systems. To encourage widespread
acceptance and use of Joule, Agorics expects to release a public license implementation of Joule.
Agorics also plans additional Joule development, to support the system as it grows, and to apply
the ideas to other platforms.

Trademarks of products mentioned in this manual are the property of their respective holders.

20 Dec 95 DRAFT 1

Introduction

This is the technical manual for the Joule programming language. It is
intended to familiarize the reader with the concepts underlying Joule,
with Joule syntax, and with the fundamentals of a Joule programming
environment. When you have finished reading this book, you should
be able to read and create simple Joule programs.

The core of Joule is a new computational model for building distributed
systems. Many of the ideas are distilled from existing systems, and
could be applied at the language level, at the operating system level, or
(as in CORBA) as extensions to existing languages. This manual
describes the Joule programming language, a pure realization of these
ideas that remains portable across all platforms (where an operating
system would not). The Joule language is intended as a foundation for
distributed systems, providing support in the language for many of the
abstractions needed for network- or multiprocessor-based applications.
Heretofore, it has been necessary to “reinvent the wheel” in many
instances—to reimplement familiar techniques, tailoring them to the
current special case. The goal of Joule is to provide the functionality
required for distributed computing, in a straightforward and secure
environment.

Chapter 1,

Foundations,

 describes the intellectual origins of Joule and
outlines the basic ideas on which the language is based.

Chapter 2,

Introductory Examples,

 leads the reader through four simple
Joule programs—the familiar factorial and compound-interest func-
tions, plus two other servers that demonstrate some of the unique
qualities of Joule.

Chapter 3,

Simple Execution Model,

 describes the rules that all Joule com-
putations must follow, and is intended to give the reader an intuition of
how Joule computations could actually get work done; it is not
intended to represent an efficient execution model.

Chapter 4,

Syntax,

 presents an informal syntax for Joule. (For a formal
syntax, see Appendix B.) Syntactic abstraction—the set of techniques
for extending the Joule syntax—is discussed but not specified in this
document.

Chapter 5,

Language Definition,

 describes the present state of the Joule
language design. It describes the computational primitives, along with
typical techniques of their use, and provides a description of the syntac-

2 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

tic forms built from those primitives to directly support routine
programming tasks.

Chapter 6,

Hierarchical Accounts Example,

 presents a more complex Joule
program, a hierarchical bank account. Hierarchical bank accounts pro-
vide a necessary component of

agoric resource management

—the use of
market mechanisms to control allocation of computational resources
like CPU time and network bandwidth (described more fully in Chap-
ter 9). The program, and the underlying Joule concepts, are explained
in detail.

Chapter 7,

Boundary Foundations,

 describes the low-level foundations
that support boundaries for creation and initiation of new programs in
a running system, termination and resource management for existing
programs, and access to foreign services. These foundations provide
the mechanism on which the policies described in Section 5.10,

Module
Programming,

 are built.

Chapter 8,

Security

, introduces Joule’s security foundations, many of
which were drawn from or inspired by KeyKOS, a capability-based
operating system, and by public-key security principles.

Chapter 9,

Resource Management,

 describes managing resources in
Joule. It first describes some underlying principles for resource man-
agement abstractions. It then describes facilities for resource
encapsulation and transfer, the foundations for resource management.
Finally, it describes market-based resource management mechanisms
for making resource trade-offs in complex systems.

Chapter 10,

Distribution,

 explores the issues affecting distributed sys-
tems and describes how Joule deals with them. This chapter describes
support for the full spectrum of distribution regimes, from automatic
distribution in which processes are automatically spread across multi-
ple processors, to explicit distribution in which the programmer
controls or influences the mapping from processes to processors, to
untrusting distribution in which the programmer explicitly manages
and adapts to trust boundaries and failure properties of the network.

Chapter 11,

Persistence,

 describes possible implementations of persis-
tence in Joule. The trade-offs between these implementations remain
largely unexplored for Joule, though much of the territory is known for
other related systems such as FCP, Actors, and KeyKOS.

Appendix A,

Language Comparison,

 reviews other languages and sys-
tems relative to the requirements for robust servers and open
distributed systems. It also compares the capabilities of Joule with
those of its antecedents, Actors and concurrent constraint languages.

Appendix B,

BNF for Joule Syntax,

 gives a description of the Joule syntax
in Backus-Naur form.

Appendix C,

Optional Arguments,

 presents a proposal for managing
optional arguments and “rest” arguments in messages.

Appendix D,

Energetic Secrets,

 describes how

SealedEnvelope

s will
replace Tuples in the Joule communication model, incorporating pub-
lic-key semantics into the communication foundations.

The Energetic Secrets material
appears in an appendix because
it has not yet been integrated
into the rest of the manual.

20 Dec 95 DRAFT 3

Appendix E provides a bibliography of articles and books that influ-
enced the design of the Joule programming language or that present
background information on various aspects of the Joule design.

The Joule language is a work in progress, and pieces of this design will
change as more experience with the syntax and computational model is
gained. This book too is a work in progress; many sections remain
unfinished. Some of the unfinished sections require incorporation of
already developed techniques (such as the Security sections), others
require s ignificant design work (such as Agoric Resource
Management).

Many thanks to the people who helped make this document and the
technology behind it possible.

4 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

20 Dec 95 DRAFT 5

1.Foundations

This chapter presents the intellectual foundations for Joule: first, a brief
synopsis of the history of programming languages, with emphasis on
characteristics relative to distributed systems and Joule; second, a
checklist of the criteria for distributed object programming languages
(criteria which motivated the development of Joule); and third, a recap
of some familiar, well-established design principles, showing how
Joule embodies these principles in its design and supports the applica-
tion of these principles to programs written in Joule.

1.1. Antecedents

1.1.1. The Rise of Modularity

From straight-line code to procedures to objects, the history of pro-
gramming languages has been a history of increasing modularity to
help solve increasingly complex problems. Modularity makes inter-
faces between pieces explicit, so that the extent to which the separate
pieces interact can be controlled, then minimizes the dependencies
required for a given level of cooperation. The more extreme the modu-
larity, the more the unintended dependencies between the parts can be
avoided. As systems get more complex, these interactions start to com-
pound, placing an upper bound of complexity on the sophistication of
programs and the size of a problem they can solve.

With procedures, programmers created boundaries around packages of
behavior, allowing them to define procedures once and then not worry
about the implementation when using those procedures. Factors such
as data interactions in global environments still led to unintended inter-
actions and a limit on the sophistication of programs.

With abstract data-types, programmers created boundaries around
static packages of data and behavior, increasing the sophistication in
each “black box”. Programs could now manipulate entities represent-
ing abstractions relevant to the problem being solved.

With objects, programmers created boundaries around dynamic pack-
ages of behavior and state. The polymorphism of object-oriented
programming enables a much stronger separation between interfaces
and implementations, allowing black boxes to hide not just the details
of implementation, but also the details of which of many implementa-
tions the black box represents. The complexity limitations come from

Foundations

6 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

the vestiges of global environments and the difficulty of synchronizing
on shared data in a concurrent environment.

In the book

The Mythical Man-Month

[14]

, Frederick Brooks described a
study in which it was discovered that programmers wrote the same
number of debugged lines of code per day no matter what program-
ming language they were using. This observation motivated the drive
towards higher-level programming languages that culminated in lan-
guages like APL and PL/1: the more and higher-level the abstractions
they could make accessible, the more effective each line of code written
by the programmers would be. At the same time, a much smaller
thread was pursued in, for example, the Lisp community, leading
through Simula, Smalltalk, and C++: the thread of abstraction lan-
guages. Instead of building in particular high-level abstractions, this
new class of languages provided tools for programmers to build
abstractions extending the language itself. In these languages, each line
of code contributes to the level of abstraction of the next line of code. As
a result, even though they start with much less capability, object-ori-
ented systems have accumulated enough leverage that they are more
effective tools for programming large systems than the high-level lan-
guages: programmers write the same number of lines of code, but they
write more expressively.

By explicitly recognizing these threads of increasing modularity and
abstraction power, Joule takes the next steps along both dimensions.
Many of the capabilities of Joule were discovered by examining exist-
ing large systems such as networks and operating systems for the
modularity tools and abstraction mechanisms which give them organi-
zation, and so make them manageable. The techniques that worked
have survived into many existing systems; the techniques that failed
have either fallen by the wayside or been entrenched in existing sys-
tems and demonstrate obvious failure modes.

1.1.2. Distributed Object Programming

Distributed object programming brings powerful new capabilities to
computing. However, these capabilities demand the unlearning of
some important paradigms of previous programming languages. The
most important change required in the programmer’s thinking is the
abandonment of sequential call/return control flow. The sequential
control flow and call/return is very natural for procedural divide-and-
conquer programming in which each procedure calls other procedures
in order to accomplish a specific task. The stacking behavior inherent in
call/return is less appropriate for object-oriented systems in which the
objects have invariants that need to be re-established before another
call can be made to the object. In Smalltalk, for example, if a loop run on
a collection of objects removes (or causes to be removed) an object from
the collection, most times the loop operation will fail because it didn’t
expect the arrangement in the collection to change during the iteration.

The problems of sequential control flow and stack-style call/return are
even worse in distributed object systems because such systems inher-
ently provide concurrency and asynchrony. Sequential programming
languages fundamentally cannot support distributed object systems;
sequential programming languages plus external operating system
support can, but the difficulty of developing applications, and the con-

Antecedents

20 Dec 95 DRAFT 7

tinued delicacy of communications between machines, suggest that
existing tools are not well-suited to distributed object systems.

An analogy about stacks that is appropriate to objects is that stack-
based programming is like a person whose work patterns are interrupt-
driven. The introduction of a new task forces the current task onto the
back burner. Interrupted tasks accumulate in the back of such a per-
son’s mind like calls on a stack. The mental model associated with a
stack forces all operations into a LIFO queue regardless of the logical
relationships between the tasks or their importance. A trivial but time-
consuming task may be performed before a more important one simply
because it was initiated later.

Distributed object programming is much more like managing one’s
time with a “to do” list. New tasks can be added to the task list without
interrupting the execution of current tasks, and tasks can be interleaved
without interfering with each other. Dataflow synchronization is like
inter-task dependencies. It drives the ordering of tasks on the to-do list.
“I have to cash my paycheck at the bank before I can buy this week’s
groceries, and I have to buy detergent at the grocery store before I can
do the laundry.” Tasks that are not logically dependent do not interfere
with each other: “I can cook dinner regardless of whether I have done
the laundry.”

This property of distributed object programming derives from the
defining characteristics of asynchrony, concurrency, and fundamental
support for communications. Distributed systems are inherently asyn-
chronous because they have to deal with events arising from multiple
sources at spatially separated sites. The architecture of a distributed
object programming system must be able to cope with this asynchrony
(so that, for example, multiple clients can make requests of a service
simultaneously). Distributed systems require concurrency because
they operate on many machines simultaneously. Finally, because dis-
tributed systems must allow and encourage interaction between sites,
they need to support communications abstractions. Although such sup-
port can be implemented between separate sequential “threads” at
multiple locations, the sequential model adds nothing to the ease of
implementing communications abstractions and distributed systems.

1.1.3. Server-Oriented Programming

Distributed object systems are rare today because building robustness
on top of today’s network software is difficult.

Server-oriented program-
ming

 (SOP) realizes the advantages of distributed object programming,
by making the environment sufficiently resilient for distributed objects
to survive. SOP applies intuitions about client/server systems to all
levels of programming.

Take, as an example, a database system on a network. Multiple clients
access the database across the network. These clients run concurrently
with the database; they send requests, and occasionally wait for the
answers, but otherwise remain responsive to the user. Such a client
might access multiple databases on more than one machine.

Now, apply these same intuitions about the relationship between the
clients and the database server, but within the database: there’s a
request-handling server for each client user, a disk subsystem, and an

Foundations

8 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

indexing engine. The request-handling servers may perform transla-
tions on user queries before calling on the indexing engine with them.
Within the indexing engine is a query optimizer, a B-Tree manager, and
a transaction handler. Within the disk server is a process for each phys-
ical disk drive, a replication manager to protect against media failure, a
transaction log, and a page reshuffler for grouping pages that should be
clustered. Within each disk-drive process is a disk-arm scheduler, a
disk cache manager, and a device controller.

Each of these units communicates, via well-defined protocols, with the
other modules—and within each unit, sub-units communicate using
other well-defined protocols. At each level of granularity, from the net-
work application to the database to the disk handler to the device
handler, the same client/server intuitions apply: separate servers can
run concurrently and schedule and handle requests from other servers.
Each server is a black box so far as its clients are concerned—the request
handlers need not know which internal servers make up the indexing
engine, so long as it responds appropriately to requests. The particulars
of its internal structure are irrelevant, and may even change over time.

Proper encapsulation is a requirement for the creation of robust servers.
A

robust server

 is one which can guarantee continued correct service to
well-behaved clients despite aberrant (that is, arbitrary or malicious)
behavior from other clients. This is in contrast to fault tolerance, in
which servers are able to operate continuously despite component fail-
ures (failure of other servers, or of hardware components). The kernels
of traditional operating systems are designed to be robust—when one
application misbehaves or crashes, the operating system is supposed to
continue uninterrupted service to other applications.

Attempting to implement distributed object programming over today’s
networks reveals problems that already exist, hidden, in single-
machine systems. For example, a single misbehaving application can
degrade the performance of other applications by disrupting services
on which they both rely (causing “thrashing” of virtual memory, or
allocating too much disk space). In a robust system, applications would
be able to cope with temporary unavailability of those services and per-
form productively while waiting for them to return, rather than seizing
up. Server-oriented programming builds tools to deal with the prob-
lems rather than just hide them.

The foundations of server-oriented programming enable extremely
long-lived systems. These systems must meanwhile be able to grow
and change, which motivates another defining characteristic of server-
oriented programming,

open entry

—the capability of adding new com-
ponents or replacing old ones, in a running system, with no
interruption of service. This both requires and enables full encapsula-
tion—a new server can replace an old one, despite having a completely
different internal structure, if and only if its protocol is upward-com-
patible with that of its predecessor. To the clients, no change is visible.

These properties apply at all levels of a server-oriented system,
enabling reliable construction of large and complex systems by assem-
bly of well-behaved components. Properly robust servers in such
systems could independently recover from failure, and communicate
with each other through a well-defined interface such that they have no
interactions beyond those that are explicit. The restriction of inter-

The concept of robust servers is
a very powerful tool with
which to distinguish applica-
tion platforms. They can’t be
built in most systems.

Many of the principles of Joule
were distilled from existing sys-
tems, and could be applied in
more than just a language con-
text, improving the robustness
of more traditional
applications.

Antecedents

20 Dec 95 DRAFT 9

server interaction to explicit exchanges within a well-defined protocol
forms the basis for real security in server-oriented systems. Security is
discussed in more detail in Chapter 8.

1.1.4. Market-Oriented Programming

While server-oriented programming allows programs to guarantee the
correctness and availability of computing services provided to clients,
market-oriented programming enables systems to be adaptive to user
and client needs and available resources by introducing

agoric resource
management

. Agoric resource management uses market principles to
dynamically allocate resources among software agents. By introducing
the equivalent of money into the software resource management pro-
cess, Joule takes advantage of the institutions and abstractions that
have been developed for managing the allocation of physical goods.

Markets work in the physical world because, in a sense, they already
form a distributed computing system. Agents exchange goods for
money, and in the process produce information about how valuable
those goods are, in the form of prices. The role of money in a market
system is as an abstraction which represents access to resources. Agents
in a market make their decisions based on local knowledge of prices
and the availability of resources. The information resulting from those
decisions—what to buy and at what price—propagates through the
market (the retail prices a consumer is willing to pay affect the prices
which retailers are willing to pay wholesalers, which in turn affect
deals between wholesalers and manufacturers). The communication of
these price signals enables the whole system—the market and its par-
ticipants—to allocate resources in a way that adapts to changing
conditions and the different needs of different agents more effectively
than could be done by any single allocating agent, based on more infor-
mation than any such agent could access. (The costs of gathering and
processing such information centrally would be prohibitive; much of
the information would be out of date before it reached the central allo-
cator; and in the context of mutually untrusting programs, such a
central allocator might not be trusted by the participants.)

The introduction of market principles to server-oriented programming
systems provides a necessary framework for efficient, decentralized
management of computational resources. Local (in time or space) short-
ages of resources represent an opportunity for load-balancing agents—
arbitrageurs—to correct the imbalance at a profit. Such agents need not
violate the modularity of the programs they’re helping—this resource
allocation can be done through voluntary trade using client/server
communications protocols, as will be seen in the next section.

Market-oriented programming relies on two concepts: the encapsula-
tion of resources—that is, ownership by particular processes of access
to blocks of, for example, memory or processor time—and the commu-
nication of access to those resources, making such ownership
transferable in a flexible manner. This enables a simple initial allocation
of resources among a set of providers (as described in Chapter 9) to
evolve in complexity in response to the specific demands made on the
system.

Encapsulation and communication of resources enable performance to
be guaranteed by allowing programs to reliably purchase the rights to

For resource management
issues to which markets are not
well-suited, traditional central-
ized control (as demonstrated
in the late USSR, for example)
can also be constructed from
the resource ownership and
transfer foundations.

Foundations

10 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

particular quantities of resources at a future time. This enables servers
to commit to deadlines for providing computational results to clients.
Encapsulation of access (ownership) lets programs control resources;
communication of access lets programmers build facilities that dynam-
ically allocate those resources.

Object-oriented programming separated

what is to be done

 (communi-
cated by inter-object messages) from

how it is to be done

 (the methods,
invisible from outside the object, that are enacted in response to each
message), so that the calling object need have no knowledge of the
internals of the called object. A closely analogous benefit arises from the
separation of resources from prices. The use of a medium of exchange
(money) enables ready conversion between different kinds of
resources—memory and processing cycles, for example—which would
otherwise be incomparable.

The need for a particular resource varies with time and with the func-
tion being performed—suppose a particular 3D graphics rendering
package is CPU-intensive. While it is running, the price of processor
cycles goes up relative to memory, so other programs can adjust their
budgets to rely more heavily on memory than on CPU by, for example,
using more caches. If, instead, the system is currently dominated by a
memory-intensive process like a drawing program, physical memory
becomes expensive, making virtual memory more attractive. Resource
management for complex systems needs to provide this same ability to
allocate multiple kinds of resources among multiple users with diverse
needs who contend for those resources.

1.2. Rules of the Game

In the context of market-oriented programming, we require a simple set
of rules so that servers can interact with each other predictably. This is
best illustrated by the observation that

 a business can be open to the public
because its cash register isn’t.

 Supporting such businesses requires strict,
understandable rules so that participants can successfully protect their
own interests while cooperating with other parties.

A computational foundation for supporting the interaction of diverse
parties also defines the “rules of the game” by which those parties can
interact. One never finishes learning the patterns which emerge from
the rules of an interesting game, but it is important that the rules be
simple enough to be understood completely, particularly if real inter-
ests are at stake.

The relevant systems are the frameworks for interaction. The C lan-
guage, for example, does not support an open system because
programs written in the same C address space can corrupt each other.
C plus UNIX gives better support because it provides processes some
measure of protection from each other. However, the continual security
problems on the Internet (exemplified by the prevalence of “firewalls”
that deliberately cripple insecure communications) demonstrate that C
plus UNIX still does not support open systems because it is too
insecure.

We define an open system as one which can continue to operate while
allowing untrusted parties to “join the game,” as opposed to the sense

Rules of the Game

20 Dec 95 DRAFT 11

of “open system” in which any server can get inside any other server,
including its cash box.

The design process for Joule was based on finding a minimal set of
rules that all processes could count on. Everything else necessary for
large scale programming could be built in the framework of the funda-
mental rules. The computational model presented in Chapter 3
describes the rules for everything except resource management.

The checklist for Joule combines the checklists in

[65]

 and

[89]

, the prin-
ciples presented in Section 1.3 below, and practical issues from building
large systems. Here is a partial informal checklist that drove particular
aspects of the design of Joule:

•

Encapsulation and communication of information, access, and resources

Without this safety, businesses can’t open their doors, users can’t
manage their resources, and groups can’t cooperate.

•

Principles scale to arbitrarily large systems

There should be no inherent bottlenecks such as global state or
inherent distributed transactions.

•

No global knowledge, control, or trust

These would all prevent the cooperation of agents that don’t trust
each other, and they are all single points of failure.

•

Robust servers

i.e., servers that can guarantee continued correct service to well-
behaved clients despite aberrant (that is, arbitrary or malicious)
behavior from other clients

•

Open entry

New services can be started, new customers can connect, and so
forth.

•

Security

i.e., trust management so that services can interact while main-
taining encapsulation boundaries

•

Composable correctness

It’s possible to build something that fulfills its contract relying
only on the contracts of other servers.

•

Separate resource management

This is the familiar principle of separation of concerns, but
applied to a concern that most systems give users very little con-
trol over. This is the foundation out of which agoric resource man-
agement can be built.

•

Efficient execution

The model must be expressive, but must also map well to existing
computer hardware architectures (for example, using message
sending in Joule to implement procedures must be as fast as tradi-
tional procedure invocation).

•

Self-basis

It should be possible to build the distributed system in itself. If
not, then the system doesn’t provide sufficient functionality for
managing distributed systems. Further, no single policy for how
to distribute programs can be right for every application, so it

Joule is certainly not unique in
this regard. It is unique in the
set of constraints that were
applied to guide the design
process to a set of rules.

Foundations

12 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

must be possible to express different distribution solutions in the
language.

•

Concurrent and asynchronous

This is an inherent property of networks of machines that should
be supported directly in the programming model.

1.3. Elements of Joule Style

This section restates some familiar, well-established design principles
to show how Joule embodies these principles in its design and how it
supports their application to programs written in Joule.

1.3.1. Recursive Abstractions

As described previously, the use of the client/server orientation at all
levels of program design gives Joule many of the required characteris-
tics for creating robust systems. This can be generalized to the principle
of

recursive abstractions

—the use of similar organizing principles at dif-
ferent levels of operation. This property allows efficient scaling of
code—the techniques learned for building small programs work
equally well for large programs.

Another example is the principle of transparency—at all levels, Joule
clients don’t need to know the true nature of the server with which
they’re dealing; it may be a composite server or merely a transparent
forwarder that chooses among several competing servers. This applica-
tion of the same abstraction at different levels of granularity makes for
more powerful and well-behaved Joule programs.

1.3.2. “What”/“How” Separation

This is a familiar application of the principle of separation of con-
cerns— separating the interface of a service from its implementation to
achieve better modularity. The interface specifies

what

 is to be done—
for example, what services a client requests from a server. The imple-
mentation—the

how

—provides the service, but the particulars of the
implementation are not determined by what was requested; the inter-
nals of the server can be any implementation that conforms to the
communication protocol and reveals correct results. An example of this
was described above, in the discussion of separation of messages from
methods in object-oriented programming. This is another organizing
principle for programs which is well-suited to the capabilities of Joule.

Encapsulation is the property of Joule that hides the “how”—the limi-
tation of interaction between processes to explicit exchanges prevents
the calling process from discovering details of the implementation with
which it is interacting. Polymorphism makes the “what” (the message,
or the service requested) independent of a particular “how”—the
server can choose internally among multiple techniques for doing the
work itself, or even subcontract for the service elsewhere, with no dif-
ference apparent to the client.

1.3.3. Mechanism/Policy Separation

The

mechanism

 of a particular function—the features present at the low-
est level of abstraction to enable that function—should not inherently

Elements of Joule Style

20 Dec 95 DRAFT 13

impose unnecessary limitations on the range or application of that
function. When there isn’t a single “right” answer, Joule provides
frameworks in which many policies can coexist. The restriction of the
uses of a function—the

policies

 governing its use—should instead be
reserved for explicit definition at higher levels of abstraction. Caching
strategies are a good example: the most effective strategy varies with
how the cache is used.

The usefulness of this separation comes from abstracting from a set of
desired capabilities the kernel capability which is most fundamental.
An example of this is time-slicing. The fundamental capability is
“determining who has control of the processor when.” A system that
dictates time-slicing at the kernel level is overdetermined; it rules out
real-time applications, for example (as commonly defined). Joule
instead treats ownership of the processor as a fundamental abstraction,
allowing time to be sliced if and as needed, but also allowing for real-
time applications to be built in Joule. This generality allows experimen-
tation with other abstractions besides time-slicing, such as deadline
scheduling.

Mechanism/policy separation is a way of separating things to create a
new domain for distinctions. Putting the most general abilities at the
bottom of a hierarchy of abstractions creates layers which can be used
to determine the abilities of the layers built on them, as needed, rather
than being inflexibly locked in from the very lowest layers on up.

1.3.4. Composable Orthogonality

The design of the Joule kernel is intended to separate functions along
natural lines that allow the resulting abilities to be distinct, and to pro-
vide synergy when combined. The criterion for separation of functions
is orthogonality: no function should partially duplicate the capability
of another. This is akin to orthogonality in a mathematical coordinate
system: from an orthogonal set of basis vectors, any vector in the space
can be constructed more simply than from a non-orthogonal basis.

In Joule, this clean separation of powers results in smaller abstractions
that give more power. Two structures that overlap in their abilities often
conflict when used together in some ways. The lack of overlap between
facilities in Joule prevents the elements of the Joule kernel from getting
in each other’s way—they can be sensibly combined in any way with-
out conflicting. Also, if two structures overlap, it reduces the space of
abilities that can be accessed by combining them—because they par-
tially reproduce each other’s abilities, less new function is discovered
by using them together. The combination of two orthogonal functions,
however, creates a space of new abilities inaccessible with just one of
the components.

This partitioning of function is a design criterion at every level of Joule.
For example, the

ForAll

statement (introduced in Section 5.3) imple-
ments multiple instantiation of code; the

choose:

message implements
conditionals. There is no way to implement

 ForAll

using

choose:

, or to
implement

choose:

using

 ForAll

, yet the two, combined, generate much
of the Joule language. At a higher level of abstraction, resource manage-
ment and concurrency are orthogonal facilities—neither can be used to
generate the function of the other, but combined they give a whole new
set of powerful abilities.

Foundations

14 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

1.3.5. Complete Virtualizability

Complete virtualizability is one of the primary mechanisms for com-
posable orthogonality. Because clients can only interact with servers by
passing messages, other servers (middlemen) can be interposed
between a client and a server to add functionality without requiring a
change to either the client or the server. Virtualization only aids com-
posability if it is complete: if programs behave differently in the
presence of middlemen that weren’t

intended

 to change the behavior,
then middlemen cannot be transparently added. Complete virtualiz-
ability enables

transparent

 layering of functionality: servers only affect
each other in intended ways.

One of the driving examples for transparent layering is a distributed
version of Joule built in Joule. Each message from a client goes to a
proxy for the intended server. The proxy turns the message into data
which it sends to a handler on a remote machine. The handler on the
remote machine turns that data back into an equivalent message and
sends the message to the actual server with which the client wanted to
communicate. Complete virtualizability means that neither the client
nor the server can observe whether the network forwarder is there—if
they could, then the client or the server could be written in such a way
that it breaks in a distributed system but not on a single machine. The
ability to observe the forwarder would require every program to take
into account the implementation of the distributed system. With trans-
parent layering, every Joule program can run across a network with

no
change

.

Complete virtualizability is a very stringent requirement for the lan-
guage: operations on numbers must succeed even if the “numbers” are
forwarders to numbers on other machines, or user-defined servers for
complex numbers, arbitrary-precision real numbers, or fractions. Mes-
sage sending must work even if the “messages” are user-defined
servers that merely act like messages but are actually implemented
some other way. The techniques with which Joule satisfies these
requirements while remaining efficient to implement have been
designed. Some of these mechanisms will be presented in this docu-
ment. A simple example is the primitive addition operation for
Integers: if it is supplied with a non-Integer addend, it sends the

 +from-
Integer

message to the addend, supplying the original receiver (now
known to be a primitive Integer) as an argument, along with the origi-
nal result channel. The original addend (a complex number for
instance) can then supply the behavior for adding itself to an Integer.
This is not the complete story for bottoming out operations on num-
bers, but it demonstrates one of the simple techniques.

The completeness of virtualizability in Joule allows programmers to
transparently extend functionality anywhere. They can build new
transparent layers (such as the distributed system), or they can extend
the functionality of any of the system abstractions (numbers, channels,
messages, and so forth), while preserving the transparent layering
properties of the system. Virtualizability is implemented largely
through anonymity and polymorphism: servers can be distinguished
only by their actions in response to messages. Security sometimes
requires certification, however—you want to deposit only in your bank
account, not some forwarder that might redirect your money. Joule

Anything virtualizable must be
completely so, but not every-
thing must be virtualizable.
Numbers can be completely
virtualizable without Tuples
being so. However, in Joule,
everything is completely
virtualizable.

Elements of Joule Style

20 Dec 95 DRAFT 15

both supplies certification, which must be used carefully to preserve
virtualizability of abstractions built with it, and provides abstraction to
support virtuality in the presence of certification.

Foundations

16 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

20 Dec 95 DRAFT 17

2.Introductory Examples

This chapter introduces the reader to the Joule language and its pro-
gramming style and illustrates many of Joule’s fundamental
mechanisms in the course of explaining how some simple examples
work. (Joule’s underlying computational model is presented in Chapter
3.) The principles illustrated here apply at all levels of granularity—the
message-plumbing techniques used here to interact with very simple
servers are the same as those used with complex and versatile servers—
so these examples can lead to understanding of how to construct large
systems in Joule.

2.1. Forwarding and Expression Syntax

Joule objects, called

servers

, interact with each other by sending mes-
sages to

ports.

 Ports can be extended transparently by

channels

. A
channel is a unidirectional route originating at an

acceptor

 port and ter-
minating at a

distributor

 port, each of which may be held by other
servers. A server that holds the acceptor of the channel can send mes-
sages through it which can be received by any server holding the
distributor.

The distributor can accept a special protocol of messages that instruct it
where to forward the messages originating at the acceptor. One can
think of the channel as a funnel pouring into a hose. One can pour mes-
sages down the funnel, and one can direct the hose to other funnels.

Messages are sent to a port by

•

 (send) statements of the form

•

port
message

. Within some scope, the ports of a channel are named by iden-
tifiers. Typically, if

A

 is the acceptor of a channel,

A>

 will be its
corresponding distributor. The “>” suffix is a convention used to distin-
guish the name of a distributor.

Messages sent to the distributor cause it to change its behavior in some
way. For example, the statement

directs all arriving messages to the port

C

. This statement sends the for-
ward message “

→

 C

” to the distributor

A>

, instructing it to forward all
messages received at

A>

 to

C

.

Messages sent

through

 the channel (via its acceptor) are forwarded to
servers to which the corresponding distributor has been forwarded.

• A>

→

 C

The same server can hold both
ports of a channel—for exam-
ple, in anticipation of passing
one of them off to another
server.

Acceptor

Distributor

A

A>

B C D

Fig. 2.1 • A> → C

Introductory Examples

18 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

Anything can be sent as a message, but most messages will be

Tuples

(ordered sets of ports). Tuples are the most common types of messages
sent in Joule. The first element of a tuple is its name, known as the

oper-
ation

; the other elements are its

arguments

. The statement

sends the tuple

oper: arg1 arg2

 to the port

A

 (and, if

A

 is an acceptor,
through the channel to be delivered by the corresponding distributor).
The colon (“:”) as a suffix distinguishes an operation.

Operators are a special class of operations that do not require the “:”
suffix. The forward statement

A>

→

 C

 is actually the sending of the for-
ward operation “

→

”

to

A>

 (presumably a distributor) with the port

C

as its argument.

In Joule, everything is a server. Numbers are also servers that respond
to a set of messages. The expression

sends the operation named “+” to the server “3” with two arguments:
the port to “4”, and the distributor

x>

 on which to reveal the result. “3”
acts on the addition operation by forwarding the distributor

x>

 to the
server “7”. Results in Joule are “revealed” on a distributor rather than
“returned”—the calling server retains the corresponding acceptor,
which now sends to the server that is the result.

Joule allows an expression-like syntax for operations like “+” that take
as their last argument the distributor of a result channel. The correct
way to think of Joule’s expression-like syntax is to imagine an implicit
intermediate result channel

t1

. Then

performs the same operations as

In practice, this looks as if “3 + 4” becomes a port to which messages
can be sent. A tuple-sending statement like “3 + 4” can then be used as
an argument to operations, including the forward operation:

Precedence, in Joule, reads from right to left. In

• sum>

→

 3 + 4

, the
tuple “+ 4”, sent to “3”, reveals as its result an acceptor to “7”. The for-
ward operation, with the result “7” as its argument, is sent to the
distributor

sum>

, causing

sum>

 to also deliver to “7”. The forward oper-
ator “

→

” routes to the server “7” all messages arriving at the distributor

sum>

.

• A oper: arg1 arg2

• 3 + 4 x>

• sum>

→

 3 + 4

• 3 + 4 t1>
• sum>

→

 t1

• sum>

→

 3 + 4
• Fund withdraw: (3 + 4)

Acceptor

A

Fig. 2.2 • A oper: arg1 arg2

op
er

: a
rg

1
ar

g2

Servers make use of results by
sending them messages. A print
server might send a number the
operation meaning “give me an
ASCII representation of
yourself”.

The use of “reveal” rather than
“return” also reinforces the
awareness of security in Joule.
A Joule server need reveal only
what it chooses to reveal about
itself. This is discussed more
thoroughly in Chapter 8,
“Security.”

Also, the use of “return” non-
orthogonally mixes data issues
with control issues. “Reveal”
emphasizes that it deals only
with data issues.

Dispatcher

20 Dec 95 DRAFT 19

2.2. Dispatcher

The

Dispatcher

 server implements a simple statistical load-balancing
algorithm for a number of identical servers on a network.

Dispatcher

receives incoming messages and forwards each one to one of the serv-
ers, chosen at random.

Dispatcher

 takes as arguments a distributor

 in>

 (on which the messages
will arrive) and an array

outs

 of ports to a set of servers that all provide
identical services (

outs

 is actually a port to the array, not the array server
itself. For brevity, we will begin referring to acceptors interchangeably
with the servers that they send to, except in cases where this could
cause confusion).

Joule structures called

forms

 begin with a keyword (in bold) which
determines the syntactic type of the form. The

 Server

form binds an
identifier (in this case,

Dispatcher

) to a new server that executes the
nested code block in response to messages from other servers.

Dis-
patcher

 is a

procedural server

; it has a single method which is invoked by
passing the “::” operation to the server with the appropriate number of
arguments. The double colon is the simplest operation name possible in
Joule; to a procedural server, it means “do what you do”—it tells the
procedural server to perform its characteristic behavior.

The

ForAll

 form causes the nested block of code to be executed once for
every message sent to the port defined by the

ForAll

 as its first argu-
ment. Separate invocations are completely independent of one another
and execute concurrently. The

• in>

→

 msgs

 forwards all messages
received on

in>

 to the

ForAll

’s input. The

ForAll

 block is invoked for each
message received, with

message

 bound to that message.

The inner scope of a Joule form consists of all lines of code between the
first and last lines of the form (

Form

 and

endForm

). Names defined in
that block of code are visible anywhere inside that block (including the
scopes of blocks nested within it), but not visible or accessible outside
that block.

The scope of the

ForAll

 form in

Dispatcher

 includes all lines of code from

Define

size

 to

• out message

 inclusive. The distributor

in>

 is defined as a
parameter by the

Server

 statement and is available anywhere within
the

Server

 statement’s scope (including inside the scopes of

ForAll

 and
the

Define

 blocks).

Server

 Dispatcher :: in> outs
• in>

→

 msgs

ForAll

 msgs

⇒

 message

Define

 size
• outs count: size>

endDefine

Define

 index
• Random below: size index>

endDefine

Define

 out
• outs get: index out>

endDefine

• out message

endForAll

endServer

Fig. 2.3 Dispatcher

in>

outs

Servers sending messages to
outs don’t know whether outs
sends directly to the array, or to
an array chosen randomly by
another Dispatcher, and in most
cases don’t need to know.

Procedural servers are a special
case of methodical servers.
Methodical servers can accept a
variety of operations (not just
“::”) and act on them in differ-
ent ways. Random is a
methodical server called by
Dispatcher.

msgs is a good example of a
non-methodical server. As in
this example, non-methodical
servers typically provide mes-
sage plumbing which is
expected to terminate in
methodical servers.

Lexical scoping of identifiers is
discussed in detail in Section
5.3.0.

Introductory Examples

20 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

The

Define

 form creates a channel and binds its ports to identifiers, with
the distributor bound only inside the scope of the define and the accep-
tor bound both inside and outside that scope. Again, distributors are
distinguished by the “>” suffix. The distributor

index>

 is defined inside
the scope of

Define; hence index> is invisible to statements at the scop-
ing level of ForAll, Server, or • out message. The corresponding acceptor
index is visible in the scope of ForAll because Define creates it in Define’s
outer scope, but it is not generally visible in the scope of Server.

In the diagram below, each box represents the scope of the form sur-
rounding it. At the upper right of each box are listed the identifiers that
are visible only within that scope. Each scope also recognizes the iden-
tifiers that are visible in all boxes outside, so from the scope of the first
Define, the visible identifiers are size> (visible only from within that
Define); message, size, index, and out (since this Define is inside ForAll);
in>, and outs (since ForAll is inside Server).

The nested blocks of code within the three Define forms do the work.
First, the tuple count: size> is sent to the array of outputs outs. This is a
standard operation for arrays; the number of elements in the array is
revealed on the distributor size>—as a result, the acceptor size now
sends to the number of elements in outs.

Next, the tuple below: size index> is sent to the server Random. Random
is assumed to be an existing methodical server that provides random
numbers. This tuple tells Random to forward the distributor index> to a
random integer greater than zero and less than size. (Remember that
the acceptor size is visible in the inner scope of ForAll, and hence also in
the inner scope of this Define.)

Finally, the array outs is sent the tuple get: index out>. This is another
standard operation accepted by arrays, telling outs to forward the dis-
tributor out> to the indexth element of the array.

Back in the outer scope of the last Define, the acceptor out is visible and
now relays messages to an acceptor randomly chosen from those in
outs. The statement • out message forwards message, the original mes-
sage received by ForAll, to the randomly-chosen server at the other end
of out.

Joule belongs to the class of programming languages in which state-
ments execute concurrently, not sequentially. If a Joule statement relies
on the output of another, the code expresses the dependency and that

Server Dispatcher :: in> outs
• in> → msgs
ForAll msgs> ⇒ message

Define size
• outs count: size>

endDefine
Define index

• Random below: size index>
endDefine
Define out

• outs get: index out>
endDefine
• out message

endForAll
endServer

size>

out>

index>

message, size, index, out

msgs, in>, outs

More briefly, “The statement
• out message sends the original
message to the randomly-cho-
sen server out.” The ubiquity of
transparent forwarding in Joule
makes descriptions of pro-
grams extremely verbose (as
you see) unless we refer to
acceptors as if they were the
servers to which they send.

Continuous compound interest

20 Dec 95 DRAFT 21

statement will wait for the input it needs. Each line of code in Dispatcher
executes concurrently.

The statement Random below: size index> establishes communications
links for messages to Random, and can execute whether or not size has
yet been forwarded to its final value. When the Define size block com-
pletes, Random will use the result size to decide where to forward
index>, but the Define index block has already done its part once the
message plumbing to and from Random is established, and can cease
execution.

Similarly, outs get: index out> could also execute, establishing the mes-
sage plumbing to and from the array outs, without needing to wait for
index> to be forwarded. The Define out block connects Random to outs,
in a sense, and then can go away. The out message statement also exe-
cutes concurrently, establishing message pathways in the same way.

The entire process “bottoms out” once outs reveals how many elements
it has; then Random can generate a value for index, and the remaining
forwards can take place, culminating in the final forwarding of
message.

Dispatcher can be rewritten more concisely using Joule’s expression-like
syntax. The intermediate results channels size and out become implicit:

As a matter of programming style, this is a more attractive form of Dis-
patcher because the form of the code follows its function. Dispatcher
does two things: pick a server at random from outs, and send message
to it. This formulation has one line of code for each of these actions.

2.3. Continuous compound interest
This is a simple function that computes continuous compound interest
using the formula P + I = Peαt.

Code in italics represents comments. Like Dispatcher, the new server
continuous-interest accepts the single operation “::” (“do what you do”),
with arguments bound to the principal, the interest rate, the elapsed
time, and a distributor for the result channel. The expression-like syn-

Server Dispatcher :: in> outs
• in> → msgs
ForAll msgs ⇒ message

Define index = Random below: (outs count:) endDefine
• (outs get: index) message

endForAll
endServer

Reveal the interest generated by continually compounding ‘principal’ by ‘rate’ for ‘time’
time-units.

Server continuous-interest :: principal rate time total>
• total> → principal * (e ^ (rate * time))

endServer

Clearly, statements cannot exe-
cute concurrently on a single
serial processor. In such an
environment, the statements of
a Joule program execute
sequentially but in an order
chosen by the compiler rather
than in the order of their
appearance in the source
listing.

It’s also important to note that,
for every message sent to in, a
separate ForAll is activated, and
all of these activations of ForAll
run concurrently, not sequen-
tially. ForAll is not an iteration
mechanism but a generator of
multiple concurrent processes.
See the next chapter for a more
thorough introduction to the
Joule computational model.

Introductory Examples

22 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

tax is used for brevity; assuming the intermediate channels have been
defined, it could be written equivalently as:

with the same result revealed on the channel total.

The continuous-interest server is invoked by statements like:

In either case, the distributor result> is forwarded to the number
84680.00068.

2.4. Factorial

The next example is the familiar factorial function.

Factorial takes two arguments: the number whose factorial is to be com-
puted, and the distributor of the channel on which to reveal the result.
Either of these statements:

means “calculate the factorial of 5 and reveal the result on the distribu-
tor foo>.”

The expression number <= 1 reveals an acceptor to either the true server
or the false server. The server number forwards that distributor to either
true or false when it receives the “<=” operation with 1 as its argument.
More briefly, we may say that number <= 1 reveals either true or false.

The If and else statements and the nested blocks of code under each one
are all part of the same If-endIf form. Such extended forms in Joule enable
more complex program behavior, like conditional execution of code.

Depending on the value revealed by number <=1, Factorial forwards
result> either to 1 or to the acceptor revealed by the expression number *
(factorial :: number - 1). This recursive invocation of Factorial causes the
activation of another instance of the Factorial server calculating the fac-
torial of (number - 1).

• rate * time t1>
• e ^ t1 t2>
• principal * t2 t3>
• total> → t3

• continuous-interest :: 40000 0.15 5 result>
• result> → (continuous-interest :: 40000 0.15 5)

Reveal the factorial of the supplied number
Server Factorial :: number result>

If number <= 1
• result> → 1

else
• result> → number * (Factorial :: number - 1)

endIf
endServer

• Factorial :: 5 foo>
• foo> → Factorial :: 5

To forward a distributor is to
forward all messages ever
received on it.

Some extended forms like If
have an additional layer of
nested scoping between the
keyword statement and the
inner scopes of the nested
blocks of code under the key-
word and its extension
keywords. The next example,
Fund, discusses this aspect of
extended forms more
thoroughly.

Fund

20 Dec 95 DRAFT 23

2.5. Fund
Fund is a toy bank account used by Carl Hewitt to demonstrate proper-
ties of open systems. Fund is an example of a methodical server.
Methodical servers are servers that respond to a fixed set of requests.
Fund responds to deposit:, withdraw:, and balance:.

Like procedural servers, methodical servers are defined using the
Server form. There may be multiple op extensions to the Server form;
each op statement defines one of the operations to which the server
responds and specifies the arguments expected with that operation.
The block of code under the op statement—the method corresponding to
that operation—is executed whenever the server receives that opera-
tion; in this sense, each op statement is like a separate procedural server
with a different characteristic operation. This entire program consists of
one Server form, including its extension keywords and nested blocks of
code.

The var extensions define state variables for the server. A var is an iden-
tifier which can be reassigned (using the set statement) to a different
value. (It is thus unlike an acceptor—once the corresponding distribu-

Server Fund
var myBalance = 0

return the current balance
op balance: balance>

• balance> → myBalance

reduce the balance by an amount if that much is available
op withdraw: amount flag>

Define newBalance
If amount > myBalance

• newBalance> → myBalance
• flag> → false

orIf amount < 0
• newBalance> → myBalance
• flag> → false

else
• newBalance> → myBalance - amount
• flag> → true

endIf
endDefine
set myBalance newBalance

increase the balance by an amount
op deposit: amount flag>

Define newBalance
If amount < 0

• newBalance> → myBalance
• flag> → false

else
• newBalance> → myBalance + amount
• flag> → true

endIf
endDefine
set myBalance newBalance

endServer

Fund is called a toy bank
because it doesn’t conserve
money, nor does it prevent
forging of money: the deposit:
and withdraw: requests take a
simple number as their argu-
ment. Fund is more like a
rendezvous service that multi-
ple cooperating agents could
use to keep track of how much
money had been used so far.

The procedural form
Server Foo :: ...

is equivalent to
Server Foo

op :: ...

This is for the convenience of
procedures, but any operation
name could be used.

The term method comes from
Smalltalk; it corresponds to the
member function in C++.

Introductory Examples

24 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

tor has been forwarded, the server holding the acceptor has no control
over where it sends.) A var is a local instance variable—it is defined
only within the inner scope of the server which created it, and the value
of the var is different in each instance of that server. In the Fund server,
the var myBalance is set initially to zero.

Joule vars are not globally-accessible locations. They are visible only to
a single server and completely controlled by that server, so they do not
create global synchronization problems. Furthermore, Server and var
are not primitive to Joule, but are built out of more primitive constructs.

The balance: operation instructs Fund to reveal the value of myBalance:

The value of myBalance is revealed on the distributor handed to Fund as
the argument of the balance: operation.

The withdraw: operation reveals a false result if amount is negative or
greater than the available myBalance.

The set statement, which changes the value of a var, executes concur-
rently with the If. Define introduces the intermediate acceptor
newBalance into its outer scope, so set can change myBalance to newBal-
ance even though messages sent to newBalance will wait to be
processed until the actual value is calculated.

Each evaluation expression (or guard) of the Joule If form executes con-
currently. However, only one of the guards that succeed gets to execute
its nested block of code. If, as may happen on a sequential computer
running Joule, one of the guards succeeds before another has begun
executing, the system need not even bother to start up the evaluation of
the second guard. Joule’s If is a race—even if the conditions of the
guards are not mutually exclusive, only a single guard out of those (if
any) which reveal true gets its block of code run.

If amount is negative or greater than myBalance, the result channel flag>
is set to false, meaning that the attempted transaction did not succeed.

return the current balance
op balance: balance>

• balance> → myBalance

reduce the balance by an amount if that much is available
op withdraw: amount flag>

Define newBalance
If amount > myBalance

• newBalance> → myBalance
• flag> → false

orIf amount < 0
• newBalance> → myBalance
• flag> → false

else
• newBalance> → myBalance - amount
• flag> → true

endIf
endDefine
set myBalance newBalance

The term instance variable comes
from Smalltalk; member variable
is the C++ term.

There are no global variables in
Joule. Servers may interact only
through explicit message
passing.

Fund is a simplified version of
the hierarchical bank account
server Account presented in
Chapter 6. In the hierarchical
account, each guard of the If
signals a different exception,
rather than merely setting a
success flag to false.

This gives Joule compilers on
sequential computers the
option of converting the
guarded If to a nested if—if x,
then foo, else if y, then bar.

The result port flag> is used as a
substitute for the normal action
in such a situation, which
would be to raise an exception.
Exception handling is beyond
the scope of this example; it is
discussed in detail in Section
5.7.

Fund

20 Dec 95 DRAFT 25

The deposit: request increases the value of myBalance by amount (if
amount is not negative):

increase the balance by an amount
op deposit: amount flag>

Define newBalance
If amount < 0

• newBalance> → myBalance
• flag> → false

else
• newBalance> → myBalance + amount
• flag> → true

endIf
endDefine
set myBalance newBalance

endServer

Introductory Examples

26 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

20 Dec 95 DRAFT 27

3.Simple Execution Model

This section describes a simple execution model for Joule. It is intended
to describe the rules that all Joule computations must follow, and to
give the reader an intuition of how Joule computations could actually
get work done; it is not intended to represent an efficient implementa-
tion model. This simple execution model does not include resource
management techniques or Domains (separately-executable pieces of
code). Section 9.4 presents a more complete computational model after
these concepts have been explained.

An executing Joule system consists of numerous servers sending mes-
sages to each other. Some of the servers, such as numbers, are

primitive
servers,

 built outside or underneath Joule; they include the basic servers
from the kernel of Joule and foreign services provided externally. Exe-
cution bottoms out in these primitive servers. All other servers are

composite servers,

 built in Joule from more primitive servers; they enact
programmed flows of messages among primitive servers. To support
the recursive abstraction of servers, primitive and composite servers
have the same operational semantics so that clients cannot tell the
difference.

All references to Joule servers are made via

ports.

 Messages are never
sent directly to a server, but rather to a port to that server. Each server
can have multiple ports to it, each with a different behavior. These dif-
ferent behaviors are called

facets

.

Messages sent to a port don’t necessarily get to the server immediately.
Instead, a

pending delivery

 is made for the server receiving from that
port. Execution proceeds by completing a pending delivery to the rele-
vant server. The reception of the message by the receiving server and
the ensuing computation in response to that message is called the

acti-
vation

 of the receiving server.

Each composite server contains a collection of ports to other servers,
and code to execute when activated with a message. The only ports
accessible during the activation of a server by an incoming message are:

• the ports contained by the activated server

• the port to the incoming message

• ports to any servers created in the activation

The only actions a composite server can take when activated are:

• create new servers whose contained ports must be selected from
the accessible ports

The execution model presented
here owes much to the Actors
execution model ([2], [65]).

The resource issue of who pro-
vides storage for messages will
be dealt with in Section 9.4 in a
future version of this manual.
Strikingly, this particular kind
of resource management prob-
lem is very similar to flow-
control, which has been solved
in the context of telecommuni-
cations: Tymnet and X.25
provide solutions, for example.

Simple Execution Model

28 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

• send accessible port as messages to other accessible ports

These laws of computation restrict information flow among servers to
message passing only; servers cannot, for example, compare ports for
identity or side-affect global variables.

These laws do not directly provide the ability to change the collection
of contained ports in the server; i.e., the server’s state. The semantics of
changeable state, so necessary for adequate modeling of real systems, is
built in the language on top of the kernel semantics (and can be imple-
mented efficiently). These abstractions (e.g.,

Server

 forms with

var

extensions) are described in Section 5.1.

When activated, primitive servers can perform arbitrary internal com-
putation, so long as they respect these laws. They can contain ports to
other servers, and can cooperate with each other (subject to the accessi-
bility laws). They can change their internal state to include any other
accessible servers. They cannot violate the modularity of the program
by either reaching inside other servers (except cooperating primitive
servers), or by referencing servers that were not explicitly accessible.
Joule computation bottoms out by primitive servers cooperating with
each other. For instance, integer addition bottoms out when the “+”
operation is sent to a primitive integer with another primitive integer as
its argument. The receiving integer gets the bits from the argument
integer, computes a new result integer, and forwards the result channel
to it; if the argument is not a primitive integer, then the receiving inte-
ger must send a message asking the argument to perform the addition.

The idiom of simple object-oriented message sending is as follows: the
sending server, during some activation, creates a new tuple—the typi-
cal kind of server used for messages—and sends it to one of its other
accessible ports. The delivery of that tuple is then pending for the
server facet listening for messages on that port. When execution acti-
vates a server with the message, that server can then send to that
message (considered as a tuple object). This allows it to extract the

oper-
ation

 (the name of the tuple) and its arguments, for use in further
computation. Because the tuple is a primitive server, when it receives
messages to reveal internal parts of itself, it can do so immediately
without spawning an infinite recursion of message sending.

Two other primitive server types, channels and arbiters, are used to
interconnect servers into complex systems. Primitive Joule servers
called

channels

 have two facets, an acceptor and a distributor. The

accep-
tor

 is for sending messages

through

 the channel to other ports. The

distributor

 is for controlling where messages sent to the acceptor get for-
warded—messages sent to the distributor can forward the channel to
other ports. The behavior of the channel is such that, for all messages
sent to the acceptor port, a pending delivery of the message will be
made for any port to which the distributor forwarded the channel.

Sending on the acceptor of the channel is equivalent to sending through
the channel to each of the ports to which the channel is forwarded. This
equivalence is

transparent:

 sending to the acceptor of a channel is indis-
tinguishable by the sender from sending directly to the ports of any
servers to which that channel delivers. Messages sent through the chan-
nel are also preserved, so that if the distributor forwards the channel to
any other ports, those ports will also get all the messages; a pending

An operation, in this execution
model, is a unique token that
can be compared with other
tokens. They are not described
in detail because they are
replaced with public/private
key pairs under the new regime
described in the Energetic
Secrets appendix.

To forward a channel is to for-
ward all messages that have
been or ever will be received on
that channel.

20 Dec 95 DRAFT 29

delivery to the new destinations will be made for every preserved
message.

Channels have private access to

 arbiters

 for choosing among messages
received. Arbiters are primitive servers that are not directly accessible
at the programmer level; they are implicitly accessed using the

choose:

operation of distributors. Supplied with a port for results and a distrib-
utor containing messages, an arbiter chooses one of the distributor’s
messages and forwards all of the others to a newly-created channel. It
then sends to the result port a message that contains the chosen mes-
sage and the distributor to the new channel. Arbiters provide the
fundamental non-deterministic choice required for synchronizing
access to resources. For example, in trying to model a bank account, if
two clients try to withdraw the entire balance, only one can get it. Arbi-
ters are the selection mechanism for ordering requests to provide
synchronization for servers.

Channels and Arbiters and the programming techniques using them
are described in Section 5.1.

Servers perform the same role as objects in object-oriented program-
ming languages; however, they differ in that they are implicitly

concurrent,

ubiquitous

 (everything is a server), and

uniform

 (all behavior
is in response to messages). Because all behavior is in response to mes-
sages, and because messages wait until their recipient can respond to
them, Joule inherently provides data-flow synchronization. Any server
can send messages on a channel even before the channel has been for-
warded to any other servers. When receiving servers are created, they
respond to all the pending messages.

The If form is built from
Arbiters.

Because delivery of messages is
not immediate, any delay in the
creation of the receiving server
is not apparent to the client.

Simple Execution Model

30 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

20 Dec 95 DRAFT 31

4.Syntax

This section presents an informal syntax for Joule. For a formal syntax,
see Appendix B. Syntactic abstraction, the set of techniques for extend-
ing the Joule syntax, is discussed but not specified in this document.

In the Joule syntax presented here, typography is significant:
whitespace delimits tokens and italics indicate comments. Boldface is
used to denote syntactic keywords in the text, but is not semantically
significant. Keywords occupy the same namespace as identifiers.

4.1. Lexical Conventions

This section describes the token types for standard Joule programs.
These include numerals, identifiers, keywords, labels, operators, spe-
cial characters, whitespace, comments, literals and quasi-literals. Joule
uses UNICODE for its character set.

4.1.1. Numerals

Numerals

 (the textual representations of the send ports to Joule num-
bers) are composed of the ASCII digits

0–9

. No other UNICODE
characters are considered “numerals” in Joule.

4.1.2. Identifiers

Identifiers

 are sequences of UNICODE letters, digits, and operator char-
acters that begin with a letter, or sequences of any UNICODE
characters (including whitespace) enclosed by either straight (' ') or
standard (‘ ’) single quotes, with backslash as an escape character. The
quotes and escapes are

not

 considered part of the identifier. Case is sig-
nificant. Some examples of legal identifiers are:

4.1.3. Keywords

Keywords

 are identifiers that are treated specially. They are shown in the
text as

bold

, but this representation is not syntactically significant. The
syntax extension system to be described in future versions of the docu-

x list a> ‘an identifier’
question? D

→

38a

δαιµον

+ ‘letter \’a\’ ’

The Joule syntax presented in
this document replaces a
former one in which line inden-
tation was significant.

When the UNICODE commit-
tee defines character categories
such as numeric characters,
identifier characters, and opera-
tor characters, Joule will adopt
those distinctions. Until then,
Joule will use the simplest pos-
sible distinctions.

Syntax

32 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

ment will cover this in detail. Keywords provide syntactic structure.
Examples of keywords are:

(The send keyword •, which does not begin with a letter, is an excep-
tion to the rule that keywords must be identifiers.)

4.1.4. Operators

Operators

 are sequences of UNICODE letters, digits, and operator char-
acters that begin with an operator character. Some examples of legal
operators are:

4.1.5. Labels

Labels

 are identifiers followed by colons (“:”), or the double-colon by
itself. Labels, along with operators, are used as operations (message
names).

4.1.6. Characters

Operator characters include:

+ - * / < = > ! @ $ % ^ & | \ / ? ~ _

→

⇒

Some characters are treated specially. These include:

. ; , : # ' " ` { } [] ()

“.” and “;” are handled specially to support a syntax that doesn’t
require character attributes: identifiers that end in “.” are considered
keywords (without the “.”), and “;” begins a comment that consumes
the rest of the line. “:” is used generally as the indicator of an operation
label. “#” introduces an arbitrary quasi-literal; “##” introduces an arbi-
trary literal.

4.1.7. Whitespace and Comments

Whitespace includes: space, tab, linefeed, CR, and form-feed.

Comments are arbitrary characters written with italic character
attributes. Joule treats comments just like whitespace. Comments can-
not be embedded within a single identifier.

4.1.8. Literals and Quasi-literals

Two special token types are

literals

 and

quasi-literals

. Though directly
supported by the syntax, these both represent expression values and
are described in the next section.

Common literal types like numbers, strings, and characters are defined.
Joule also supports general literals: arbitrary user-defined objects
embedded in the source code by multi-media editors. The support for
this is beyond the scope of this document.

Server

If

 •

Syntax+

Case

Define

∆

 ‘Right Here’

+

→

 != <-than-3

sort: :: delta+3: ‘there now\':’

When the UNICODE operator
character declarations are final-
ized, the set of Joule operator
characters will be extended to
include additional characters
like ± and ÷.

Expressions

20 Dec 95 DRAFT 33

4.2. Expressions

At the bottom, Joule syntax is imperative, and therefore statement-
based. However, because expressions are used so frequently for math
and comparison operations, a rich expression syntax is supported
which transforms cleanly into the relational syntax underneath.

In brief, complex expressions become separate statements with the dis-
tributor of an implicit results channel. The site of the original
expression is replaced by a reference to the acceptor of the results chan-
nel. This means that nested expressions still compute completely
concurrently with their embedding statement. This transformation is
described in detail in

Section 5.4

.

Below is a simplified BNF for expressions. Multiple lines in the produc-
tion definition are disjunctive; thus, a

simpleExpr

 is an

Identifier

, or a

Literal

, or a

Quasiliteral

, etc.

Simple expressions designate particular values. These are:

4.2.1. Identifiers

Identifiers name communication ports on which messages can be sent
to other Joule receivers, and which can be included in messages. These
are just single tokens.

4.2.2. Literals

A literal expression statically designates a specific value that will be
made available at run-time. It is represented as a single token to the
compiler. Examples include numbers, shared immutable strings, and
user-defined, embedded receivers (shared icons, shared print servers,
etc.):

4.2.3. Quasi-literals

A quasi-literal expression designates a value which will be copied at
run-time. These copies may incorporate literals, and run-time values.
Examples include quasi-quoted lists as in Lisp, strings computed from
formats as in C

printf

 statements, and user-defined, embedded
receivers.

Production

Production Definition

Example

simpleExpr Identifier
Literal
Quasiliteral
tuple
'(' nestExpr ')'

bank>
17.5

oper: arg

opExpr simpleExpr
simpleExpr

Operator

 opExpr
17
3 + 17

nestExpr simpleExpr
simpleExpr opExpr

12
bank deposit: chk

tuple

Operator

 opExpr*

Label

 opExpr*
+ b
get: i - 1 result>

1234.5 ##"this is a test"

In BNF representations, foo*
means zero or more instances of
foo and foo? means zero or one
instances of foo. Braces are used
for grouping.

The apparent shift/reduce
ambiguities in the grammar
must be resolved by reducing
(as YACC would).

Syntax

34 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

For example,

#"This is a $t1"

 where

t1

 is

"Test"

 would result in a copy of

"This is a Test"

.

4.2.4. Tuples

Tuples

 are used as messages in Joule. A tuple has a statically-available
name, called an

operation

, and any number of arguments (including
zero) which are other expressions. A tuple expression can be thought of
as a special and extremely common kind of quasi-literal.

Operations

 are
either operators or labels:

Tuple expressions include all operator expressions following them, so
they must be enclosed in parentheses (as a nested expression) in order
for another expression to follow them in a line of source code.

4.2.5. Operator Expressions (

opExpr

)

Computation in Joule proceeds by sending and processing messages.
The operator expression syntax supports conveniently sending mes-
sages commonly used in mathematical and relational expressions.

Operator expressions combine simple expressions into complex expres-
sions using operators. Precedence is right-to-left—the first operator is
applied to the first argument and the rest of the line, which will be the
second operator applied to the second argument and the rest of the line.

4.2.6. Nested Expressions (

nestExpr

)

Nested expressions are enclosed by parentheses and can be used any-
where simple expressions are allowed. They support the explicit
grouping as shown in the example above, and allow expressions that
use label-based messages rather than just operator messages. For exam-
ple, this statement

sends the server

x

 the

max:

 operation with a single argument (the min-
imum of

y

 and

z

). Without the parentheses, the

max:

 request would be
sent with two arguments:

y

 and the tuple

min: z

.

4.3. Program Structure

Joule programs are composed of a sequence of forms. Each

form

 starts
with a keyword that identifies the syntactic type of that statement.
Forms with the “•” keyword are used for the most frequent operation,
message sending.

Syntactic extension tools allow users to associate new syntactic forms
with keywords. The syntactic extension system is not presented in this

+ 4 result>
req: arg1 arg2

The expression: is interpreted as:

3 + 4 + 5 – 12 3 + (4 + (5 – 12))
a <= b * c a <= (b * c)

• x max: (y min: z)

Identifier Scoping

20 Dec 95 DRAFT 35

version of the manual, but many of the forms presented in later sections
are actually syntactic abstractions built out of more primitive forms.

Forms typically have a

Keyword

 followed by any number of operator
expression arguments and ending with the corresponding

endKey-
word

. In the interior of the form, underneath the keyword statement, is
an optional block of more statements. Following the block are optional
extension lines that have the same structure but whose keyword identi-
fies them as part of the preceding statement. By convention, keywords
that start with uppercase begin a form, keywords that start with lower-
case begin extensions. A simple example is:

The entire example is a single form; the

If

 clause is the primary clause,
the

else

 clause is an extension. The

If

 clause has one argument follow-
ing, the operator expression

amount <= balance

. The nested form,

• account withdraw: amount

, uses the •-keyword statement form with a
single argument, the tuple

withdraw: amount

. The nested form under
the

else

 extension is similar: it is a one form block using the •-keyword
statement with a single argument, the tuple

report-bounce:

.

Note that tuple expressions include all operator expressions following
them. For another expression to follow a tuple in a line of source code,
the tuple must be enclosed in parentheses (as a nested expression).

4.4. Identifier Scoping

Any identifier may name a channel on which servers receive messages.
An identifier that does so is said to be

bound

 to that channel. Use of the
identifier designates use of the channel to which it is bound.

Certain syntactic forms create new channels and bind identifiers to
those channels. All bindings are

statically scoped

: the region of the source
code in which the binding will be visible is an observable property of
the source code. The same identifier may be bound to a different chan-
nel in an outer region that includes the inner region; the inner binding
shadows the outer one, and is the only binding visible to code in the
inner region.

Statements can create bindings in their

inner scope

—the statement itself
and everything nested within it—or in their

outer scope

—the block that
directly contains the statement, including all its sibling statements. The
syntactic form of the statement determines where the statement makes
bindings, and with what identifiers.

Server

 is a simple construct that
shows both kinds of binding:

If

 amount <= balance
• account withdraw: amount

else

• account report-bounce:

endIf

• factorial : 3 fact3>
Server factorial : num result>

If num <= 1
...

scope 1

scope 2

Syntax

36 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

Server

 makes a new channel for factorial requests named

factorial

 and
binds it in the outer scope (labeled

scope 1

). Each request sent to the
factorial channel invokes the nested code with

num

 and

result>

 bound in
the invoked code to the two arguments in the factorial request (roughly
the channel for the argument and the channel for the revealed result).
The two parameters are bound in the inner scope of the procedure
statement.

Like Scheme, Joule is a statically scoped language with block structure.
The block structure is represented by Keyword-endKeyword pairs; the
binding site for a use of an identifier can be statically determined from
the code. Unless hidden by the statement, bindings visible to a state-
ment are also visible to statements nested within it. The multiple
clauses of some statement forms may share the same inner scope, or
may each introduce nested scopes only visible to that clause.

Strict static scoping allows visibility constraints to contribute to the
modularity and security of the language. For instance, the Define con-
struct makes a new channel and binds identifiers to its ports. The
identifier supplied with Define is bound in the outer scope to the accep-
tor of the channel. This makes it visible both in the outer scope and the
inner scope, since bindings in one scope are generally visible to all
scopes within it. Define also binds a modification of the identifier (by
convention, the identifier followed by “>”) in the inner scope to the dis-
tributor of the channel. This distributor is visible only within the inner
scope. The utility of this can be seen in:

Any number of clients can share the bank without trusting each other
because their messages can only be received by the bank implementa-
tion (which they have to trust anyway). The visibility constraints of
Define guarantee that the binding of the distributor of the channel is not
visible outside the nested code within the Define-endDefine pair.

Define bank
implementation responding to messages on “bank>”

endDefine
bank clients that send messages to “bank”

20 Dec 95 DRAFT 37

5.Language Definition

This chapter presents a complete description of the present state of the
Joule language design. First, the computational primitives are
described, along with typical techniques for their use. This is followed
by a description of the syntactic forms built from those primitives to
directly support routine programming tasks. The order was chosen to
emphasize that the Joule computational primitives provide the entire
rules for normal programming in Joule. Everything else described in
this chapter can be built (at least semantically) on top of the primitive
semantics, and can do nothing that the primitives could not do.

This follows the “hourglass” architecture principle: lots of functionality
on top, lots of implementation tricks and machine specific adaptation
on the bottom, and a very narrow “waistline” in the middle with a clear
semantics that provides the rules that programmers must understand.

5.1. Message Plumbing

The first step in understanding the building of complex systems in
Joule is to understand how programs are constructed. In Joule, pro-
grams literally get connected—much of the program design is the
creation of the interconnections between servers. This section describes
the mechanisms for managing message routing and response, and
ways to program with these Joule mechanisms that are powerful equiv-
alents to conventional programming techniques.

5.1.1. Sending Messages

The most common operation is sending a message; message sending is
used for everything from adding numbers to bidding for remote data-
base services. All values in Joule are servers, so message sending is
ubiquitous. Because it is so frequent, message sending is represented in
the syntax by juxtaposition after the

•

 keyword. As a statement,

 •

plus
a simple expression, followed by any other expression, sends a mes-
sage: the second expression is sent to the first expression.

The second expression, the message to be sent, will usually be a tuple.
A tuple is an ordered list of arguments preceded by a statically-avail-
able name for the tuple, called an

operation

, which is either an operator
or a label. The operation is followed by the argument list, an ordered
sequence of zero or more ports to servers.

Resource management pro-
gramming involves Boundaries
as well. See Chapter 7, Boundary
Foundations.

A simple expression is an identi-
fier, a literal, a quasi-literal, a
tuple, or a nested expression
within parentheses. See Chap-
ter 4, Syntax.

Any server could be used as a
message, but tuples are the
mechanism to support normal
object-oriented practice. Using
other types of servers for mes-
sages is beyond the scope of
this section.

Language Definition

38 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

In the statement

the first simple expression is just the identifier

account

. The expression
following it is the tuple

withdraw: amount result>

; the message sent to
the receiver is an operation named

withdraw

: with two arguments. In
Joule, any server can be sent as a message on a port; the expression fol-
lowing the receiver can be any expression. The expression

withdraw:
amount result>

 produces a tuple that is then sent to the receiver. The sim-
ple statement,

• rcvr msg

, sends

msg

—presumably a tuple—to

rcvr

.

In most cases, there will only be a single receiver for messages on a
given channel. In this typical situation, the port to that single receiver
can be treated like a pointer to that server in traditional object-oriented
programming languages; that port is the capability to access the object.

Another pattern of use for channels is for the distributor of a channel to
be shared. Such channels are multi-casting their messages to all the
receiving servers. This works because at the distributor, messages are
not removed from channels, but merely viewed, so all receivers see all
messages. As result, there is no synchronization between receivers; they
don’t race to be the server that receives a given message. This is imper-
ative for efficient distributed systems, because such races require
expensive distributed coordination that should be written in the lan-
guage rather than as a part of it.

Each receiver acts on every message in the channel. If a channel of five
messages is received by six separate

ForAll

servers, thirty processes are
initiated. There is no synchronization among these resulting processes;
they will execute and finish in a non-deterministic order.

Also, multiple servers can send messages on the same port. Because
these senders execute concurrently, messages sent to the same port by
two different servers are completely unordered with respect to each
other—either server could have sent its message first, so receivers of
messages from that port might see the messages in either order. For
example, suppose two clients of a database,

A

 and

B

, send requests
from their respective machines to the database server. Even if

A

’s mes-
sage is sent first in real time,

B

’s message may arrive at the receiver
before

A

’s message does (perhaps

B

 and the server are both in Dallas,
and

A

 is in Osaka). If

A

 and

B

 are not otherwise communicating about
their interactions with the database, then the only ordering that any
server in the system can observe is the ordering the database observes
when it receives the messages in a particular order.

An individual server can impose an order on the messages it sends. A
single send statement can send several messages in a guaranteed order:
receivers of the messages will see them in the order that the sender
imposes. The form

sends two messages, a

deposit

: message and a

withdraw

: message, to the
server named by

account

. The expression after each comma in a send
statement is a further message that comes

after

 the previous messages.
This does not guarantee anything about how the messages from one

• account withdraw: amount result>

• account deposit: amount, withdraw: amount result>

Because the messages are
merely conveyed from the
acceptor to the distributor,
senders to a channel can only
use it to communicate with
servers at the other end of the
channel, not with each other.
This means that the semantics
of each sender depends only on
the semantics of the server at
the receive side, not the other
senders. This also means that
senders need no expensive syn-
chronization with each other.

This simple example illustrates
the need for ordered mes-
sages—there might not be
enough in the account for the
withdrawal until after the
deposit.

Message Plumbing

20 Dec 95 DRAFT 39

sender will be interspersed, if at all, with messages from any other
servers.

Ordering messages among more than a single sender requires a differ-
ent use of the same mechanism. The

then

 extension to the send form
forwards all the messages in a distributor to the receiver, with the guar-
antee that they will be received after the original messages.

Any number of ordered messages can be sent before the

then

 extension;
the messages before the

then

 are sent in the same order in which they
appear in the program listing, while those in

then

’s distributor are guar-
anteed to be delivered after them.

5.1.2. Local Values and Channels

The

Define

 form is the simplest mechanism for binding identifiers to
ports locally.

Define

 embodies two mechanisms: it binds identifiers to
ports and, where necessary, it creates channels.

The simple statement

binds

amount

 to the port to the number

5

 within the scope in which the

Define

 statement occurs.

Define

 also creates a channel and makes the distributor of the channel
visible in the inner scope of the

Define

. The name of the distributor is
generated by appending “>” to the defined name. Thus, the distributor
corresponding to

amount

 above would be

amount>

.

As described in Chapter 3, messages sent on the distributor control the
routing of messages sent through the channel (via the acceptor). The
block nested within a

Define

 form can forward the channel to some
server and thus determine the server to which messages sent on the
acceptor will be delivered, or it can pass the distributor to some other
server to allow it to determine the value of the distributor. The above
example,

Define

 amount = 5

endDefine

, can be rewritten to demonstrate
local forwarding of the distributor.

The existence of an intermediate channel is completely invisible to
either the clients of

amount

 or the server

5

 because channels are trans-
parent; messages sent through channels act exactly as if they had been
sent directly to the servers to which the channel is forwarded. In effi-
cient compilers, the two different definitions of

amount

 will produce
identical (and efficient) code.

The “

→

” operation with a single port as its argument tells the distribu-
tor to forward to the supplied port all messages ever received through

(Assuming that the “from-seller” channel already exists:)

• account deposit: amount

then

 from-seller>

The seller’s messages are received after the deposit operation.

• from-seller withdraw: amount result>

Define

 amount = 5

endDefine

Define

 amount
• amount>

→

 5

endDefine

Ordered message sending is
actually implemented using
ordinary tuples to provide the
order.

Language Definition

40 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

the channel. Since messages sent through a channel wait at the chan-
nel’s distributor, messages can be sent before the channel has been
forwarded to all its receivers. The delay in delivery is invisible to the
message senders because message delivery is never immediate—a
message sent from one machine to another takes time to cross the net-
work. Message plumbing and dataflow synchronization allow
programs to be built without immediacy requirements.

This simple example demonstrates passing the distributor to another
server to allow that other server to determine the receiver of messages
sent on the acceptor.

This example passes the distributor,

result>

, as an argument to the

bal-
ance

: operation to

account

. This allows

account

 to forward the
distributor to the server which is its balance, and so bind the result to
the balance of the account. All messages, past or present, sent to

result

will arrive at the server that is

account

’s balance.

The statements within a Joule form all execute concurrently. The linear
form of the textual representation of a Joule program may give the
appearance of sequential execution, but this is emphatically not the
case. As a result,

Define

 statements at the same level of scoping can use
one another’s acceptors in their definitions. This was used in the ver-
bose form of the

Dispatcher

 example in Section 2.2:

These three

Define

 forms could be in any order without changing the
operation of the program.

Also, because the outer bindings are visible to inner scopes, the name
being bound in a single

Define

 can be used in defining the binding of
the name. This is commonly used in the definition of recursive func-
tions. The following toy example makes the syntax clear:

The acceptor

ones

 now delivers to a tuple named

foo:

 which has two
arguments, namely the number

1

 and a tuple named

foo:

 which has
two arguments, namely the number

1

 and (effectively) a tuple named

foo:

 which has two arguments...

Mutually recursive definitions are also supported: a single

Define

 form
can bind multiple names (separated by commas). The distributors for

The following passes the distributor to another server

Define

 result
• account balance: result>

endDefine

Define

 size
• outs count: size>

endDefine

Define

 index
• Random below: size index>

endDefine

Define

 out
• outs get: index out>

endDefine

Define

 ones
• ones>

→

 foo: 1 ones

endDefine

Message Plumbing

20 Dec 95 DRAFT 41

those names are visible in the entire statement, so each definition can
use the acceptors or distributors of the other definitions.

The nested block of code under

Define

 (and any further nested block
within it) can use any or all of the ports thus

Define

d; this example uses
them all.

Finally, the simple form of definition (

Define

acceptor = expression

end-
Define

) and the more complex form (with a nested code block) can
coexist. The distributor created, and thus all messages delivered to it,
are forwarded to all of the results of the definitions. Logging is a simple
example that starts to use the power of message plumbing:

The

Logger

 here is just some server that records all the messages that
arrive on

amount>

. The messages sent on

amount

 are sent to both the
number

5000

 and whatever internal server the

Logger

 server started.

5.1.3. Composite Servers

The

ForAll

 form is the foundation for building composite servers. When
a

ForAll is executed, it creates a new composite server that will invoke
the same block of Joule code for every message that it receives through
a particular channel.

The new server created by the above ForAll form will activate body once
for every message sent through in. The identifier msg will be bound to
the message in each independent activation. The new server will con-
tain the ports bound to visible identifiers defined outside the nested
body but used within it. When the new server is activated, it can create
new servers (using ForAll for example), and send messages, following
the accessibility restrictions described in Chapter 3, the execution
model.

Because servers created with ForAll are not allowed to change the set of
ports they can access, they cannot remember anything, and cannot
implement (by themselves) servers with mutable state. They are the
foundations for immutable servers such as complex numbers and pro-
cedures. For instance, the introductory example Dispatcher (Section 2.2)
that randomly distributes messages among multiple output ports:

Define population, growth
mutual-recursion :: population growth population> growth>

endDefine

Define amount = 5000
Logger record: amount>

endDefine

ForAll in ⇒ msg
body

endForAll

Server Dispatcher :: in> outs
• in> → msgs
ForAll msgs ⇒ message

The bindings of the distributors
hide the bindings of the accep-
tors, so in

Define a, a>
body

endDefine

the body will see two distribu-
tors, a> and a>>,
corresponding to a and a>
respectively.

Language Definition

42 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

could be expanded to:

The first part of the example is an expansion of the simple use of the
Server form—for every tuple, execute the nested body of code in a
block with in> and out bound to the two arguments of the incoming
tuple. This is clearly an oversimplified variant of the expansion; it has
no error checking, it requires two operations to get all the parameters,
and so forth. However, it does serve to show how the more powerful
forms in the language can be semantically defined in terms of the com-
munications primitives and the primitive servers.

5.1.4. Making Decisions
As mentioned in the execution model, decisions are made by Arbiters.
An Arbiter chooses among the messages it receives. Supplied with an
acceptor for results, and a distributor containing messages, it chooses
one message, and creates a new channel to which are forwarded all the
messages not chosen. It then sends to the supplied acceptor a message
that contains the chosen message and the distributor to the new
channel.

Decisions get made by Arbiters in several different circumstances. For
Server, Arbiters select an ordering for unordered sets of messages—
choose one message, process it, make another Arbiter, choose the next
message, and so on. For the If form, Arbiters select the branch to take in
an If form with multiple independent branches whose guards are all
true. Other Joule forms use Arbiters similarly.

The Arbiter concept exists primarily as an aid to intuition about deci-
sions—Arbiters don’t necessarily ever exist in the implementation or as
objects in the programming language. Arbiters are created by channel
distributors when they receive the choose: message. The Arbiter
chooses a message from the channel, and forwards the rest of the mes-
sages to a new channel.

The channel to which the choose: is sent may have multiple receivers;
its content remains unchanged. Multiple Arbiters on the same channel
choose independently: they could choose the same message or they
could choose completely different messages. These two principles com-
bine to avoid the need for any synchronization or coordination between
multiple receivers. The multiple receivers can choose messages, for-
ward messages, and so on, without needing to synchronize with other

Define index = Random below: (outs count:) endDefine
• (outs get: index) message

endForAll
endServer

ForAll Dispatcher ⇒ tuple
• in> → msgs
Define in> = (tuple get: 0), outs = (tuple get: 1) endDefine
The above parameter extraction is merely suggestive.
Now the body of the procedure, which also uses ForAll
ForAll msgs ⇒ message

Define index = (Random below: (outs size)) endDefine
• (outs get: index) message

endForAll
endForAll

This doesn’t properly check
that the operation is “::”.

Message Plumbing

20 Dec 95 DRAFT 43

receivers on the same channel. As a result, the only synchronization
necessary and the only communication possible are between senders
and receivers. This simplifies the semantics of the language and the
implementation—particularly in distributed systems in which
synchronization is expensive—without reducing the power at all. Pro-
grammers can build any synchronization mechanisms they desire from
these primitives.

5.1.5. Making Decisions Easier

Though the choose: operation is the simplest mechanism, the ForOne
form is a much easier way to understand Arbiter behavior. ForOne cre-
ates a new server that will execute a block of code for exactly one of the
messages it receives. ForOne non-deterministically chooses one of the
incoming messages (using choose:) and defines a new channel that con-
tains the rest of the messages. (The original channel may have multiple
receivers; its contents remain unchanged.) This “rest” subset can be
redirected to other servers. The block of code in the ForOne server will
have access to not just the message but also the distributor for a channel
of the rest of the messages; i.e., all messages not chosen. As with ForAll,

ForOne defines a port for incoming messages, while one and rest> are
identifiers that will be bound in the nested block when that block is
activated for a chosen message. The ForOne can expand to a use of the
choose: message and a procedure

The choice procedure is just to hide the extraction of the chosen mes-
sage and the distributor with all the other messages. The choice
procedure could expand further out to a ForAll and explicit extraction of
one and rest>.

5.1.6. Receiving with ForOne

ForOne is suitable for the definition of mutable servers. The server
chooses one message with ForOne, computes a new state based on that
message, and recurs with that new state on the rest of the messages in
the distributor. This use of ForOne imposes a particular full-ordering on
the partial ordering of messages sent on the channel, properly synchro-
nizing access to the mutable state of the server.

Using choose: to provide a full ordering for a partially ordered set
requires choosing a message, processing it, and then choosing further
messages. The ForAll form is the primitive that allows code to be used
more than once, so it will be used (inside of Server) to invoke the
choose: as many times as necessary. When a Server form has mutable

ForOne in ⇒ one rest>
block

endForOne

Define in
• in> choose: choice
Server choice :: one rest>

block
endServer

endDefine

Receiving with choose: or For-
One subsumes the Actors
computational model, which
requires the semantically more
complicated become operation.

Language Definition

44 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

state, it expands to a use of choose:. This can be seen by expanding a
subset of the Fund example:

which could expand to

The Define Fund creates the Fund channel. Inside the definition is the
nested procedure, Fund-recursion, that implements the Fund server. The
arguments for that procedure are the state variables for the server and
the incoming request channel—myBalance gets initialized to 0, the
input stream is initially Fund>.

The Fund-recursion procedure immediately waits (using choose:) for a
tuple to be sent to Fund. When a tuple is received, the expansion here
uses a Switch form to dispatch to appropriate code based on the name
(or operation) of the incoming tuple and its arguments. The code for bal-
ance: (called the balance: method) is the supplied code plus a recursive
call to the Fund-recursion procedure to process the rest of the messages
sent to Fund. In each recursive call, the method could call Fund-recursion
with a completely different amount, thus changing the state of the
server Fund from the perspective of all its clients. A simple example is
the following method that would zero the balance of the Fund.

The clear: method just sets myBalance to 0. The expansion is just
another clause of the Switch form used for dispatching on the incoming
message.

Server Fund
var myBalance 0
op balance: result>

• result> → myBalance
op deposit: amount success?>
...

endServer

Define Fund
• Fund-recursion :: 0 Fund>
Server Fund-recursion :: myBalance in>

• in> choose: choice
Server choice :: operation rest>

Switch operation
case balance: result>

• result> → myBalance
• Fund-recursion :: myBalance rest>

case deposit: amount success?>
...

endSwitch
endServer

endServer
endDefine

op clear:
set myBalance = 0

case clear:
Fund-recursion :: 0 rest>

The real expansion of the Server
form is complicated by han-
dling message ordering and
multiple input channels. It will
not be presented in this
document.

For a more detailed description
of recursion, see Section 5.6.

Methodical Servers

20 Dec 95 DRAFT 45

In response to the clear: message, the call to Fund-recursion says to pro-
cess further messages in a Fund that has a zero balance.

5.2. Methodical Servers
Methodical servers are like objects from traditional object-oriented pro-
gramming languages: they respond to a specific repertoire of messages
which each invoke a different behavior, called a method. For well-
defined servers, the set of messages to which they respond, called their
signature, satisfies a contract that clients can count on. Some elements of
the contract can be specified in the language; these are captured in
machine-verifiable ways in definitions of signatures called Types. Other
elements are defined at a human level of understanding; these are cur-
rently relegated to comments. The Type form describes the specification
to which methodical servers of that type must conform; the Server form
describes a single implementation meeting that spec. This section pre-
sents the tools for defining servers and their types.

While many languages support the equivalent of methodical servers,
few support non-methodical servers such as transparent forwarders.
Non-methodical servers respond generically to messages, passing
them through to other servers or processing them without regard to the
particulars of each message. Chains of non-methodical servers typi-
cally terminate at a methodical server which provides the semantics to
clients of the server. In addition to the general support for message
plumbing (all of which produces non-methodical servers), the Server
form supports the definition of methodical and partially methodical
services.

The Server form supports several object programming techniques,
many of which are abilities enabled by the flexibility of communication
in Joule:

• immutable servers—servers that don’t change state, such as pro-
cedures and complex numbers

• mutable state—standard mutable servers, but designed to work
properly in a highly concurrent environment

• partially ordered messages—represents the potential concurrency
among client requests

• multiple facets—Servers can have multiple input channels with
different behavior on each. This supports private method groups
and servers that present different facets to different clients (such
as channels do).

• non-methodical servers—Servers can respond to messages gener-
ically, logging them, forwarding them, animating their delivery in
a debugger, etc.

The Type mechanism supports

• compile-time implementation checking—Servers that claim to
implement a type get checked at compile time.

• run-time checking—Servers that allege to be of a certain type can
be verified to implement that type.

• default implementations—Types can describe parts of their inter-
face in terms of other parts of their interfaces. These descriptions
act as default implementations and provide further definition of

Put another way, Type forms
describe the “what” of method-
ical servers, while Server forms
describe the “how”.

Language Definition

46 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

the contract that the type abstractly represents.

• inheritance—Types can inherit from other types. We believe this
simpler mechanism, combined with object facets (see Section
5.2.2) will provide all of the power associated with implementa-
tion inheritance while avoiding some of its problems.

5.2.1. Syntax

The Server form defines a single server. To create multiple instances of
a particular kind of server, its definition can be nested inside another
server; the containing server can then create a new instance of the con-
tained server every time it is called. The syntax of the Server form is

The identifier following the Server keyword is bound in the outer scope
to a port to the newly created server. Following the identifier is an
optional method definition. This is primarily to conveniently support
procedural servers. Method definitions will be described below. Fol-
lowing the optional method definition is the declaration of any mutable
state for the server. The var declarations create the instance variables to
represent this state. In this, var extensions act like the Define form—the
identifier is bound either to the optional expression or to an acceptor
through a channel that gets connected to an initial value in the nested
body. The instance variables are only visible within the body of the
server definition. Methods in servers with mutable state can rebind the
identifier to other ports.

The King server might be an element of a Joule chess program, with
instance variables describing its position and status:

Production Production Definition
server Server param {method}? {var}* ops {facet}*

endServer
var var {param | param = opExpr},*

block
ops {implements Identifier}?

{op method}*
{otherwise param

block}
method {pattern}or+

block
{change
block}*

change to Identifier {opExpr},+
| set {Identifier = opExpr},+

facet facet param ops

Server King
var myPosition = K1
var check? = false
op move: newPosition

Define resultPosition
If (rulebook allow: king myPosition newPosition)

• resultPosition> → newPosition
...

set myPosition = resultPosition
op ...

endServer

The syntax and type system
will be extended to allow
parameter types and local bind-
ing types to be declared.

In BNF representations, the
construct {bar}foo+ means “one
or more instances of bar, sepa-
rated by foos.” For example,
{pattern}or+ means one or more
patterns separated by ors. The
full BNF is presented in Chap-
ter B, BNF for Joule Syntax.

The instance variables in serv-
ers not actually locations like
variables in C; for instance,
ForAlls nested in a server
method will see an unchanging
snapshot of their containing
server’s state.

Methodical Servers

20 Dec 95 DRAFT 47

5.2.2. Facets

Servers may have many facets—named channels on which they receive
and respond to messages according to some contract. The identifier that
follows the Server keyword names the primary facet of the server.
Other facets, and thus other named input ports, are introduced with the
extension keyword facet. The identifier following a facet keyword is
like the identifier after the Server keyword: it names a newly defined
port in the outer scope of the Server form. The method definitions for
the primary facet appear after the instance variable declarations; for
other facets they follow the facet declarations. Primary and secondary
facets are semantically equivalent.

Before the method definitions in a facet there can be an implements dec-
laration naming which Type the facet satisfies. The type named in an
implements extension must be a type defined with the Type construct
specified below. A facet with an implements declaration must imple-
ment all the methods specified by that type except for methods whose
Types define default implementations; the default implementation will
be used if the method is not redefined by the facet. A facet may imple-
ment additional methods that are not part of the declared Type. Only
one pattern is allowed for a given operation name.

After the optional type declarations come the method definitions.
Method definitions are introduced with the extension keyword op,
except for the optional method definition immediately following the
primary facet declaration.

Method definitions begin with a pattern against which incoming mes-
sages are matched. Patterns are prototypes for the corresponding
message: an operation name followed by named parameters which will
be bound to the corresponding arguments in the message. For each
message sent to the server, whichever method pattern is matched by
that message is the one activated for it. Following the pattern in each
method is the nested block of code to run for each activation.

5.2.3. State Change

Methods in servers with mutable state can include the extensions set
and to which change the server’s state. A method can have any number
of these extensions, in any order.

The set extension designates an instance variable (previously declared
with var) and an expression to which the instance variable should be
rebound. The to extension designates an instance variable and a mes-
sage to send to the current value of the instance variable. Messages sent
with to are ordered sends: after the value of the instance variable
receives the message, the instance variable is rebound to a new port
containing messages guaranteed to be delivered after the message that
was sent with to. As a result, messages sent to an instance variable dur-
ing an activation are guaranteed to be delivered before messages sent to
the same instance variable in a later activation.

The to extension can be defined in terms of the set extension and
ordered message sending with then. The following example is part of

Most servers only have a pri-
mary facet. The most common
kind of secondary facet is the
private facet, a facet not
exposed beyond the procedure
that creates the server. Private
facets are used for methods that
should not be available to
clients.

For patterns that match a vari-
able number of arguments, see
Appendix C, Optional
Arguments.

A single method can actually
respond to more than one mes-
sage pattern using the or
extension. Details of or will be
presented in future versions of
this document.

Language Definition

48 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

an account server that contains a Fund server and implements methods
in terms of it.

is equivalent to

The first implementation just sends ordered messages to the contained
Fund server. The second example takes exactly the same actions: the
deposit: operation is sent to myFund with the amount, and an implicit
channel of messages is created with then—messages guaranteed to
arrive after the deposit: operation is received by myFund. Thus, it is
guaranteed that the subsequent send of balance: to the fund is received
by the fund after the deposit gets made.

The to extension is also used to send messages to the server itself. Joule
supports a distinction between inner and outer selves that is not possi-
ble in sequential object-oriented languages. Sending to the inner-self
means sending messages to a facet that will be processed before any
further messages from the outside are processed. These get used when
the messages to self are part of maintaining the invariants of the server.
For example, the move-window: operation for a window in a window-
ing system might erase the window, change its coordinates, then draw
the window again; no client messages should be able to get between the
erase: and redraw: operations because they could easily break invari-
ants that assume the window is currently displayed. A message to the
inner-self is sent by using the to extension with one of the facet names
as the designated receiver of the message.

Sending to the outer-self is accomplished by sending messages to a
facet port just as if it were a regular port (without using the to exten-
sion). The outer-self is for the server to send messages to one of its
facets that should be interpreted as if it came from a client. For example,
deleting elements of a collection while iterating over its elements
breaks most object-oriented systems (because most iteration schemes
depend on representation details that are altered by deletion). If the
deletion operation is sent to the outer self, it won’t be received until the

Server account ...
var myFund ...
deposit amount and reveal the new balance.
op deposit-balance: amount success?> balance>

to myFund deposit: amount success?>
to myFund balance: balance>
...

endServer

Server account ...
var myFund ...

deposit amount and reveal the new balance.
op deposit-balance: amount success?> balance>

Define fund'
• myFund deposit: amount success?>
then fund'>

endDefine
set myFund fund'
to myFund balance: balance>
...

endServer

Methodical Servers

20 Dec 95 DRAFT 49

iteration is finished, allowing the deletions to avoid interfering with the
efficient implementation of iteration.

The optional block following a state-change extension executes with
the server in the state it possesses after the variable has been rebound.
In the nested blocks, passing an instance variable as an argument or
sending it as a message refers to the new value, not the old value. A
simple example is adding the deposit-balance: message to the Fund
server:

The myBalance reference that is revealed on balance> is the value of
myBalance after the deposit has increased the balance.

Scoping is different for these state-change extensions. The entire
method, including all the state change extensions, is a single scope,
with the exception that instance variable definitions refer to different
values after state change extensions. This is more consistent if state
change extensions are viewed as extensions to the op extension rather
than as extensions to the Server form itself.

The optional otherwise extension follows the method definitions for a
facet. It supports non-methodical and partially-methodical servers. If
an incoming message matches none of the methods for a facet, then, if
that facet has an otherwise extension, it is invoked with the identifier
bound to the unrecognized message. If there was no otherwise exten-
sion, the not-understood: exception is signalled. See Section 5.7 for
details on exception handling.

5.2.4. Type

The syntax for declaring types is very similar to the syntax for defining
servers. Types can not have variables or otherwise clauses. Types form
an inheritance hierarchy, so they have the optional super extension to
specify the parent type. The standard root of the type tree is Basic, a
type that defines a very simple protocol appropriate for most servers;
however, servers need not be subtypes of Basic. The syntax for Type dec-
larations is:

Everything after the pattern of a method is the optional default imple-
mentation. The messages defined in a type declaration are not
messages that the type itself responds to; types respond to a fixed set of
messages for asking about their protocol and such. The only change
extension allowed in default implementations is the to extension. It can

Server Fund ...
deposit amount and reveal the new balance.

op deposit-balance: amount success?> balance>
to Fund deposit: amount success?>
• balance> → myBalance

Production Production Definition
type Type param

{super Identifier}?
{op {pattern}or+

block
{to name {ex},+
block}*}*

endType

The Basic type is defined along
with other standard types in
Section 5.8.

Future versions may extend the
type system with multiple
inheritance of types.

Language Definition

50 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

be applied with either Self to send message to the inner-self, or Super to
invoke overridden default implementations in the parent Type.

The following example defines the type for the simple Fund example
presented in Section 2.5—an account in which money is not conserved,
but with which trusting processes can keep track of money.

The Type statement introduces the type named Fund into the type
namespace. The super line says that facets that implement type Fund
must also implement type Basic. Lines beginning with op declare mes-
sages to which instances of the type will respond. Following the op is
the message pattern that will be matched, typically an operation fol-
lowed by arguments.

5.2.5. Nested Servers

Servers can be nested. The simplest use of this is to make a procedure
that will produce instances of a server implementation. The Fund
example might instead be:

Each invocation of make-fund with a balance produces and reveals a
new and independent Fund server.

To the nested Server, the instance variables of the parent are unchang-
ing; they remain bound to the same port as when the nested server was
created. This is of course also true for nested ForAlls.

5.3. Procedures
Procedures in Joule are servers that respond to the procedure operation
convention—any message named with a double colon (“::”), the short-
est message label. The Server form supports the easy definition of
procedures with the optional method definition immediately following
the primary facet name. For procedures, the primary facet name, the
identifier following the Server keyword, is the name of the procedure.
Procedures can be defined using op extensions. Defining a method on
the first line of the Server form is a syntactic convenience; a method so
defined is no different than one defined using an op declaration.

Because Joule has true lexical scoping, all servers including procedures
can be defined within other procedures. This allows the definition of

Type Fund
super Basic
op balance: balance>
op withdraw: amount flag>
op deposit: amount flag>

endType

Server make-fund :: balance fund>
• fund> → Fund
Server Fund

var myBalance = balance
...

endServer
…

endServer

Functions and Expressions

20 Dec 95 DRAFT 51

private helper procedures inside methods of a more complex server, for
instance.

5.4. Functions and Expressions
The Joule syntax supports expressions, primarily as a convenience for
common math expressions and tests for conditionals. This section
describes how to implement result-revealing functions using the Server
construct and passing in a distributor to return the result. It also
describes how Joule expressions that resemble expressions in other lan-
guages (“3 + 5”) expand into more primitive forms.

The “native” technique for using operators in Joule is the explicit send-
ing of the operator request. For example, in the following statement

passes the distributor small-enough?> in a message to 24, which for-
wards small-enough?> to the result of the inequality (in this case, the
Boolean server true). The distributor for the result was specified explic-
itly; the corresponding acceptor delivers its messages to the result.

However, operators may also be used in an expression context—that is,
anywhere that a Joule expression would occur; for example, as the tar-
get of a send, or as the argument to a forward operation. Many
examples of this type of usage have already been shown; consider the
statement • sum> → 3 + 4. Any operator used in such an expression
context is assumed to be sending an operation with two arguments: the
expression immediately to the right of the operator, and an implicit dis-
tributor for the result. The operator expression is replaced with the
acceptor for the implicit channel. One could accomplish the same thing
by first defining an intermediate result channel t1 and executing the
statements

In practice, this looks as if “3 + 4” becomes an acceptor to which mes-
sages can be forwarded. An operator expression like “3 + 4” can then be
used as an argument to operations without the need to explicitly define
channels for intermediate results. Parentheses can be used to force the
expression-like evaluation of tuples that are named with labels instead
of operators, as in

The Factorial procedure was presented and explained in Section 2.4.
The Server form for Factorial looks like this:

• 24 <= 60 small-enough?>

• 3 + 4 t1>
• sum> → t1

• should-be-120> → (Factorial :: 6)

Server Factorial :: number result>
If number <= 1

• result> → 1
else

• result> → number * (Factorial :: number - 1)
endIf

endServer

Language Definition

52 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

The final argument result> is a distributor for a result channel. When-
ever the server is sent a message in an expression context, the Joule
compiler automatically creates the implicit channel and supplies that
distributor as the final argument. This is completely transparent so far
as the called server is concerned; there is no difference between a dis-
tributor supplied explicitly by the programmer and one supplied
implicitly by the compiler.

5.5. Conditionals
Joule supports several constructs for making decisions. The most famil-
iar is If, similar to Dijkstra's “guarded-if” in which each condition
expression, called a guard, is executed concurrently. The If construct is
extended with generalized pattern matching, incorporating some ideas
from logic languages. The second construct is Switch, much like C’s
switch statement, in which an input value (typically) is matched concur-
rently against a set of patterns, and the code associated with the
matching pattern is executed. Finally, a process can decide among the
results of several input processes by having their outputs race to be the
first producer of a value. This is the fundamental semantics underlying
all the conditional constructs in Joule, and is sometimes useful directly.

5.5.1. If

If is similar to Dijkstra's guarded-if construct. The If is a series of clauses
which each have a guard and a block of code. The If construct executes
all the guards concurrently. Of the guards that evaluate to true, the If
construct executes the block of exactly one of them; the guards that
evaluate to true race, and only one of them can win. The If construct also
has some special clauses (like else) with implicit guards that participate
in the same race. Here is a simple example:

An If form is a sequence of guarded clauses and a final optional else
clause. Guards execute concurrently, and their execution is total; that is,
they will either be executed to completion or not executed at all (that is,
the compiler is allowed to rewrite the decision tree). The guards race to
win the If and have their associated block of code run; the If will only
run the block of code of the winner (if any) of the race.

There are two kinds of guards: expressions and pattern matches. An
expression is just an operator expression that must evaluate to true to
win the race. A pattern match is a simple expression, the target, fol-
lowed by “~” followed by a pattern expression (a quasi-literal). If the
pattern expression contains free identifiers, they will be bound to the
corresponding part of the target in the associated block of code for the
pattern match guard. The guard succeeds by successfully matching the
pattern. The details of underlying pattern matching implementation

A simple example of the If construct
If withdrawal > balance

• withdrawal report-bounce:
orIf withdrawal < 0

• account bad-arguments: withdrawal
else

• account withdraw: withdrawal
endIf

Conditionals

20 Dec 95 DRAFT 53

will not be discussed in this document. The basic implementation is
that the pattern match syntax translates to sending the match: message
to the target with an argument for each free variable and an extra result
argument for the success flag that will participate in the race. Thus, pat-
tern match guards also evaluate to true. Finally, the else clause is true
only if all the guards are false. Therefore, the else doesn’t need to partic-
ipate in the race.

The If will commit to one of the guards that reveals true. It may not be
the first guard because there isn’t any well-defined notion of “first”
except “the one chosen by the If”: in a distributed system, the first guard
to evaluate to true may be on a machine remote from the commit loca-
tion, and by the time its success is communicated to the rendezvous
site, a closer guard committed and won the race. If two guards evaluate
to true simultaneously, the implementation will choose nondeterminis-
tically. In accord with totality, any guard computations not already
started when the I f commits may never be s tarted by the
implementation.

The BNF for the If construct is as follows:

Before the guards have computed enough to have revealed a value, the
If is suspended. If all the guards evaluate to false, and there is no else
clause, the failed-if: exception is signalled. See Section 5.7 on page 56 for
details on exception handling.

As this example shows, the elseIf extension is exactly equivalent to an
else extension containing a nested If:

5.5.2. Switch
The Switch construct is used to choose one of several blocks of code
based on pattern matching against a single target. This is a convenience

If opExpr
block

{orIf opExpr
block}*

{elseIf opExpr
block

{orIf opExpr
block}* }*

{else
block}?

endIf

If ex1
block1

elseIf ex2
block2

else
block3

endIf

If ex1
block1

else
If ex2

block2
else

block3
endIf

endIf

Language Definition

54 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

for large scale pattern matching, and is used to dispatch on messages in
the expansion of the Server form. The syntax for the Switch form is:

The argument of the Switch statement is an expression that reveals the
target of the pattern matches. The argument of each case or or extension
is the pattern to be matched. The pattern is a quasi-literal, just as in the
pattern-match If guard. Any free identifiers in the pattern will be bound
to the corresponding substructure of the target in the block of the pat-
tern that wins the switch. The otherwise clause will be run if all of the
pattern matches fail. As with If, if no pattern matches and no otherwise
extension is supplied, the failed-switch: exception is signalled.

This example of the Switch statement is from the meta-interpreter for
Joule. A meta-interpreter is an interpreter for the language written in
the language.

The interpreter uses tuples to represent program structure, and a Switch
form to match the incoming tuple and extract the arguments. It then
takes the appropriate interpreter action to execute the particular state-
ment type.

5.5.3. Race
Race isn’t a construct, but rather a way of using the primitive choose:
facilities for making decisions in a program. Several clients can send
their results to the same acceptor. The choose: message, sent to the cor-
responding distributor, then picks exactly one of the incoming results
so that it can be operated on. This is the primitive in the language for
choosing among alternatives. The other decision constructs are imple-
mented with it, but it is sometimes directly useful.

5.6. Iteration
Joule supports iteration through recursion. Simple functions can recur
by calling themselves with other arguments. If a result argument is
passed through the recursion, then the nested call can determine the
result for the computation.

Switch opExpr
{case pattern
{or pattern}*

block}*
{otherwise param

block}?
endSwitch

Switch statement
case define: names block

• interpret :: block (env attach: names)
case send: recT tupleT

• (env lookup: recT) (env lookup: tupleT)
...
endSwitch

Reveal the new total after interest on 'principal' accumulates at 'rate' for 'units' time
units.

Server acc-interest :: principal units rate total>
If units > 0

Iteration

20 Dec 95 DRAFT 55

This acc-interest server first tests to see whether any more time-units of
interest accumulation are necessary. If so, it computes the principal plus
interest for one time-unit. It then calls itself with the new intermediate
total, with one less time-unit to compute, and with the original argu-
ments of the interest rate and the result port total>.

If no more time-units need be computed (because units is zero), then the
principal accumulated so far is the total accumulated for the supplied
number of time-units. The result is revealed by forwarding total> to the
accumulated amount. The total> argument was passed unchanged
through all the recursions; it still represents the distributor to be for-
warded to the answer to the computation.

A more complicated example demonstrates using recursion inside of
another computation to provide all the facilities of loops. This style of
recursion is similar to named-let in Scheme.

This example server reveals two results: the interest, and the principal
plus the interest. The trick that will become familiar is the invocation of
the loop followed by the definition of the loop. The statement loop ::
principal units sets up the initial values for the changing parameters of
the loop. As in acc-interest, the loop procedure checks to see if any more
iterations are necessary. If so, it computes the new principal and
remaining iterations and calls the loop procedure recursively, not the
outermost procedure. Unchanging parameters like rate are just used
freely in the loop. When the loop has been called recursively once for
each time-unit, the else clause is called (because units will be 0) and
total> gets forwarded to the accumulated principal (named sofar), and
interest> gets forwarded to the total minus the principal. Because both
total> and interest> are lexically visible from the original context of the
interest procedure, they don’t need to be passed through each iteration
of the loop.

Define sofar = principal * rate + 1 endDefine
• acc-interest :: sofar (units - 1) rate total>

else
total> → principal

endIf
endServer

Reveal the interest and total after interest on 'principal'
accumulates at 'rate' for 'units' time units.
Server interest :: principal units rate interest> total>

• loop :: principal units
Server loop :: sofar units

If units > 0
• loop :: (sofar * rate + 1) (units - 1)

else
• total> → sofar
• interest> → sofar - principal

endIf
endServer

endServer

For efficient iteration-by-recur-
sion, Scheme specifies that
implementations must be tail
recursive. This optimization
happens naturally in the Joule
semantics: the recursive call is
simply passed the result port;
no stack is ever created.

Language Definition

56 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

5.7. Exception Handling

This section provides a high-level description of how Joule handles
exceptions. Many exceptions are the result of improper arguments or
unusual but semantically sound conditions. An example already
shown includes signalling an exception when an attempt is made to
withdraw too much money from an account. Exceptions are largely
used for error reporting, but they can also be used for reporting condi-
tions that are not errors, but are merely sufficiently unusual to warrant
attention.

5.7.1. Normal Exceptions

Exception handling is a complicated business in sequential languages
because it combines communication about the state of the computation
with a transfer of control. The problems arise from the transfer of con-
trol. Being concurrent, Joule does not experience these problems:
exceptions are reported and execution of other branches of the same
computation continues. This is appropriate because those other
branches might already have completed by the time the exception was
raised (they can’t be dependent on the exceptional computation or they
would have suspended waiting for its result); terminating them would
merely result in more confusion.

The exception port is implicit and dynamically bound: it follows the
message-sending path, so raising an exception will report the exception
to the caller of a server. The syntax for raising an exception is very
much like message sending:

The exception can be any message. Exceptions are caught by a construct
that rebinds the implicit exception port to a new port. As a result, the
redirector can do anything with the exceptions, including drop them,
terminate computations because of them, compute the failed computa-
tion another way, or pass the exception to further exception handlers.
Here is an example of redirecting the exception port:

Raise an exception named 'overdrawn' with balance as an argument. Raising
exceptions is like sending messages to a Signal server. Any message can be
sent.

Signal overdrawn: balance

Recover from a a failed money transfer
Handler bounce?

• myAccount deposit: customer-payment
endHandler
• service provide: customer

Here's the exception handler to suspend service and get the money from the customer
some other way in the case of a bounce. Otherwise it just forwards the
exception back to the customer and goes on.

Server bounce?
op insufficient-funds: amount

Define continue? = service suspend: endDefine
• finance collect: customer amount continue?

otherwise exception

KeyKOS distinguishes
between errors that would be
wrong merely on the basis of
the operation and server type,
and those errors due to the cur-
rent state of the server.

Exception Handling

20 Dec 95 DRAFT 57

In the example above, the Handler statement redirects all exceptions
occurring within its nested body to the server named bounce?. The new
exception handler is defined below the provision of the service to the
customer. In this contrived example, if the customer payment is an
account with too little money, the insufficient-funds: exception is sent to
the bounce? server which suspends the service (returning a continue?
flag), and initiates collection processes on the customer. All other excep-
tions are just passed through to the next outer exception handler
because that’s the dynamic context of the signal statement. Only the
statements contained within the Handler form have their exceptions
intercepted.

This structure of exception handling takes advantage of all the other
tools built to manage messages: Server-based message dispatch, mes-
sage plumbing to allow supplied handlers, etc. Types are even quite
useful in this scheme, as every operation could declare a Type for the
set of exceptions that might be raised. Typed exception handlers would
then guarantee that they caught all the appropriate exceptions.

The syntax for the exception handling tools is:

A HandlerTap is like a Handler except that all exceptions are also auto-
matically forwarded to the containing exception channel. HandlerTap is
used for the concurrent equivalent of unwind-protection in sequential
languages.

5.7.2. Keepers
Normal exception handling proceeds with the above constructs, but
larger programs have many levels of exceptions: a server might raise
some exceptions in response to user requests, but it might raise others
because its algorithms broke or its data was corrupted. Keepers are lex-
ically nested exception managers. They intercept the dynamically
raised exceptions of any nested computation in order to decide whether
the exception should be signalled to a client or acted upon internally.
An example is if a database gets a disk checksum error, it shouldn't
report bad-page errors to its caller, it should gracefully shutdown and
recover the page from backups. The syntax for Keeper is similar to that
of Handler:

Signal exception
this signal will reraise the exception in the handler outside this code example. The

server 'bounce?' is defined outside the above Handler, so its signals are not
intercepted.

endServer

Production Production Definition
signal Signal opExpr
handler Handler opExpr

block
endHandler
HandlerTap opExpr

block
endHandlerTap

A simple Keeper example:
Keeper ex

Server database ...

This issue needs further explo-
ration because many of the
unwind-protection problems
go away in the course of solv-
ing other concurrency
problems.

Language Definition

58 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

If the above had been a Handler form, any exceptions raised in the data-
base server would have been raised directly to the database caller. The
Keeper form intercepts any exceptions that escape its lexical scope
whereas the Handler form just captures any that escape the dynamic
scope (the innermost call). Thus this keeper can make sure that the
exceptions reported out are client-worthy.

Keepers are also used with the Boundary facilities defined in Chapter 7
to provide debugger access when particular exceptions occur. Granting
of debugger access is a carefully managed capability, and seems to cor-
respond well with the keeper model of exceptions.

5.8. Standard Protocol

The standard protocol is the small set of messages to which all servers
should respond. These are for purposes such as type queries and server
comparison.

A server should reveal true in response to an “=” operation if it consid-
ers the other to be a suitable representative of itself. This is only
appropriate if the other can continue to represent the receiver forever.
Therefore, servers with independently mutable state which happen to
currently have the same state must reveal false. The hash: operation
reveals a hash value for use in equality tests, Therefore, the hash must
never change (or it can’t support hash tables) and the hashes of equal
servers (servers that reveal true to the equals message) must be equal.

The type: and prove-type: operations support type checking and type
dispatch. The type: operation reveals the type the server claims to
implement. The prove-type: operation is used by Type servers to verify
that the server in fact implements their behavior. It is for internal use
and should be ignored.

The respond: operation asks the server to send itself to the port. This
allows clients of a server to delay executing code until the server actu-
ally starts responding to messages. The respond: operation also allows
clients of a channel with several receiving servers to separate them.

some service that raises exceptions
endServer

endKeeper
The handler for the keeper.
Server ex

op disk-crash: device page
backup recover:

otherwise exception
Signal exception

endServer

Type Basic
op = other flag>
op hash: hash>
op type: type>
op prove-type: type token>
op respond: to

endType

We are currently revisiting the
distinction between keepers
and handlers to clarify when to
use one and when to use the
other. For now we recommend
using Handler. We are exploring
the idea of designating an error
scope when signalling an
exception. If the exception is
not handled within that error
scope, it becomes an error. This
satisfies much of the need for
keepers: a disk-crash error
would be signalled as an error
within the server, not a client
error.

The directionality of “=” pre-
vents spoofing: a server can’t
claim to substitute for another
server, it can only claim that
another server can substitute
for it.

Standard Servers

20 Dec 95 DRAFT 59

5.9. Standard Servers
Standard servers are the server types that normal implementations
require. This section documents those standard servers that are familiar
to traditional programmers. Other standard servers such as verifiers for
security will be documented in the appropriate sections.

5.9.1. Number
This section describes the user level protocol for Numbers (integers,
etc.). The particulars of representation restrictions and interaction
between number types will not be documented. The contract is not
defined here.

These Types specify the required behavior for the specific Integer and
IEEEFloat number types:

Type Number
super Basic

relational operators
op = num flag>
op != num flag>
op < num flag>
op > num flag>
op <= num flag>
op >= num flag>
op min: num min>
op max: num max>

arithmetic operators
op + num sum>
op – num difference>
op * num product>
op / num dividend>
op % num remainder>
op // num intDividend>
op //% num div> rem>
op negated: result>
op abs: result>

extended math operators
op ceiling: result>
op floor: result>
op truncated: result>
op rounded: result>
op log: n result>
op ln: n result>
op exp: n result>

endType

Type Integer
super Number

bit-wise Boolean operators
op | num result>
op & num result>
op ^ num result>
op complement: result>

bit representation operations
op << bits left>
op >> bits right>
op precision: bits>
op highBit: index>

endType

Type IEEEFloat
super Number
op mantissa: result>
op exponent: result>
op precision: bits>

endType

Language Definition

60 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

5.9.2. Tuple

Tuples are the primitive construct for messages. This section describes
their protocol.

5.9.3. Channel Distributor

Distributors are the ports that talk to the channel itself; operations
include forwarding the channel, choosing an element of it, and the stan-
dard primitive operations.

5.9.4. Boolean

Booleans respond to standard Boolean logic messages as well as a few
messages for control structures.

5.9.5. Array

Arrays are primitive servers that are used as the basis for collection
classes, strings, etc. These are generally recommended against for pro-

Type Tuple
super Basic

tuple access protocol
op count: count>
op name: name>
op get: arg# arg>

endType

Type Distributor
super Basic

forward all messages ever received to 'port'
op → port

send a pair with a message and the distributor to a newly created channel which will
contain all the contents of the server except the separated message.

op choose: choice
endType

Type Boolean
super Basic

relational operators
op = bool flag>
op != bool flag>

Boolean operators
op | bool flag>
op & bool flag>
op ^ bool flag>
op complement: flag>

Control structure operations
op ifTrue: trueThunk race

Send trueThunk to race if the server is True. The race will invoke the first thunk sent to
it.

op ifFalse: falseThunk race
Send falseThunk to race if the server is False. The race will invoke the first thunk sent

to it.
op if: trueThunk falseThunk race
Send trueThunk to race if the server is True, or falseThunk if the server is False. The

race will invoke the first thunk sent to it.
endType

Module Programming

20 Dec 95 DRAFT 61

grammers: they implement side-effects that lead to synchronization
bugs. Arrays are to support efficient implementation of safer collection
structures.

Array will also support a variety of group operations like copying and
searching. This allows range checking to preserve memory safety, but
allows extremely efficient operations (copying devolves to memory
block transfer operations, for instance). There will also be subtypes that
efficiently support primitive representation types like characters.

5.9.6. Types
Types are the runtime servers that can be queried about instances.

The isTypeOf: operation uses the prove: operation to verify that the can-
didate server implements the type that the receiver represents. Further
messages for types will exist to query them about the protocol that they
require, and about default implementations.

5.10. Module Programming
This section will describe a module system to support the creation and
maintenance of complex programs, once the design settles. The module
system shares many characteristics with configuration version manage-
ment systems.

5.10.1. Module Interface Definitions
Module Interface Definitions are like abstract types for modules; they
allow the use of a module to be independent from the definition of the
module. This supports complex systems with more than one imple-
mentation of a module coexisting. This is required for simultaneously
running a system while testing a new version of it.

5.10.2. Export/Import/Open
This section will describe the syntax and semantics for managing mod-
ules. These are the static definitions in a module for connecting it to the
rest of the computational universe. They will include which interfaces
to import and how to import them, what authentication to require and
how to negotiate it, and so on.

5.10.3. Module Namespace
This section will describe the module naming scheme. Several running
Joule systems may exist for years before becoming connected. No glo-

Type Array
super Basic
op count:
op get: key# value>
op store: key# value

endType

Type Type
op isTypeOf: candidate yes?>

endType

Language Definition

62 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

bal naming scheme could possibly work. In addition, this scheme must
integrate with existing file systems for early versions of Joule.

5.10.4. Module Versions
In a continuously running system, modules of code need to be
replaced, upgraded, and patched. This section will describe a proposal
for version and configuration management of modules. The current
model for the module system is based on configuration versions man-
agement with nesting scopes of modules.

5.10.5. Naming People
Systems of software grow in a context of interacting groups of people.
There must be some way to represent appropriate information about
the connection between pieces of software, live objects, and the people
or companies responsible for or in control of them.

5.11. Parts of a Joule System
Figure 5.1 shows how the individual parts of a production Joule system
fit into the architecture. The bottom half of the hourglass represents the
Joule kernel implementation. The “waist” of the diagram is the primi-
tive semantics and the compositional semantics needed to compose the
rest of the Joule system from them. Above the “waist” are the compo-
nents of a full Joule system (standard libraries, the distributed Joule
layer, and so forth); specialized libraries supporting tools such as neu-
ral networks and genetic algorithms; and applications packages.

Some components in the top half of the hourglass are directly sup-
ported by companions in the bottom half; for example, the math
libraries will to some extent rely on the default behaviors of some of the
primitive servers such as Integers.

Parts of a Joule System

20 Dec 95 DRAFT 63

Execution Engine:
ForAll—composite servers
Tuples, Boundaries,
Channel (Define, →, choose:)
• (message send)

Primitive Servers:
Boolean, Character

Integer, Float
Array, Verifier

external server interface

Kernel Implementation:
platform-specific to take
maximum advantage of

characteristics of hardware

Standard Programming Constructs: Type,
If, Switch, Server, Handler, Keeper,

Signal, implicit parameters,
Modules, Quasi-Literals,
syntax extension, types

Application Packages:
Page Layout, Source Code Control, etc.

Software Components: Neural Nets, Concurrent GUI Framework,
Constraints, Genetic Algorithms, Database, etc.

Standard Extensions: Persistence, Distribution, Factories, Plans,
Auditors, Math libraries, Collections (tables, sets, bags, …),

SpaceBanks, Meters, Engines, Workers, bidding agents, etc.

“the
waistline”

a standard
Joule system

user
applications

Fig. 5.1 The “hourglass”

Language Definition

64 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

20 Dec 95 DRAFT 65

6.Hierarchical Accounts Example

This chapter presents a more complex example of Joule programming,
a hierarchical bank account. Hierarchical bank accounts are part of ago-
ric resource management; they implement hierarchical ownership and
drawing authority. The account is hierarchical because it can have mul-
tiple sub-accounts, each of which is budgeted drawing power on the
parent account (and each of which is itself a hierarchical account).

The

root

 server is not an account but the environment in which top-
level accounts are created. Each top-level account can be thought of as
the supply of a single currency. In this model, there is no exchange
between currencies; each is completely separate.

A hierarchical account can create sub-accounts with arbitrary balances.
The balances an account may assign to its subaccounts are unlimited.
When a sub-account within that account needs to transfer funds out-
side of the parent account, however, the amount is limited by the
balance of the parent account. This is because the balances of their

The importance of hierarchical
ownership and drawing
authority is explained in Sec-
tion 9.1.

Fig. 6.1 Tree of hierarchical accounts

root

A B C

A1 A2 A3 C1

A21 A22 C11 C12

(depth 0)

(depth 1)

(depth 2)

(depth 3)

B1 B2 B3 C2

A31

A (400)

A1 (5000) A2 (7000)

A12 (12,000)A11 A21 (1000) A22

400

400

Fig. 6.2 Transfer of funds

Hierarchical Accounts Example

66 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

respective parent accounts must be balanced as well. In Figure 6.2, any
amount (up to the balance of

A11

) can be transferred from

A11

 to

A12

,
because these are totally internal to the

A1

 parent account; however, the
transfer of 400 credits from

A12

 to

A21

 must be covered by a corre-
sponding transfer from

A12

’s parent

A1

 to

A21

’s parent

A2

. The
maximum amount for such a move is

A1

’s balance of 5,000 tokens.

In general, the amount that can be transferred from one account to
another anywhere in the hierarchy is the minimum of the local balances
of the accounts on the path from the donor account to the nearest ances-
tor it has in common with the recipient account (not including the
common ancestor account itself).

For example, in Figure 6.3, the most that could be transferred from

A122

 to

A2

 or any of its descendants is 5,000 tokens, the minimum
among the local balances of

A122

 and its ancestors

A12

 and

A1

. The
most that could be transferred from

A211

 to

A1

 or any of its subac-
counts is 1,000, the minimum of the balances of

A211

,

A21

, and

A2

.

6.1. Hierarchical Accounts Components

6.1.1. Type Definitions

To program such a system of

Account

 servers in Joule, we first define the
type

Account

. Any server claiming to be of type

Account

 must accept the
set of requests specified by this

Type

 form:

The

split:

 request will instruct the account to create a sibling account
and transfer

amount

 from its own balance to the new account. The result
revealed is the public channel to the new account. Because this new
account is created by its sibling, its balance must be deducted from the
balance of the existing sibling account; money is conserved among sib-

Type

 Account

super

 Basic

op

 split: amount account>

op

 deposit: account amount deposited?>

op

 budget: amount account>

op

 balance: max account balance>

op

 private: priv>

endType

A (400) = first common ancestor

Fig. 6.3 Nearest common ancestor for two accounts

A1 (5000) = min along path A2 (7000)

A11 A12 (12,000) A21 (1000)

A121 A122 (6000)

A22

A212A211 (4000)

The term fractal reserve banking
has been applied to this hierar-
chical system of accounts. The
system is “fractal” because it
applies the device of fractional
reserve banking recursively.
The logical relationship of
pieces to wholes does not
change at different levels of
granularity—the system exhib-
its the fractal property of self-
similarity.

Hierarchical Accounts Components

20 Dec 95 DRAFT 67

lings. The

budget:

 request instructs the account to create a new
subaccount, with an initial balance of

amount

, which (since it is internal
money) can be arbitrary. The

deposit:

 request transfers

amount

 from an
existing

account

 to the account receiving the request.

The

balance:

 request takes three arguments: an amount, another
account, and a result channel. The

balance:

 request addresses the ques-
tion “Could this account transfer

max

 tokens into

account

?” The result
revealed is the minimum of

max

 and the maximum amount available
for such a transfer (which is the minimum of all the balances of ances-
tors from the queried account to the ancestor it has in common with

account

). The candidate amount

max

 is present to avoid infinities in the
protocol.

The second

Type

 form defines the

private requests

 any

Account

 should
accept:

Private methods

 can only be activated by requests received on the
server’s private channel. A server can receive from any number of
channels;

private channels

 are closely held because they accept messages
with special capabilities. The same message, received via private and
public channels to a server, might produce completely different behav-
ior. The private requests to an

Account

 server are used for special
functions which should be kept secure.

The

public:

 request reveals the acceptor for a public channel to the
server. This ensures that any server which has access to the private
channel of an

Account

 can send messages to its public channel as well.

The

depth:

 request reveals how far down in the account hierarchy this
account is. It is used only for finding the first common ancestor of two
accounts. The

parent:

 request reveals an acceptor for the private chan-
nel of this account’s parent. The private

balance:

 requests are used to
implement the public

balance:

 requests.

The

reserve:

 request instructs the account to adjust its own balance to
reflect an impending withdrawal. This adjustment is conditionally
based on the

commit?

 flag passed to it. The

success>

 distributor is used
to signal success or failure to the server which sent the

reserve:

 request.

6.1.2. The

make-account

 Server

The procedure

make-account

 creates new

Account

 servers. Nested
within it is the

Server

Account

 form that defines the behavior of the cre-
ated accounts.

Type

 AccountPrivate

super

 Basic

op

 public: pub>

op

 depth: depth>

op

 parent: parent>

op

 balance: max ancestor balance>

op

 reserve: amount ancestor commit? success>

endType

Server

 make-account :: amount parent account>
• account>

→

 account

Server

 account

The “?” suffix is conventional in
Joule to indicate a flag, a port to a
Boolean value (true or false).

Hierarchical Accounts Example

68 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

The new server

account

 is created using the parameters passed with the
“::” request to

make-account

. The result distributor

account>

 corre-
sponds to an acceptor held by the server that called

make-account

; that
server can thus send to the new account.

The new account is created with three instance variables.

myLocalBal-
ance

 has the initial value

amount

 provided in the call to

make-account

.
The parent

myParent

 of the new account is specified by the supplied
acceptor

parent

. This acceptor must be for the private channel of the
parent account because of the special information subaccounts need
about their ancestors (for example, the

depth:

 request, needed to deter-
mine common ancestors, is private).

6.1.2.1. The split: Request

The op extensions to the Server form define the methods of the account.
The split: request creates a sibling account:

The Define statement creates a channel balance which can be used
immediately by the set statement to change (if necessary) the account’s
local balance. The statements of a Joule program execute concurrently.
The instance variable myLocalBalance can be set to balance before the
server that will receive from balance is known. If some other computa-
tion sends to myLocalBalance before balance is defined, those messages

Server account
var myLocalBalance = amount
var myParent = parent
var myDepth = (parent depth:) + 1
implements Account

op split: amount account>
Define balance

If amount < 0
• balance> → myLocalBalance
Signal positive-amount-required: amount

orIf amount > myLocalBalance
• balance> → myLocalBalance
Signal insufficient-funds: myLocalBalance

else
• balance> → myLocalBalance - amount
• make-account :: amount myParent account>

endIf
endDefine
set myLocalBalance balance

parent account

current
 account

new
 sibling
 account

$

Fig. 6.4 split: creates new sibling account

Hierarchical Accounts Components

20 Dec 95 DRAFT 69

will wait in the channel until the server that should receive them is
determined.

Meanwhile, the If guards race to evaluate. If the creation of the account
fails because a negative initial balance was specified for the new
account, or because the current account does not contain enough tokens
to provide the requested initial balance for the sibling, then balance
sends to myLocalBalance (meaning that myLocalBalance ends up
unchanged), and the appropriate exception is Signaled.

Otherwise, the initial balance of the new account is deducted from the
present balance of this account, and make-account is sent the “::”
request to create the new account. Since it is a sibling of this account, it
has the same parent (and is passed the private channel to that parent).

6.1.2.2. The budget: Request

The method for the budget: request is even simpler. Creation of a subac-
count has no effect on the local balance of the current account, so we

only need to check that the initial balance requested is non-negative.
The request to make-account is straightforward:

Because the new subaccount must have private access to its parent (the
current account), the acceptor for this account’s Private channel is
passed in the request to make-account.

6.1.2.3. The balance: Request

The public balance: request “passes the buck” to its private
counterpart.

op budget: amount account>
If amount < 0

Signal positive-amount-required: amount
else

• make-account :: amount Private account>
endIf

reveal the balance of the receiver with respect to the ancestor in common with supplied
account.

op balance: max account balance>
Define

common =
common-ancestor :: Private (private :: account)

endDefine
to Private balance: max common balance>

Since accounts happen to never
have negative values, the If is
actually a determinate choice.

current account

new sub-
account

Fig. 6.5 budget: creates a new subaccount, with any balance

$nowhere

Hierarchical Accounts Example

70 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

6.1.2.4. The private: Request

The private: request instructs the server to reveal its private channel.

Sending the private: request to the public channel forwards the sup-
plied distributor to the private channel. This implementation is clearly
insecure. The methods enabling a server to decide securely whether or
not to reveal its private channel (using a SealedEnvelope) will be dis-
cussed in Section 8.2.1.

6.1.2.5. The deposit: and reserve: Requests

The deposit: request transfers an amount from another account to this
account. Whether or not the deposit attempt succeeded is revealed on

the result channel deposited?>. Before the deposit: method can proceed
with the transfer, it needs to ensure that the donor account is actually
able to transfer that amount. It does this by sending the reserve: request
to the private channel of the donor account.

The deposit: method accepts three arguments: account, from which the
deposit is being transferred; the amount of the deposit, and a result flag
deposited?, letting the depositor know that the deposit succeeded.

op private: priv>
• priv> → Private

op deposit: account amount deposited?>
Define

accPriv = private :: account,
common = common-ancestor :: Private accPriv,
withdrawn? =

accPriv reserve: amount transferAmt common
endDefine
• deposited?> → withdrawn?
Define transferAmt

If withdrawn? & amount >= 0
• transferAmt> → amount

else
• transferAmt> → 0

endIf
endDefine
Define ignore> endDefine
to Private reserve: 0 (transferAmt negated:) common ignore>

common ancestor

current
 account

other
 existing
 account

$

Fig. 6.6 deposit: transfers money from another existing account

Hierarchical Accounts Components

20 Dec 95 DRAFT 71

The first Define statement calls the private server to get the private chan-
nel of the depositing account. Again, this version of private does not
implement real Joule security techniques.

In response to the “::” message, private sends the request private: priv>
to account’s public channel; account then forwards priv> to account’s pri-
vate channel.

Back in the op deposit: block, accPriv is an acceptor for the depositor’s
private channel. The next Define block calls the common-ancestor proce-
dure. In response to the “::” request, common-ancestor forwards the

distributor ancestor> to the closest common ancestor of the acc1 and
acc2 accounts. It does this by calling itself recursively: if the depth of
one account is greater than the other, it recurs with the shallower
account and the parent of the deeper account as arguments. If both
accounts are of the same depth, it recurs with their two parents. This
continues until the new arguments are (acceptors for) the same account.

The next Define statement sets withdrawn? to the success flag of the
statement accPriv reserve: amount transferAmt common. This statement
sends the private request reserve: to the private channel of the deposit-
ing account, asking it to verify that it can in fact transfer the amount
requested.

The set statement can immediately tell myLocalBalance to deliver to
newBalance—that is, either the same value it presently has, or its
present value minus transferAmt. Again, messages to myLocalBalance
will be held and delivered after the new value of myLocalBalance is
determined.

What is the value of transferAmt? It is set in the deposit: method—if the
flag withdrawn? indicates that the money was reserved as requested,
transferAmt is set to the amount specified in the original deposit: request.
If withdrawn? indicates that the depositor was unable to reserve the
amount requested, then transferAmt is set to zero, and the depositor’s
local balance does not change.

This is one of the powerful benefits of Joule’s inherent concurrency. The
deposit: method of the server receiving the deposit sends the reserve:

Reveal the private channel of account. This procedure will be substituted later for one
that is secure.

Server private :: account priv>
• account private: priv>

endServer

Server common-ancestor :: acc1 acc2 ancestor>
Define d1 = acc1 depth: , d2 = acc2 depth: endDefine
If d1 < d2

• common-ancestor :: acc1 (acc2 parent:) ancestor>
orIf d1 > d2

• common-ancestor :: (acc1 parent:) acc2 ancestor>
orIf (d1 = d2) & (acc1 != acc2)

• common-ancestor :: (acc1 parent:) (acc2 parent:) ancestor>
orIf acc1 = acc2

• ancestor> → acc1
endIf

endServer

The facet Private extension to
the Server form introduces the
private methods of the Account
server. All ops following facet
Private, are private methods.

Hierarchical Accounts Example

72 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

request to the depositing server with an argument transferAmt that does
not yet have a value. The depositing server can determine, based on the
other arguments of the request, whether or not the request can succeed,
and can inform the receiver of this (via the result channel success?>).
Based on this go/no-go result flag, the server which sent the reserve:
request can now supply the value of transferAmt. Meanwhile, both serv-
ers have already used transferAmt to adjust their own local balances.

If the depositor is an ancestor of the receiver, then the depositor does
not adjust its own balance—the transfer is entirely internal to the ances-
tor and does not affect the ancestor’s local balance. The withdrawn? flag
is set to true, but no money is subtracted from the ancestor’s balance.

Both deposit: and reserve: recur to the respective parent accounts,
because those balances must also be adjusted by the amount of the
transfer, up to but not including the common ancestor of the two
accounts. To that common ancestor, the transfer of monies is completely
internal, but to every intermediate account, the transfer is real money.

6.1.2.6. Other Private Requests

The other private methods of Account are fairly straightforward:

Any server holding the private channel to this account should presum-
ably be allowed to hold the public channel as well; the private request
public: reveals it. The depth: and parent: requests are used only by com-
mon-ancestor.

facet Private
type AccountPrivate
op reserve: reserveAmt transferAmt ancestor success?>

Define newBalance, parent'
If (reserveAmt <= myLocalBalance) &

(Private != ancestor)
• myParent reserve: reserveAmt transferAmt

ancestor success?> then
parent'>

• newBalance> → myLocalBalance - transferAmt
else

• parent'> → myParent
• newBalance> → myLocalBalance
• success?> → Private = ancestor

endIf
set myParent parent’
set myLocalBalance newBalance

op public: pub>
• pub> → account

op depth: depth>
• depth> → myDepth

op parent: parent>
• parent> → myParent

Hierarchical Accounts Components

20 Dec 95 DRAFT 73

6.1.2.7. The Private balance: Request

The private balance: request reveals the balance of the receiver with
respect to an account known to be its ancestor. (Normally, this will be
called with the result revealed by common-ancestor.)

The If guard ancestor = Private halts the recursive passing of balance:
requests up the tree when they reach the ancestor itself. The then exten-
sion to the sending of balance: to myParent is there to ensure that
messages from an account to its parent arrive in the order in which they
were sent. (If you deposit a sum of money into an empty account, then
try to withdraw some of it, the withdrawal attempt will fail unless the
order of the requests is preserved.)

The set and Define statements are running concurrently. The set reas-
signs myParent to the acceptor parent' created by Define. All messages
sent to myParent are forwarded into the channel parent' and held there.
The then statement is an extension to the message-send statement. It
takes as its argument a distributor whose messages (if any) will be for-
warded to the target of the send, guaranteed to arrive after the one sent
in the original message. In this case, the target is myParent, and the dis-
tributor is parent'>, which is holding the messages meant for myParent
that piled up behind the privileged message balance: localBal ancestor
balance>. If the other clause of the If wins and the Define is never exe-
cuted, then parent'> and all the messages in it are forwarded directly to
myParent in the ordinary Joule fashion, without any ordering.

6.1.3. The root Server

Recursive requests that are passed all the way up the “money tree” bot-
tom out at the server root, which is the “parent” of the top-level

op balance: max ancestor balance>
Define parent'

If ancestor = Private
• balance> → max
• parent'> → myParent

else
Define

localBal = myLocalBalance min: max
endDefine
• myParent balance: localBal ancestor balance>

then parent'>
endIf

endDefine
set myParent parent'

endServer
endServer

Server root
op mint: amount account>

If amount < 0
Signal positive-amount-required:

else
• make-account :: amount Private account>

endIf
facet Private
type AccountPrivate

Hierarchical Accounts Example

74 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

accounts. Except for the mint: request, it accepts only private mes-
sages—the same set of private messages as Account, so its private facet
is also of type AccountPrivate. The public mint: request creates a new cur-
rency (a top-level account), with the money supply amount, and reveals
that account’s public channel on account>. (Note that root signals an
exception to the reserve: request—once a currency is created, its total
money supply cannot be increased.

Here are uninterrupted program listings for the make-account, common-
ancestor, private, and root servers:

6.2. Program Listings

6.2.1. make-account
Server make-account :: amount parent account>

• account> → account
Server account

var myLocalBalance = amount
var myParent = parent
var myDepth = (parent depth:) + 1
type Account
op split: amount account>

Define balance
If amount < 0

• balance> → myLocalBalance
Signal positive-amount-required: amount

orIf amount > myLocalBalance
• balance> → myLocalBalance
Signal insufficient-funds: myLocalBalance

else
• balance> → myLocalBalance - amount
• make-account :: amount myParent account>

endIf
endDefine
set myLocalBalance balance

op budget: amount account>
If amount < 0

Signal positive-amount-required: amount
else

• make-account :: amount Private account>
endIf

op balance: max account balance>
Define

common =

op public: pub>
Signal not-a-currency:

op depth: depth>
• depth> → 0

op parent: parent>
Signal broken-recursion:

op balance: max ancestor balance>
Signal different-currencies:

op reserve: amount ancestor commit? success>
Signal different-currencies:
• success> → false

endServer

Program Listings

20 Dec 95 DRAFT 75

common-ancestor :: Private (private :: account)
endDefine
to Private balance: max common balance>

op deposit: account amount deposited?>
Define

accPriv = private :: account,
common = common-ancestor :: Private accPriv,
withdrawn? =

accPriv reserve: amount transferAmt common
endDefine
• deposited?> → withdrawn?
Define transferAmt

If withdrawn? & amount >= 0
• transferAmt> → amount

else
• transferAmt> → 0

endIf
endDefine
Define ignore> endDefine
to Private reserve: 0 (transferAmt negated:) common ignore>

op private: priv>
• priv> → Private

facet Private
type AccountPrivate
op reserve: reserveAmt transferAmt ancestor success?>

Define newBalance, parent'
If (reserveAmt <= myLocalBalance) &

(Private != ancestor)
• myParent reserve: reserveAmt transferAmt ancestor

success?> then parent'>
• newBalance> → myLocalBalance - transferAmt

else
• parent'> → myParent
• newBalance> → myLocalBalance
• success?> → Private = ancestor

endIf
set myParent parent’
set myLocalBalance newBalance

op public: pub>
• pub> → account

op depth: depth>
• depth> → myDepth

op parent: parent>
• parent> → myParent

op balance: max ancestor balance>
Define parent'

If ancestor = Private
• balance> → max
• parent'> → myParent

else
Define

localBal = myLocalBalance min: max
endDefine
• myParent balance: localBal ancestor balance>

then parent'>
endIf

endDefine
set myParent parent'

endServer

Hierarchical Accounts Example

76 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

endServer

6.2.2. common-ancestor
Server common-ancestor :: acc1 acc2 ancestor>

Define d1 = acc1 depth: , d2 = acc2 depth: endDefine
If d1 < d2

• common-ancestor :: acc1 (acc2 parent:) ancestor>
orIf d1 > d2

• common-ancestor :: (acc1 parent:) acc2 ancestor>
orIf (d1 = d2) & (acc1 != acc2)

• common-ancestor :: (acc1 parent:) (acc2 parent:) ancestor>
orIf acc1 = acc2

• ancestor> → acc1
endIf

endServer

6.2.3. private
Server private :: account priv>

• account private: priv>
endServer

6.2.4. root
Server root

op mint: amount account>
If amount < 0

Signal positive-amount-required:
else

• make-account :: amount Private account>
endIf

facet Private
type AccountPrivate
op public: pub>

Signal not-a-currency:
op depth: depth>

• depth> → 0
op parent: parent>

Signal broken-recursion:
op balance: max ancestor balance>

Signal different-currencies:
op reserve: amount ancestor commit? success>

Signal different-currencies:
• success> → false

endServer

20 Dec 95 DRAFT 77

7.Boundary Foundations

Modules are built on low-level foundations that support boundaries for
creation and initiation of new programs in a running system, termina-
tion and resource management for existing programs, and access to
foreign services. These foundations provide the mechanism on which
the policies described in the Module Programming section are built. By
separating policy from mechanism, we enable multiple programmer-
level module systems to co-exist.

7.1. Domains

Domains

 are the foundational primitive for separately-executable pieces
of code. They represent the boundaries needed for modules, security,
and resource management. This section will describe them in detail.

7.2. Initiation

7.2.1. Necessity of Initiation

Initiation is the ability to start newly generated programs and connect
them into an already-running system. This is a fundamental require-
ment for open systems.

7.2.2. Layers of Initiators

Programs can be initiated at many levels of abstraction. Machine code
programs, Joule abstract machine programs, and Joule parse trees are
all program representations that could be initiated. Initiators at each of
these levels can be built on the initiator for the next level down.

7.3. Export/Import Issues

This section will describe how an initiated process gets properly con-
nected to the rest of the universe of services.

7.4. Debugging Issues

Each separate domain is debugged independently. The typical model of
systems that provide general debugger access violate encapsulation in
a distributed system with untrusted clients. This section will describe

Boundary Foundations

78 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

how debuggers are implemented while maintaining modularity and
respecting trust boundaries.

7.5. Interoperability

Domains are the boundaries at which Joule communicates with foreign
services (services written in other languages). To Joule, a foreign service
looks like an independent Domain with which Joule engages in mes-
sage communication. The Joule semantics could actually manage entire
populations of external programs as if Joule were an operating system.

20 Dec 95 DRAFT 79

8.Security

Many of Joule’s security foundations were drawn from or inspired by
KeyKOS, a capability-based operating system that provides NCSC
(National Computer Security Center) B3-level security. Security can be
thought of as the extreme of modularity: truly independent programs
can only interact with each other through explicit and controlled
boundaries.

Security, like modularity, is first supported by negative capabilities:
operations that are prevented. After insecure abilities have been
removed (such as the ability to write any file or write to any memory
location), and the system has been reduced to secure foundations, one
then builds abstractions that provide all the standard functionality of
insecure systems without exposing programs to risk. Finally, one estab-
lishes tools and methodologies with which programs can securely
engage in otherwise risky activities. This methodology for security is
really a methodology for managing and arranging trust relationships.

This section first describes encapsulation, the enforcement of rules for
accessibility and visibility. Encapsulation makes each server inviolable
by other servers—the only thing a client can do to a server is send it
messages to which the server explicitly decides how to respond.

Encapsulation brings with it polymorphism and anonymity: servers
can only be distinguished by how they behave, so servers could be
written that pretend to be other servers (for instance, money). How
does one build trust relationships in such a system? We describe the
technique used in Joule with which servers can prove their identity to
each other, allowing the establishment and extension of trust relation-
ships between servers. This supports the creation of extended networks
of servers that cooperate and subcontract with each other.

With the establishment of these networks, the encapsulation and trust
issues arise all over again: does the original client trust a subcontractor?
There are many properties of a server that are composed from their sub-
contractors. The two we describe here are discretion (“Will the server
keep secrets?”) and durability (“Will the server still be in operation in
the future?”). Other such properties, like timeliness and robustness, are
not explored here.

Security

80 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

8.1. Encapsulation

Encapsulation is what people commonly think of when they think
about security. It is the enforcement of rules for accessibility and visibil-
ity. Languages like C and C++ provide weak modularity because any
program in the same address space can convert a number to a pointer
and violate the integrity of other parts of the code. Encapsulation
allows programs to run without interference or corruption from other
programs.

8.1.1. Capability Security

Capability security is the foundation for good encapsulation. This sec-
tion describes capability security. Certain powerful capabilities,
particularly those that violate encapsulation, such as the ability to read
and write any section of memory, are closely held by severely restricted
service providers.

8.1.2. Accessibility Relationships

The semantics of the accessibility relationships from the abstract execu-
tion model constrain the kinds of communication and access that can
happen among programs in a Joule system. The rules guarantee that all
communication is by message passing, and that all access to a receiver
is only through message passing. This guarantees the encapsulation of
Joule programs.

8.2. Certification

To build trust among unknown servers requires the ability to prove
their identities to each other. The identity might be of a type: servers
that charge money want to be paid with

real

 money (also implemented
as a server), not a forged server that responds to the same messages as
money. The identity might also be of a particular server: when sending
to requests to a bank, a server wants it to be the bank at which it has its
account, not just any bank (even though all banks run the same code).

8.2.1. Verifiers

Joule provides the

Verifier

 abstraction, a mechanism for certification
built using only encapsulation and message passing. Unlike KeyKOS
brands,

Verifiers

 require no support in the computational model.

Verifiers

 provide the services of a single-key encryption scheme using
encapsulation. Given a value to be sealed, a

Verifier

 will create and
reveal a

SealedEnvelope

 containing the supplied value that can only be
opened by the

Verifier

 that sealed the envelope. That

SealedEnvelope

 can
then be passed through insecure channels to some other server which
has access to the same

Verifier

. That other server can open the

SealedEn-
velope

 and use the contained server.

Type

 Verifier

super

 Basic

seal the supplied contents in an envelope that can only be opened by the receiving
Verifier, and reveal that sealed envelope.

op

 seal: contents enveloped>

For more about SealedEnve-
lopes, see Appendix D,
Energetic Secrets.

Certification

20 Dec 95 DRAFT 81

Verifiers

 rely on encapsulation for their certification properties: unseal-
ing a message proves that the originating party had access to the same

Verifier

 as the receiver; with encapsulation, the receiver can know the
extent in which the

Verifier

 is visible, and so can know what code gen-
erated the message.

Here is the replacement code for the hierarchical bank account example
(Chapter 6) that uses

Verifiers

 to allow accounts access to each other's

Private

 channel without exposing the

Private

 channels to outside code.
This line of code is added within the definition of the

make-account

server; it creates a new

Verifier

 named

AccountPrivate

 within the scope of
the

Account

 implementation:

The remainder of the code replaces the corresponding insecure imple-
mentations in the original Account implementation code:

The redefinition of the

private:

 method now reveals a

SealedEnvelope

containing the

Private

 channel rather than revealing the actual

Private

channel. The redefined

private

 server (the internal server that an
account calls to access the

Private

 channel of another account) also uses
that

Verifier

: it asks the desired account for an envelope containing the
account’s Private channel, then unseals that envelope using the

AccountPrivate

 Verifier (the one shared by all accounts made by this

make-account

 server.)

Both the account requesting a private channel and the account provid-
ing the private channel can be assured that the other is a real account,
and can be assured that the

Private

 channel is secure (not exposed to
eavesdroppers or forgers). The type-authenticity (proving the other is a
real account) is guaranteed because both parties know the other party
has access to the

AccountPrivate

Verifier

 (or the seal/unseal wouldn’t
have worked), both parties know that the accessibility rules of the lan-
guage guarantee that unless the make-account code reveals the

given an envelope sealed by the receiving Verifier, reveal the contents of the envelope.

op

 unseal: envelope content>

The type for envelopes used by Verifiers. SealedEnvelopes have no other behavior
(beyond Basics) than the secure access that Verifiers use to get at the
contents. Verifiers are built using more primitive Verifiers, so no user program
can get at the contents of a SealedEnvelope; only the proper Verifier can.

Type

 SealedEnvelope

super

 Basic

Only Verifiers can get at the private channel of a SealedEnvelope (because they prove
their identity using other Verifiers).

op

 private: private>

Define

 AccountPrivate (make-verifier ::)

Reveal an Envelope containing the private channel for the receiver.

op

 private: priv>
AccountPrivate seal: Private priv>

Reveal the private channel of another account by asking it for a sealed Private channel
and unsealing it.

Server

 private :: account priv>

Define

 box account private:
AccountPrivate unseal: box priv>

Security

82 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

AccountPrivate

 Verifier, then only the body of that code can use it, and
finally both parties know that their implementation in

make-account

doesn't reveal the

AccountPrivate

 Verifier. The combination of these
means that only an account could have provided a

SealedEnvelope

openable by

AccountPrivate

, and only an account could open that enve-
lope. This means that messages sent on any account

Private

 channel are
sent by an account server, and so are part of the proper implementation
of the

Account

 abstraction.

An eavesdropper is a forwarder that wraps the

SealedEnvelope

 in order
to get access to the contained

Private

 channel when the envelope is
unsealed, or to engage in the protocol with which envelope is unsealed.
At no time is the

Private

 channel of an account exposed outside of the
context of the account implementation, except in a

SealedEnvelope

 that
can only be opened in the Account implementation context. The only
potential for exposure of the contents of the

SealedEnvelope

 occurs dur-
ing the unsealing operation; during the sealing, the account has an
internal (i.e., no eavesdroppers) channel to the

Private

 channel.

The unsealing operation uses the same kind of protocol in order to
unseal the envelope. All

Verifiers

 and

SealedEnvelopes

 within a trust
boundary share access to a single Verifier (the implementation of which
distributes efficiently) through which they can securely connect with
no eavesdroppers. As a result, during the unseal operation, the

AccountPrivate

 Verifier and the

SealedEnvelope

 containing the desired
private channel make a secure connection through which the Envelope
reveals the contained

Private

 channel to the

Verifier

 which then reveals it
to the caller of

unseal:

.

8.2.1.1. Unique Tokens

In the private protocol, an implementation could define messages to
reveal information unique to each instance in order to prove identity.
This code implements a simple unique token scheme in which the cli-
ents can only compare unique tokens, but cannot otherwise find out

anything

 about them:

Server

 make-token

var

 myNext 0

var

 TokenPrivate (make-verifier :)

this should be a const declaration, but we don't have those yet.
Define the message used for procedure call (to make a unique token). This could also

have been part of the first clause, but this is a better style for procedures with
changing variables.

op

 : token>
token> -> token

Here is the behavior for an instance made by make-token.

Server

 token

var

 myID myNext

Get the number of the other guy and then compare it against the number of the
receiver.

op

 = other equal?>

Define

 hisNum (TokenPrivate unseal: (other private:))
myNum = hisNum equal?>

 Reveal an Envelope containing the number unique to each instance.

op

 private: envelope>
TokenPrivate seal: myNum envelope>

set

 myNext myNext + 1

Discretion

20 Dec 95 DRAFT 83

Tokens each contain a number guaranteed to be unique with the simple
expedience of allocating them sequentially. The sequential ordering
won't reveal anything about the running of the program even if the
token creator is shared among untrusting programs because the num-
bers are never revealed except inside the actual implementation (just
like

account

 above).

8.3. Discretion

As described in the introduction to security, once a system has certifica-
tion and encapsulation, it is possible to build large networks of servers
that subcontract with each other to provide services to their clients. The
naïve expansion to these large networks of servers leaves systems with
the same precarious lack of robustness characteristic of networks today.
Joule supports these large networks by allowing servers to establish
and verify transitive properties of these subcontracting relationships so
that a server can ensure its robustness. Many of these properties are
managed through the same general mechanisms, but they will first be
explored in the context of discretion. The techniques we describe here
are called assurance by construction, assurance by auditing, and assur-
ance by special execution.

Discretion control is a generalization of the better-known confinement
problem. Successful

confinement

 allows untrusted code to be run on pri-
vate data without the untrusted code being able to communicate any
secrets to the outside world. As the name implies, solutions to the con-
finement problem typically rely on running the untrusted code in a box
out of which it cannot communicate. Successful

discretion

control

 allows
that same untrusted code to communicate with other services, but still
prevents secrets from being leaked.

8.3.1. Assurance by Construction

Assurance by construction means having mutually trusted third-par-
ties build services for each other. The clients of such a construction
service can then know that no other server has access to their private
services, and so even if those services cheat, they still can’t communi-
cate secrets to the outside world. This section will describe the process
in more detail, including how Factories can provide assurance by
construction.

8.3.2. Assurance by Auditing

Auditors might be equipped with an abstraction-breaking tool which
can examine an existing server for capabilities to steal secrets. This tool
is very closely held. This is assurance by

auditing.

 An auditor is able to
audit a service for connections that could lead to data leaks or for
dependencies on facilities that may be insufficiently permanent.

Modules pass an audit if they are functionally discreet. Factories pro-
duce modules that are structurally discreet—structural discretion can
only be supplied by construction because a module that would other-
wise be discreet might be shared with an indiscreet observer (a discreet
database, for instance).

Security

84 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

8.3.3. Assurance by Special Execution

Another technique involves an elaboration of the execution model with
which the owner of a secret can send messages involving the secret
inside special query messages. The ultimate effects of a query are solely
upon those things named in the message. This may sound like a very
limiting style of programming but such a query may, for instance, cre-
ate a database and reveal access to it while guaranteeing that no one
else has access. That the database was created with a query ensures that
secrets entrusted to it are safe from disclosure. This is assurance by

spe-
cial execution

.

8.4. Durability

Durability is the property of a service that it can guarantee its own sur-
vival and continued function. It is

durable

 if no untrusted authority has
the ability to destroy it or other services on which it depends. This can
extend into very physical realms of assuring that communication links
are independently redundant so that a single failure doesn’t partition
the network.

8.4.1. Implementation

Support for durability relies on the same foundations as discretion, but
uses the mechanisms somewhat differently. This section will describe
the differences.

8.4.2. Requirements

Where discretion is a correctness issue, durability brings performance
into the correctness domain. Thus, a program is not durable unless it
has access to enough resources to guarantee that it will run; durability
requires concurrency so that the process can run, and resource manage-
ment so that it can guarantee that it will.

20 Dec 95 DRAFT 85

9.Resource Management

This section first describes some underlying principles for resource
management abstractions in Joule. It then describes abstractions for
resource encapsulation and ownership, the foundations for resource
management. Finally, it describes market-based resource management
abstractions for making resource trade-offs in complex systems.

9.1. Resource Management Fundamentals

This section describes some underlying principles in the design of
resource management abstractions. The first two principles of hierar-
chical ownership and drawing authority are demonstrated in Chapter
6, the hierarchical accounts example.

9.1.1. Hierarchical Ownership

Hierarchical ownership makes Joule’s resource management abstrac-
tions recursively applicable. It permits reuse of mechanisms within an
entity without the entity losing control of its pieces. This section will
explain in detail why hierarchical resource ownership is important, and
gives real-world examples of its use (renters and landlords).

9.1.2. Drawing Authority

The naive way of sharing a resource among consumers is to divide it up
(to allocate it). This allocation assumes prior knowledge of how the
resource will be used. Allotting budgets to the consumers allows the
programmer the same control over the limits of consumption, without
requiring prior knowledge of resource utilization. This section will
describe budgeting drawing authority in more detail, describe how it
subsumes allocation, and give examples that motivate the shift to
drawing authority.

9.1.3. Quantity vs. Territory

Quantity and territory are two extremes for measuring or representing
access to resources.

Quantity

 represents an amount of some

fungible

resource (a resource whose units are all equivalent).

Territory

 represents
a particular piece of some resource, analogous to real estate. Many com-
putational resources can be represented both ways (most memory
pages are fungible, for instance), and these representations are useful

Resource Management

86 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

for different things. This section will describe the distinction and give
examples.

9.2. Primitive Resources

The two fundamental computational resources are execution time and
memory. Management of other resources can be built in the language,
but these require support in the language

implementation

. This section
will describe the primitives for reifying and encapsulating these two
primitive resources, and give examples of using them.

9.2.1. Meters and Engines

Meters and Engines are two tools for encapsulating execution time.
Meters support ownership of quantities of compute time; Engines sup-
port ownership of “territories” of compute time. Engines are provided
to support real-time applications.

9.2.2. Space Banks

Space Banks encapsulate computer memory. This section will describe
the interface to them.

9.3. Agoric Abstractions

Agoric resource management is the use of markets and prices to man-
age resources. This section introduces a simple system design and
default strategies such that the emergent behavior of such a system is
understandable; then presents mechanisms for adding programmer-
defined strategies and policies for dynamically adapting to resource
availability.

9.3.1. Example System Design

This section will describe a particular system for market-based resource
management. It will include the definition of Workers, the virtual
machine that runs on money instead of CPU cycles.

9.3.2. Default Strategies

This section will describe the default strategies from which price sig-
nals emerge. Properties of default strategies are well described in

[89]

.
These policies must:

• result in the emergence of typical system behaviors, such as fair-
ness among processes

• produce price information that reflects resource costs
• remain strategically robust against gaming by non-default strate-

gies
• be reasonably computationally efficient

9.3.3. Using Default Strategies

This section will describe the tools for using the default strategies,
including Workers (virtual machines that run on money) and Expense
Accounts (budgets for Workers to draw upon). These tools make it easy

Improved Computational Model

20 Dec 95 DRAFT 87

to divide resources among many services, and call upon existing ser-
vices that require resources.

9.3.4. Building New Strategies

This section will go under the hood of the system to describe how to
build and use more sophisticated strategies for adapting resource
usage to the demands of the rest of the computation. These tools are for
processes that use price information, and include Agents (strategy ele-
ments) and the interfaces to standard resource Providers.

9.4. Improved Computational Model

Here we will present an abstract computational model that includes
resource management and a correct state of execution even in the
absence of sufficient resources.

Resource Management

88 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

20 Dec 95 DRAFT 89

10.Distribution

This chapter explores the issues affecting distributed systems and
describes how Joule satisfies them. The solutions discussed assume the
availability of the resource management tools described in the preced-
ing chapter. By providing mechanisms to support process migration, as
well as default policies, Joule supports the full spectrum of distribution
regimes, from automatic distribution in which processes are automati-
cally spread across multiple processors, to explicit distribution in
which the programmer controls or influences the mapping from pro-
cesses to processors, to untrusting distribution in which the
programmer explicitly manages and adapts to trust boundaries and
failure properties of the network.

10.1. Transparency

Transparency is the ability of a program written in Joule to function
unaffected as it is stretched out across machines. This section will first
describe the importance of transparency, then examine the primitives
and the computational model to show how machine boundaries and
communication lags can be invisible to an executing program.

10.1.1. Separation of distribution from correctness

Transparency allows programs to first be built to work, then be distrib-
uted without breaking the logic of the program. Because the
assignment of processes to processors doesn’t change the program,
transparency also increases reliability and maintainability.

10.1.2. Adaptive distribution requires transparency

Adaptive distribution is the ability to write programs that migrate
other, already-running programs to improve performance or adapt to
the changing topology of a network. This adaptability requires that
machine boundaries move in relation to the underlying program, with-
out the program being changed. This transparency enables adaptive
and automatic distribution, and also enables applying all the abstrac-
tion power of the language to the problem, including price-based
competition among processors.

Distribution

90 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

10.1.3. Channels stretch across wires

The semantics of Channels is such that they can be stretched across
wires (with the inherent delays, etc.) without breaking.

10.1.4. Trust relationships are the same

The security system provides programs with ways of managing trust
boundaries. Distributed systems simply introduce more trust bound-
aries, so the nature of the system stays the same, and programs will
already be built to deal with the security problems revealed by distrib-
uted systems.

10.2. Failures in Distributed Systems

A continuously-operational open, distributed environment must
remain robust in the face of many failure modes that are either not
present or not obvious on single machines. This section explores many
of them, and briefly describes Joule’s solutions.

10.2.1. Node Failures

Node failures occur when a machine on the network fails. This section
will describe the

Unavailable

 exception which reports the failure and
describes how to handle this exception. It will also describe using mes-
sage plumbing to acquire control over the raising of this exception.

10.2.2. Network Partitions

A network partition is like a multiple-node failure except that the
machines may return to service. Many applications can withstand the
wait, so handling the return of access to a service is important. This sec-
tion will describe the handling of the

Available

 exception, which is
reported when a service returns, and give examples.

10.2.3. Aberrant Behavior

Because of the Joule computational model, malicious and arbitrary
behavior in a distributed system creates no new problems. Therefore,
the security support deals with aberrant behavior of nodes in the dis-
tributed system. Further, the virtualizability of Joule channels allows
them to be transparently encrypted between sites, so they can remain
secure from eavesdroppers.

10.2.4. Node Amnesia

Since Joule is a persistent system, a particularly difficult form of failure
is for a node to fail, and then revive in a previous state (from a check-
point or backup). The issues here are complicated and subtle and will
not be dealt with in detail in this document.

10.3. Explicit Distribution

This section will describe how a programmer can explicitly distribute a
Joule computation. It will describe one particular distribution infra-
structure, and how programs should interact with it.

Frameworks for Automatic Distribution

20 Dec 95 DRAFT 91

10.3.1. Migration

This section will describe how to migrate processes between virtual
processors in order to modify or improve the topology of a network.

10.4. Frameworks for Automatic Distribution

This section will build on the previous section to describe a framework
in which programs can be automatically distributed (though not as
well as a programmer might do), with no change to the program.

10.4.1. Simple Mechanisms

This section will describe a minimal strategy for automatically distrib-
uting processes to processors.

10.4.2. Stochastic/Heuristic

This section will describe stochastic and heuristic methods for load-bal-
ancing and distribution of processes to processors.

10.4.3. Agoric-Driven

This section will describe price-based strategies for load-balancing
between processes using some of the agoric resource-management
foundations.

10.5. Off-line Distribution

Occasionally-connected networks are those whose sites rarely talk to
each other. This definition applies primarily to laptops and the net-
works to which they connect, and to networks that connect periodically
to transmit updates (for example, USENET links). This section will
describe how Joule distributes successfully over occasionally-con-
nected networks.

Distribution

92 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

20 Dec 95 DRAFT 93

11.Persistence

This section will describe possible implementations of persistence in
Joule. The trade-offs between these implementations remain largely
unexplored for Joule, though much of the territory is known for other
related systems such as FCP and Actors.

11.1. Page-Based Persistence

This section will describe a persistence implementation at the level of
pages of virtual memory. The design of this system is based on the per-
sistent virtual memory system in KeyKOS. In page-level persistence,
changed memory pages get checkpointed to persistent store at regular
intervals, saving the entire execution state of the machine.

11.2. Server-Based Persistence

This section will describe a persistence implementation at the level of
servers. In server-level persistence, changed servers write themselves
to persistent store at regular intervals.

11.3. Replay-Based Persistence

This section will describe a persistence implementation in terms of log-
ging messages passed and the internal non-deterministic choices made
by servers in order to replay the actions of the system and reconstitute
its state.

Persistence

94 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

20 Dec 95 DRAFT A1

A. Language Comparison

This section reviews other languages and systems relative to the
requirements for robust servers and open distributed systems. It also
compares the capabilities of Joule with those of its antecedents, Actors
and concurrent constraint languages.

Joule is designed to be a foundation for distributed applications. It is
largely a language foundation because a language can be layered on
top of any operating system, enabling the foundation to be made
extremely portable. Since the design captures many of the ideas from
good operating systems, the semantics also match well with network
and machine operating systems.

Many people consider language and system comparisons a soft and
subjective art. The discussion of server and market-based computation
in Section 1.1 provides the foundation for a hard-edged discriminant
for comparing languages and systems: Can they build robust servers?
This requires encapsulation, concurrency, and resource management.

The present comparison only applies the robust servers criterion.
Future versions of this section will also document the large contribu-
tions from previous languages. In the present comparison, however, we
consider only those features which are lacking in a particular language
but present in Joule. We offer our apologies if this narrow focus makes
the comparison seem invidious, and hope to amend this lack in future
versions.

A.1. Language Comparison

Languages like C and C++ do not have true encapsulation; any pro-
gram in the same address space can violate the modularity of objects by
using casts. Systems that glue together separately-written C or C++
programs to attempt to support distributed programs are considered
separately. They don’t provide C or C++ any more support than they
provide to assembly language programs.

Even if these programming languages provided modularity, they still
lack concurrency. Again, concurrency tools like threads that are pro-
vided by the operating system are really a property of the operating
system, and are considered in the next section.

The Smalltalk language and system are extremely good, but all imple-
mentations provide hooks for the debugger that any object can use to
violate modularity; the language semantics provide encapsulation but

A2 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

the environment throws it away. Smalltalk is also a sequential lan-
guage. The standard support for concurrency is a Semaphore
mechanism with non-preemptive multi-tasking; this is not sufficient for
reactive, concurrent systems.

The Linda language and system can be considered together because
they share the same semantics. Linda assumes a global tuple space for
communication. In a distributed system, the existence of that global
structure is untenable—machines fail, networks partition, etc. The reli-
ability of a robust server cannot depend on the reliability of machines
on which the robust server is not running. Further, the tuple-space of
Linda is insecure: tuples are just placed in the space and other processes
pattern match against the tuple-space to extract

any

 tuple they recog-
nize. Proposals have been made for M-Linda, a Linda with multiple
tuple-spaces that was moving towards the Joule communication
semantics, but progress on that front stopped.

Languages like Actors, ABCL/1, and Hermes, and concurrent logic
programming languages like FCP, FGHC, and Janus all have the requi-
site encapsulation and concurrency properties. They do not have
sufficient resource management capabilities to implement robust serv-
ers well, but they come the closest of existing programming languages.
Many of the logic programming languages suffer from the additional
disadvantage of a global environment for procedure definitions; such
global constructs break in large, distributed systems. The Joule compu-
tational model is a direct combination of features from the Actors
computational model and the concurrent logic programming model.

A.2. Operating Systems

Operating systems on consumer platforms (Macs and PC) often pro-
vide no encapsulation, so they cannot be a foundation for robustness.
More sophisticated operating systems like Windows NT and UNIX
have more encapsulation—they provide inviolable accessibility bound-
aries between applications—but hidden in their complexity they throw
away the security in the abstractions that they provide to programmers
(in UNIX, every program that runs with root permissions is a potential
hole through which the entire system could become vulnerable). The
resulting systems have holes that are fatal flaws when connected into a
network with untrusted clients.

Micro-kernel operating systems like Mach start with capability security
and provide a clean enough environment that they can be secure. They
also clearly provide concurrency. The mechanisms for resource man-
agement don’t provide much flexibility, but they are capable of
supporting robust servers.

KeyKOS goes one step further. KeyKOS is a capability-based, secure
operating system that provides hooks for explicitly managing compu-
tational resources such as processor time and memory. The only
remaining lack is that it does not provide transparent forwardability of
message passing between operating system objects (called Domains).
As a result, the KeyKOS model cannot be extended to a network
transparently.

20 Dec 95 DRAFT B1

B. BNF for Joule Syntax

This chapter presents, in Backus-Naur form, a grammar for the Joule
language forms and expression syntax. Lexical conventions will appear
in a later version of this Appendix.

B.1. BNF Conventions

In the BNFs in this appendix, the following conventions apply:

• Italicized names indicate terminals. The terminals are not pre-
sented in this Appendix. See

Section 4.1:

Lexical Conventions

 for an
informal presentation.

• Verticals (“|”) are used to separate alternative components that
may be used in the same place.

• A question mark (“?”) following a component means exactly zero
or one instance of the component is allowed.

• An asterisk (“*”) following a component means zero or more
instances of the component are allowed.

• A plus sign (“+”) following a component means one or more
instances of the component are allowed.

• Braces (“{ }”) are used to indicate grouped components, to which
one of the preceding allowance indicators applies as a unit.

{fee
fie}*

 means zero or more instances of the series

fee fie

 are allowed.

• A component followed by some delimiter

foo

 and an asterisk
means that zero or more instances of the component may be
present, separated by

foo

. For example, “

{bar},*

” means that any
number of

bar

 components may be present, separated by com-
mas.

• A component followed by some delimiter

foo

 and a plus sign
means that one or more instances of the component may be
present, separated by

foo

.

• A production name for which multiple definitions are given
means that any one of the definitions may be used where that
token appears.

• The indentation describes the indentation rules that were gener-
ally used throughout this manual, but has no semantic signifi-
cance.

B2 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

B.2. Forms

Production

Production Definition

block {form}*
form • simpleExpr {opExpr},+ {

then

 opExpr}?

Define

 {param

| param = opExpr},*
block

endDefine

ForAll

param

⇒

 param
block

endForAll

ForOne

 param

⇒

 param param
block

endForOne

Handler

 opExpr
block

endHandler

HandlerTap

 opExpr
block

endHandlerTap

Keeper

 opExpr
block

endKeeper

Signal

 opExpr

If

 opExpr
block

{

orIf

 opExpr
block}*

{

elseIf

 opExpr
block

{

orIf

 opExpr
block}* }*

{

else

block}?

endIf

Switch

 opExpr
{

case

 pattern
{

or

 pattern}*
block}*

{

otherwise

 param
block}?

endSwitch

Type

 param
{

super

Identifier

}?
{

op

 {pattern}

or

+
block
{

to

Identifier

 {opExpr},+
block}*}*

endType

Server

 param {method}? {var}* ops {facet}*

endServer

var

var

 {param | param = opExpr},*
block

20 Dec 95 DRAFT B3

B.3. Expressions

ops

 {

implements

Identifier

}?
{

op

 method}*
{

otherwise

 param
block}

method

 {pattern}

or

+
block
{change
block}*

change

to

Identifier

 {opExpr},+
|

set

 {

Identifier

 = opExpr},+

facet

facet

 param ops

opExpr simpleExpr | simpleExpr

Operator

 opExpr
simpleExpr

Identifier

 |

Literal

 |

Quasiliteral

 | tuple
| '(' nestExpr ')'

nestExpr simpleExpr | simpleExpr opExpr
tuple {

Operator

 |

 Label

 } {opExpr}*
param

Identifier

pattern tuple |

Quasiliteral

Production

Production Definition

B4 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

20 Dec 95 DRAFT C1

C. Optional Arguments

This proposal for managing optional arguments and “rest” arguments
in messages is consistent with the existing syntax of the language, Ener-
getic Secrets (see Appendix D), and efficient implementation.

C.1. Overview

Optional arguments and rest arguments are both extremely useful facil-
ities. They are realizable (more or less conveniently) in languages such
as C++ and Scheme. This proposal supports them both directly. It starts
by allowing only one method to respond to a given selector or unsealer;
that one method can supply optional parameters to handle multiple
cases. This keeps a method name associated with a single semantics.

C.2. Receiving Messages

Here is a template that illustrates all the argument-passing idioms:

The first operation,

sel1:

, is the standard message passing pattern: sev-
eral argument names following the selector that will be matched
against the incoming arguments.

The second operation,

sel2:

, illustrates handling of optional arguments.
It includes the keyword

optional

, which signals that the pattern follow-
ing is for optional arguments only. Each optional argument name is
followed by “=” and an expression specifying a default value to be used
if that argument is not supplied in a message.

The third operation,

sel3:

, illustrates handling of “rest” arguments, for
use when any number of supplied arguments are to be handled gener-
ically. The identifier

num

 is bound to the number of arguments
remaining. The identifier

fn

 is bound to a function which can reveal the
arguments to the message. Any of the “rest” arguments can then be
revealed by calling the argument function

fn

 with the index of the argu-

Server

 serverName

op

 sel1: arg1 arg2 arg3
body...

op

 sel2: arg1 arg2

optional

 arg3 = exp1, arg4 = exp2
body...

op

 sel3: arg1

rest

 num fn
body...

endServer

C2 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

ment to reveal and a distributor on which to reveal it.

fn

 can only be
called once per index, with the calls in any order. (On further calls with
the same index, it must either return the same result or signal an
exception.)

C.3. Sending Messages

Sending messages with optional arguments is just like normal message
sending. Each optional argument can be either supplied or not; the
receiving server accommodates either case. Similarly, messages can be
sent to servers that will treat all the arguments generically. Special han-
dling is needed to forward messages generically when manipulating
the arguments. This requires the support of Energetic Secrets (see
Appendix D).

Sealers for Energetic Secrets support direct protocol that can seal using
the same kind of argument count and argument function that the “rest”
arguments mechanism supplies. Programs can provide a function
directly that supplies the arguments dynamically to the message send.
Thus:

would supply 3 static arguments and any number of dynamic argu-
ments at call time (determined by the combination of

num

 and

fn

).

C.4. Other Changes

To support the implicit result argument convention in the presence of
optional and “rest” arguments, the implicit result argument will be the
first argument in a message. (Previously, it was assumed to be the last
argument.) Thus, the “plus” operation would be defined with:

This allows operations that are used in a functional style to also use
optional and rest arguments.

• receiver (msg:sealer seal*: num fn arg1 arg2)

op

 + result> addend

The current definition for “rest”
arguments is in terms of a func-
tion and arguments. This may
be changed to make use of a
virtual collection type.

20 Dec 95 DRAFT D1

D. Energetic Secrets

The technique of Energetic Secrets replaces Tuples with

SealedEnve-
lope

s as messages in the Joule communication model, incorporating
public-key semantics into the communication foundations. This change
simplifies the Joule semantics (answering questions like, “What is a
message selector?”), incorporates the authentication and other security
properties of Verifiers into the foundation, and improves the potential
efficiency of an untyped Joule implementation by enabling C++-style
dispatch. This Appendix introduces the Energetic Secrets concepts and
uses. In later versions of this document, the concepts in this Appendix
will be integrated into the main body of the text and specified in more
detail.

In using Energetic Secrets, each potential operation (message selector)
is represented by a pair of a Sealer and an Unsealer (which we will call
an Un/Sealer pair), roughly corresponding to send and receive rights
for messages of that operation. When a Sealer is applied to arguments,
it seals them in a new SealedEnvelope that can only be opened by the
corresponding Unsealer. The Unsealer is used by receivers of the Seale-
dEnvelope to recognize the message and extract the arguments.

D.1. Sending Messages

Sealers and Unsealers are typically used implicitly: what had formerly
been a Tuple expression (

foo: arg1 arg2

) implicitly applies a Sealer to
arguments to produce an

Envelope

;

Switch

 and

Server

 constructs implic-
itly extract using Unsealers; and the

Type

 form creates Sealer/Unsealer
pairs. The statement

which sends an envelope sealed with the Sealer for

anOperation:

 con-
taining

arg1

 and

arg2

, is equivalent to

in which the

seal:

 operation, sent to

anOperation:sealer

, produces an
Envelope which is then sent to

receiver

.

Energetic Secrets introduces a new syntactic convention, shown in the
example above: labels implicitly refer to sealers and unsealers with a
naming convention of appending

sealer

 or

unsealer

 to the end.
(Operators append

:sealer

 or

:unsealer

.) The identifier,

anOpera-

• receiver anOperation: arg1 arg2

• receiver (anOperation:sealer seal: arg1 arg2)

D2 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

tion:sealer

, is just a normal identifier, which is bound to the Sealer for

anOperation:

. Note that the sending of the

seal:

 message to the Sealer
similarly invokes a Sealer and produces an envelope;

seal:sealer

 is a
primitively supplied Sealer (along with a few others like

::sealer

) which
serves to bottom out the mechanism for envelope creation.

D.2. Receiving Messages

Messages are received using

ForAll

 and

choose

: as before. Recognizing
and parsing are different for envelope messages, however. The code
below shows the expansion of a

Switch

 form, which is part of the expan-
sion for a

Server

 form.

The above

Switch

 construct semantically expands into code involving
the

unseal:

 method, as shown in the following fragment for the

foo:unsealer

 branch of the

Switch

:

The invocation of the

foo:unsealer

 takes an envelope (received as a mes-
sage to a

ForAll

, for instance) and, if the envelope really is an envelope
sealed by the corresponding

foo:sealer

, reveals

num

 which is the num-
ber of arguments in the envelope (presumably 2 in this case), and a
server that will reveal each argument when called with an integer index
and a result port. The remainder of the code invokes the supplied argu-
ment function to bind the arguments and executes the nested body. If
the unseal failed, the revealed

num

 would be –1.

D.3. Sealer and Unsealer Types

Sealers and Unsealers are methodical servers that respond to the proto-
col below.

Switch

 envelope

case

 foo: a b

scope in which a and b are visible

case

 bar: c

scope in which c is visible

endSwitch

Define

 num, fn
• foo:unsealer unseal*: envelope num> fn>

endDefine

If

 num = 2

Define

 a = fn :: 0, b = fn :: 1

endDefine

scope in which a and b are visible

endIf

There are no operations on Envelopes beyond the basic ones.

Type

 SealedEnvelope

super

 Basic

endType

Type

 Unsealer

super

 Basic

Given a SealedEnvelope sealed by the corresponding Sealer, reveal the number
of arguments in the envelope and a server that will reveal the arguments. The
‘fn’ may only be invoked once per argument.

op

 unseal*: envelope num> fn>

endType

The num and fn revealed by the
unseal*: operation are just like the
num and fn used for “rest” argu-
ments in Appendix C, Optional
Arguments (and are in fact used to
implement “rest” arguments).

20 Dec 95 DRAFT D3

D.4. Types and Virtual Un/Sealers

The Un/Sealer pairs are typically generated by the

Type

 form. The
straightforward expansion is to generate a different Un/Sealer pair for
each selector. Instead, the

Type

 form can expand to virtual Un/Sealers
(unsealers implemented in Joule) to enable the use of a C++-style vtable
implementation of message dispatch. Where the code:

would normally expand to include un/sealer creation as in:

it would expand instead to create a single Un/Sealer used for the whole
type and would create virtual Un/Sealers that encode a vtable index
(for example the operation’s number in the Type) for each operation.

When sealing, a virtual sealer would take all the supplied arguments,
prefix the vtable index (0 for

foo

 in the above case) and then seal with

T:sealer

. Servers without

T:unsealer

 would be unable to open the enve-
lope, so they couldn’t discover the virtualization. The virtualized

foo:unsealer

 would attempt to unwrap with

T:unsealer

, then check to see
whether the first argument is 0 (the vtable index for

foo

), and only if

Type

 Sealer

super

 Basic

Given any number of args, create a SealedEnvelope that encapsulates them,
and which can only be opened by the corresponding Unsealer.

op

 seal: arg... envelope>

Like seal: except the num and fn arguments are required and are a number and
function so that users can supply a dynamic set of arguments computed at run
time.

op

 seal*: arg... num fn envelope>

endType

Type

 make-un/sealer

op

 :: sealer> unsealer>

endType

Type

 T

op

 foo: a b

op

 bar: c

endType

Define

foo:sealer, foo:unsealer,
bar:sealer, bar:unsealer

• make-un/sealer :: foo:sealer> foo:unsealer>
• make-un/sealer :: bar:sealer> bar:unsealer>

endDefine

Define

foo:sealer, foo:unsealer,
bar: sealer, bar:unsealer

Define

 T:sealer, T:unsealer
• make-un/sealer :: T:sealer> T:unsealer>

endDefine

• virtual-sealer :: T:sealer 0 foo:sealer>
• virtual-unsealer :: T:unsealer 0 foo:unsealer>
• virtual-sealer :: T:sealer 1 bar:sealer>
• virtual-unsealer :: T:unsealer 1 bar:unsealer>

endDefine

D4 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

both tests pass would it reveal the arguments of the envelope. The
advantage of this scheme is that a compiler (or even a smart server)
could expand the

Switch

 statement shown in Section D.2 into a single
unseal operation using

T:unsealer

 (instead of one per case alternative)
followed by an indirect jump through a vtable using the index. This
will be described in detail (along with Joule implementations of virtual
sealers and the fast-dispatch Type expansion) in future versions of this
manual.

D.5. Certifying Requests

The last example application of Energetic Secrets presented in this
Appendix is certifying properties of requests. A virtualized sealer can
dynamically type-check arguments and refuse to produce a sealed
Envelope unless the arguments type-check correctly. It can check other
properties as well, including relations between the arguments, and
extending to full pre-condition checking of the arguments. It can ensure
durability by wrapping up, not the arguments, but rather the results of
verifying the arguments, potentially reproducing them so that the
receiver will be assured that the arguments will remain available.

Finally, modules can export different sealers for the same operation that
implement different checks. The exporting module could give the seal-
ers with fewer checks to clients who could prove they passed some
trusted analysis that statically checks preconditions (such as argument
types).

20 Dec 95 DRAFT E1

E. Bibliography

[1]

Abelson, Harold, and Sussman, Gerald Jay,

Structure and Inter-
pretation of Computer Programs.

 Cambridge, MA: MIT Press, 1985.

[2]

Agha, Gul,

Actors: A Model of Concurrent Computation in Distrib-
uted Systems.

 Cambridge, MA: MIT Press, 1986.

[3]

Alchian, Armen A., and Allen, William R.,

University Economics.

2nd Ed. Belmont, CA: Wadsworth, 1968.

[4]

Ames, Bruce N., Magaw, Renae, and Gold, Lois Swirsky, “Rank-
ing Possible Carcinogenic Hazards,” in

Science

 (17 April 1987)
Vol. 236.

[5]

Artsy, Y., and Finkel, R. “Simplicity, Efficiency, and Functionality
in Designing a Process Migration Facility,” in

Proceedings of the
Second Israel Conference on Computer Systems and Software Engi-
neering

 (IEEE, Tel Aviv, Israel, May 1987).

[6]

Artsy, Y., Chang, H-Y, and Finkel, R.,

Processes Migrate in Char-
lotte.

 Computer Sciences Technical Report #655. Madison:
University of Wisconsin, August 1986.

[7]

Artsy, Yeshayahu, and Livny, Miron,

An Approach to the Design of
Fully Open Computing Systems.

 Computer Sciences Technical
Report #689. Madison, WI: University Of Wisoconsin, 1987.

[8]

Axelrod, Robert,

The Evolution of Cooperation.

 New York: Basic
Books, 1984.

[9]

Barak, A., and Shiloh, A., “A Distributed Load-Balancing Policy
for a Multicomputer,” in

Software Practice and Experience

 (Sep-
tember 1985) 15.

[10]

Barstow, David R., Shrobe, Howard E., and Sandwall, Erik (eds.),

Interactive Programming Environments.

 New York: McGraw-Hill,
1984.

[11]

Barto, Andrew G., “Game Theoretic Cooperativity in Networks
of Self-Interested Units,” in Denker, John S. (ed.),

Neural Net-
works for Computing.

 New York: American Institute of Physics,
1986.

[12]

Birrell, Andrew D., Levin, Roy, Needham, Roger M., and
Schroeder, Michael D., “Grapevine: an Exercise in Distributed

E2 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

Computing,” in

Communications of the ACM

 (April 1982) Vol. 25,
No. 4.

[13]

Bishop, Peter B.,

Computers with a Large Address Space and Garbage
Collection.

 MIT/LCS/TR-178. Cambridge, MA: MIT Press, 1977.

[14]

Brooks, Frederick P., Jr.,

The Mythical Man-Month.

 Reading, MA:
Addison-Wesley, 1975.

[15]

Buchanan, James M., and Tullock, Gordon,

The Calculus of Con-
sent: Logical Foundations of Constitutional Democracy.

 Ann Arbor,
MI: University of Michigan Press, 1965.

[16]

Chaum, David, “Design Concepts for Tamper Responding Sys-
tems,” in

Advances in Cryptology: Proceedings of Crypto ‘83.

 New
York: Plenum Press, 1984.

[17]

Cheriton, D. R., “The V Kernel: A Software Base for Distributed
Systems,” in

IEEE Software

 (April 1984) Vol. 1, No. 2.

[18]

Clinger, Will,

Foundations of Actor Semantics.

 MIT AI-TR-633.
Cambridge, MA: MIT Press, 1981.

[19]

Coase, R. H., “The Nature of the Firm,” in

Economica: New Series

(1937), Vol. IV, reprinted in Stigler, G. J., and Boulding, K. E.
(eds.),

Readings in Price Theory.

 Chicago: Richard D. Irwin, Inc.,
1952.

[20]

Conway, M. E., “How Do Committees Invent?” in

Datamation

(April 1968) Vol. 14, No. 4.

[21]

Cox, Brad J.,

Object Oriented Programming: An Evolutionary
Approach.

 Reading, MA: Addison-Wesley, 1986.

[22]

Davison, A., “POOL: A PARLOG Object-Oriented Language,”
Dept. of Computing, Imperial College, 1987.

[23]

Dawkins, Richard,

The Extended Phenotype.

 New York: Oxford
University Press, 1982.

[24]

Dawkins, Richard,

The Selfish Gene.

 New York: Oxford University
Press, 1976.

[25]

Demers, Alan, Greene, Dan, Hauser, Carl, Irish, Wes, Larson,
John, Shenker, Scott, Sturgis, Howard, Swinehart, Dan, and
Terry, Doug, “Epidemic Algorithms for Replicated Database
Maintenance,” in

Proceedings of the Sixth Annual ACM Symposium
on Principles of Distributed Computing

 (ACM, Vancouver, BC,
1987).

[26]

Denning, Peter J., “The Working Set Model for Program Behav-
ior,” in

Communications of the ACM

 (May 1968) Vol. 2, No. 5.

[27]

Dijkstra, E. W., “Co-operating Sequential Processes,” in Genuys,
F. (ed.),

Programming Languages.

 New York: Academic Press,
1968.

[28]

Drexler, K. Eric, “Molecular Engineering: An Approach to the
Development of General Capabilities for Molecular Manipula-
tion,” in

Proceedings of the National Academy of Sciences USA

 (Sept.
1981) Vol. 78, No. 9.

20 Dec 95 DRAFT E3

[29]

Drexler, K. Eric, “Rod Logic and Thermal Noise in the Molecular
Nanocomputer,” in

Proceedings of the Third International Sympo-
sium on Molecular Electronic Devices.

 Amsterdam: Elsevier
Science Publishers, 1988.

[30]

Drexler, K. Eric, and Mark S. Miller, “Incentive Engineering for
Computational Resource Management,” in

The Ecology of Compu-
tation

, B. A. Huberman, ed. Amsterdam: Elsevier Science
Publishers, 1988.

[31]

Drexler, K. Eric,

Engines of Creation.

 Garden City, NY: Anchor
Press/Doubleday, 1986.

[32]

Drexler, K. Eric,

Hypertext Publishing and the Evolution of Knowl-
edge.

 Palo Alto, CA: Foresight Institute, 1986.

[33]

Epstein, Richard A.,

Takings: Private Property and the Power of Emi-
nent Domain.

 Cambridge, MA: Harvard University Press, 1985.

[34]

Ferguson, D.F. “The Application of Microeconomics to the
Design of Resource Allocation and Control Algorithms” (doc-
toral dissertation).

[35]

Friedman, Daniel, “On the Efficiency of Experimental Double
Auction Markets,” in

American Economic Review

 (March 1984)
Vol. 24, No. 1.

[36]

Friedman, David,

The Machinery of Freedom: Guide to a Radical
Capitalism.

 New York: Harper and Row, 1973.

[37]

Friedman, Milton, and Schwartz, Anna, “The Great Contrac-
tion,” in

A Monetary History of the United States, 1867-1960.

Princeton, NJ: Princeton University Press/National Bureau of
Economic Research, 1963.

[38]

Gehringer, Edward F.,

Capability Architectures and Small Objects.

Ann Arbor, MI: UMI Research Press, 1982.

[39]

Goldberg, Adele, and Robson, Dave,

Smalltalk-80: The Language
and its Implementation.

 Reading, MA: Addison-Wesley, 1983.

[40]

Granovetter, Mark, “The Strength of Weak Ties,” in

American
Journal of Sociology

 (1977) Vol. 78.

[41]

Gregory, S.,

Parallel Logic Programming in PARLOG: The Language
and Its Implementation.

 Reading, MA: Addison-Wesley, 1987.

[42]

Haase, Kenneth W., Jr., “Discovery Systems,” in

ECAI ’86: The 7th
European Conference on Artificial Intelligence

 (July 1986), Vol. 1.

[43]

Hamming, R. W., “One Man’s View of Computer Science,” in
Ashenhurst, Robert L., and Graham, Susan (eds.),

ACM Turing
Award Lectures: The First Twenty Years 1966-1985.

 Reading, MA:
Addison-Wesley, 1987.

[44]

Hanson, Robin,

Toward Hypertext Publishing: Issues and Choices in
Database Design

, in press. Draft available from Foresight Insti-
tute, Palo Alto, CA, 1987.

[45]

Hardin, Garrett, “The Tragedy of the Commons,” in

Science

 (13
December 1968) Vol. 162.

E4 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

[46]

Harris, Jed, Yu, Chee, Harris, Britton,

Market Based Scheduling

(1987) in preparation.

[47]

Hayek, Friedrich A., “Cosmos and Taxis,” in

Law, Legislation, and
Liberty, Vol. 1: Rules and Order.

 Chicago: University of Chicago
Press, 1973.

[48]

Hayek, Friedrich A., “Economics and Knowledge,” from

Eco-
nomica, New Series

 (1937), Vol. IV.; reprinted in Hayek, Friedrich
A. (ed.),

Individualism and Economic Order.

 Chicago: University of
Chicago Press, 1948.

[49]

Hayek, Friedrich A.,

Denationalisation of Money

, 2nd Ed. London:
The Institute of Economic Affairs, 1978.

[50]

Hayek, Friedrich A.,

New Studies in Philosophy, Politics, Economics,
and the History of Ideas.

 Chicago: University of Chicago Press,
1978.

[51]

Hayek, Friedrich A.,

The Constitution of Liberty.

 Chicago: Univer-
sity of Chicago Press, 1978.

[52]

Hayek, Friedrich A.,

The Counter-Revolution of Science: Studies on
the Abuse of Reason.

 Indianapolis: Liberty Press, 1979.

[53]

Hayek, Friedrich A.,

Unemployment and Monetary Policy: Govern-
ment as Generator of the “Business Cycle.”

 San Francisco, CA: Cato
Institute, 1979.

[54]

Hewitt, Carl, “Concurrency in Intelligent Systems,” in

AI Expert

,
No. 1, 1986.

[55]

Hewitt, Carl, “Offices are Open Systems,” in

The Ecology of Com-
putation, B. A. Huberman, ed. Amsterdam: Elsevier Science
Publishers, 1988.

[56] Hewitt, Carl, “The Challenge of Open Systems,” in Byte (April
1985).

[57] Hirsch, M., Silverman, W., and Shapiro, E., Layers of Protection
and Control in the Logix System. Weizmann Institute Technical
Report CS86-19.

[58] Hirsh, Susan, Kahn, Kenneth M., and Miller, Mark S., Interming:
Unifying Keyword and Positional Notations. Palo Alto, CA: Xerox
PARC, 1987.

[59] Hoare, C. A. R., Communicationg Sequential Processes. New York:
Prentice-Hall, 1985.

[60] Hofstadter, Douglas R., “Dilemmas for Superrational Thinkers,
Leading Up to a Luring Lottery,” in Metamagical Themas: Quest-
ing for the Essence of Mind and Pattern. New York: Basic Books,
1985.

[61] Hofstadter, Douglas R., “The Prisoner’s Dilemma Computer
Tournaments and the Evolution of Cooperation,” in Metamagical
Themas: Questing for the Essence of Mind and Pattern. New York:
Basic Books, 1985.

20 Dec 95 DRAFT E5

[62] Holland, John H., Holyoak, Keith J., Nisbett, Richard E., and
Thagard, Paul R. Induction: Processes of Inference, Learning, and
Discovery. Cambridge, MA: MIT Press, 1986.

[63] INMOS Limited, Occam Programming Manual. London: Prentice-
Hall International, 1984.

[64] Jacobson, Gary, and Hillkirk, John, Xerox: American Samurai.
New York: Macmillan, 1986.

[65] Kahn, Kenneth M., and Mark S. Miller, “Language Design and
Open Systems,” in The Ecology of Computation, B. A. Huberman,
ed. Amsterdam: Elsevier Science Publishers, 1988.

[66] Kahn, Kenneth M., Tribble, Eric Dean, Miller, Mark S., and
Bobrow, Daniel, “Vulcan: Logical Concurrent Objects,” in
Shriver, B., and Wegner, P. (eds.), Research Directions in Object-
Oriented Programming and in Shapiro, E. (ed.), Concurrent Prolog.
Cambridge, MA: MIT Press, 1987.

[67] Kahn, Kenneth, A Partial Evaluator of Lisp Written in a Prolog Writ-
ten in Lisp Intended to be Applied to the Prolog and Itself which in
turn is Intended to be Given to Itself Together with the Prolog to Pro-
duce a Prolog Compiler. UPMAIL Tech. Report No. 17. University
of Uppsala, Sweden, 1983.

[68] Keynes, John Maynard, The General Theory of Employment, Inter-
est, and Money. San Diego, CA: Harcourt Brace Jovanovitch, 1964.

[69] Kornfeld, William A., Using Parallel Processing for Problem Solving.
MIT-AI-561. Cambridge, MA: MIT AI Lab, 1979.

[70] Kornfeld, William A., and Hewitt, Carl, “The Scientific Commu-
nity Metaphor,” in IEEE Transactions on Systems, Man, and
Cybernetics (IEEE, 1981) SMC-11.

[71] Kowalski, R., “Logic-based Open Systems,” Dept. of Computing,
Imperial College, September 1985.

[72] Kurose, James F., Schwartz, Mischa, and Yemini, Yechiam, “A
Microeconomic Approach to Decentralized Optimization of
Channel Access Policies in Multiaccess Networks,” in Proceed-
ings of the Fifth International Conference on Distributed Computing
Systems, Denver, CO, May 1985.

[73] Leach, P.J., Levine, P. H., Douros, B. P., Hamilton, J. A., Nelson,
D. L., and Stumph, B. L., “The Architecture of an Integrated
Local Network,” in IEEE Journal on Selected Areas in Communica-
tion (IEEE, November 1983).

[74] Lenat, Douglas B., “The Role of Heuristics in Learning by Dis-
covery: Three Case Studies,” in Michalski, Rysznard S.,
Carbonell, Jaime G., and Mitchell, Tom M. (eds.), Machine Learn-
ing: An Artificial Intelligence Approach. Palo Alto, CA: Tioga
Publishing Company, 1983.

[75] Lenat, Douglas B., and Brown, John Seely, “Why AM and
Eurisko Appear to Work,” in The Ecology of Computation, B. A.
Huberman, ed. Amsterdam: Elsevier Science Publishers, 1988.

E6 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

[76] Levy, Henry M., Capability-Based Computer Systems. Bedford, MA:
Digital Press, 1984.

[77] Lieberman, Henry, and Hewitt, Carl, “A Real-Time Garbage Col-
lector Based on the Lifetimes of Objects,” in Communications of
the ACM (June 1983) Vol. 26, No. 6.

[78] Lindstrom, G., “Functional Programming and the Logical Vari-
able,” 12th ACM Symposium on Principles of Programming
Languages (New Orleans, 1985).

[79] Liskov, Barbara, “Guardians and Actions: Linguistic Support for
Robust, Distributed Programs,” in The Ecology of Computation, B.
A. Huberman, ed. Amsterdam: Elsevier Science Publishers, 1988.

[80] Liskov, Barbara, Herlihy, M., and Gilbert, L., “Limitations of syn-
chronous communication with static process structure in
languages for distributed computing,” Proceedings of the Thir-
teenth Symposium on Principles of Programming Languages, St.
Petersburg Beach, Florida, January 1986.

[81] Malone, Thomas W., “Organizing Information Processing Sys-
tems: Parallels Between Human Organizations and Computer
Systems,” in Zacharay, W., Robertson, S., and Black, J. (eds.),
Cognition, Computation, and Cooperation. Norwood, NJ: Ablex,
1986.

[82] Malone, Thomas W., Fikes, R. E., and Howard, M. T., “Enter-
prise: A Market-Like Task Scheduler for Distributed Computing
Environments,” in The Ecology of Computation, B. A. Huberman,
ed. Amsterdam: Elsevier Science Publishers, 1988.

[83] Malone, Thomas W., Yates, Joanne, and Benjamin, Robert I.,
“Electronic Markets and Electronic Hierarchies,” in Communica-
tions of the ACM (June 1987) Vol. 30, No. 6.

[84] March, J. G., “Footnotes to Organizational Change,” in Adminis-
trative Science Quarterly (1981) 26.

[85] McClelland, James L., Rumelhart, David E., and PDP Research
Group, Parallel Distributed Processing. Volumes 1 and 2. Cam-
bridge, MA: MIT Press, 1986.

[86] McDermott, Drew, “A Critique of Pure Reason,” in Levesque,
Hector (ed.), Computational Intelligence. National Research Coun-
cil of Canada, 1987.

[87] McGee, John S., “Predatory Price Cutting: The Standard Oil
(N.J.) Case,” in Journal of Law and Economics (October 1958) 1.

[88] Miller, Mark S., and K. Eric Drexler, “Comparative Ecology: A
Computational Perspective,” in The Ecology of Computation, B. A.
Huberman, ed. Amsterdam: Elsevier Science Publishers, 1988.

[89] Miller, Mark S., and K. Eric Drexler, “Markets and Computation:
Agoric Open Systems,” in The Ecology of Computation, B. A.
Huberman, ed. Amsterdam: Elsevier Science Publishers, 1988.

[90] Miller, Mark S., Bobrow, Daniel G., Tribble, Eric Dean, and Levy,
Jacob, “Logical Secrets,” in Shapiro, Ehud (ed.), Concurrent Pro-
log: Collected Papers. Cambridge, MA: MIT Press, 1987.

20 Dec 95 DRAFT E7

[91] Minsky, Marvin, “Steps Toward Artificial Intelligence,” in
Feigenbaum, Edward A., and Feldman, Julian (eds.), Computers
and Thought. Malabar, FL: Robert E. Krieger, 1981.

[92] Minsky, Marvin, The Society of Mind. New York: Simon and
Schuster, 1986.

[93] Nelson, B., Remote Procedure Call. CSL-81-9. Palo Alto, CA: Xerox
PARC, 1981.

[94] Nelson, Theodor, Literary Machines. Available from the author.

[95] Nisbett, Richard, and Ross, Lee, Human Inference: Strategies and
Shortcomings of Social Judgment. Englewood Cliffs, NJ: Prentice-
Hall, 1980.

[96] Ohki, M., Takeuchi, A., and Furukawa, K., “An Object-Oriented
Programming Language Based on the Parallel Logic Language
KL1,” in Logic Programming: Proceedings of the Fourth International
Conference. MIT Press.

[97] Organick, Elliott I., A Programmer’s View of the Intel 432 System.
New York: McGraw-Hill, 1983.

[98] Popper, Karl R., Objective Knowledge: An Evolutionary Approach.
London: Oxford University Press, 1972.

[99] Pountain, D. A Tutorial Introduction to Occam Programming.
INMOS, 1986.

[100] Quarterman, John S., Silberschatz, Abraham, and Peterson,
James L., “4.2BSD and 4.3BSD as Examples of the UNIX Sys-
tem,” in ACM Computing Surveys (December 1985) Vol. 17, No. 4.

[101] Raffia, Howard, Decision Analysis: Introductory Lectures on Choices
under Uncertainty. Reading, MA: Addison-Wesley, 1970.

[102] Rao, Ramana Balusu, Toward Interoperability and Extensibility in
Window Environments via Object-Oriented Program-ming. Masters
thesis, MIT Press, 1987.

[103] Rashid, Richard, “From RIG to Accent to Mach: The Evolution of
a Network Operating System,” in The Ecology of Computation, B.
A. Huberman, ed. Amsterdam: Elsevier Science Publishers, 1988.

[104] Rees, Jonathan A., and Adams, Norman I., IV, “T: A Dialect of
Lisp or, Lambda: The Ultimate Software Tool,” in Proceedings of
the 1982 ACM Symposium on Lisp and Functional Programming
(August 1982).

[105] Rivest, R., Shamir, A., and Adelman, L., “A Method for Obtain-
ing Digital Signatures and Public-Key Cryptosystems,” in
Communications of the ACM (Feb. 1978) Vol. 21, No. 2.

[106] Safra, S., and Shapiro, Ehud, “Meta-Interpreters For Real,” in
Proceedings, IFIP-86 (1986).

[107] Shapiro, E., Algorithmic Program Debugging. Cambridge, MA:
MIT Press, 1982.

E8 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

[108] Shapiro, E., and Takeuchi, A., “Object-Oriented Programming in
Concurrent Prolog,” in New Generation Computing (July 1983)
Vol. 1, No. 1.

[109] Shapiro, Ehud (ed.), Concurrent Prolog: Collected Papers. Cam-
bridge, MA: MIT Press, 1987.

[110] Shapiro, Ehud, “Concurrent Prolog: A Progress Report,” in Com-
puter, IEEE, August 1986.

[111] Shapiro, Ehud, “Systolic Programming: A Paradigm for Parallel
Processing,” in Proceedings of the International Conference on Fifth
Generation Computer Systems (1984).

[112] Shrager, Jeff, and Klahr, David, “Instructionless Learning about a
Complex Device: The Paradigm and Observations,” in Int. J.
Man-Machine Studies (1986) 25.

[113] Smith, Maynard J., and Price, G. R., “The Logic of Animal Con-
flicts,” in Nature (1973) 246.

[114] Smith, Vernon L., “Experimental Methods in the Political Econ-
omy of Exchange,” in Science (10 October 1986) Vol. 234.

[115] Stamos, James W., A Large Object-Oriented Virtual Memory: Group-
ing Strategies, Measurements, and Performance. SCG-82-2. Palo
Alto, CA: Xerox PARC, 1982.

[116] Star, Spencer, “TRADER: A Knowledge-Based System for Trad-
ing in Markets,” in Economics and Artificial Intelligence First
International Conference (Aix-En-Provence, France, September
1986).

[117] Stefik, Mark, “The Next Knowledge Medium,” in The Ecology of
Computation, B. A. Huberman, ed. Amsterdam: Elsevier Science
Publishers, 1988.

[118] Stefik, Mark, Foster, Gregg, Bobrow, Daniel G., Lahn, Kenneth,
Lanning, Stan, and Suchman, Lucy, “Beyond the Chalkboard:
Computer Support for Collaboration and Problem Solving in
Meetings,” in Communications of the ACM (January 1987) Vol. 30,
No. 1.

[119] Strom, R., and Yemini, S., “NIL: An Integrated Language and
System for Distributed Computing,” Proceedings of SIGPLAN ’83
Symposium on Programming Language Issues in Software Systems,
June 1983.

[120] Sutherland, I.E., “A Futures Market in Computer Time,” in Com-
munications of the ACM (June 1968) Vol. 11, No. 6.

[121] Tanenbaum, Andrew S., and van Renesse, Robbert, “Distributed
Operating Systems,” in ACM Computing Surveys. NewYork:
ACM, 1985.

[122] Terry, Douglas Brian, Distributed Name Servers: Naming and Cach-
ing in Large Distributed Environments. CSL-85-1. Xerox PARC,
February 1985.

[123] Theriault, D., Issues in the Design and Implementation of Act 2. AI-
TR-728. Cambridge, MA: MIT AI Lab, 1983.

20 Dec 95 DRAFT E9

[124] Tribble, Eric Dean, Miller, Mark S., Kahn, Kenneth M., Bobrow,
Daniel, Abbott, C., and Shapiro, Ehud, “Channels: A Generaliza-
tion of Streams,” Logic Programming: Proceedings of the Fourth
International Conference, MIT Press.

[125] Tullock, Gordon, The Organization of Inquiry. Durham, NC: Duke
University Press, 1966.

[126] Tullock, Gordon, The Vote Motive. London: The Institute of Eco-
nomic Affairs, 1976.

[127] Ueda, K., Guarded Horn Clauses. Cambridge, MA: MIT Press,
1987.

[128] Ungar, David Michael, The Design and Evaluation of a High Perfor-
mance Smalltalk System. Cambridge, MA: MIT Press, 1987.

[129] Waldspurger, C. A., Hogg, T., Huberman, B. A., Kephart, J.O.,
and Stornetta, W.S. “Spawn: A Distributed Computational
Economy.” IEEE Transactions on Software Engineering, Vol. 18, No.
2, February 1992.

[130] Wallace, C.S. and Pose, R.D. “Charging in a Secure Environ-
ment” Proceedings of the International Workshop on Computer
Architectures to Support Security and Persistence, Bremen, FRG,
1990. (A revised version has been published in Security and Per-
sistence, Bremen 1990. J. Rosenberg and J.L. Keedy (Editors)
Springer-Verlag Workshops in Computing Series. ISBN 3-540-
19646-3, pp. 85-96.)

[131] Wickler, Wolfgang, Mimicry in Plants and Animals. New York:
World University Library/McGraw-Hill, 1968.

[132] Williamson, Oliver, Markets and Hierarchies: Analysis and Anti-
Trust Implications. New York: Free Press, 1975.

[133] Wilson, Edward O., Sociobiology. Cambridge, MA: Belknap
Press/Harvard University Press, 1975.

[134] Winograd, Terry, and Flores, Fernando, Understanding Computers
and Cognition. Norwood, NJ: Ablex, 1986.

[135] Xerox, Courier: The Remote Procedure Call Protocol. Stamford, CT:
Xerox Corp., 1982.

E10 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

20 Dec 95 DRAFT Joule: Distributed Application Foundations In-1

Index

- operation

58

Symbols

, (comma)

38

,

40

,

B2

: (operation suffix)

18

:: (double colon)

19

,

21

,

32

,

50

> (distributor suffix)

17

,

20

? (flag suffix)

67

→

 (forward) statement

17

,

18

,

39

• (send) statement

17

,

34

,

B2

A

ABCL/1

A2

acceptor

17

,

19

,

28

accessibility

27

–

28

,

80
Account

 (example server)

65

–

76

activation

27

,

27

–

28

Actors

93

,

A2

Arbiter

29

,

42

–

43

architecture of Joule system

62

arguments

18

“rest”

C1

optional

C1

,

C2
Array

 server type

60

assurance

83

–

84

auditing, assurance by

83

B

Backus-Naur format (BNF)

B1

–

B3

binding identifiers

19

,

20

,

35
Boolean

 server type

60

Brooks, Fred

6

C

C/C++

A1

,

C1

capability security

80

case

54

,

B2

See also

Switch

certification

80

channels

17

–

18

,

28

–

29

,

90

forwarding

28

implicit

51

–

52

characters
operator

32

special

32
choose:

42

,

43

,

54

comma (,)

38

,

40

,

B2

See also • (send)
See also

Define

comments

21

,

32

concurrency

19

,

20–21, 29, 68, 71, 73, A1–A2
confinement 83
construction, assurance by 83
continuous-interest (example server) 21–22
count: 20, 61

D
data-flow synchronization 29
debugging 77
Define 20–21, 24, 36, 39–41, 44, 46, 68, 71,

73, B2
discretion 79, 83–84
distribution 89–91

adaptive 89
automatic 91
explicit 90
off-line 91

distributor 17, 28, 60
distributor suffix (>) 17, 20
Domains 77, 78
double colon (::) 19, 21, 32, 50
drawing authority 65, 85
durability 79, 84

E
else 35, 52–53, B2

See also If
elseIf 53, B2

See also If

In-2 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

encapsulation 79, 80, A1–A2
encryption 80
Engines 86
errors (see exception handling)
exception handling 56–58, 74
exceptions

normal 56
explicit distribution 90
export/import issues 61, 77
expression-like syntax 21
expressions 33–34, 51–52

complex 33
nested 34
operator 34, B3
simple 33, B3
tuple 35

F
facet 27, 46, 47, 71, B3

See also Server
Factorial (example server) 22
failed-if: exception 53
failed-switch: exception 54
failures in distributed systems 90
FCP 93, A2
FGHC A2
flag suffix (“?”) 67
ForAll 19, 38, 41–42, 43, 46, B2

nested 50
forms 19, 34

extended 22
ForOne 43, B2
forward statement (→) 17, 18, 39
fractal reserve banking 66
functions 51
Fund (example server) 23–25
fungible resource 85

G
get: 20, 61
guard 24, 52–53, 73

H
Handler 56, 57, 58, B2
HandlerTap 57, B2
Hermes A2
Hewitt, Carl 23
hierarchical ownership 65, 85
“hourglass” 37, 62

I
identifiers 31

binding 19, 20, 35
scoping 19–20, 22, 35–36

IEEEFloat server type 59
If 24, 29, 42, 52–53, 73, B2

else 35
implements 46, 47, B3

See also Server, Type
initiation 77
instance variable 24, 68
Integer server type 59
interoperability 78
iteration 54–55

J
Janus A2

K
Keeper 57–58, B2
KeyKOS 79, 80, 93, A2
keywords 19, 31, 35

L
labels 32
Linda A2
literal 32, 33
loop (see iteration)

M
Mach A2
mechanism-policy separation 77
message sending 28
Meters 86
method 23, 44, 45
Modules 61–62, 77
Mux (example server) 19–21

N
Number server type 18, 59
numerals 31

O
op 23, 46, 47, 49, 50, B2, B3

See also Server
See also Type

operation 18, 28, 34, 44
operation suffix (:) 18
operator characters 32
operators 18, 32
optional arguments C1–C2
or 46, 54, B2, B3

See also Server
See also Switch

orIf 52, 53, B2
See also If

otherwise 46, 49, 54, B2, B3
See also Server
See also Switch

20 Dec 95 DRAFT Joule: Distributed Application Foundations In-3

P
persistence 93

page-based 93
server-based 93

polymorphism 5
ports 17, 27
precedence

of operators 34
right to left 18

private channel 67, 68, 69, 70, 81
private method 67, 71
private request 67
procedures 50
process migration 91
prove-type: 58
public channel 67, 70

Q
quantity

vs. territory 85
quasi-literal 32, 33, 52, 54

R
race 24, 54
recursion 54, 71, 72, 73

without re-entry 22
resource management 85–87

default strategies for 86
resources

primitive 86
results

“revealed” not “returned” 18

S
Scheme 55, C1
scoping 19–20, 22, 35–36, 49
SealedEnvelope 80, 82
security 79–84
• (send) statement 17, 34, B2
Server 23, 36, 42, 45, 46, 50, B2
servers 17, 18, 29

composite 27
methodical 23, 45
nested 50
primitive 27, 28
procedural 19

set 24, 46, 47, 71, 73, B3
See also Server

Signal 56, 57, 74, B2
signature 45
Smalltalk A1
Space Banks 86
special characters 32
special execution, assurance by 84

standard protocol 58
standard servers 59–61
state, changeable, of servers 28
super 49, 50, B2

See also Type
Switch 44, 52, 53–54, B2
syntactic extension 34
syntax 31–36

T
territory

vs. quantity 85
then 39, 47–48, 73, B2

See also • (send)
to 46, 47–48, B2, B3

to Self 49–50
to Super 49–50
See also Server
See also Type

transparency 19, 20, 28, 89–90
tuple B3
tuple expressions 35
Tuple server type 60
tuples 18, 28, 34
Type 45, 45–46, 47, 49–50, 58, 66, 67, B2
Type server type 61
type: 58
typography 31

U
unique tokens 82–83
UNIX A2

V
var 23–24, 46, 47, B2

See also Server
Verifiers 80–82

W
“waistline” 37, 62
whitespace 32
Windows NT A2
Workers 86

In-4 Joule: Distributed Application Foundations 20 Dec 95 DRAFT

