
125

Model-View-Controller

The Model-View-Controller architectural pattern (MVC) divides an
interactive application into three components. The model contains
the core functionality and data. Views display information to the user.
Controllers handle user input. Views and controllers together
comprise the user interface. A change-propagation mechanism
ensures consistency between the user interface and the model.

Example Consider a simple information system for political elections with
proportional representation. This offers a spreadsheet for entering
data and several kinds of tables and charts for presenting the current
results. Users can interact with the system via a graphical interface.
All information displays must reflect changes to the voting data
immediately.

It should be possible to integrate new ways of data presentation, such
as the assignment of parliamentary seats to political parties, without
major impact to the system. The system should also be portable to
platforms with different ‘look and feel’ standards, such as
workstations running Motif or PCs running Microsoft Windows 95.

 chart

Black:
Red:
Blue:
Green:
Others:

43%
39%
 6%
10%
 2%

Black
Red
Blue
Green
Others

core data

bar chart parliament spreads

126 Architectural Patterns

Context Interactive applications with a flexible human-computer interface.

Problem User interfaces are especially prone to change requests. When you
extend the functionality of an application, you must modify menus to
access these new functions. A customer may call for a specific user
interface adaptation, or a system may need to be ported to another
platform with a different ‘look and feel’ standard. Even upgrading to
a new release of your windowing system can imply code changes. The
user interface platform of long-lived systems thus represents a
moving target.

Different users place conflicting requirements on the user interface.
A typist enters information into forms via the keyboard. A manager
wants to use the same system mainly by clicking icons and buttons.
Consequently, support for several user interface paradigms should be
easily incorporated.

Building a system with the required flexibility is expensive and error-
prone if the user interface is tightly interwoven with the functional
core. This can result in the need to develop and maintain several
substantially different software systems, one for each user interface
implementation. Ensuing changes spread over many modules. The
following forces influence the solution:

• The same information is presented differently in different windows,
for example, in a bar or pie chart.

• The display and behavior of the application must reflect data
manipulations immediately.

• Changes to the user interface should be easy, and even possible at
run-time.

• Supporting different ‘look and feel’ standards or porting the user
interface should not affect code in the core of the application.

Solution Model-View-Controller (MVC) was first introduced in the Smalltalk-80
programming environment [KP88]. MVC divides an interactive
application into the three areas: processing, output, and input.

The model component encapsulates core data and functionality. The
model is independent of specific output representations or input
behavior.

Model-View-Controller 127

View components display information to the user. A view obtains the
data from the model. There can be multiple views of the model.

Each view has an associated controller component. Controllers receive
input, usually as events that encode mouse movement, activation of
mouse buttons, or keyboard input. Events are translated to service
requests for the model or the view. The user interacts with the system
solely through controllers.

The separation of the model from view and controller components
allows multiple views of the same model. If the user changes the
model via the controller of one view, all other views dependent on this
data should reflect the changes. The model therefore notifies all views
whenever its data changes. The views in turn retrieve new data from
the model and update the displayed information. This change-
propagation mechanism is described in the Publisher-Subscriber
pattern (339).

Structure The model component contains the functional core of the application.
It encapsulates the appropriate data, and exports procedures that
perform application-specific processing. Controllers call these proce-
dures on behalf of the user. The model also provides functions to
access its data that are used by view components to acquire the data
to be displayed.

The change-propagation mechanism maintains a registry of the
dependent components within the model. All views and also selected
controllers register their need to be informed about changes. Changes
to the state of the model trigger the change-propagation mechanism.
The change-propagation mechanism is the only link between the
model and the views and controllers.

Class
Model

Responsibility
• Provides functional

core of the
application.

• Registers
dependent views
and controllers.

• Notifies dependent
components about
data changes.

Collaborators
• View
• Controller

128 Architectural Patterns

View components present information to the user. Different views
present the information of the model in different ways. Each view
defines an update procedure that is activated by the change-
propagation mechanism. When the update procedure is called, a view
retrieves the current data values to be displayed from the model, and
puts them on the screen.

During initialization all views are associated with the model, and
register with the change-propagation mechanism. Each view creates
a suitable controller. There is a one-to-one relationship between views
and controllers. Views often offer functionality that allows controllers
to manipulate the display. This is useful for user-triggered operations
that do not affect the model, such as scrolling.

The controller components accept user input as events. How these
events are delivered to a controller depends on the user interface plat-
form. For simplicity, let us assume that each controller implements
an event-handling procedure that is called for each relevant event.
Events are translated into requests for the model or the associated
view.

If the behavior of a controller depends on the state of the model, the
controller registers itself with the change-propagation mechanism
and implements an update procedure. For example, this is necessary
when a change to the model enables or disables a menu entry.

sibility
tes and initial-
ts associated
roller.
lays
mation to the

ements the
te procedure.
eves data from

model.

Collaborators
• Controller
• Model

Class
Controller

Responsibility
• Accepts user input

as events.
• Translates events

to service requests
for the model or
display requests for
the view.

• Implements the
update procedure,
if required.

Collaborato
• View
• Model

Model-View-Controller 129

An object-oriented implementation of MVC would define a separate
class for each component. In a C++ implementation, view and
controller classes share a common parent that defines the update
interface. This is shown in the following diagram. In Smalltalk, the
class Object defines methods for both sides of the change-
propagation mechanism. A separate class Observer is not needed.

➥ In our example system the model holds the cumulative votes for
each political party and allows views to retrieve vote numbers. It
further exports data manipulation procedures to the controllers.

We define several views: a bar chart, a pie chart and a table. The chart
views use controllers that do not affect the model, whereas the table
view connects to a controller used for data entry. ❏

You can also use the MVC pattern to build a framework for interactive
applications, as within the Smalltalk-80 environment [KP88]. Such a
framework offers prefabricated view and controller subclasses for
frequently-used user interface elements such as menus, buttons, or
lists. To instantiate the framework for an application, you can
combine existing user interface elements hierarchically using the
Composite pattern [GHJV95].

Observer

update

 Model

coreData
setOfObservers

attach(Observer)
detach(Observer)
notify

getData
service

View

myModel
myController

initialize(Model)
makeController
activate
display
update

Controller

myModel
myView

initialize(Model,View)
handleEvent
update

call update

attach
getData

attach
call service

display
manipulate

create

130 Architectural Patterns

Dynamics The following scenarios depict the dynamic behavior of MVC. For
simplicity only one view-controller pair is shown in the diagrams.

Scenario I shows how user input that results in changes to the model
triggers the change-propagation mechanism:

• The controller accepts user input in its event-handling procedure,
interprets the event, and activates a service procedure of the
model.

• The model performs the requested service. This results in a change
to its internal data.

• The model notifies all views and controllers registered with the
change-propagation mechanism of the change by calling their
update procedures.

• Each view requests the changed data from the model and re-
displays itself on the screen.

• Each registered controller retrieves data from the model to enable
or disable certain user functions. For example, enabling the menu
entry for saving data can be a consequence of modifications to the
data of the model.

• The original controller regains control and returns from its event-
handling procedure.

ModelController View

service

getData

notify

dleEvent

update
di

update

getData

Model-View-Controller 131

Scenario II shows how the MVC triad is initialized. This code is usu-
ally located outside of the model, views and controllers, for example
in a main program. The view and controller initialization occurs sim-
ilarly for each view opened for the model. The following steps occur:

• The model instance is created, which then initializes its internal
data structures.

• A view object is created. This takes a reference to the model as a
parameter for its initialization.

• The view subscribes to the change-propagation mechanism of the
model by calling the attach procedure.

• The view continues initialization by creating its controller. It passes
references both to the model and to itself to the controller’s
initialization procedure.

• The controller also subscribes to the change-propagation
mechanism by calling the attach procedure.

• After initialization, the application begins to process events.

View

 program

Contro

Model

initializeModel

makeController
Viewattach

initializeModel, View

Controllerattach

startEventProcessing

132 Architectural Patterns

Implementation Steps 1 through 6 below are fundamental to writing an MVC-based
application. Steps 7 through 10 describe additional topics that result
in higher degrees of freedom, and lend themselves to highly flexible
applications or application frameworks.

1 Separate human-computer interaction from core functionality. Analyze
the application domain and separate the core functionality from the
desired input and output behavior. Design the model component of
your application to encapsulate the data and functionality needed for
the core. Provide functions for accessing the data to be displayed.
Decide which parts of the model’s functionality are to be exposed to
the user via the controller, and add a corresponding interface to the
model.

➥ The model in our example stores the names of the political par-
ties and the corresponding votes in two lists of equal length18. Access
to the lists is provided by two methods, each of which creates an iter-
ator. The model also provides methods to change the voting data.

class Model{
List<long> votes;
List<String> parties;

public:
Model(List<String> partyNames);

// access interface for modification by controller
void clearVotes(); // set voting values to 0
void changeVote(String party, long vote);

// factory functions for view access to data
Iterator<long> makeVoteIterator(){

return Iterator<long>(votes);
}
Iterator<String> makePartyIterator(){

return Iterator<String>(parties);
}

// ... to be continued
} ❏

2 Implement the change-propagation mechanism. Follow the Publisher-
Subscriber design pattern (339) for this, and assign the role of the
publisher to the model. Extend the model with a registry that holds
references to observing objects. Provide procedures to allow views and

18. An associative array with party names as keys and votes as the information
would be a more realistic implementation but would bloat the example code.

Model-View-Controller 133

controllers to subscribe and unsubscribe to the change-propagation
mechanism. The model’s notify procedure calls the update procedure
of all observing objects. All procedures of the model that change the
model’s state call the notify procedure after a change is performed.

➥ Proper C++ usage suggests that one should define an abstract
class Observer to hold the update interface. Both views and
controllers inherit from Observer. The Model class from step 1 is
extended to hold a set of references to current observers, and two
methods, attach() and detach(), to allow observing objects to
subscribe and unsubscribe. The method notify() will be called by
methods that modify the state of the model.

class Observer{ // common ancestor for view and controller
public:

virtual void update() { }
// default is no-op
};

class Model{
// ... continued
public:

void attach(Observer *s) { registry.add(s); }
void detach(Observer *s) { registry.remove(s); }

protected:
virtual void notify();

private:
Set<Observer*> registry;

};

Our implementation of the method notify() iterates over all
Observer objects in the registry and calls their update method. We do
not provide a separate function to create an iterator for the registry,
because it is only used internally.

void Model::notify(){
// call update for all observers
Iterator<Observer*> iter(registry);
while (iter.next()){

iter.curr()->update();
}

}

The methods changeVote() and clearVotes() call notify() after
the voting data is changed. ❏

134 Architectural Patterns

3 Design and implement the views. Design the appearance of each view.
Specify and implement a draw procedure to display the view on the
screen. This procedure acquires the data to be displayed from the
model. The rest of the draw procedure depends mainly on the user
interface platform. It would call, for example, procedures for drawing
lines or rendering text.

Implement the update procedure to reflect changes to the model. The
easiest approach is to simply call the draw procedure. The draw
procedure goes ahead and fetches data needed for the view. For a
complex view requiring frequent updates, such a straightforward
implementation of update can be inefficient. Several optimization
strategies exist in this situation. One is to supply additional
parameters to the update procedure. The view can then decide if a re-
draw is needed. Another solution is to schedule, but not perform, the
re-draw of the view when it is likely that further events also require it.
The view can then be redrawn when no more events are pending.

In addition to the update and draw procedures, each view needs an
initialization procedure. The initialization procedure subscribes to
the change-propagation mechanism of the model and sets up the
relationship to the controller, as shown in step 5. After the controller
is initialized, the view displays itself on the screen. The platform or
the controller may require additional view capabilities, such as a
procedure to resize a view window.

➥ For all the views used by the election system we define a common
base class View. The relationships to model and controller are
represented by two member variables with corresponding access
methods. The constructor of View establishes the relationship to the
model by subscribing to the change-propagation mechanism. The
destructor removes it again by unsubscribing. View also provides a
simple non-optimized update() implementation.

class View : public Observer {
public:

View(Model *m) : myModel(m), myController(0)
{ myModel->attach(this); }

virtual ~View() { myModel->detach(this); }
virtual void update() { this->draw(); }
// abstract interface to be redefined:
virtual void initialize() ;// see below
virtual void draw() ; // (re-)display view

// ... to be continued below

Model-View-Controller 135

Model *getModel() { return myModel; }
Controller *getController() { return myController; }

protected:
Model *myModel;
Controller *myController; // set by initialize

};

class BarChartView : public View {
public:

BarChartView(Model *m) : View(m) { }
virtual void draw();

};

void BarChartView::draw(){
Iterator<String> ip = myModel->makePartyIterator();
Iterator<long> iv = myModel->makeVoteIterator();
List<long> dl; //for scaling values to fill screen
long max = 1;// maximum for adjustment

// calculate maximum vote count
while (iv.next()) {

if (iv.curr() > max) max = iv.curr();
}
iv.reset();
// now calculate screen coordinates for bars
while (iv.next()) {

dl.append((MAXBARSIZE * iv.curr())/max);
}

// reuse iterator object for new collection:
iv = dl; // assignment rebinds iterator to new list
iv.reset();

while (ip.next() && iv.next()) {
// draw text: cout << ip.curr() << " : " ;
// draw bar: ... drawbox(BARWIDTH, iv.curr());...

}
}

The class definition of BarChartView demonstrates a specific view of
our system. It redefines draw() to show the voting data as a bar
chart. ❏

4 Design and implement the controllers. For each view of the application,
specify the behavior of the system in response to user actions. We
assume that the underlying platform delivers every action of a user as
an event. A controller receives and interprets these events using a
dedicated procedure. For a non-trivial controller, this interpretation
depends on the state of the model.

136 Architectural Patterns

The initialization of a controller binds it to its model and view and
enables event processing. How this is achieved depends on the user-
interface platform. For example, the controller may register its event-
handling procedure with the window system as a callback.

➥ Most views in our example do not require any specific event
processing—they are only used for display. We therefore define a base
class Controller with an empty handleEvent() method. The
constructor attaches the controller to its model and the destructor
detaches it again.

class Controller : public Observer {
public:

virtual void handleEvent(Event *) { }
// default = no op

Controller(View *v) : myView(v) {
myModel = myView->getModel();
myModel->attach(this);

}

virtual ~Controller() { myModel->detach(this); }
virtual void update() { } // default = no op

protected:
Model *myModel;
View *myView;

};

We omit a separate controller initialization method, because the
relationship to the view and the model is already set up by its
constructor. ❏

Calling the functional core closely links a controller with the model,
since the controller becomes dependent on the application-specific
model interface. If you plan to modify functionality, or if you want to
provide reusable controllers and therefore would like the controller to
be independent of a specific interface, apply the Command Processor
(277) design pattern. The model takes the role of the supplier of the
Command Processor pattern. The command classes and the
command processor component are additional components between
controller and model. The MVC controller has the role of controller in
Command Processor.

Model-View-Controller 137

5 Design and implement the view-controller relationship. A view typically
creates its associated controller during its initialization. When you
build a class hierarchy of views and controllers, apply the Factory
Method design pattern [GHJV95] and define a method
makeController() in the view classes. Each view that requires a
controller that differs from its superclass redefines the factory
method.

➥ In our C++ example the View base class implements a method
initialize() that in turn calls the factory method
makeController(). We cannot put the call to makeController()
into the constructor of the View class, because then a subclass’
redefined makeController() would not be called as desired. The
only View subclass that requires a specific controller is TableView.
We redefine makeController() to return a TableController to
accept data from the user.

class View : public Observer {
// ... continued
public:
//C++ deficit: use initialize to call right factory method

virtual void initialize()
{ myController = makeController();}

virtual Controller *makeController()
{ return new Controller(this); }

};

class TableController : public Controller {
public:

TableController(TableView *tv) : Controller(tv) {}
virtual void handleEvent(Event *e) {
// ... interpret event e,
// for instance, update votes of a party

if(vote && party){ // entry complete:
myModel->changeVote(party,vote);

}
}

};
class TableView : public View {
public:

TableView(Model *m) : View(m) { }
virtual void draw();
virtual Controller *makeController()

{ return new TableController(this); }
}; ❏

138 Architectural Patterns

6 Implement the set-up of MVC. The set-up code first initializes the
model, then creates and initializes the views. After initialization, event
processing is started, typically in a loop, or with a procedure that
includes a loop, such as XtMainLoop() from the X Toolkit. Because
the model should remain independent of specific views and
controllers, this set-up code should be placed externally, for example,
in a main program.

➥ In our simple example the main function initializes the model
and several views. The event processing delivers events to the control-
ler of the table view, allowing the entry and change of voting data.

main() {
// initialize model
List<String> parties; parties.append("black");
parties.append("blue "); parties.append("red ");
parties.append("green"); parties.append("oth. ");
Model m(parties);

// initialize views
TableView *v1 = new TableView(&m);
v1->initialize();
BarChartView *v2 = new BarChartView(&m);
v2->initialize();
// now start event processing ... ❏

7 Dynamic view creation. If the application allows dynamic opening and
closing of views, it is a good idea to provide a component for managing
open views. This component, for example, can also be responsible for
terminating the application after the last view is closed. Apply the
View Handler (291) design pattern to implement this view
management component.

8 ‘Pluggable’ controllers. The separation of control aspects from views
supports the combination of different controllers with a view. This
flexibility can be used to implement different modes of operation,
such as casual user versus expert, or to construct read-only views
using a controller that ignores any input. Another use of this
separation is the integration of new input and output devices with an
application. For example, a controller for an eye-tracking device for
disabled people can exploit the functionality of the existing model and
views, and is easily incorporated into the system.

➥ In our example only the class TableView supports several
controllers. The default controller TableController allows the user

Model-View-Controller 139

to enter voting data. For display-only purposes, TableView can be
configured with a controller that ignores all user input. The code
below shows how a controller is substituted for another controller.
Note that setController returns the previously-used controller
object. Here the controller object is no longer used and so it is deleted
immediately.

class View : public Observer{
// ... continued
public:

virtual Controller *setController(Controller *ctlr);
};

main()
// ...

// exchange controller
delete v1->setController(

new Controller(v1)); // this one is read only
// ...

// open another read-only table view;
TableView *v3 = new TableView(&m);
v3->initialize();
delete v3->setController(

new Controller(v3)); // make v3 read-only
// continue event processing

// ...
} ❏

9 Infrastructure for hierarchical views and controllers. A framework
based on MVC implements reusable view and controller classes. This
is commonly done for user interface elements that are applied
frequently, such as buttons, menus, or text editors. The user
interface of an application is then constructed largely by combining
predefined view objects. Apply the Composite pattern [GHJV95] to
create hierarchically composed views. If multiple views are active
simultaneously, several controllers may be interested in events at the
same time. For example, a button inside a dialog box reacts to a
mouse click, but not to the letter ‘a’ typed on the keyboard. If the
parent dialog view also contains a text field, the ‘a’ is sent to the
controller of the text view. Events are distributed to event-handling
routines of all active controllers in some defined sequence. Use the
Chain of Responsibility pattern [GHJV95] to manage this delegation
of events. A controller will pass an unprocessed event to the controller
of the parent view or to the controller of a sibling view if the chain of
responsibility is set up properly.

140 Architectural Patterns

10 Further decoupling from system dependencies. Building a framework
with an elaborate collection of view and controller classes is
expensive. You may want to make these classes platform
independent. This is done in some Smalltalk systems. You can
provide the system with another level of indirection between it and the
underlying platform by applying the Bridge pattern [GHJV95]. Views
use a class named display as an abstraction for windows and
controllers use a sensor class.

The abstract class display defines methods for creating a window,
drawing lines and text, changing the look of the mouse cursor and so
on. The sensor abstraction defines platform-independent events, and
each concrete sensor subclass maps system-specific events to
platform-independent events. For each platform supported,
implement concrete display and sensor subclasses that encapsulate
system specifics.

The design of the abstract classes display and sensor is non-trivial,
because it impacts both the efficiency of the resulting code, and the
efficiency with which the concrete classes can be implemented on the
different platforms. One approach is to use sensor and display
abstractions with only the very basic functionality that is provided
directly by all user-interface platforms. The other extreme is to have
display and sensor offer higher-level abstractions. Such classes need
greater effort to port, but use more native code from the user-
interface platform. The first approach leads to applications that look
similar across platforms, while the second results in applications that
conform better to platform-specific guidelines.

Variants Document-View. This variant relaxes the separation of view and
controller. In several GUI platforms, window display and event
handling are closely interwoven. For example, the X Window System
reports events relative to a window. You can combine the
responsibilities of the view and the controller from MVC in a single
component by sacrificing exchangeability of controllers. This kind of
structure is often called a Document-View architecture [App89],
[Gam91], [Kru96]. The document component corresponds to the
model in MVC, and also implements a change-propagation
mechanism. The view component of Document-View combines the
responsibilities of controller and view in MVC, and implements the
user interface of the system. As in MVC, loose coupling of the

Model-View-Controller 141

document and view components enables multiple simultaneous
synchronized but different views of the same document.

Known Uses Smalltalk [GR83]. The best-known example of the use of the Model-
View-Controller pattern is the user-interface framework in the
Smalltalk environment [LP91], [KP88]. MVC was established to build
reusable components for the user interface. These components are
shared by the tools that make up the Smalltalk development
environment. However, the MVC paradigm turned out to be useful for
other applications developed in Smalltalk as well. The VisualWorks
Smalltalk environment supports different ‘look and feel’ standards by
decoupling view and controllers via display and sensor classes, as
described in implementation step 10.

MFC [Kru96]. The Document-View variant of the Model-View-
Controller pattern is integrated in the Visual C++ environment—the
Microsoft Foundation Class Library—for developing Windows
applications.

ET++ [Gam91]. The application framework ET++ also uses the Docu-
ment-View variant. A typical ET++-based application implements its
own document class and a corresponding view class. ET++ estab-
lishes ‘look and feel’ independence by defining a class WindowPort
that encapsulates the user interface platform dependencies, in the
same way as do our display and sensor classes.

Consequences The application of Model-View-Controller has several benefits:

Multiple views of the same model. MVC strictly separates the model
from the user-interface components. Multiple views can therefore be
implemented and used with a single model. At run-time, multiple
views may be open at the same time, and views can be opened and
closed dynamically.

Synchronized views. The change-propagation mechanism of the
model ensures that all attached observers are notified of changes to
the application’s data at the correct time. This synchronizes all
dependent views and controllers.

‘Pluggable’ views and controllers. The conceptual separation of MVC
allows you to exchange the view and controller objects of a model.
User interface objects can even be substituted at run-time.

142 Architectural Patterns

Exchangeability of ‘look and feel’. Because the model is independent
of all user-interface code, a port of an MVC application to a new
platform does not affect the functional core of the application. You
only need suitable implementations of view and controller
components for each platform.

Framework potential. It is possible to base an application framework
on this pattern, as sketched in implementation steps 7 through 10.
The various Smalltalk development environments have proven this
approach.

The liabilities of MVC are as follows:

Increased complexity. Following the Model-View-Controller structure
strictly is not always the best way to build an interactive application.
Gamma [Gam91] argues that using separate model, view and
controller components for menus and simple text elements increases
complexity without gaining much flexibility.

Potential for excessive number of updates. If a single user action
results in many updates, the model should skip unnecessary change
notifications. It may be that not all views are interested in every
change-propagated by the model. For example, a view with an
iconized window may not need an update until the window is restored
to its normal size.

Intimate connection between view and controller. Controller and view
are separate but closely-related components, which hinders their
individual reuse. It is unlikely that a view would be used without its
controller, or vice-versa, with the exception of read-only views that
share a controller that ignores all input.

Close coupling of views and controllers to a model. Both view and
controller components make direct calls to the model. This implies
that changes to the model’s interface are likely to break the code of
both view and controller. This problem is magnified if the system uses
a multitude of views and controllers. You can address this problem by
applying the Command Processor pattern (277), as described in the
Implementation section, or some other means of indirection.

Model-View-Controller 143

Inefficiency of data access in view. Depending on the interface of the
model, a view may need to make multiple calls to obtain all its display
data. Unnecessarily requesting unchanged data from the model
weakens performance if updates are frequent. Caching of data within
the view improves responsiveness.

Inevitability of change to view and controller when porting. All
dependencies on the user-interface platform are encapsulated within
view and controller. However, both components also contain code that
is independent of a specific platform. A port of an MVC system thus
requires the separation of platform-dependent code before rewriting.
In the case of an MVC framework or a large composed application, an
additional encapsulation of platform dependencies may be required.

Difficulty of using MVC with modern user-interface tools. If portability
is not an issue, using high-level toolkits or user interface builders can
rule out the use of MVC. It is usually expensive to retrofit toolkit
components or the output of user interface layout tools to MVC.
Additional wrapping would be the minimum requirement. In addition,
many high-level tools or toolkits define their own flow of control and
handle some events internally, such as displaying a pop-up menu or
scrolling a window. Finally, a high-level user interface platform may
already interpret events and offer callbacks for each kind of user
activity. Most controller functionality is therefore already provided by
the toolkit, and a separate component is not needed.

See Also The Presentation-Abstraction-Control pattern (145) takes a different
approach to decoupling the user-interface aspects of a system from
its functional core. Its abstraction component corresponds to the
model in MVC, and the view and controller are combined into a
presentation component. Communication between abstraction and
presentation components is decoupled by the control component. The
interaction between presentation and abstraction is not limited to
calling an update procedure, as it is within MVC.

Credits Trygve Reenskaug created MVC and introduced it to the Smalltalk
environment [RWL96].

