
The Cecil Language
Specification and Rationale

Version 2.1

Craig Chambers

Department of Computer Science and Engineering
University of Washington

Box 352350, Seattle, Washington 98195-2350 USA

March 31, 1997

ii

Abstract

Cecil is a purely object-oriented language intended to support rapid construction of high-quality,
extensible software. Cecil combines multi-methods with a simple classless object model, a kind of
dynamic inheritance, modules, and optional static type checking. Instance variables in Cecil are
accessed solely through messages, allowing instance variables to be replaced or overridden by
methods and vice versa. Cecil’s predicate objects mechanism allows an object to be classified
automatically based on its run-time (mutable) state. Cecil’s static type system distinguishes
between subtyping and code inheritance, but Cecil enables these two graphs to be described with
a single set of declarations, streamlining the common case where the two graphs are parallel. Cecil
includes a fairly flexible form of parameterization, including explicitly parameterized objects,
types, and methods, as well as implicitly parameterized methods related to the polymorphic
functions commonly found in functional languages. By making type declarations optional, Cecil
aims to allow mixing of and migration between exploratory and production programming styles.
Cecil supports a module mechanism that enables independently-developed subsystems to be
encapsulated, allowing them to be type-checked and reasoned about in isolation despite the
presence of multi-methods and subclassing. Objects can be extended externally with additional
methods and instance variables, often encapsulated in separate modules, supporting a kind of role-
based or subject-oriented programming style.

This document mixes the specification of the language with discussions of design issues and
explanations of the reasoning that led to various design decisions.

iii

Table of Contents

1 Introduction. 1

1.1 Design Goals and Major Features 1

1.2 Overview 4

2 Dynamically-Typed Core . 5

2.1 Objects and Inheritance 5
2.1.1 Inheritance 6
2.1.2 Object Instantiation 7
2.1.3 Extension Declarations 7
2.1.4 Predefined Objects 7
2.1.5 Closures 8

2.2 Methods 8
2.2.1 Argument Specializers and Multi-Methods 9
2.2.2 Method Bodies 10
2.2.3 Primitive Methods 11

2.3 Fields 12
2.3.1 Read-Only vs. Mutable Fields 13
2.3.2 Fields and Methods 13
2.3.3 Copy-Down vs. Shared Fields 14
2.3.4 Field Initialization 15

2.4 Predicate Objects 17
2.4.1 Predicate Objects and Inheritance 18
2.4.2 Predicate Objects and Fields 21

2.5 Statements and Expressions 22
2.5.1 Declaration Blocks 23
2.5.2 Variable Declarations 23
2.5.3 Variable References 24
2.5.4 Assignment Statements 24
2.5.5 Literals 24
2.5.6 Message Sends 24
2.5.7 Object Constructors 26
2.5.8 Vector Constructors 26
2.5.9 Closures 26
2.5.10 Parenthetical Subexpressions 27

2.6 Precedence Declarations 27
2.6.1 Previous Approaches 28
2.6.2 Precedence and Associativity Declarations in Cecil 29

iv

2.7 Method Lookup 30
2.7.1 Philosophy 30
2.7.2 Semantics 31
2.7.3 Examples 32
2.7.4 Strengths and Limitations 33
2.7.5 Multiple Inheritance of Fields 34
2.7.6 Cyclic Inheritance 35
2.7.7 Method Lookup and Lexical Scoping 35
2.7.8 Method Invocation 36

2.8 Resends 36

2.9 Files and Include Declarations 38

2.10 Pragmas 38

3 Static Types. 40

3.1 Goals 40

3.2 Types and Signatures 41

3.3 Type and Signature Declarations 43
3.3.1 Type Declarations 44
3.3.2 Representation and Object Declarations 44
3.3.3 Type and Object Extension Declarations 46
3.3.4 Signature Declarations 46
3.3.5 Implementation and Method Declarations 47
3.3.6 Field Implementation Declarations 47
3.3.7 Other Type Declarations 48
3.3.8 Discussion 48

3.4 Special Types and Type Constructors 49
3.4.1 Named Types 49
3.4.2 Closure Types 50
3.4.3 Least-Upper-Bound Types 50
3.4.4 Greatest-Lower-Bound Types 50

3.5 Object Role Annotations 51

3.6 Type Checking Messages 53
3.6.1 Checking Messages Against Signatures 53
3.6.2 Checking Signatures Against Method Implementations 54
3.6.3 Comparison with Other Type Systems 56
3.6.4 Type Checking Inherited Methods 57

3.7 Type Checking Expressions, Statements, and Declarations 59

3.8 Type Checking Subtyping Declarations 64

3.9 Type Checking Predicate Objects 64

3.10 Mixed Statically- and Dynamically-Typed Code 66

v

4 Parameterization and Parametric Polymorphism . 68

4.1 Explicit Parameterization 68
4.1.1 Parameterized Declarations and Formal Type Parameters 69
4.1.2 Instantiating Parameterized Declarations 69
4.1.3 Parameterized Objects and Types 70
4.1.4 Method Lookup 70
4.1.5 Type Checking Instantiations 71

4.2 Implicit Parameterization 71

4.3 Matching Against Type Patterns 74
4.3.1 Method Formal Type Patterns 74
4.3.2 Upper Bound Type Patterns 75
4.3.3 The Matching Algorithm 75
4.3.4 Static vs. Dynamic Matching 77
4.3.5 Constraints on Supertype Graphs for Matching 78
4.3.6 Matching and Bounded Formal Type Parameters 78

4.4 Implicit Type Parameters in Extension Declarations 79

4.5 Parameterized Objects and Method Lookup 79

4.6 Parameterization and Syntactic Sugars 80

4.7 F-Bounded Polymorphism 80
4.7.1 Motivation 80
4.7.2 F-Bounded Polymorphism in Singly-Dispatched Languages 81
4.7.3 F-Bounded Polymorphism in Cecil 82
4.7.4 F-Bounded Polymorphism among Multiple Types 83

5 Modules . 85

6 Related Work. 87

7 Conclusion . 90

References . 9 1

Appendix A Annotated Cecil Syntax . 96

A.1 Grammar 96

A.2 Tokens 101

A.3 White Space 102

1

1 Introduction

This document describes the current design of Cecil, an object-oriented language intended to
support the rapid construction of high-quality, reusable, extensible software systems [Chambers
92b, Chambers 93b, Chambers & Leavens 94]. Cecil is unusual in combining a pure, classless
object model, multiple dispatching (multi-methods), modules, and mixed static and dynamic type
checking. Cecil was inspired initially by Self [Ungar & Smith 87, Hölzleet al. 91a], CLOS
[Bobrowet al. 88, Gabrielet al. 91], and Trellis [Schaffertet al. 85, Schaffertet al. 86]. The current
version of Cecil extends the earlier version [Chambers 93a] with predicate objects, modules, and
efficient typechecking algorithms.

1.1 Design Goals and Major Features

Cecil’s design results from several goals:

• Maximize the programmer’s ability to develop software quickly and to reuse and modify
existing software easily.

In response to this goal, Cecil is based on a pure object model: all data are objects and objects
are manipulated solely by passing messages. A pure object model ensures that the power of
object-oriented programming is uniformly available for all data and all parts of programs. The
run-time performance disadvantage traditionally associated with pure object-oriented
languages is diminishing with the advent of advanced implementations.

Our experience also leads us to develop a classless (prototype-based) object model for Cecil.
We feel that a classless object model is simpler and more powerful than traditional class-based
object models. Cecil’s object model is somewhat more restricted than those in other prototype-
based languages [Borning 86, Lieberman 86, LaLondeet al. 86, Ungar & Smith 87, Lieberman
et al. 87], in response to other design goals.

Since message passing is the cornerstone of the power of object-oriented systems, Cecil
includes a fairly general form of dynamic binding based on multiple dispatching. Multi-
methods affect many aspects of the rest of the language design, and much of the research on
Cecil aims to combine multi-methods with traditional object-oriented language concepts, such
as encapsulation and static type checking, not found in other multiple dispatching languages.

Inheritance also plays a key role in organizing software and factoring out commonalities. Cecil
extends traditional inheritance mechanisms with predicate objects to support an automatic
form of classification of objects into specialized subclasses based on their run-time state. Since
this state can be mutable, an object’s classification can change over time. This mechanism
enables inheritance and classification to be applied even when modelling time-varying
properties of an object. For example, a rectangle can be automatically classified as the predicate
subobject square whenever it satisfies the predicate that its length equals its width, even if the
rectangle’s length and width are mutable.

Instance variables (called fields in Cecil) are also accessed solely by sending messages,
enabling fields to be replaced or even overridden with methods, and vice versa, without
affecting clients. Fields can be given default initial values as part of their declaration. An
initialization expression is evaluated lazily, when the field is first referenced, acting as a kind
of memoized constant function. By allowing the initialization expression to reference the

2

object that it will become a part of, circular data structures can be constructed, and more
generally, the value of one field can be computed from the values of other fields of an object.

• Support production of high-quality, reliable software.

To help in the construction of high-quality programs, programmers can add statically-
checkable declarations and assertions to Cecil programs. One important kind of static
declaration specifies the types of (i.e., the interfaces to) objects and methods. Cecil allows
programmers to specify the types of method arguments, results, and local variables, and Cecil
performs type checking statically when a statically-typed expression is assigned to a statically-
typed variable or formal argument. The types specified by programmers describe the minimal
interfaces required of legal objects, not theirrepresentationsor implementations, to support
maximum reuse of typed code. In Cecil, the subtype graph is distinguished from the code
inheritance graph, since type checking has different goals and requirements than have code
reuse and module extension [Snyder 86, Halbert & O’Brien 86, Cooket al. 90].

To support the independent construction of subsystems, Cecil includes a module system. A
module encapsulates its internal implementation details and presents an interface to external
clients. This encapsulation mechanism is specially designed to work in the presence of multi-
methods and inheritance/subtyping across module boundaries. Modules can be used to
encapsulate “roles” [Andersen & Reenskaug 92] or “subjects” [Harrison & Ossher 93],
programming idioms where pieces of the total interface of an object are split apart into
application-specific facets. A given module can include method and field declarations that
extend one or more previously-defined objects with additional specialized state and behavior.

Cecil includes other kinds of static declarations. An object can be annotated as an abstract
object (providing shared behavior but not manipulable by programs), as a template object
(providing behavior suitable for direct instantiation but otherwise not manipulable by the
program), or as a concrete object (fully manipulable and instantiated as is). Object annotations
inform the type checker how the programmer intends to use objects, enabling the type checker
to be more flexible for objects used in only a limited fashion.

Cecil encourages a functional programming style by default, as this is likely to be easier to
understand and more robust in the face of programming changes. By default, both local
variables and fields are initialize-only; an explicitvar keyword is required to assert that a
variable or field can be mutated. An object can be created and its fields initialized to desired
values in a single atomic operation; there are no partially-initialized states as are found during
execution of a constructor in C++.

Finally, Cecil omits certain complex language features that can have the effect of masking
programming errors. For example, in Cecil, multiple dispatching and multiple inheritance are
bothunbiased with respect to argument order and parent order; any resulting ambiguities are
reported back to the programmer as potential errors. This design decision is squarely at odds
with the decision in CLOS and related languages. Additionally, subtyping in Cecil is explicit
rather than implicit, so that the behavioral specification information implied by types can be
incorporated into the decision about whether one type is a behavioral subtype of another.

3

• Support both exploratory programming and production programming, and enable smooth
migration of parts of programs from one style to the other.

Central to achieving this goal in Cecil is the ability to omit type declarations and other
annotations in initial exploratory versions of a subsystem and incrementally add annotations as
the subsystem matures to production quality. Cecil’s type system is intended to be flexible and
expressive, so that type declarations can be added to an existing dynamically-typed program
and achieve static type correctness without major reorganization of the program. In particular,
objects, types, and methods may be explicitly parameterized by types, method argument and
result types may be declared as or parameterized by implicitly-bound type variables to achieve
polymorphic function definitions, and (as mentioned above) the subtype graph can differ from
the inheritance graph. The presence of multiple dispatching relieves some of the type system’s
burden, since multiple dispatching supports in a type-safe manner what would be considered
unsafe covariant method redefinition in a single-dispatching language.

Additionally, an environment for Cecil could infer on demand some parts of programs that
otherwise must be explicitly declared, such as the list of supertypes of an object or the set of
legal abstract methods of an object, so that one language can support both exploratory
programmers (who use the inferencer) and production programmers (who explicitly specify
what they want). This approach resolves some of the tension between language features in
support of exploratory programming and features in support of production programming. In
some cases, the language supports the more explicit production-oriented feature directly, with
an environment expected to provide additional support for the exploratory-oriented feature.

• Avoid unnecessary redundancy in programs.

To avoid requiring the programmer to repeat specifying the interface of an object or method,
Cecil allows a single object declaration to define both an implementation and a type (an
interface). Similarly, where the subtype hierarchy coincides with the code inheritance
hierarchy, a single declaration will establish both relations. This approach greatly reduces the
amount of code that otherwise would be required in a system that distinguished subtyping and
code inheritance. Without this degree of conciseness, we believe separating subtyping from
code inheritance would be impracticably verbose.

Similarly, Cecil’s classless object model is designed so that a single object declaration can
define an entire data type. This contrasts with the situation in Self, where two objects are
needed to define most data types [Ungaret al. 91]. Similarly, Cecil’s object model supports
both concise inheritance of representation and concise overriding of representation, unlike
most class-based object-oriented languages which only support the former and most classless
object-oriented languages which only conveniently support the latter.

Finally, Cecil avoids requiring annotations for exploratory programming. Annotations such as
type declarations and privacy declarations are simply omitted when programming in
exploratory mode. If this were not the case, the language would likely be too verbose for rapid
exploratory programming.

• Be “as simple as possible but no simpler.”

Cecil attempts to provide the smallest set of features that meet its design goals. For example,
the object model is pure and classless, thus simplifying the language without sacrificing
expressive power. However, some features are included in Cecil that make it more complex,

4

such as supporting multiple dispatching or distinguishing between subtyping and
implementation inheritance. Given no other alternative, our preference is for a more powerful
language which is more complex over a simpler but less powerful language. Simplicity is
important but should not override other language goals.

Cecil’s design includes a number of other features that have proven their worth in other systems.
These include multiple inheritance of both implementation and interface, closures to implement
user-defined control structures and exceptions, and, of course, automatic storage reclamation.

1.2 Overview

This document attempts to provide a fairly detailed specification of the Cecil language, together
with discussion of the various design decisions. The next section of this document describes the
basic object and message passing model in Cecil. Section 3 extends this dynamically-typed core
language with a static type system and describes a type checking algorithm, and section 4 discusses
parameterization. Section 5 describes Cecil’s module system. Section 6 discusses some related
work. Appendix A summarizes the complete syntax for Cecil.

5

2 Dynamically-Typed Core

Cecil is a pure object-oriented language. All data are objects, and message passing is the only way
to manipulate objects. Even instance variables are accessed solely using message passing. This
purity offers the maximum benefit of object-oriented programming, allowing code to manipulate
an object with no knowledge of (and hence no dependence on) its underlying representation or
implementation.

Each Cecil implementation defines how programs are put together. The UW Cecil implementation
defines a program to be a sequence of declaration blocks and statements, optionally interspersed
with pragmas:

program ::= top_level_file

top_level_file ::= { top_decl_block | stmt | pragma }

Declaration blocks are comprised of a set of declarations that are introduced simultaneously;
names introduced as part of the declarations in the declaration block are visible throughout the
declaration block and also for the remainder of the scope containing the declaration block; the
names go out of scope once the scope exits. Because the name of an object is visible throughout its
declaration block, objects can inherit from objects defined later within the declaration block and
methods can be specialized on objects defined later in the declaration block. In environments where
the top-level declaration comprising the program is spread across multiple files, the ability to attach
methods to objects defined in some other file is important.

The syntax of declarations is as follows:*

top_decl_block ::= { decl | pragma }

decl ::= object_decl
| obj_ext_decl
| predicate_decl
| method_decl
| field_decl
| let_decl
| precedence_decl
| include_decl

The next four subsections describe objects, methods, fields, and predicate objects. Subsection 2.5
describes variables, statements, and expressions, and subsection 2.6 explains precedence
declarations. Subsections 2.7 and 2.8 detail the semantics of message passing in Cecil. Subsection
2.9 describes include declarations and file structure in the UW Cecil implementation, and
subsection 2.10 discusses pragmas.

2.1 Objects and Inheritance

The basic features of objects in Cecil are illustrated by the following declarations, which define a
simple shape hierarchy. Comments in Cecil either begin with “-- ” and extend to the end of the line
or are bracketed between “(-- ” and “--) ” and can be nested.

* Ignoring type and signature declarations (section 3) and module declarations (section 5).

6

object shape;

object circle isa shape;

object rectangle isa shape;

object rhombus isa shape;

object square isa rectangle, rhombus;

The syntax of an object declaration, excluding features relating to static type checking and
modules, is as follows:*

object_decl ::= “object” name {relation} [field_inits] “;”

relation ::= “isa” parents

parents ::= named_object { “,” named_object }

named_object ::= name

(name is the token for regular identifiers beginning with a letter; see appendix A.2 for more details
on the lexical rules of Cecil.)

Cecil has a classless (prototype-based) object model: self-sufficient objects implement data
abstractions, and objects inherit directly from other objects to share code. Cecil uses a classless
model primarily because of its simplicity, but also because this avoids problems relating to first-
class classes and metaclasses and because it makes defining unique named objects with specialized
behavior easy. Section 2.2 shows how treating “instance” objects and “class” objects uniformly
enables CLOS-styleeql specializers to be supported with no extra mechanism.

Section 2.3 describes field initializers.

2.1.1 Inheritance

Objects can inherit from other objects. Informally, this means that the operations defined for parent
objects will also apply to child objects. Inheritance in Cecil may be multiple, simply by listing more
than one parent object; any ambiguities among methods and/or fields defined on these parents will
be reported to the programmer. Inheriting from the same ancestor more than once, either directly
or indirectly, has no effect other than to place the ancestor in relation to other ancestors; Cecil has
no repeated inheritance as in Eiffel [Meyer 88, Meyer 92]. An object need not have any (explicit)
parents; all objects are considered to inherit from the predefinedany object (see section 2.1.4). The
inheritance graph must be acyclic.

Inheritance in Cecil requires a child to accept all of the fields and methods defined in the parents.
These fields and methods may be overridden in the child, but facilities such as excluding fields or
methods from the parents or renaming them as part of the inheritance, as found in Eiffel, are not
present in Cecil. We have deliberately chosen to experiment with a simpler inheritance semantics.

Finally, it is important to note that inheritance of code is distinct fromsubtyping (“inheritance” of
interface or of specification). Section 3 explains Cecil’s support for subtyping and static type
checking.

* Appendix A gives the complete syntax of the language and explains the notation.

7

2.1.2 Object Instantiation

Rather than introduce a distinct instantiation concept into the language, new “instances” of some
object are created solely by inheriting from the object. Object declarations allow statically-known,
named “instances” to be defined, whileobject constructor expressions allow new anonymous
“instances” to be created at run-time. An object constructor expression is syntactically and
semantically similar to an object declaration, except that there is no name for the object being
created. For example:

let s1 := object isa square; -- create a fresh “instance” ofsquare when executed

Section 2.5.7 describes object constructor expressions in more detail. Note that the parent of an
object must be statically known; Cecil does not allow objects to be created whose parents are run-
time computed expressions. This is a restriction over some other prototype-based languages.

2.1.3 Extension Declarations

The inheritance structure of a named object may be augmented separately from the object
declaration through an object extension declaration:

obj_ext_decl ::= “extend” named_object {relation} [field_inits] “;”

In Cecil, object extension declarations, in conjunction with field and method declarations, enable
programmers to extend previously-existing objects. This ability can be important when reusing and
integrating groups of objects implemented by other programmers. For example, predefined objects
such asint , i_vector , andm_vector are given additional behavior and ancestry through
separate user code. Similarly, particular applications may need to add application-specific behavior
to objects defined as part of other applications. For example, a text-processing application may add
specialized tab-to-space conversion behavior to strings and other collections of characters defined
in the standard library. Other object-oriented languages such as C++ [Stroustrup 86, Ellis &
Stroustrup 90] and Eiffel do not allow programmers to add behavior to existing classes without
modifying the source code of the existing classes, and completely disallow adding behavior to
built-in classes like strings. Sather is a notable exception, allowing a new class to be defined which
is a superclass of some existing classes [Omohundro 93]. Section 3.3.3 explains how object
extensions are particularly useful to declare that two objects, provided by two independent
vendors, are subtypes of some third abstract type. Section 5 describes how modules can be used to
localize extensions to particular regions of code.

2.1.4 Predefined Objects

Several objects are predefined and play special roles.

• Thevoid object is used to represent a lack of a value. It is used as the result of methods or
expressions that have no useful result. The system will guarantee (statically in the presence of
type checking) thatvoid is never passed as an argument to a method.

• Theany object is implicitly the ancestor of all non-void objects. It supports behavior that is
shared by all objects.

A Cecil implementation provides other predefined objects, such as integers, floats, characters,
booleans, and mutable and immutable vectors and strings, as part of its standard library.

8

2.1.5 Closures

Cecil includes closure objects which represent first-class anonymous functions. Closures are
lexically nested in their enclosing scope. As with methods, a closure can have formal arguments.
A closure object is “invoked” by sending it theeval message, with additional actual arguments
for each of its formal arguments. Closures are considered to inherit from theclosure predefined
object.

More details on closures are given throughout the remainder of section 2. In particular, section
2.5.9 describes the syntax and semantics of closure constructor expressions and section 2.2.2
describes the evaluation rules for closureeval methods.

2.2 Methods

The following definitions expand the earlier shape hierarchy with some methods:

object shape;
method draw(s, d) { (-- drawss on displayd --) }
method move_to(s, new_center) { (-- moves to new_center --) }

object circle isa shape;
method area(c@circle) { c.radius * c.radius * pi}
method circum(c@circle) { c.radius * 2 * pi }

object rectangle isa shape;
method area(r@rectangle) { r.length * r.width }
method circum(r@rectangle) { 2 * r.length + 2 * r.width }

method draw(r@rectangle, d@Xwindow) {
(-- overridedraw for the case of drawing rectangles on X windows --) }

object rhombus isa shape;

object square isa rectangle, rhombus; -- inheritsarea method, but overridescircum
method circum(s@square) { 4 * s.length }

The syntax for method declarations (again, excluding aspects relating to static typing and
encapsulation) is as follows:

method_decl ::= “method” method_name “(” [formals] “)” [pragma]
“{” (body | prim_body) “}” [“;”]

method_name ::= msg_name | op_name

msg_name ::= name

formals ::= formal { “,” formal }

formal ::= [name] specializer formal names are optional, if never referenced

specializer ::= “@” named_object specialized formal
| empty unspecialized formal

(op_name is the token for infix and prefix operators beginning with a punctuation symbol; see
appendix A.2 for more details.)

As a convention, we indent method declarations under the associated object declaration. This has
no semantic implication, but it helps to visually organize a collection of object and method

9

declarations in the absence of a more powerful graphical programming environment [Chambers
92b].

2.2.1 Argument Specializers and Multi-Methods

In Cecil, a method specifies the kinds of arguments for which its code is designed to work. For each
formal argument of a method, the programmer may specify that the method is applicable only to
actual arguments that are implemented or represented in a particular way, i.e., that are equal to or
inherit from a particular object. These specifications are calledargument specializers, and
arguments with such restrictions are calledspecialized arguments. Ther@rectangle notation
specializes ther formal argument on therectangle object, implying that the method is intended
to work correctly with any actual argument object that is equal to or a descendant of the
rectangle object as ther formal. An unspecialized formal argument (one lacking a@...
suffix), such ass and new_center in the move_to method above, is treated as being
specialized on the predefined objectany that is implicitly an ancestor of all other objects;
consequently an unspecialized formal can accept any argument object.

Methods may be overloaded, i.e., there may be many methods with the same name, as long as the
methods with the same name and number of arguments differ in their argument specializers.
Methods with different numbers of arguments are independent; the system considers the number
of arguments to be part of the method’s name. When sending a message of a particular name with
a certain number of arguments, the method lookup system (described in section 2.7) will resolve
the overloaded methods to a single most-specific applicable method based on the dynamic values
of the actual argument objects and the corresponding formal argument specializers of the methods.

Zero, one, or several of a method’s arguments may be specialized, thus enabling Cecil methods to
emulate normal undispatched functions (by leaving all formals unspecialized, as inmove_to
above) and singly-dispatched methods (by specializing only the first argument, as in thearea
methods) as well as true multi-methods (as in the specialized version ofdraw for rectangles on X
windows). Statically-overloaded functions and functions declared via certain kinds of pattern-
matching also are subsumed by multi-methods. Callers which send a particular message to a group
of arguments are not aware of the collection of methods that might handle the message or which
arguments of the methods are specialized, if any; these are internal implementation decisions that
should not affect callers. In particular, a given message can initially be implemented with a single
unspecialized procedure and then later extended or replaced with several specialized
implementations, without affecting clients of the original method, as occurs with thedraw
methods in the previous example. In contrast, CLOS has a “congruent lambda list” rule that
requires all methods in a particular generic function to specialize on the same argument positions.

Argument specializers are distinct from type declarations. Argument specializers restrict the
allowed implementations of actual arguments and are used as part of method lookup to locate a
suitable method to handle a message send. Type declarations require that certain operations be
supported by argument objects, but place no constraints on how those operations are implemented.
Type declarations have no effect on method lookup.

10

The name of a formal may be omitted if it is not needed in the method’s body. Unlike singly-
dispatched languages, there is no implicitself formal in Cecil; all formals are listed explicitly.

Cecil’s classless object model combines with its definition of argument specializers to support
something similar to CLOS’seql specializers. In CLOS, an argument to a multi-method in a
generic function may be restricted to apply only to a particularobject by annotating the argument
specializer with theeql keyword. Cecil needs no extra language mechanism to achieve a similar
effect, since methods already are specialized on particular objects. Cecil’s mechanism differs from
CLOS’s in that in Cecil such a method also will apply to any children of the specializing object,
while in CLOS the method will apply only for that object. Dylan, a descendant of CLOS, has a
singleton specializer that is analogous to CLOS’seql specializer [Apple 92].

As mentioned in subsection 2.1.3, methods can be added to existing objects without needing to
modify those existing objects. This facility, lacking in most object-oriented languages, can make
reusing existing components easier since they can be adapted to new uses by adding methods,
fields, and even parents to them.

The names of methods and fields are in a name space separate from the name space of objects and
variables. A method or field can have the same name as a variable or object without confusion.

2.2.2 Method Bodies

The syntax of the body of a method, closure, or parenthetical subexpression is as follows:

body ::= {stmt} result
| empty returnvoid

result ::= normal_return return an expression
| non_local_rtn return from the lexically-enclosing method

normal_return ::= decl_block [“;”] returnvoid
| assignment [“;”] returnvoid
| expr [“;”] return result of expression

non_local_rtn ::= “^” [“;”] do a non-local return, returningvoid
| “^” expr [“;”] do a non-local return, returning a result

(The syntax and semantics of statements and expressions is described in section 2.5.)

When invoked, a method evaluates its statements in a new environment containing bindings for the
method’s formal parameters and nested in the method’s lexically-enclosing environment. (The
interactions among nested scopes, method lookup, and other language features is described in more
detail in section 2.7.7.)

The result of the message invoking the method is the result of the last statement in the method’s
body. If the method’s body is empty, then the method returns the specialvoid value. Alternatively,
a method returnsvoid if the last statement is a declaration block, an assignment statement, or an
expression that itself returnsvoid . Thevoid value is used to indicate that the method returns no
useful result. The system ensures thatvoid is not accidentally used in later computation by
reporting an error (statically in the presence of type checking) ifvoid is passed as an argument to
a message.

11

When a closure’seval method is invoked, evaluation proceeds much like the evaluation of any
other method. One difference is that a closureeval method may force anon-local return by
prefixing the result expression with the^ symbol; if the result expression is omitted, thenvoid is
returned non-locally. A non-local return returns to the caller of the closest lexically-enclosing non-
closure method rather than to the caller of theeval method, just like a non-local return in
Smalltalk-80* [Goldberg & Robson 83] and Self and similar to areturn statement in C. The
language currently prohibits invoking a non-local return after the lexically-enclosing scope of a
closure has returned; first-class continuations are not supported.

2.2.3 Primitive Methods

prim_body ::= “prim” { language_binding }

language_binding::= language “:” code
| language “{” tokens “}”

language ::= name

code ::= string

tokens ::= any of Cecil’s tokens, with balanced use of “{“ and “}”

Low-level operations, such as integer arithmetic, vector indexing, looping, and file I/O, are
implemented through the use of primitive methods. A primitive method’s body is a list of
(language name, implementation source code) pairs. The details of the protocol for writing code in
another language inside a Cecil primitive method are implementation-specific. The UW Cecil
implementation recognizes thec_++ andrtl language names, for primitives written in C++ and
the compiler’s internal intermediate language, respectively. It is fairly straightforward to make
calls to routines written in C++ from Cecil by defining a primitive method whose body is written
in C++.

Looping primitive behavior is provided by theloop primitive method specialized on the
closure predefined object. This method repeatedly invokes its argument closure until some
closure performs a non-local return to break out of the loop. Other languages such as Scheme [Rees
& Clinger 86] avoid the need for such a primitive by relying instead on user-level tail recursion and
implementation-provided tail-recursion elimination. However, tail-recursion elimination
precludes complete source-level debugging [Chambers 92a, Hölzleet al. 92] and consequently is
undesirable in general. The primitiveloop method may be viewed as a simple tail-recursive
method for which the implementation has been instructed to perform tail-recursion elimination.

A primitive body may be included at the top-level using a primitive body declaration:

prim_decl ::= prim_body “;”

This construct allows code from other languages to be included outside of any compiled routines.
Primitive declarations can be used to include global declarations used by primitive methods.
Again, the detailed semantics of this construct are implementation-specific.

* Smalltalk-80 is a trademark of ParcPlace Systems.

12

2.3 Fields

Object state, such as instance variables and class variables, is supported in Cecil throughfields and
associatedaccessor methods. To define a mutable instance variablex for a particular objectobj ,
the programmer can declare afield of the following form:

var field x(@obj);

This declaration allocates space for an object reference in theobj object and constructs two real
methods attached to theobj object that provide the only access to the variable:

method x(v@obj) { prim rtl { <v.x > } } -- the get accessor method
method set_x(v@obj, value) { prim rtl { <v.x > := value; } } -- the set accessor method

The get accessor method returns the contents of the hidden variable. Theset accessor method
mutates the contents of the hidden variable to refer to a new object, and returnsvoid . Accessor
methods are specialized on the object containing the variable, thus establishing the link between
the accessor methods and the object. For example, sending thex message to theobj object will
find and invoke the get accessor method and return the contents of the hidden variable, thus acting
like a reference toobj ’s x instance variable. (Section 5 describes how these accessor methods can
be encapsulated within the data abstraction implementation and protected from external
manipulation.)

To illustrate, the following declarations define a standard list inheritance hierarchy:

object list isa ordered_collection;

method is_empty(l@list) { l.length = 0 }

method prepend(x, l@list) { -- dispatch onsecond argument
object isa cons { head := x, tail := l } }

object nil isa list; -- empty list

method length(@nil) { 0 }

method do(@nil,) {} -- iterating over all elements of the empty list: do nothing

method pair_do(@nil, ,) {}
method pair_do(, @nil,) {}
method pair_do(@nil, @nil,) {}

object cons isa list; -- non-empty lists

var field head(@cons); -- defineshead(@cons) andset_head(@cons,) accessor methods
var field tail(@cons); -- definestail(@cons) andset_tail(@cons,) accessor methods

method length(c@cons) { 1 + c.tail.length }

method do(c@cons, block) {
eval(block, c.head); -- call block on head of list
do(c.tail, block); } -- recur down tail of list

method pair_do(c1@cons, c2@cons, block) {
eval(block, c1.head, c2.head);
pair_do(c1.tail, c2.tail, block); }

The cons object has two fields, only accessible through the automatically-generated accessor
methods.

The syntax of field declarations, excluding static typing aspects and encapsulation, is as follows:

13

field_decl ::= [“shared”] [“var”] “field” method_name “(” formal “)”
 [“:=” expr] “;”

2.3.1 Read-Only vs. Mutable Fields

By default, a field is immutable: only the get accessor method is generated for it. To support
updating the value of a field, thevar prefix must be used with the field declaration. The presence
of the var annotation triggers generation of the set accessor method. Immutable fields receive
their values either as part of object creation or by an initializing expression associated with the field
declaration; see section 2.3.4. Note that the contents of an immutable field can itself be mutable,
but the binding of the field to its contents cannot change. (Global and local variables in Cecil
similarly default to initialize-only semantics, with an explicitvar annotation required to allow
updating of the variable’s value, as described in section 2.5.2.)

In general, we believe that it is beneficial to explicitly indicate when a field is mutable; to
encourage this indication, immutable fields are the default. Programmers looking at code can more
easily reason about the behavior of programs if they know that certain parts of the state of an object
cannot be side-effected. Similarly, immutable fields support the construction of immutable “value”
objects, such as complex numbers and points, that are easier to reason about.

Many languages, including Self and Eiffel, support distinguishing between assignable and constant
variables, but few imperative languages support initialize-only instance variables. CLOS can
define initialize-only variables in the sense that a slot can be initialized at object-creation time
without a set accessor method being defined, but in CLOS theslot-value primitive function
can always modify a slot even if the set accessor is not generated.

2.3.2 Fields and Methods

Accessing variables solely through automatically-generated wrapper methods has a number of
advantages over the traditional mechanism of direct variable access common in most object-
oriented languages. Since instance variables can only be accessed through messages, all code
becomes representation-independent to a certain degree. Instance variables can be overridden by
methods, and vice versa, allowing code to be reused even if the representation assumed by the
parent implementation is different in the child implementation. For example, in the following code,
therectangle abstraction can inherit from thepolygon abstraction but alter the representation
to something more appropriate for rectangles:

object polygon;

var field vertices(@polygon);

method draw(p@polygon, d@output_device) {
(-- draw the polygon on an output device, accessingvertices --) }

object rectangle isa polygon;

var field top(@rectangle);
var field bottom(@rectangle);
var field left(@rectangle);
var field right(@rectangle);

14

method vectices(r@rectangle) {
-- ++ is a binary operator, here creating a new point object
[r.top ++ r.left, r.top ++ r.right,

r.bottom ++ r.right, r.bottom ++ r.left] }

method set_vertices(r@rectangle, vs) {
(-- set corners of rectangle fromvs list, if possible --) }

Even within a single abstraction, programmers can change their minds about what is stored and
what is computed without rewriting lots of code. Syntactically, a simple message send that accesses
an accessor method is just as concise as would be a variable access (using thep.x syntactic sugar,
described in section 2.5.6), thus imposing no burden on the programmer for the extra
expressiveness. Other object-oriented languages such as Self and Trellis have shown the
advantages of accessing instance variables solely through special get and set accessor methods.
CLOS enables get and/or set accessor methods to be defined automatically as part of the
defclass form, but CLOS also provides a lower-levelslot-value primitive that can read
and write any slot directly. Dylan joins Self and Trellis in accessing instance variables solely
through accessor methods.

An object may define or inherit several fields with the same name. Just as with overloaded methods,
this is legal as long as two methods, accessor or otherwise, do not have the same name, number of
arguments, and argument specializers. A method may override a field accessor method without
removing the field’s memory location from the object, since a resend within the overriding method
may invoke the field accessor method. Implementations may optimize away the storage for a field
in an object if it cannot be accessed, as with thevertices field in therectangle object.

2.3.3 Copy-Down vs. Shared Fields

By default, each object inheriting a field declaration receives its own space to hold its version of
the field’s contents, and the field’s accessor methods access the memory space associated with their
first argument. Such a “copy-down” field acts much like an instance variable declaration in a class-
based language, since each object gets its own local copy of the field. Alternatively, a field
declaration may be prefixed with theshared keyword, implying that all inheriting objects should
share a single memory location. A shared field thus acts like a class variable.

Supporting both copy-down and shared fields addresses weaknesses in some other prototype-based
object-oriented languages relative to class-based languages. In class-based languages, instance
variables declared in a superclass are automatically copied down into subclasses; thedeclaration
is inherited, not the variable’scontents. Class variables, on the other hand, are shared among the
class, its instances, and its subclasses. In some prototype-based languages, including Self and Actra
[Lieberman 86], instance variables of one object are not copied down into inheriting objects; rather,
these variables are shared, much like class variables in a class-based language. In Self, to get the
effect of object-specific state, most data types are actually defined with two objects: one object, the
prototype, includes all the instance-specific variables that objects of the data type need, while the
other object, thetraits object, is inherited by the prototype and holds the methods and shared state
of the data type [Ungaret al. 91]. New Self objects are created by cloning (shallow-copying) a
prototype, thus giving new objects their own instance variables while sharing the parent traits
object and its methods and state. Defining a data type in two pieces can be awkward, especially

15

since it separates the declarations of instance variables from the definitions of the methods that
access them. Furthermore, inheriting the instance variable part of the implementation of one data
type into another is more difficult in Self than in class-based languages, relying on complex
inheritance rules and dynamic inheritance [Chamberset al. 91] or programming environment
support [Ungar 95]. Copy-down fields in Cecil solve these problems in Self without sacrificing the
simple classless object model. In Cecil, only one object needs to be defined for a given data type,
and the field declarations can be in the same place as the method declarations that access them. This
design increases both conciseness and readability, at the cost of some additional language
mechanism.

Cecil objects are created only through object declarations and object constructor expressions; these
two expressions have similar run-time effects, with the former additionally binding statically-
known names to the created objects enabling methods and fields to be associated with them and
enabling other objects to inherit from them. Cecil needs no other primitive mechanism to create or
copy objects as do other languages. Self provides a shallow-copy (clone) primitive in addition to
object literal syntax (analogous to Cecil’s object constructor expressions), in part because there are
no “copy-down” data slots in Self. Class-based languages typically include several mechanisms for
creating instances and classes and relations among them. On the other hand, creating an object by
inheriting from an existing object may not be as natural as creating an object by copying an existing
object.

2.3.4 Field Initialization

Cecil allows a field to be given an initial value when it is declared by suffixing the field declaration
with the := symbol and an initializing expression. Additionally, when an object is created, an
object-specific initial value may be specified for a non-shared field. The syntax of field initializers
for object declarations and object constructor expressions is as follows:

field_inits ::= “{” field_init { “,” field_init } “}”

field_init ::= name [location] “:=” expr

location ::= “@” named_object

For example, the following method produces a new list object with particular values for its
inherited fields:

method prepend(e, l@list) {
object isa cons { head := e, tail := l } }

For a field initialization of the formname := expr , the field to be initialized is found by
performing a lookup akin to message lookup to find a field declaration namedname, starting with
the object being created. Method lookup itself cannot be used directly, since the field to be
initialized may have been overridden with a method of the same name. Instead, a form of lookup
that ignores all methods is used. If this lookup succeeds in finding a single most-specific matching
field declaration, then that field is the one given an initial value; the matching field should not be a
shared field. If no matching field or more than one matching field is found, then a “field initializer
not understood” or an “ambiguous field initializer” error, respectively, is reported. To resolve
ambiguities and to initialize fields otherwise overridden by other fields, an extended name for the
field of the formname@obj := expr may be used instead. For these kind of initializers, lookup

16

for a matching field begins with the object namedobj rather than the object being created. The
obj object must be an ancestor of the object being created. Extended field names are analogous to
a similar mechanism related to directed resends, described in section 2.8.

Immutable shared fields must be initialized as part of the field declaration; there is no other way to
give them a value. Immutable copy-down fields may be initialized as part of the field declaration,
but often they are initialized as part of object constructor expressions for objects that inherit the
field, leading to a more functional programming style where data structures are (largely)
immutable.

To avoid pesky problems with uninitialized variables, all fields must be initialized before being
accessed, either by providing an initial value as part of the field declaration, by providing an object-
specific value as part of the object declaration or object constructor expression, or by assigning to
the field before reading from it. The static type checker warns when it cannot prove that at least
one of the first two options is taken for each field inherited by an object, as described in section 3.7.

In Cecil, the initializing expression for a field declaration is not evaluated until the field is first read.
If the field is a shared field, then the initializer is evaluated and the contents of the field is updated
to refer to the initial value; subsequent reads of the shared field will simply return the initial value.
This supports functionality similar toonce functions in Eiffel and other languages. If the field is
a copy-down field, then the initializing expression will be evaluated separately for each object
accessed, and the result cached for that object. The initializing expression may name the formal
parameter of the field declaration, allowing the initial value of the field to reference the object of
which the field is a part. The default initializer is not evaluated if it is not needed, i.e., if the field
has already been given a contents as part of object creation or via invocation of the set accessor.

By evaluating field initializers on demand rather than at declaration time, we avoid the need to
specify some arbitrary ordering over field declarations or to resort to an unhelpful “unspecified” or
“implementation-dependent” rule. It is illegal to try to read the value of a field during execution of
the field’s initializer; no cyclic dependencies among field initializers are allowed.

Evaluating a copy-down field’s initializer expression repeatedly for each inheriting object seems
to support common Cecil programming style. This corresponds to CLOS’s:initform specifier.
An earlier version of Cecil specified caching of the results of field initializer evaluation so that
other objects evaluating the same initializer expression would end up sharing the initial value. The
initializing expression was viewed as a shared part of the field declaration, not as a separate part
copied down to each inheriting object. This earlier semantics corresponded more to CLOS’s
:default-initargs specifier. The difference in the semantics is exposed if the initializing
expression evaluates to a new mutable object. In practice, it seems that each object wants its own
mutable object rather than sharing the mutable object among all inheriting objects. Moreover, the
old semantics can be simulated with a combination of a copy-down field that accesses a shared field
to get the field’s initial value.

17

2.4 Predicate Objects

To enable inheritance and classes to be used to capture run-time varying object behavior, Cecil
supportpredicate objects [Chambers 93b]. Predicate objects are like normal objects except that
they have an associated predicate expression. The semantics of a predicate object is that if an object
inherits from the parents of the predicate object and also the predicate expression is true when
evaluated on the child object, then the child is considered to also inherit from the predicate object
in addition to its explicitly-declared parents. Since methods can be associated with predicate
objects, and since predicate expressions can test the value or state of a candidate object, predicate
objects allow a form of state-based dynamic classification of objects, enabling better factoring of
code. Also, predicate objects and multi-methods allow a pattern-matching style to be used to
implement cooperating methods.

For example, predicate objects could be used to implement a bounded buffer abstraction:

object buffer isa collection;

field elements(b@buffer); -- a queue of elements
field max_size(b@buffer); -- an integer

method length(b@buffer) { b.elements.length }

method is_empty(b@buffer) { b.length = 0 }

method is_full(b@buffer) { b.length = b.max_size }

predicate empty_buffer isa buffer when buffer.is_empty;

method get(b@empty_buffer) { ... } -- raise error or block caller

predicate non_empty_buffer isa buffer when not(buffer.is_empty);

method get(b@non_empty_buffer) { remove_from_front(b.elements) }

predicate full_buffer isa buffer when buffer.is_full;

method put(b@full_buffer, x) { ... } -- raise error or block caller

predicate non_full_buffer isa buffer when not(buffer.is_full);

method put(b@non_full_buffer, x) { add_to_back(b.elements, x); }

predicate partially_full_buffer isa non_empty_buffer, non_full_buffer;

18

The following diagram illustrates the inheritance hierarchy created by this example (the explicit
inheritance link from the buffer object tobuffer is omitted):

Predicate objects increase expressiveness for this example in two ways. First, important states of
bounded buffers, e.g., empty and full states, are explicitly identified in the program and named.
Besides documenting the important conditions of a bounded buffer, the predicate objects remind
the programmer of the special situations that code must handle. This can be particularly useful
during maintenance phases as code is later extended with new functionality. Second, attaching
methods directly to states supports better factoring of code and eliminatesif and case
statements, much as does distributing methods among classes in a traditional object-oriented
language. In the absence of predicate objects, a method whose behavior depended on the state of
an argument object would include anif or case statement to identify and branch to the
appropriate case; predicate objects eliminate the clutter of these tests and clearly separate the code
for each case. In a more complete example, several methods might be associated with each special
state of the buffer. By factoring the code, separating out all the code associated with a particular
state or behavior mode, we hope to improve the readability and maintainability of the code.

The syntax for a predicate object declaration is as follows:

predicate_decl ::= “predicate” name {relation} [field_inits] [“when” expr] “;”

2.4.1 Predicate Objects and Inheritance

For normal objects, one object is a child of another object exactly when the relationship is declared
explicitly through isa declarations by the programmer. Predicate objects, on the other hand,
support a form of automatic property-based classification: an objectO is automatically considered
a child of a predicate objectP exactly when the following two conditions are satisfied:

• the objectO is a descendant of each of the parents of the predicate objectP, and

• the predicate expression of the predicate objectP evaluates to true, when evaluated in a scope
where each of the predicate object’s parent names is bound to the objectO.

By evaluating the predicate expression in a context where the parent names refer to the object being
tested, the predicate expression can query the value or state of the object.

Since the state of an object can change over time (fields can be mutable), the results of predicate
expressions evaluated on the object can change. If this happens, the system will automatically
reclassify the object, recomputing its implicit inheritance links. For example, when a buffer object

buffer

a buffer object

or

non_empty_buffer non_full_buffer full_bufferempty_buffer

partially_full_buffer

19

becomes full, the predicates associated with thenon_full_buffer and full_buffer
predicate objects both change, and the inheritance graph of the buffer object is updated. As a result,
different methods may be used to respond to messages, such as theput message in the filled buffer
example. Predicate expressions are evaluated lazily as part of method lookup, rather than eagerly
as the state of an object changes. Only when the value of some predicate expression is needed to
determine the outcome of method lookup is the predicate evaluated. A separate paper describes
efficient implementation schemes for predicate objects [Chambers 93].

If a predicate object inherits from another predicate object, it is a special case of that parent
predicate object. This is because the child predicate object will only be in force whenever its parent
predicate object’s predicate evaluates to true. In essence, the parent’s predicate expression is
implicitly conjoined with the child’s predicate expression. A non-predicate object also may inherit
explicitly from a predicate object, with the implication that the predicate expression will always
evaluate to true for the child object; the system verifies this assertion dynamically. For example, an
unbounded buffer object might inherit explicitly from thenon_full_buffer predicate object.

A predicate object need not have awhen clause, as illustrated by the
partially_full_buffer predicate object defined above. Such a predicate object may still
depend on a condition if at least one of its ancestors is a predicate object. In the above example,
thepartially_full_buffer predicate object has no explicit predicate expression, yet since
an object only inherits frompartially_full_buffer whenever it already inherits from both
non_empty_buffer andnon_full_buffer , thepartially_full_buffer predicate
object effectively repeats the conjunction of the predicate expressions of its parents, in this case
that the buffer be neither empty nor full.

Predicate objects are intended to interact well with normal inheritance among data abstractions. If
an abstraction is implemented by inheriting from some other implementation, any predicate objects
that specialize the parent implementation will automatically specialize the child implementation
whenever it is in the appropriate state. For example, a new implementation of bounded buffers
could be built that used a fixed-length array with insert and remove positions that cycle around the
array:*

object circular_buffer isa buffer;

field array(b@circular_buffer); -- a fixed-length array of elements
var field insert_pos(b@circular_buffer); -- an index into the array
var field remove_pos(b@circular_buffer); -- another integer index

method max_size(b@circular_buffer) { b.array.length }

method length(b@circular_buffer) {
-- % is modulus operator
(b.insert_pos - b.remove_pos) % b.array.length }

predicate non_empty_circular_buffer isa circular_buffer, non_empty_buffer;

* This implementation overridesbuffer ’s max_size field with a method and then ignores the buffer’selements
field. In practice a more efficient implementation would break upbuffer into an abstract parent object and two
child objects for the queue-based implementation and the circular array implementation.

20

method get(b@non_empty_circular_buffer) {
var x := fetch(b.array, b.remove_pos);
b.remove_pos := (b.remove_pos + 1) % b.array.length;
x }

predicate non_full_circular_buffer isa circular_buffer, non_full_buffer;

method put(b@non_full_circular_buffer, x) {
store(b.array, b.insert_pos, x);
b.insert_pos := (b.insert_pos + 1) % b.array.length; }

The following diagram illustrates the extended inheritance graph for bounded and circular buffers
(thepartially_full_buffer predicate object is omitted):

Since thecircular_buffer implementation inherits from the originalbuffer object, a
circular_buffer object will automatically inherit from theempty_buffer or
full_buffer predicate object whenever thecircular_buffer happens to be in one of
those states. Noempty_circular_buffer or full_circular_buffer objects need to
be implemented if specialized behavior is not needed. Thenon_empty_circular_buffer
andnon_full_circular_buffer predicate objects are needed to override the defaultget
andput methods in the non-blocking states. Any object that inherits fromcircular_buffer
and that also satisfies the predicate associated withnon_empty_buffer will automatically be
classified as anon_empty_circular_buffer .

The specification of when an object inherits from a predicate object implicitly places a predicate
object just below its immediate parents and after all other normal children of the parents. For
example, consider an empty circular buffer object. Both the buffer object and its parent, the
circular_buffer object, will be considered to inherit from theempty_buffer predicate
object. Becausecircular_buffer is considered to inherit fromempty_buffer , any
methods attached tocircular_buffer will override methods attached toempty_buffer .
Often this is the desired behavior, but at other times it might be preferable for methods attached to

circular_buffer

buffer

non_empty_buffer non_full_buffer full_bufferempty_buffer

or

non_full_circular_buffernon_empty_circular_buffer

a circular buffer object

or

21

predicate objects to override methods attached to “cousin” normal objects.* If this were the case,
then the buffer code could be simplified somewhat, as follows:

object buffer isa collection;

... -- elements , length , etc.

method get(b@buffer) { remove_from_front(b.elements) }

method put(b@buffer, x) { add_to_back(b.elements, x); }

predicate empty_buffer isa buffer when buffer.is_empty;

method get(b@empty_buffer) { ... } -- raise error or block caller

predicate full_buffer isa buffer when buffer.is_full;

method put(b@full_buffer, x) { ... } -- raise error or block caller

object circular_buffer isa buffer;

... -- array , insert_pos , length , etc.

method get(b@circular_buffer) {
var x := fetch(b.array, b.remove_pos);
b.remove_pos := (b.remove_pos + 1) % b.array.length;
x }

method put(b@circular_buffer, x) {
store(b.array, b.insert_pos, x);
b.insert_pos := (b.insert_pos + 1) % b.array.length; }

The non-blocking versions ofget andput would be associated with thebuffer object directly,
and the non_empty_buffer , non_full_buffer , and partially_full_buffer
predicate objects could be removed (if desired). The non-blockingget and put routines for
circular buffers would similarly be moved up to thecircular_buffer object itself, with the
non_empty_circular_buffer and non_full_circular_buffer predicate objects
being removed also. If the methods attached to theempty_buffer object were considered to
override those of thecircular_buffer object, then sendingget to a circular buffer that was
empty would (correctly) invoke theempty_buffer implementation. In the current semantics of
predicate objects in Cecil, however, thecircular_buffer ’s implementation ofget would be
invoked, leading to an error. A third potential semantics would be to consider the predicate object
to be unordered with respect to “cousin” objects, and methods defined on two cousins to be
mutually ambiguous. More experience with predicate objects is needed to adequately resolve this
question.

2.4.2 Predicate Objects and Fields

Fields may be associated with a predicate object. This has the effect of reserving persistent space
for the field in any object that might be classified as a descendant of the predicate object. The value
stored in the field persists even when the field is inaccessible. At object-creation time, an initial
value may be provided for fields potentially inherited from predicate objects, even if those fields
may not be visible in the newly-created object. The semantics of accessing a field attached to a
predicate object is governed by the semantics of accessing its corresponding accessor methods.

* One object is a cousin of another if they share a common ancestor but are otherwise unrelated.

22

The following example exploits this semantics to implement a graphical window object that can
be either expanded or iconified. Each of the two important states of the window remembers its own
screen location (using a field namedposition in both cases), plus some other mode-specific
information such as the text in the window and the bitmap of the icon, and this data persists across
openings and closings of the window:

object window isa interactive_graphical_object;

var field iconified(@window) := false;

method display(w@window) {
-- draw window usingw.position
... }

method erase(w@window) {
-- clear space where window is
... }

method move(w@window, new_position) {
-- works for both expanded and iconified windows!
w.erase; w.position := new_position; w.display; }

predicate expanded_window isa window when not(window.iconified);

var field position(@expanded_window) := upper_left;

field text(@expanded_window);

method iconify(w@expanded_window) {
w.erase; w.iconified := true; w.display; }

predicate iconified_window isa window when window.iconified;

var field position(@iconfied_window) := lower_right;

field icon(@iconified_window);

method open(w@iconified_window) {
w.erase; w.iconified := false; w.display; }

method create_window(open_position, iconified_position,
text, icon) {

object isa window {
iconified := false,
position@open_window := open_position,
position@iconified_window := iconified_position,
text := text, icon := icon } }

A window object has twoposition fields, but only one is visible at a time. This allows the
display , erase , and move routines to send the messageposition as part of their
implementation, without needing to know whether the window is open or closed. The
create_window method initializes bothposition fields when the window is created, even
though the position of the icon is not visible initially. Theposition@ object notation used in the
field initialization resolves the ambiguity between the twoposition fields.

2.5 Statements and Expressions

A statement is a declaration block, an assignment, or an expression:

23

stmt ::= decl_block
| assignment “;”
| expr “;”

An expression is either a literal, a reference to a variable or a named object, an object constructor
expression, a vector constructor expression, a closure constructor expression, a message, a resend,
or a parenthetical subexpression:

expr ::= binop_expr

binop_expr ::= binop_msg | unop_expr

unop_expr ::= unop_msg | dot_expr

dot_expr ::= dot_msg | simple_expr

simple_expr ::= literal
| ref_expr
| vector_expr
| closure_expr
| object_expr
| message
| resend
| paren_expr

All of these constructs are described below, except for resends which are described later in section
2.8 and declarations other than variable declarations which are described in other sections.

2.5.1 Declaration Blocks

A declaration block is an unbroken sequence of declarations. Names introduced as part of the
declarations in the declaration block are visible throughout the declaration block and also for the
remainder of the scope containing the declaration block; the names go out of scope once the scope
exits. Because the name of an object is visible throughout its declaration block, objects can inherit
from objects defined later within the declaration block and methods can be specialized on objects
defined later in the declaration block. Similarly, methods declared within a single declaration block
can be mutually recursive and there is no need for forward declarations or the like. In environments
where the top-level declaration block comprising the program is spread across multiple files, as in
the UW Cecil implementation, the ability to attach methods to objects defined later in some other
file is important.

2.5.2 Variable Declarations

Variable declarations have the following syntax:

let_decl ::= “let” [“var”] name “:=” expr “;”

If the var annotation is used, the variable may be assigned a new value using an assignment
statement. Otherwise, the variable binding is constant. (The contents of the variable may still be
mutable.) Formal parameters are treated as constant variable bindings and so are not assignable.
The initializing expression is evaluated in a context where the name of the variable being declared
and any variables declared later within the same declaration block are considered undefined. This
avoids potential misunderstandings about the meaning of apparently self-referential or mutually
recursive initializers while still supporting a kind oflet* [Steele 84] variable binding sequence.

24

Variable declarations may appear at the top level as well as inside a method. However, the ordering
of variable declarations at the top level (and consequently the order of evaluation of the initializing
expressions) is less well defined. In the current UW Cecil implementation, the textual ordering of
variable declarations is used to define an ordering for evaluating variable initializers. We would
prefer a semantics that was independent of the “order” of variable declarations at the top level, so
that all top-level declarations are considered unordered. Possible alternative semantics which have
this property include restricting variable initialization expressions to be simple expressions without
side-effects (thereby making the issue of evaluation order unimportant), eliminating variable
declarations at the top level entirely, or supporting a form of on-demand at-most-once evaluation
of top-level variable initializers akin to the lazy evaluation semantics of field initializers (see
section 2.3.4).

2.5.3 Variable References

A variable or named object is referenced simply by naming the variable or object:

ref_expr ::= name

The names of objects and variables are in the same name space. Lexical scoping is used to locate
the closest lexically-enclosing variable or object binding for the name.

2.5.4 Assignment Statements

Assignment statements have the following syntax:

assignment ::= name “:=” expr assignment to a variable
| assign_msg assignment-like syntax for messages

If the left-hand-side is a simple name, then the closest lexically-enclosing binding of the name is
located and changed to refer to the result of evaluating the right-hand-side expression. It is an error
to try to assign to an object, a formal parameter, or to a variable declared without thevar keyword.

If the left-hand-side has the syntax of a message, then the assignment statement is really syntactic
sugar for a message send, as described in section 2.5.6.

2.5.5 Literals

Cecil literal constants can be integers, floating point numbers, characters, or strings:

literal ::= integer
| float
| character
| string

Literals are immutable objects.

2.5.6 Message Sends

The syntax of a message send is as follows:

message ::= msg_name “(” [exprs] “)”

exprs ::= expr { “,” expr }

unop_msg ::= op_name unop_expr

binop_msg ::= binop_expr op_name binop_expr

25

A message is written in one of three forms:

• named prefix form, with the name of the message followed by a parenthesized list of
expressions,*

• unary operator prefix form, with the message name listed before the argument expression, or

• infix form, with the message name in between a pair of argument subexpressions.

Normally, a message whose name begins with a letter is written in named prefix form, while a
message whose name begins with a punctuation symbol is written in unary prefix form or in infix
form.† To invoke a named message as an operator, or to invoke an operator as a named message,
the name of the message is prefixed with an underscore (the leading underscore is not considered
part of the message name). For example, the following two expressions both send the+ message
to 3 and 4:

3 + 4

_+(3, 4)

and the following two expressions both send thebit_and message to 3 and 4:

bit_and(3, 4)

3 _bit_and 4

The precedence and associativity of infix messages is specified through precedence declarations,
described in section 2.6. The semantics of method lookup is described in section 2.7. Resends, a
special kind of message send, are described in section 2.8.

Syntactic sugar exists for several common forms of messages. Dot notation allows the first
argument of the message to be written first:

dot_msg ::= dot_expr “.” msg_name [“(” [exprs] “)”]

If the message takes only one argument, the trailing parentheses can be omitted. Consequently, the
following three expressions all send thex message top:

x(p)

p.x()

p.x

The following two expressions both send thebit_and message to 3 and 4:

bit_and(3, 4)

3.bit_and(4)

This syntax may suggest that the first argument is more important than the others, but in fact the
semantics is still that all arguments are treated uniformly, and any subset of the arguments might
be dispatched at method-lookup time.

Other syntactic sugars support message sends written like assignments. Any message can appear
on the left-hand-side of an assignment statement:

assign_msg ::= lvalue_msg “:=” expr sugar forset_ msg(exprs..., expr)

* All arguments to the message must be listed explicitly; there is no implicitself argument.
†Named prefix form is always used for method declarations.

26

lvalue_msg ::= message
| dot_msg
| unop_msg
| binop_msg

In each of these cases, the name of the message sent to carry out the “assignment” isset_
followed by the name of the message in thelvalue_msg expression, and the arguments to the
real message are the arguments of thelvalue_msg expression followed by the expression on the
right-hand-side of the “assignment.” So the following three expressions are all equivalent:

set_foo(p, q, r);

foo(p, q) := r;

p.foo(q) := r;

as are the following two expressions:

set_top(rectangle, x);

rectangle.top := x; -- frequently used for set accessor methods

as are the following two expressions:

set_!(v, i, x);

v!i := x;

Note that these syntactic sugars are assignments in syntax only. Semantically, they are all
messages.

2.5.7 Object Constructors

New objects are created either through object declarations (as described in section 2.1) or by
evaluating object constructor expressions. The syntax of an object constructor expression is as
follows:

object_expr ::= “object” {relation} [field_inits]

This syntax is the same as for an object declaration except that no object name is specified. Object
constructor expressions are analogous to object instantiation operations found in class-based
languages. The only difference between named objects introduced through object declarations and
anonymous objects created through object constructor expressions is that named objects have
statically-known names. As a consequence, only named objects can have methods and fields
attached to them and can have descendants.

2.5.8 Vector Constructors

A vector constructor expression is written as follows:

vector_expr ::= “[” [exprs] “]”

The result of evaluating a vector constructor expression is a new immutable object that inherits
from the predefinedi_vector object and is initialized with the corresponding elements.

2.5.9 Closures

The syntax of a closure constructor expression is as follows:

closure_expr ::= [“&” “(” [closure_formals] “)”] “{” body “}”

27

closure_formals::= closure_formal { “,” closure_formal }

closure_formal ::= [name] formal names are optional, if never referenced

This syntax is identical to that of a method declaration, except that themethod keyword and
message name are replaced with the& symbol (intended to be suggestive of theλ symbol). If the
closure takes no arguments, then the&() prefix may be omitted. When evaluated, a closure
constructor produces two things:

• a new closure object that inherits from the predefinedclosure object, which is returned as
the result of the closure constructor expression, and

• a method namedeval whose anonymous first argument is specialized on the newly-created
closure object and whose remaining arguments are those listed as formal parameters in the
closure constructor expression.

As with other nested method declarations, the body of a closure’seval method is lexically-scoped
within the scope that was active when the closure was created. However, unlike nested method
declarations, theeval method is globally visible (as long as the connected closure object is
reachable). Closures may be invoked after their lexically-enclosing scopes have returned.*

All control structures in Cecil are implemented at user level using messages and closures, with the
sole exception of theloop primitive method described in section 2.2.3. Additionally, closures can
be used to achieve much the same effect as exceptions and multiple results, so these other
constructs are currently omitted from the Cecil language. Sometimes the use of closures is
syntactically more verbose than a built-in language construct might be, and we are considering
various alternatives for allowing programmers to define syntactic extensions to the language to
provide a cleaner syntax for their user-defined control structures.

2.5.10 Parenthetical Subexpressions

A parenthesized subexpression has the same syntax as the body of a method:

paren_expr ::= “(” body “)”

Like the body of a method or a closure, a parenthetical subexpression introduces a new nested
scope and may contain statements and local declarations.

2.6 Precedence Declarations

Cecil programmers can define their own infix binary operators. Parsing expressions with several
infix operators becomes problematic, however, since the precedence and associativity of the infix
operators needs to be known to parse unambiguously. For example, in the following Cecil
expression

foo ++ bar *&&! baz *&&! qux _max blop

the relative precedences of the++, *&&! , and _max infix operators is needed, as is the
associativity of the*&&! infix operator. For a more familiar example, we’d like the following
Cecil expression (** represents exponentiation)

x + y * z ** e ** f * q

* In the current UW Cecil implementation, there are some caveats to the use of such non-LIFO closures. See the system
documentation for additional details.

28

to parse using standard mathematical rules, as if it were parenthesized as follows:
x + ((y * (z ** (e ** f))) * q)

2.6.1 Previous Approaches

Most languages restrict infix operators to a fixed set, with a fixed set of precedences and
associativities. This is not appropriate for Cecil, since we’d like the set of infix messages to be user-
extensible.

Smalltalk defines all infix operators to be of equal precedence and left-associative. While simple,
this rule differs from standard mathematical rules, sometimes leading to hard-to-find bugs. For
example, in Smalltalk, the expression3 + 4 * 5 returns 35, not 23.

Self attempts to rectify this problem with Smalltalk by specifying the relative precedence of infix
operators to be undefined, requiring programmers to explicitly parenthesize their code. This avoids
problems with Smalltalk’s approach, but leads to many unsightly parentheses. For example, the
parentheses in the following Self code are all required:

(x <= y) && (y <= (z + 1))

Self makes an exception for the case where the same binary operator is used in series, treating that
case as left-associative. For example, the expression

x + y + z

parses as expected in Self. Even so, the expression
x ** y ** z

would parse “backwards” in Self, if** were defined. (Self usespower: for exponentiation,
perhaps to avoid problems like this.) Also, expressions like

x + y - z

are illegal in Self, requiring explicit parenthesization.

Standard ML [Milneret al. 90] allows any operator to be declared prefix (called “nonfix” in SML)
or infix, and infix operators can be declared left- or right-associative. Infix declarations also specify
a precedence level, which is an integer from 0 (loosest binding) to 9 (tightest binding), with 0 being
the default. For example, the following SML declarations are standard:

infix 7 *, /, div, mod;

infix 6 +, -;

infix 4 = <> < > <= >=;

infix 3 :=;

nonfix ~;

SML also provides special syntax to use an infix operator as a prefix operator, and vice versa.

A fixity declaration can appear wherever any other declaration can appear, and affect any parsing
of expressions while the fixity declaration is in scope. Fixity declarations can be spread throughout
a program, and multiple declarations can add independent operators to the same precedence level.
Fixity declarations in one scope override any fixity declarations of the same operator from
enclosing scopes.

One disadvantage of SML’s approach is that is supports only 10 levels of precedence. It is not
possible to add a new operator that is higher precedence than some operator already defined at level
9, nor is it possible to squeeze a new operator in between operators at adjacent levels. Finally, all
operators at one level bind tighter than all operators at lower levels, even if the programmer might

29

have preferred that expressions mixing operators from completely different applications be
explicitly parenthesized, for readability.

2.6.2 Precedence and Associativity Declarations in Cecil

Cecil allows the precedence and associativity of infix operators to be specified by programmers
through precedence declarations. The syntax of these declarations is as follows:
prec_decl ::= “precedence” op_list [associativity] {precedence} “;”

associativity ::= “left_associative” | “right_associative” | “non_associative”

precedence ::= “below” op_list | “above” op_list | “with” op_list

op_list ::= op_name { “,” op_name }

For example, the following declarations might appear as part of the standard prelude for Cecil:
precedence ** right_associative ; -- exponentiation
precedence *, / left_associative below ** above +;

precedence +, - left_associative below * above =;

precedence =, !=, <, <=, >=, > non_associative below * above ;

precedence & left_associative below = above |;

precedence | left_associative below &;

precedence % with *;

precedence ! left_associative above =; -- array indexing

By default, an infix operator has its own unique precedence, unrelated to the precedence of any
other infix operator, and is non-associative. Expressions mixing operators of unrelated precedences
or multiple sequential occurrences of an operator that is non-associative must be explicitly
parenthesized.

The effect of a precedence declaration is to declare the relationship of the precedences of several
binary operators and/or to specify the associativity of a binary operator. Like SML, the information
provided by a precedence declaration is used during the scope of the declaration, and declarations
of the same operator at one scope override any from an enclosing scope. Two precedence
declarations cannot define the precedence of the same operator in the same scope.

A precedence declaration of the form
precedence bin-op1, ..., bin-opn

associativity
below bin-opB1, ..., bin-opBn
above bin-opA1, ..., bin-opAn
with bin-opW1, ..., bin-opWn;

declares that all thebin-opi belong to the same precedence group, and that this group is less tightly
binding than the precedence groups of any of thebin-opBi and more tightly binding than those of
thebin-opAi. If anybin-opWi are provided, then thebin-opi belong to the same precedence group
as thebin-opWi; all thebin-opWi must already belong to the same precedence group. Otherwise, the
bin-opi form a new precedence group. The associativity of thebin-opi is as specified by
associativity, if present. If absent, then the associativity of thebin-opi is the same as thebin-opWi,
if provided, and non-associative otherwise. As illustrated by the example above, the ordering of
two precedence groups may be redundantly specified. Cycles in the tighter-binding-than relation
on precedence groups are not allowed. All operators in the same precedence group must have the
same associativity.

Taken together, precedence declarations form a partial order on groups of infix operators.
Parentheses may be omitted if adjacent infix operators are ordered according to the precedence

30

declarations, or if adjacent infix operators are from the same precedence group and the precedence
group has either left- or right-associativity. Otherwise, parentheses must be included. For example,
in the expression

v ! (i + 1) < (v ! i) + 1

the parentheses aroundi+1 andv!i are required, since! and+ are not ordered by the above
precedence declarations. However, both! and+ are more tightly binding than<, so no additional
parentheses are required.

In Cecil, a declaration within a declaration block is visible throughout the block, including during
textually earlier declarations within the block. This applies to precedence declarations as well,
somewhat complicating parsing. The implementation strategy used in the UW Cecil system parses
expressions involving binary operators into a list of operators and operands, and these lists are
converted into a traditional parse tree form only after all visible declarations have been processed.

Precedence declarations apply to infix message names, not to individual methods. Multiple
methods may implement the same infix message, for different kinds of arguments, but all methods
with a particular name share the same precedence in a given scope.

2.7 Method Lookup

This section details the semantics of multi-method lookup, beginning with a discussion of the
motivations and assumptions that led to the semantics.

2.7.1 Philosophy

All computation in Cecil is accomplished by sending messages to objects. The lion’s share of the
semantics of message passing specifies method lookup, and these method lookup rules typically
reduce to defining a search of the inheritance graph. In single inheritance languages, method
lookup is straightforward. Most object-oriented languages today, including Cecil, support multiple
inheritance to allow more flexible forms of code inheritance and/or subtyping. However, multiple
inheritance introduces the possibility of ambiguity during method lookup: two methods with the
same name may be inherited along different paths, thus forcing either the system or the
programmer to determine which method to run or how to run the two methods in combination.
Multiple dispatching introduces a similar potential ambiguity even in the absence of multiple
inheritance, since two methods with differing argument specializers could both be applicable but
neither be uniformly more specific than the other. Consequently, the key distinguishing
characteristic of method lookup in a language with multiple inheritance and/or multiple
dispatching is how exactly this ambiguity problem is resolved.

Some languages resolve all ambiguities automatically. For example, Flavors [Moon 86] linearizes
the class hierarchy, producing a total ordering on classes, derived from each class’ local left-to-
right ordering of superclasses, that can be searched without ambiguity just as in the single
inheritance case. However, linearization can produce unexpected method lookup results, especially
if the program contains errors [Snyder 86]. CommonLoops [Bobrowet al. 86] and CLOS extend
this linearization approach to multi-methods, totally ordering multi-methods by prioritizing
argument position, with earlier argument positions completely dominating later argument
positions. Again, this removes the possibility of run-time ambiguities, at the cost of automatically
resolving ambiguities that may be the result of programming errors.

31

Cecil takes a different view on ambiguity, motivated by several assumptions:

• We expect programmers will sometimes make mistakes during program development. The
language should help identify these mistakes rather than mask or misinterpret them.

• Our experience with Self leads us to believe that programming errors that are hidden by such
automatic language mechanisms are some of the most difficult and time-consuming to find.

• Our experience with Self also encourages us to strive for the simplest possible inheritance rules
that are adequate. Even apparently straightforward extensions can have subtle interactions that
make the extensions difficult to understand and use [Chamberset al. 91].

• Complex inheritance patterns can hinder future program evolution, since method lookup can
depend on program details such as parent ordering and argument ordering, and it usually is
unclear from the program text which details are important for a particular application.

Accordingly, we have striven for a very simple system of multiple inheritance and multiple
dispatching for Cecil.

2.7.2 Semantics

Method lookup in Cecil uses a form of Touretzky’s inferential distance heuristic [Touretzky 86],
where children override parents. The method lookup rules interpret a program’s inheritance graph
as a partial ordering on objects, where being less in the partial order corresponds to being more
specific: an objectA is less than (more specific than) another objectB in the partial order if and
only if A is a proper descendant ofB. This ordering on objects in turn induces an analogous
ordering on the set of methods specialized on the objects, reflecting which methods override which
other methods. In the partial ordering on methods with a particular name and number of arguments,
one methodM is less than (more specific than) another methodN if and only if each of the argument
specializers ofM is equal to or less than (more specific than) the corresponding argument
specializer ofN. Since two methods cannot have the same argument specializers, at least one
argument specializer ofM must be strictly less than (more specific than) the corresponding
specializer ofN. An unspecialized argument is considered specialized on theany object which is
an ancestor of all other objects; a specialized argument therefore is strictly less than (more specific
than) an unspecialized argument. The ordering on methods is only partial since ambiguities are
possible.

Given the partial ordering on methods, method lookup is straightforward. For a particular message
send, the system constructs the partial ordering of methods with the same name and number of
arguments as the message. The system then throws out of the ordering any method that has an
argument specializer that is not equal to or an ancestor of the corresponding actual argument passed
in the message; such a method is not applicable to the actual call. Finally, the system attempts to
locate the single most-specific method remaining, i.e., the method that is least in the partial order
over applicable methods. If no methods are left in the partial order, then the system reports a
“message not understood” error. If more than one method remains in the partial order, but there is
no single method that overrides all others, then the system reports a “message ambiguous” error.
Otherwise, there is exactly one method in the partial order that is strictly more specific than all
other methods, and this method is returned as the result of the message lookup.

32

2.7.3 Examples

For example, consider the following inheritance graph (containing only singly-dispatched methods
for the moment):

The partial ordering on objects in this graph definesABC to be more specific than eitherAB or AC,
and bothAB andAC are more specific thanA. Thus, methods defined forABC will be more specific
(will override) methods defined inA, AB, or AC, and methods defined in eitherAB or AC will be
more specific (will override) methods defined inA. TheAB andAC objects are mutually unordered,
and so any methods defined for bothAB andAC will be unordered.

If the messagem1 is sent to theABC object, both the implementation ofm1 whose formal argument
is specialized on theABC object and the implementation ofm1 specialized onA will apply, but the
method specialized onABC will be more specific than the one specialized onA (sinceABC is more
specific thanA), and soABC’s m1 will be chosen. If instead them1 message were sent to theAB

object, then the version ofm1 specialized on theA object would be chosen; the version ofm1

specialized onABC would be too specific and so would not apply.

If them2 message is sent toABC, then both the version ofm2 whose formal argument is specialized
on A and the one whose formal is specialized onAC apply. But the partial ordering places theAC

object ahead of theA object, and soAC’s version ofm2 is selected.

If the m3 message is sent toABC, then bothAB’s andAC’s versions ofm3 apply. NeitherAB nor
AC is the single most-specific object, however; the two objects are mutually incomparable. Since
the system cannot select an implementation ofm3 automatically without having a good chance of
being wrong and so introducing a subtle bug, the system therefore reports an ambiguous message
error. The programmer then is responsible for resolving the ambiguity explicitly, typically by
writing a method in the child object which resends the message to a particular ancestor; resends are
described in section 2.8. Sends ofm3 to eitherAB or AC would be unambiguous, since the other
method would not apply.

m1(i@A)
m2(j@A)

m3(k@AC)
m3(k@AB) m2(j@AC)

m1(i@ABC)

A

AB

ABC

AC

33

To illustrate these rules in the presence of multi-methods, consider the following inheritance graph
(methods dispatched on two arguments are shown twice in this picture):

Methodsm1 in A andm3 in AB illustrate that multiple methods with the same name and number of
arguments may be associated with (specialized on) the same object, as long as some other
arguments are specialized differently. The following table reports the results of several message
sends using this inheritance graph.

2.7.4 Strengths and Limitations

The partial ordering view of multiple inheritance has several desirable properties:

• It is simple. It implements the intuitive rule that children override their parents (they are lesser
in the partial ordering), but does not otherwise order parents or count inheritance links or
invoke other sorts of complicated rules.

message invoked method or error explanation

m1(ABC, XYZ) m1(i@A, j@XZ) XZ overrides X

m2(ABC, XYZ) m2(j@AB, k) AB overrides A

m3(ABC, XYZ) m3(j@AB, k@XY) XY overrides unspecialized

m4(AB, XY) “message not understood” ABC too specific for AB⇒ no applicable method

m5(ABC, XYZ) “message ambiguous” AB overrides A but XZ overrides X⇒
no single most-specific applicable method

m6(ABC, XYZ) “message ambiguous” AC overrides unspecialized but XYZ overrides
unspecialized⇒ no single most-specific method

m1(i@A, j@X)
m1(i@A, j@XZ)

m2(j@AB, k) m6(i@AC, j)

m4(k@ABC, l@X)

A

AB

ABC

AC

m1(i@A, j@X)
m4(k@ABC, l@X)

m5(n@A, p@XZ)
m3(j@AB, k@XY) m1(i@A, j@XZ)

m6(i, j@XYZ)

X

XY

XYZ

XZ

m2(j@A, k)
m5(n@A, p@XZ)

m3(j@AB, k)
m3(j@AB, k@XY)
m5(n@AB, p@X)

m5(n@AB, p@X)

34

• Ambiguities are not masked. These ambiguities are reported back to the programmer at
message lookup time before the error can get hidden. If the programmer has included static type
declarations, the system will report the ambiguity at type-check-time.

• This form of multiple inheritance is robust under programming changes. Programmers can
change programs fairly easily, and the system will report any ambiguities which may arise
because of programming errors. More complex inheritance rules tend to be more brittle,
possibly hindering changes to programs that exploit the intricacies of the inheritance rules and
hiding ambiguities that reflect programming errors.

• Cecil’s partial ordering view of multiple inheritance does not transform the inheritance graph
prior to determining method lookup, as does linearization. This allows programmers to reason
about method lookup using the same inheritance graph that they use to write their programs.

Of course, there may be times when having a priority ordering over parents or over argument
positions would resolve an ambiguity automatically with no fuss. For these situations, it might be
nice to be able to inform the system about such preferences. Self’s prioritized multiple inheritance
strategy can blend ordered and unordered inheritance, but it has some undesirable properties (such
as sometimes preferring a method in an ancestor to one in a child) and interacts poorly with resends
and dynamic inheritance.* It may be that Cecil could support something akin to prioritized multiple
inheritance (and perhaps even a prioritized argument list), but use these preferences as a last resort
to resolving ambiguities; only if ambiguities remain after favoring children over parents would
preferences on parents or argument position be considered. Such as design appears to have fewer
drawbacks than Self’s approach or CLOS’s approach while gaining most of the benefits.

An alternative approach might be to support explicit declarations that one method is intended to
override another method. These declarations would add relations to the partial order over methods,
potentially resolving ambiguities. This approach has the advantage that it operates directly on the
method overriding relationship rather than on parent order or the like which only indirectly affects
method overriding relationships. Moreover, this approach can only resolve existing ambiguities,
not change any existing overriding relationships, thereby making it easier to reason about the
results of method lookup. To implement this approach, a mechanism for naming particular methods
(e.g., the method’s name and its specializers) must be added.

2.7.5 Multiple Inheritance of Fields

In other languages with multiple inheritance, in addition to the possibility of name clashes for
methods, the possibility exists for name clashes for instance variables. Some languages maintain
separate copies of instance variables inherited from different classes, while other languages merge
like-named instance variables together in the subclass. The situation is simpler in Cecil, since all
access to instance variables is through field accessor methods. An object (conceptually at least)
maintains space for each inherited copy-down field, independently of their names (distinct fields
with the same name are not merged automatically). Accesses to these fields are mediated by their
accessor methods, and the normal multiple inheritance rules are used to resolve any ambiguities

* Recently, Self’s multiple inheritance semantics has been greatly simplified, eliminating prioritized inheritance. Self’s
rules are now similar to Cecil’s, except that Self omits the “children-override-parents” global rule. This has the effect
of declaring as ambiguous messages such asm2(ABC) in the first example in section 2.7.3.

35

among like-named field accessor methods. In particular, a method in the child with the same name
as a field accessor method could send directed resend messages (described later in section 2.8) to
access the contents of one or the other of the ambiguous fields.

2.7.6 Cyclic Inheritance

In the current version of Cecil, inheritance is required to be acyclic. However, cycles in the
inheritance graph would be easy to allow. Instead of defining a partial order over objects,
inheritance would define a preorder, where all objects participating in a cycle are considered to
inherit from all other objects in the cycle, but not be more specific than any of them. This preorder
on inheritance induces a corresponding preorder on methods. The same rules for successful method
lookup still apply: a single most specific method must be found. If two methods are in a cycle in
the method specificity preorder, then neither is more specific than the other. In effect, objects can
participate in inheritance cycles if they define disjoint sets of methods. This design of “mutually-
recursive” objects could be used to factor a single large object into multiple separate objects, each
implementing a separate facet of the original object’s implementation.

2.7.7 Method Lookup and Lexical Scoping

Since methods may be declared both at the top level and nested inside of methods, method lookup
must take into account not only which methods are more specialized than which others but also
which methods are defined in more deeply-nested scopes. The interaction between lexical scoping
and inheritance becomes even more significant in the presence of modules as described in section
5.

The view of lexically-nested methods in Cecil is that nested methodsextend the inheritance graph
defined in the enclosing scope, rather thanoverride it. We call this “porous” lexical scoping of
methods, since the enclosing scope filters through into the nested scope. When performing method
lookup for a message within some nested scope, the set of methods under consideration are those
declared in the current scope plus any methods defined in lexically-enclosing scopes. If a local
method has the same name, number of arguments, and argument specializers as a method defined
in an enclosing scope, then the local method shadows (replaces) the method in the enclosing scope.
Additionally, any object declarations or object extension declarations in the local scope are added
to those declarations and extensions defined in enclosing scopes. Once this augmented inheritance
graph is constructed, method lookup proceeds as before without reference to the scope in which
some object or method is defined.

Other languages, such as BETA [Kristensenet al. 87], take the opposite approach, searching for a
matching method in one scope before proceeding to the enclosing scope. If a matching method is
found in one scope, it is selected even if a more specialized method is defined in an enclosing
scope. More experience is needed to judge which of these alternatives is preferable. Cecil’s
approach gets some advantage by distinguishing variable references, which always respect only the
lexical scope, from field references, which always are treated as message sends and primarily
respect inheritance links. BETA uses the same syntax to access both global variables and inherited
instance variables, making the semantics of the construct somewhat more complicated.

36

Nested methods can be used to achieve the effect of atypecase statement as found in other
languages, including Trellis and Modula-3 [Nelson 91, Harbison 92]. For example, to test the
implementation of an object, executing different code for each case, the programmer could write
something like the following:

method test(x) {
method typecase(z@obj1) { (-- code for case wherex inherits fromobj1 --) }
method typecase(z@obj2) { (-- code for case wherex inherits fromobj2 --) }
method typecase(z@obj3) { (-- code for case wherex inherits fromobj3 --) }
method typecase(z) { (-- code for default case --) }
typecase(x);

}

In the example,obj1 , obj2 , andobj3 may be related in the inheritance hierarchy, in which case
the most-specific case will be chosen. If no case applies or no one case is most specific, then a
“message not understood” or an “ambiguous message” error will result. These results fall out of
the semantics of method lookup. By nesting thetypecase methods inside the calling method,
the method bodies can access other variables in the calling method through lexical scoping, plus
the scope of the temporarytypecase methods is limited to that particular method invocation.
Eiffel’s reverse assignment attempt and Modula-3’sNARROW operation can be handled similarly.

2.7.8 Method Invocation

If method lookup is successful in locating a single target method without error, the method is
invoked. A new activation record is created, formals in the new scope are initialized with actuals,
the statements within the body of the method are executed in the context of this new activation
record (or the primitive method is executed, or the field accessor method is executed), and the result
of the method (possiblyvoid) is returned to the caller.

2.8 Resends

Most existing object-oriented languages allow one method to override another method while
preserving the ability of the overriding method to invoke the overridden version: Smalltalk-80 has
super , CLOS hascall-next-method , C++ has qualified messages using the:: operator,
Trellis has qualified messages using the’ operator, and Self has undirected and directedresend
(integrating unqualifiedsuper -like messages and qualified messages). Such a facility allows a
method to be defined as an incremental extension of an existing method by overriding it with a new
definition and invoking the overridden method as part of the implementation of the overriding
method. This same facility also allows ambiguities in message lookup to be resolved by explicitly
forwarding the message to a particular ancestor.

Cecil includes a construct for resending messages that adapts the Self undirected and directed
resend model to the multiply-dispatched case. The syntax for a resend is as follows:

resend ::= “resend” [“(” resend_args “)”]

resend_args ::= resend_arg { “,” resend_arg }

resend_arg ::= expr corresponding formal of sender must be
 unspecialized

| name undirected resend (name is a specialized formal)
| name “@” named_object directed resend (name is a specialized formal)

37

The purpose of the resend construct is to allow a method to invoke one of the methods that the
resending method overrides. Consequently, only methods with the same name and number of
arguments as the resending method whose argument specializers are ancestors of the resending
method’s argument specializers are considered possible targets of a resend.

To invoke an overridden method, the normal prefix message sending syntax is used but with the
following changes and restrictions:

• Syntactically, the name of the message is the keywordresend ; semantically, the name of the
message is implicitly the same as the name of the sending method.

• The number of arguments to the message must be the same as for the sending method.

• All specialized formal arguments of the resending method must be passed through unchanged
as the corresponding arguments to the resend.

As a syntactic convenience, if all formals of the sender are passed through as arguments to the
resend unchanged, then the simpleresend keyword without an argument list is sufficient.

The semantics of a resent message are similar to a normal message, except that only methods that
are less specific than the resending method in the partial order over methods are considered
possible matches; this has the effect of “searching upwards” in the inheritance graph to find the
single most-specific method that the resending method overrides. The restrictions on the name, on
the number of arguments, and on passing specialized objects through unchanged ensures that the
methods considered as candidates are applicable to the name and arguments of the send. Single-
dispatching languages often have similar restrictions: Smalltalk-80 requires that the implicitself
argument be passed through unchanged with thesuper send, and CLOS’scall-next-
method uses the same name and arguments as the calling method.

For example, the following illustrates how resends may be used to provide incremental extensions
to existing methods:

object colored_rectangle isa rectangle;

field color(@colored_rectangle);

method display(r@colored_rectangle, d@output_device) {
d.color := r.color; -- set the right color for this rectangle
resend ; -- do the normal rectangle drawing; sugar forresend(r, d)

}

Resends may also be used to explicitly resolve ambiguities in the method lookup by filtering out
undesired methods. Any of the required arguments to a resend (those that are specialized formals
of the resending method) may be suffixed with the@ symbol and the name of an ancestor of the
corresponding argument specializer. This restricts methods considered in the resulting partial order
to be those whose corresponding argument specializers (if present) are equal to or ancestors of the
object named as part of the resend.

To illustrate, the following method resolves the ambiguity ofheight for vlsi_cell in favor
of therectangle version of height:*

* This example was adapted from Ungar and Smith’s original Self paper [Ungar & Smith 87].

38

object rectangle;

field height(@rectangle);

object tree_node;

method height(t@tree_node) { 1 + height(t.parent) }

object vlsi_cell isa rectangle, tree_node;

method height(v@vlsi_cell) { resend (v@rectangle) }

This model of undirected and directed resends is a simplification of the Self rules, extended to the
multiple dispatching case. Self’s rules additionally support prioritized multiple inheritance and
dynamic inheritance, neither of which is present in Cecil. Self also allows the name and number of
arguments to be changed as part of the resend. In some cases, it appears to be useful to be able to
change the name of the message as part of the resend. For example, it might be useful to be able to
provide access to thetree_node version of theheight method under some other name, but
this currently is not possible in Cecil. We are investigating possible semantics for resends where
the name of the message is changed, so that both ambiguously-inherited methods can be invoked.

As demonstrated by Self, supporting both undirected and directed resends is preferable to just
supporting directed resends as does C++ and Trellis, since the resending code does not need to be
changed if the local inheritance graph is adjusted. Since CLOS does not admit the possibility of
ambiguity, it need only support undirected resends (i.e.,call-next-method); there is no need
for directed resends.

2.9 Files and Include Declarations

The current UW Cecil implementation is file-based. The compiler is given a single file name,
naming the file containing the program to compile. To include other files into the program, a file
can include an include declaration, at the global scope:

include_decl ::= “include” file_name “;”

file_name ::= string

included_file ::= top_decl_block

The effect of an include declaration is to include the declarations from the named file into the
current scope. The named file must have the syntax of a single declaration block. File inclusion is
idempotent: redundant inclusions of a file into a particular scope have no effect.

2.10 Pragmas

Pragmas can be used by the Cecil programmer to provide additional information and
implementation directives to the Cecil implementation. The set of recognized pragmas and their
interpretation is implementation-dependent. A description of some of the pragmas supported by the
UW Cecil implementation is provided in its documentation.

Pragmas are written as follows:

pragma ::= “(**” expr “**)”

39

The body of a pragma uses the syntax of a Cecil expression, but its interpretation is different (and
implementation-dependent). Currently, pragmas may appear as part of most Cecil declarations. In
the future, pragmas will likely be able to be provided for any declaration and any expression.

40

3 Static Types

Cecil supports a static type system which is layered on top of the dynamically-typed core language.
The type system’s chief characteristics are the following:

• Type declarations specify the interface required of an object stored in a variable or returned
from a method, without placing any constraints on its representation or implementation.

• Argument specializers for method dispatching are separate from type declarations, enabling the
type system to contain as special cases type systems for traditional single-dispatching and non-
object-oriented languages.

• Code inheritance can be distinct from subtyping, but the common case where the two are
parallel requires only one set of declarations.

• The type checker can detect statically when a message might be ambiguously defined as a result
of multiple inheritance or multiple dispatching. It does not rely on the absence of ambiguities
to be correct.

• The type system can check programs statically despite Cecil’s classless object model.

• Type declarations are optional, providing partial language support for mixed exploratory and
production programming.

• Parameterized objects, types, and methods support flexible forms of parametric polymorphism,
complementing the inclusion polymorphism supported through subtyping.

This section describes Cecil’s static type system in the absence of parameterization; section 4
extends this section to cope with parameterized objects and methods. Section 3.1 presents the
major goals for the type system. Section 3.2 presents the overall structure of the type system.
Sections 3.3, 3.4, and 3.5 describe the important kinds of declarations provided by programmers
that extend the base dynamically-typed core language described in section 2. Sections 3.6, 3.7, 3.8,
and 3.9 detail the type-checking rules for the language. Section 3.10 describes how the language
supports mixed statically- and dynamically-typed code.

3.1 Goals

Static type systems historically have addressed many concerns, ranging from program verification
to improved run-time efficiency. Often these goals conflict with other goals of the type system or
of the language, such as the conflict between type systems designed to improve efficiency and type
systems designed to allow full reusability of statically-typed code.

The Cecil type system is designed to provide the programmer with extra support in two areas:
machine-checkable documentation and early detection of some kinds of programming errors. The
first goal is addressed by allowing the programmer to annotate variable declarations, method
arguments, and method results with explicit type declarations. These declarations help to document
the interfaces to abstractions, and the system can ensure that the documentation does not become
out-of-date with respect to the code it is documenting. Type inference may be useful as a
programming environment tool for introducing explicit type declarations into untyped programs.

41

The Cecil type system also is intended to help detect programming errors at program definition
time rather than later at run-time. These statically-detected errors include “message not
understood,” “message ambiguous,” and “uninitialized field accessed.” The type system is
designed to verify that there is no possibility of any of the above errors in programs, guaranteeing
type safety but possibly reporting errors that are not actually a problem for any particular execution
of the program. To make work on incomplete or inconsistent programs easier, type errors are
considered warnings, and the programmer always is able to run a program that contains type errors.
Dynamic type checking at run-time is the final arbiter of type safety.

Cecil’s type system is not designed to improve run-time efficiency. For object-oriented languages,
the goal of reusable code is often at odds with the goal of efficiency through static type
declarations; efficiency usually is gained by expressing additional representational constraints as
part of a type declaration that artificially limit the generality of the code. Cecil’s type system strives
for specification only of those properties of objects that affect program correctness, i.e., the
interfaces to objects, and not of how those properties are implemented. To achieve run-time
efficiency, Cecil relies on advanced implementation techniques [e.g., Dean & Chambers 94, Dean
et al. 95a, Deanet al. 95b, Groveet al. 95, Grove 95].

Finally, Cecil’s type system isdescriptive rather thanprescriptive. The semantics of a Cecil
program are determined completely by the dynamically-typed core of the program. Type
declarations serve only as documentation and partial redundancy checks, and they do not influence
the execution behavior of programs. This is in contrast to some type systems, such as Dylan’s,
where an argument type declaration can mean a run-time type check in some contexts and act as a
method lookup specializer in other contexts.

The design of the Cecil type system is affected strongly by certain language features. Foremost of
these is multi-methods. Type systems for single dispatching languages are based on the first
argument of a message having control, consulting its static type to determine which operations are
legal. In Cecil, however, any subset of the arguments to a method may be specialized, leaving the
others unspecialized. This enables Cecil to easily model both procedure-based non-object-oriented
languages and singly-dispatched object-oriented languages as important special cases, but it also
requires the type system to treat specialized arguments differently than unspecialized arguments.

3.2 Types and Signatures

A type in Cecil is an abstraction of an object. A type represents a machine-checkable interface and
an implied but unchecked behavioral specification, and all objects thatconform to the type must
support the type’s interface and promise to satisfy its behavioral specification. One type may claim
to be asubtype of another, in which case all objects that conform to the subtype are guaranteed also
to conform to the supertype. The type checker verifies that the interface of the subtype conforms
to the interface of the supertype, but the system must accept the programmer’s promise that the
subtype satisfies the implied behavioral specification of the supertype. Subtyping is explicit in
Cecil just so that these implied behavior specifications can be indicated. A type may have multiple
direct supertypes, and in general the explicit subtyping relationships form a partial order. As

42

described in subsection 3.4, additional type constructors plus a few special types expand the type
partial order to a full lattice.

A signature in Cecil is an abstraction of a collection of overloaded methods, specifying both an
interface (a name, a sequence of argument types, and a result type) and an implied but uncheckable
behavioral specification. The interface of a type is defined as the set of signatures that mention that
type as one of their argument or result types.

For example, the following types and signatures describe the interface to lists of integers:

type int_list subtypes int_collection;

signature is_empty(int_list):bool;

signature length(int_list):int;

signature do(int_list, &(int):void):void;

signature pair_do(int_list, int_list, &(int,int):void):void ;

signature prepend(int, int_list):int_list;

Types and signatures represent a contract between clients and implementors that enable message
sends to be type-checked. The presence of a signature allows clients to send messages whose
argument types are subtypes of the corresponding argument types in the signature, and guarantees
that the type of the result of such a message will be a subtype of the result type appearing in the
signature. Any message not covered by some signature will produce a “message not understood”
error. Signatures also impose constraints on the implementations of methods, in order to make the
above guarantees to clients. The collection of methods implementing a signature must be
conforming, complete, andconsistent:

• Conformance implies that each method implementing a signature has unspecialized argument
types that are supertypes of the corresponding argument types of the signature and a result type
that is a subtype of the signature’s result type; conformance is Cecil’s version of the standard
contravariance rule found in singly-dispatched statically-typed languages.

• Completeness implies that the methods must handle all possible argument types that might
appear at run-time as an argument to a message declared legal by the signature.

• Consistency implies that the methods must not be ambiguous for any combination of run-time
arguments.

Checking completeness and consistency is the subject of section 3.6.2.

In a singly-dispatched language, each type has an associated set of signatures that defines the
interface to the type. This association relies on the asymmetry of message passing in such
languages, where only the receiver argument impacts method lookup. When type-checking a
singly-dispatched message, the type of the receiver determines the set of legal operations, i.e., the
set of associated signatures. If a matching signature is found, then the message will be understood
at run-time; the static types of the remaining message arguments is checked against the static
argument types listed in the signature. For Cecil, we wish to avoid the asymmetry of this sort of
type system. Consequently, we view a signature as associated with each of its argument types, not
just the first, much as a multi-method in Cecil is associated with each of its argument specializer

43

objects. For example, theprepend signature above is considered part of both theint type and
the int_list type.

In most object-oriented languages, the code inheritance graph and the subtyping graph are joined:
a class is a subtype of another class if and only if it inherits from that other class. Sometimes this
constraint becomes awkward [Snyder 86], for example when a class supports the interface of some
other class or type, but does not wish to inherit any code. Other times, a class reusing another
class’s code cannot or should not be considered a subtype; covariant redefinition as commonly
occurs in Eiffel programs is one example of this case [Cook 89].

To increase flexibility and expressiveness, Cecil separates subtyping from code inheritance. Types
and signatures can be declared independently of object representations and method
implementations. However, since in most cases the subtyping graphs and the inheritance graphs
are parallel, requiring programmers to define and maintain two separate hierarchies would become
too onerous to be practical. To simplify specification and maintenance of the two graphs, in Cecil
the programmer can specify both a type and a representation, and the associated subtyping,
conformance, and inheritance relations, with a single declaration. Similarly, a single declaration
can be used to specify both a signature and a method implementation. In this way we hope to
provide the benefits of separating subtyping from code inheritance when it is useful, without
imposing additional costs when the separation is not needed.

3.3 Type and Signature Declarations

Variable declarations and formal arguments and results of methods, closures, and fields may be
annotated with type declarations. The syntax of declarations is extended to include some new
declarations:

decl ::= let_decl
| tp_decl
| type_ext_decl
| object_decl
| obj_ext_decl
| predicate_decl
| disjoint_decl
| cover_decl
| divide_decl
| signature_decl
| method_decl
| field_sig_decl
| field_decl
| precedence_decl
| include_decl
| prim_decl

In this and subsequent syntax specifications, changes to specifications as described in section 2 are
in boldface.

The following example illustrates some of the extensions:

object list;

method is_empty(l@:list):bool { l.length = 0 }

signature length(l:list):int;

44

signature do(l:list, closure:&(int):void):void;

signature pair_do(l1:list, l2:list, closure:&(int,int):void):void;

method prepend(x:int, l@:list):list {
object inherits cons { head := x, tail := l } }

method copy_reverse(l:list):list {
let var l2:list := nil;
do(l, &(x:int){ l2 := prepend(x, l2); };
l2 }

representation cons isa list;
field head(@:cons):int;
field tail(@:cons):list;

3.3.1 Type Declarations

New user-defined types are introduced with type declarations of the following form (ignoring
parameterization and encapsulation aspects):

tp_decl ::= “type” name {type_relation} “;”

type_relation ::= “subtypes” types

types ::= type { “,” type }

The new type is considered to be a subtype of each of the types listed in thesubtypes clause.
The induced subtype relation over used-defined types must be a partial order (i.e., it cannot contain
cycles).*

Type names are interpreted in a name space distinct from that of objects and variables and that of
message names. A type, an object, and a method may all be namedlist unambiguously.

3.3.2 Representation and Object Declarations

New user-defined objects are introduced with representation declarations of the following form
(again, ignoring parameterization and encapsulation):

object_decl ::= rep_role rep_kind name {relation} [field_inits] “;”

rep_kind ::= “representation” declares an object implementation
| “object” declares an object type and implementation

relation ::= “subtypes” types impl conforms to type, type subtypes from type
| “inherits” parents impl inherits from impl
| “isa” parents impl inherits from impl, type subtypes from type

Representation roles will be described in section 3.5.

If the representation keyword is used, the declaration introduces a new object
representation. This object inherits from the objects named in eachinherits clause and
conforms to the types named in eachsubtypes clause. As mentioned in section 2.1.1, the
inheritance graph cannot have cycles.

An isa clause is syntactic sugar for both asubtypes clause and aninherits clause, i.e.,
sugar for the case where inheritance and subtyping are parallel. So the following declaration

* It is not strictly necessary to restrict subtyping to a partial order. Cycles in the subtypes relation could be allowed,
producing a preorder over types instead of a partial order. This would have any type in a cycle being a subtype of and
therefore substitutable for every other type in the cycle. In essense, all types in a cycle would be equivalent as far as
the type checker was concerned.

45

representation cons isa list;

is syntactic sugar for the declaration

representation cons inherits list subtypes typeof(list);

where typeof(list) represents the most-specific type(s) to which thelist object conforms
(typeof is not legal Cecil syntax).

If the object keyword is used, then the declaration is syntactic sugar for the pair of an object
representation declaration and a type declaration. A declaration of the form

object name inherits namei1, namei2, ..., namein
subtypes names1, names2, ..., namesm
isa nameb1, nameb2, ..., namebk ;

is syntactic sugar for the following two declarations:

type name subtypes names1, names2, ..., namesm,
typeof(nameb1), typeof(nameb2), ..., typeof(namebk) ;

representation name
inherits namei1, namei2, ..., namein, nameb1, nameb2, ..., namebk
subtypes name ;

Both the object and the type have the same name, but there is no potential for ambiguity since
object and type names are resolved in separate name spaces. The new type subtypes from all the
types listed in thesubtypes clause and from the types to which the objects in theisa clause of
the original declaration conform. The new object representation conforms to the new type and
inherits from the object representations listed in theinherits andisa clauses of the original
declaration.

Theobject andisa syntactic sugars are designed to make it easy to specify the inheritance and
subtyping properties of an object/type pair for the common case that code inheritance and
subtyping are parallel. We expect that in most programs, onlyobject andisa declarations will
be used;type , representation , inherits , andsubtypes declarations are intended for
relatively rare cases where finer control over inheritance and subtyping are required.

Object constructor expressions are similarly extended with representation roles, representation
kinds, and subtyping relationships:

object_expr ::= rep_role rep_kind {relation} [field_inits]

In an object constructor expression, both therepresentation keyword and theobject
keyword have the same effect; the presence or absence of an anonymous type is immaterial.

Representations often add new, implementation-specific operations. For example, thecons
representation defined earlier introduced thehead andtail fields. To be able to send messages
that access these new features, a type must exist that includes the appropriate signatures. Ifcons
were only a representation, then a separate type would need to be defined that included signatures
for head andtail . To avoid this extra step, arepresentation declaration, like anobject
declaration, introduces a corresponding type. Unlike an object declaration, however, the type
derived from a representation declaration is anonymous. It can only be referenced indirectly
through thetypeof internal function that specifies the semantics of theisa and@: syntactic sugars

46

(section 3.3.5 describes the@: sugar). Consequently, no variables or unspecialized formals may
be declared to be of the anonymous type, and no types may be declared to be subtypes of the
anonymous type. This enables object representations to be defined that are not treated as first-class
types; the programmer has control over which types are intended to be used in type declarations.

3.3.3 Type and Object Extension Declarations

As described in section 2.1.3, objects can be extended with new inheritance relations after they
have been defined. In a similar fashion, types can be extended with new subtyping relations using
type extension declarations of the following form:

type_ext_decl ::= “extend” “type” named_type {type_relation} “;”

The syntax of object extension declarations is extended to support augmenting either just an object
representation or both an representation and a type:

obj_ext_decl ::= “extend” extend_kind named_object
{relation} [field_inits] “;”

extend_kind ::= “representation” extend representation
| [“object”] extend both type and representation

If the extension uses therepresentation keyword, then the named representation is extended
with the appropriate inheritance and conformance relations. Otherwise, both the representation and
the type that are named by the extension are updated. A declaration of the form

extend object name inherits namei1, namei2, ..., namein
subtypes names1, names2, ..., namesm
isa nameb1, nameb2, ..., namebk ;

is syntactic sugar for the following two declarations:

extend type name subtypes names1, names2, ..., namesm,
typeof(nameb1), typeof(nameb2), ..., typeof(namebk) ;

extend representation name
inherits namei1, namei2, ..., namein, nameb1, nameb2, ..., namebk
subtypes name ;

It is an error if there does not exist both a representation and a type with the corresponding name.

Allowing types to be extended externally to have additional supertypes allows third-parties to
integrate separately-developed libraries without modifying the separate libraries directly [Hölzle
93].

3.3.4 Signature Declarations

Signatures can be declared using the following syntax:

signature_decl ::= “signature” method_name
“(” [arg_types] “)” [type_decl] “;”

arg_types ::= arg_type { “,” arg_type }

arg_type ::= [[name] “:”] type

type_decl ::= “:” type

The names of formals in a signature are for documentation purposes only; they do not impact the
meaning of the signature nor do they have any effect during type checking.

47

Signatures can also be declared in a field-like notation, as follows:

field_sig_decl ::= [“var”] “field” “signature” method_name
“(” arg_type “)” [type_decl] “;”

A field signature declaration of the form

var field signature name(type): typeR;

is syntactic sugar for the following two declarations:

signature name(type): typeR;

signature set_ name(type, typeR):void;

A field signature declaration does not require that implementations of the resulting signatures be
fields, only that their interface “looks” like they could be implemented by fields. If thevar
keyword is omitted, then the second set accessor signature is not generated.

3.3.5 Implementation and Method Declarations

The syntax of method implementations is extended in the following way to accommodate static
types:

method_decl ::= impl_kind method_name
“(” [formals] “)” [type_decl]
“{” (body | prim_body) “}” [“;”]

impl_kind ::= [“method”] “implementation” declares a method implementation
| “method” declares a method signature and implementation

specializer ::= [location] [type_decl] specialized formal
| “@” “:” object sugar for@object :object

Formal parameters of the method implementation and the result of the method implementation can
be given explicit type declarations.

If the implementation keyword is used, the declaration introduces a new method
implementation. If, however, themethod keyword alone is used, the declaration is syntactic sugar
for both a method implementation declaration and a signature declaration. A declaration of the
form

method name(x1@obj1: type1, ..., xN@objN: typeN): typeR { body }

is syntactic sugar for the following two declarations:

signature name(type1, ..., typeN): typeR;

implementation name(x1@obj1: type1, ..., xN@objN: typeN): typeR { body }

As explained in section 2.2.1, if any of theobji are omitted, they default toany .

A formal in a method or field declaration can be specified with thex@:object syntax. This syntax
is shorthand forx@object: typeof(object) .

3.3.6 Field Implementation Declarations

Field implementation declarations are similarly extended to accommodate static types:

field_decl ::= [“shared”] [“var”] “field” field_kind method_name
“(” formal “)” [type_decl] [“:=” expr] “;”

48

field_kind ::= empty declare accessor method impl(s) and sig(s)
| “implementation” declare just accessor method implementation(s)

If the implementation keyword is used, then the declaration introduces a field get accessor
method implementation, and also a set accessor method implementation if the field is declared with
thevar keyword. The result type of the field is used as the type of the second argument of the set
accessor method; the result type of the set accessor method isvoid .

If the plain field keyword is used, then the field declaration is syntactic sugar for a field
implementation declaration and a field signature declaration. A field declaration of the form

shared? var? field name(x@obj: type): typeR := expr;

whereshared? is either theshared keyword or empty andvar? is thevar keyword or empty, is
syntactic sugar for the following declarations:

shared? var? field implementation name(x@obj: type): typeR := expr;

var? field signature name(type): typeR;

The field signature declaration is itself syntactic sugar for one or two signature declarations,
depending on whether thevar keyword was used.

3.3.7 Other Type Declarations

In addition to allowing the formals and results of methods and fields to be annotated with explicit
type declarations, variable declarations and closure arguments and results can be annotated with
explicit type declarations:

let_decl ::= “let” [“var”] name [type_decl] “:=” expr “;”

closure_expr ::= [“&” “(” [closure_formals] “)” [type_decl]] “{” body “}”

closure_formal ::= [name] [type_decl] formal names are optional, if never referenced

If the result type of a closure is omitted, instead of defaulting todynamic as described in section
3.4.1, the result type is inferred from the type of the result expression in the closure’s body.
Similarly, if the type of a constant local variable is omitted, it is inferred from the type of its
initializing expression; mutable variables and global variables should be given explicit types to
avoid dynamic type checking.

3.3.8 Discussion

Subtyping and conformance in Cecil is explicit, in that the programmer must explicitly declare that
an object conforms to a type and that a type is a subtype of another type. These explicit declarations
are verified as part of type checking to ensure that they preserve the required properties of
conformance and subtyping. Explicit declarations are used in Cecil instead of implicit inference of
the subtyping relations (structural subtyping) for two reasons. One is to provide programmers with
error-checking of their assumptions about what objects conform to what types and what types are
subtypes of what other types. Another is to allow programmers to encode additional semantic
information in the use of a particular type in additional to the information implied by the type’s
purely syntactic interface. Both of these benefits are desirable as part of Cecil’s goal of supporting
production of high-quality software. To make exploratory programming easier, a programming
environment tool could infer the greatest possible subtype relationships (i.e., the implicit

49

“structural” subtyping relationships) for a particular object and add the appropriate explicit subtype
declarations automatically.

Separating subtyping from implementation inheritance increases the complexity of Cecil. A
simpler language might provide only subtyping, and restrict objects to inherit code only from their
supertypes; Trellis takes this approach, for example. However, there is merit in clearly separating
the two concepts, and allowing inheritance of code from objects which are not legal supertypes.
Studies have found this to be fairly common in dynamically-typed languages [Cook 92]. With the
current Cecil design, the only way that an object might not be a legal (structural) subtype of an
object from which it inherits is if the child overrides a method of the parent and restricts at least
one argument type declaration, a relatively rare occurrence. However, Cecil may eventually
support filtering and transforming operations as part of inheritance, such as the ability to exclude
operations, to rename operations, or to systematically adjust the argument types of operations, and
so would create more situations in one object would inherit from another without being a subtype.

Types cannot have default implementations; only object representations can have methods
attached. In other languages, such as Axiom (formerly Scratchpad II) [Wattet al., Jenks & Sutor
92], default implementations can be stored with the type (called thecategory in Axiom). However,
in Axiom method lookup rules are complicated by the possibility of methods being inherited both
from superclasses and from categories, i.e., along both inheritance and subtyping links. Cecil’s
inheritance rules are simplified by only searching the inheritance graph. We expect that most type-
like entities will actually be declared using theobject form so that there is a corresponding
representation to hold any default method implementations.

3.4 Special Types and Type Constructors

The syntax of types (excluding parameterization) is as follows:

type ::= named_type
| closure_type
| lub_type
| glb_type
| “(” type “)” just for grouping

3.4.1 Named Types

Types with names can be directly named:

named_type ::= name

As described in section 3.3.1, type names are resolved in a name space distinct from the names of
variables and objects and of methods.

In addition to user-defined types introduced throughtype andobject declarations, the Cecil
type system includes four special predefined types:

• The typevoid is used as the result type of methods and closures that do not return a result. All
types are subtypes ofvoid , enabling a method that returns a result to be used in a context
where none is required. The typevoid may only be used when declaring the result type of a
method or closure. The predefined objectvoid has typevoid .

50

• The typeany is implicitly a supertype of all types other thanvoid ; any may be used
whenever a method does not require any special operations of an object.

• The typenone is implicitly a subtype of all other types, thus defining the bottom of the type
lattice. It is the result type of a closure that terminates with a non-local return, since such a
closure never returns to its caller. It also is the result type of the primitiveloop method, which
also never returns normally. Finally,none is an appropriate argument type for closures that
will never be called.

• The typedynamic is used to indicate run-time type checking. Wherever type declarations are
omitted,dynamic is implied (with the exception of closure results and constant local variable
declarations, as described in section 3.3.7). Thedynamic type selectively disables static type
checking, in support of exploratory programming, as described in section 3.10.

3.4.2 Closure Types

The type of a closure is described using the following syntax:

closure_type ::= “&” “(” [arg_types] “)” [type_decl]

(The syntax ofarg_types is specified along with signatures in section 3.3.4.)

A closure type of the form

&(t 1, ... , t N): t R

describes a closure whoseeval method has the signature:

signature eval(&(t 1, ... , t N): t R, t 1, ... , t N): t R

Closure types are related by implicit subtyping rules that reflect standard contravariant subtyping:
a closure type of the form&(t1, ..., tN): tR is a subtype of a closure type of the form
&(s1, ..., sN): sR iff eachti is a supertype of the correspondingsi andtR is a subtype ofsR.

3.4.3 Least-Upper-Bound Types

The least upper bound of two types in the type lattice is notated with the following syntax:

lub_type ::= type “|” type

The typetype1 | type2 is a supertype of bothtype1 andtype2, and a subtype of all types that are
supertypes of bothtype1 andtype2. Least-upper-bound types are most useful in conjunction with
parameterized types, described in section 4.

3.4.4 Greatest-Lower-Bound Types

The greatest lower bound of two types is notated with the following syntax:

glb_type ::= type “&” type

The typetype1 & type2 is a subtype of bothtype1 andtype2, and a supertype of all types that are
subtypes of bothtype1 and type2. Syntactically, the greatest-lower-bound type constructor has
higher precedence than the least-upper-bound type constructor.

Note that the greatest-lower-bound of two types is different than a named type that is a subtype of
the two types. For example,

51

type1 & type2

is a different type than the type introduced by the declaration

type type3 subtypes type1, type2;

The typetype3 is a subtype oftype1 & type2 (all types that subtype bothtype1 andtype2
are automatically subtypes oftype1 & type2), but not identical to it. The reason is that the
programmer might later define atype4 type:

type type4 subtypes type1, type2;

The typetype4 is also a subtype oftype1 & type2 , but type3 andtype4 are different and
in fact mutually incomparable under the subtype relation. The two types are different because
named types include implicit behavioral specifications, and the implication of the two separate type
declarations is that the implied behavioral specifications oftype3 andtype4 are different.

Thevoid , any , andnone special types and the greatest-lower-bound and least-upper-bound type
constructors serve to extend the explicitly-declared type partial order generated from type and
object declarations to a full lattice.

3.5 Object Role Annotations

Because Cecil is classless, objects are used both as run-time entities and as static, program structure
entities. Some objects, such asnil and objects created at run-time through object constructor
expressions, are manipulated at run-time and can appear as arguments to messages at run-time.
Such concrete objects are required to have all the signatures in their types be supported by
corresponding method implementations and all their fields be initialized. In contrast, objects such
ascons andlist are not directly manipulated at run-time. Instead, they help organize programs,
providing repositories for shared methods and defining locations in the type lattice. In return for
restricted usage, suchabstract objects are not required to have their fields fully initialized nor their
signatures fully implemented.

To inform the type checker about the part played by an object, its declaration is prefixed with an
object representation role annotation:

rep_role ::= “abstract” only inherited from by named objects;
allowed to be incomplete

| “template” only inherited from or instantiated;
uninitialized fields allowed

| “concrete” directly usable;
must be complete and initialized

| [“dynamic”] directly usable;
no static checks

Each of these role annotations appears in the list hierarchy:

abstract object list isa collection;

template representation cons isa list;

concrete representation nil isa list;

Abstract objects are potentially incomplete objects designed to be inherited from and fleshed out
by other objects. Abstract objects need not have all their signatures fully implemented nor their
fields initialized. For example, thelist object is not required to implement thedo signature

52

defined for the typelist ; the implementation of this operation is deferred to children. Because an
abstract object may be incomplete, it cannot be used directly at run-time, nor can it appear as a
parent in an object constructor declaration. Abstract objects are similar to abstract classes in class-
based languages.

Template objects are complete objects suitable for direct “instantiation” by object constructor
expressions, but are not allowed to be used directly as a value at run-time. Because new method
implementations cannot be specified for anonymous objects, all the signatures specified as part of
the type of a template object are required to be fully implemented. For example, thecons object
is required to fully implement alllist operations, includingdo . However, because template
objects will not be sent messages at run-time, they are not required to have their fields initialized.
Thecons object is not required to have itshead andtail fields initialized. Template objects are
analogous to concrete classes in class-based languages.

Concrete objects are complete, initialized objects that can be manipulated at run-time. Like
template objects, all signatures must be implemented, and in addition all fields must be initialized,
either as part of the field declaration or as part of the object declaration or object constructor
expression. Like other named objects, named concrete objects can be inherited from as well. (The
child object’s role can revert to abstract or template.) Anonymous concrete objects correspond to
instances in class-based languages; named concrete objects have no direct analogue and are a
feature of Cecil’s object model.

If the object role annotation isdynamic or omitted, the object is considered fully manipulable by
programs but no static checks for incomplete implementation of signatures or uninitialized fields
are performed. (The appropriate checks will be made dynamically, as messages are sent and fields
accessed.) Dynamic objects are designed to support exploratory programming, as discussed in
section 3.10.

Since object constructor expressions create objects to be used at run-time, neitherabstract nor
template annotations are allowed on object constructor expressions.

Object role annotations help document explicitly the programmer’s intended uses of objects. Other
languages provide similar support. C++ indirectly supports differentiating abstract from concrete
classes through the use of pure virtual functions and private constructors. Eiffel supports a similar
mechanism through its deferred features and classes mechanism. Cecil’sabstract annotation is
somewhat more flexible than these approaches, since an object can be labeledabstract
explicitly, even if it has no abstract methods. Such a declaration can be useful to prevent direct
instantiation of the object, perhaps because the method implementations are mutually recursive in
a way where subclasses are expected to override at least one of the methods to break the recursion.

In an earlier version of Cecil, a fifth annotation,unique , could be used to document the fact that
an object was unique. For example,nil , true , andfalse all were annotated as unique objects.
While the exact semantics ofunique was unclear, a plausible interpretation could be that a unique
object is like a concrete object except that it could not be used as a parent in an object constructor
expression (i.e., it could not be “instantiated” or “copied”). Unique objects could still be inherited
from in object declarations, since they might have useful code to be inherited. Unique objects were

53

removed because it was felt that the extra language mechanism was not worthwhile. The
template annotation may be removed for a similar reason, since it is not strictly necessary for
the type checker, but the distinction between abstract and template objects appears to be useful for
documenting the programmer’s intentions. The distinction between abstract objects and concrete
objects, however, is crucial to being able to write and type-check realistic Cecil code.

3.6 Type Checking Messages

This section describes Cecil’s type checking rules for message sends and method declarations.
Section 3.7 describes type checking for other, simpler kinds of expressions. Parameterized types
are described in section 4.

In Cecil, all control structures, instance variable accesses, and basic operators are implemented via
message passing, so messages are the primary kind of expression to type-check. For a message to
be type-correct, there must be a single most-specific applicable method implementation defined for
all possible argument objects that might be used as an argument to the message. However, instead
of directly checking each message occurring in the program against the methods in the program,
in Cecil we check messages against the set of signatures defined for the argument types of the
message, and then check that each signature in the program is implemented conformingly,
completely, and consistently by some group of methods.

Using signatures as an intermediary for type checking has three important advantages. First, the
type-checking problem is simplified by dividing it into two separable pieces. Second, checking
signatures enables all interfaces to be checked for conformance, completeness, and consistency
independent of whether messages exist in the program to exercise all possible argument types.
Finally, signatures enable the type checker to assign blame for a mismatch between implementor
and client. If some message is not implemented completely, the error is either “message not
understood” or “message not implemented correctly.” If the signature is absent, it is the former,
otherwise the latter. Signatures inform the type checker (and the programmer) of the intended
interfaces of abstractions, so that the system may report more informative error messages. Of
course, the “missing signature” error is sometimes the appropriate message to report, but the type
checker cannot accurately distinguish this from the “message not understood” alternative.

Subsection 3.6.1 describes checking messages against signatures, and subsection 3.6.2 describes
checking signatures against method implementations.

3.6.1 Checking Messages Against Signatures

Given a message of the formname(expr1, ..., exprN) , where eachexpri type-checks and has static
typeTi, the type checker uses theTi to locate all signatures of the formname(S1, ..., SN): SR where
each typeSi is a supertype of the correspondingTi. If this set of applicable signatures is empty, the
checker reports a “message not understood” error. Otherwise, the message send is considered type-
correct.

To determine the type of the result of the message send, the type system calculates the most-
specific result type of any applicable signature. This most-specific result type is computed as the
greatest lower bound of the result types of all applicable signatures. In the absence of other type

54

errors, this greatest lower bound will normally correspond to the result type of the most-specific
signature.

To illustrate, consider the messagecopy(some_list) , where the static type ofsome_list is
list . The following types and signatures are assumed to exist:

type collection;

type list subtypes collection;

type array subtypes collection;

signature copy(collection):collection;

signature copy(list):list;

signature copy(array):array;

The signaturecopy(array):array is not applicable, sincelist , the static type of
some_list , is not a subtype ofarray . The dynamic type ofsome_list might turn out to
conform toarray at run-time (e.g., if there were some data structure that was both alist and
anarray), but the static checker cannot assume this and so must ignore that signature. The first
two signatures do apply, so thecopy message is considered legal. The type of the result is known
to be both alist and acollection . The greatest lower bound of these two islist , so the
result of thecopy message is of typelist .

Unlike method dispatching, it is acceptable for more than one signature to be applicable to a
message. Signatures are contracts that clients can assume, and if more than one signature is
applicable, then the client can assume more guarantees about the type of the result. The greatest
lower bound is used to calculate the message’s result type, rather than the least upper bound,
because each signature can be assumed to be in force. At run-time, a method will be selected, and
that method will be required to honor the result type guarantees of all the applicable signatures, and
so the target method implementation will return an object that conforms to the result types of all
the applicable signatures, i.e., the greatest lower bound of these signatures. In common practice,
some most-specific signature’s result type will be the greatest lower bound, such as thelist type
selected above.

3.6.2 Checking Signatures Against Method Implementations

The type checker ensures that, for every signature in the program, all possible messages that could
be declared type-safe by the signature would in fact locate a single most-specific method with
appropriate argument and result type declarations, given the current set of representation and type
declarations in the program. This involves locating all methods to which the signature is applicable
(i.e., all those that could be invoked by a message covered by the signature) and ensuring that they
conformingly, completely, and consistently implement the signature.

More precisely:

• A signature is consideredapplicable to a method iff they have the same name and number of
arguments and there exists some sequence of argument objects that both inherits from the
specializers of the method and conforms to the argument types of the signature. Abstract
objects are not included when considering possible argument objects, since they are not
required to be complete implementations and are restricted from being manipulated at run-

55

time. (This is the key distinction between abstract and non-abstract objects.) Template objects
are included, since they are required to fully implement all applicable signatures.

• A methodconforms to a signature iff

• for each formal, all objects that inherit from the formal’s specializer and conform to the
signature’s corresponding argument type also conform to the formal’s declared type (for
unspecialized formals, this constraint amounts to requiring that the formal’s type is a
supertype of the signature argument’s type), and

• the method’s result type is a subtype of the signature’s result type.

• A set of methodscompletely implement a signature iff, for each possible sequence of argument
objects that conforms to the argument types in the signature, there exists at least one method in
the set that is applicable to the argument objects, i.e., where the argument objects inherit from
the method’s specializers.

• A set of methodsconsistently implement a signature iff, for each possible sequence of argument
objects that conforms to the argument types in the signature, there exists a single most-specific
applicable method in the set.

Conformance of a method against a signature can be checked in isolation of any other methods and
signatures in the program. However, in the presence of multi-methods, it is not possible to check
individual methods in isolation for completeness and consistency, since interactions among multi-
methods can introduce ambiguities where none would exist if the multi-methods were not jointly
defined within one program.

To type-check in the presence of Cecil’s prototype-based object model,object representatives are
extracted from the program. Each named template, concrete, and dynamic object is considered a
distinct object representative, and each static occurrence of an object constructor expression is
considered an object representative. A finite number of representatives are extracted from any
given program. Representatives are then used as the potential run-time argument objects when
testing whether a signature is applicable to a method and whether a set of methods completely and
consistently implement a signature. The object representative for an object constructor expression
acts as a proxy for all the objects created at run-time by executing that object constructor
expression. Since each object created by a particular object constructor expression inherits the
same set of methods and has the same type, only one representative need be checked to ensure type
safety of all objects created by the object constructor expression at run-time. Object representatives
are analogous to concrete classes in a class-based language and maps in the Self implementation
[Chamberset al. 89].

Conceptually, for each signature, the type checker enumerates all possiblemessage representatives
that are covered by the signature, where the arguments to the message representative are object
representatives that conform to the signature’s argument types. (A much more efficient algorithm
to perform this checking is described elsewhere [Chambers & Leavens 94].) For each message
representative, the type checker simulates method lookup and checks that the simulated message
would locate exactly one most-specific method. If no method is found, the type checker reports a
“signature implemented incompletely” error. If multiple mutually ambiguous methods are found,
the type checker reports a “signature implemented inconsistently” error. Otherwise, the single

56

most-specific method has been found for the message representative. In this case, the type checker
also verifies that the argument object representatives conform to the declared argument types of the
target method and that the declared result type of the method is a subtype of the signature’s result
type. If all these tests succeed, then all run-time messages matching the message representative are
guaranteed to execute successfully.

For example, consider type-checking the implementation of the following signature:

signature pair_do(collection, collection, &(int,int):void):void;

The type checker would first collect all object representatives that conform tocollection and
all those that conform to&(int,int):void . For a small system, thecollection -
conforming object representatives might be the following:

representation nil inherits list;

representation cons inherits list;

representation inherits cons;

representation array inherits collection;

Thelist andcollection objects are not enumerated because they areabstract . The third
representative is extracted from the object constructor expression in theprepend method. A
single object representative stands for the closure object.

Once the applicable object representatives are collected, the type checker enumerates all possible
combinations of object representatives conforming to the argument types in the signature to
construct message representatives. These message representatives are the following:

pair_do(nil,nil,closure);

pair_do(nil,cons,closure);

pair_do(nil, representation inherits cons,closure);

pair_do(nil,array,closure);

pair_do(cons,nil,closure);

pair_do(cons,cons,closure);

...

pair_do(array, representation inherits cons,closure);

pair_do(array,array,closure);

For each message representative, method lookup is simulated to verify that the message is
understood, that the declared argument types are respected, and that the target method returns a
subtype of the signature’s type.

3.6.3 Comparison with Other Type Systems

For singly-dispatched languages, most type systems apply contravariant rules to argument and
result types when checking that the overriding method can safely be invoked in place of the
overridden method: argument types in the overriding method must be supertypes of the
corresponding argument types of the overridden method, while the result type must be a subtype.
Cecil’s type system does not directly compare one method against another to enforce contravariant
redefinition rules, but instead compares one method against an applicable signature to enforce
contravariant rules for non-specialized arguments. In Cecil terms, in a singly-dispatched language

57

a signature is inferred from the superclass’s method, and then all subclass methods (i.e., those
methods that are applicable to the signature) are checked for conformance to the signature.

Specialized arguments need not obey contravariant restrictions. The type of a specialized argument
for one method can be a subtype of the type of the corresponding argument for a more general
method. This does not violate type safety because run-time dispatching will guarantee that the
method will only be invoked for arguments that inherit from the argument specializer, and the static
type checker has verified that all objects that inherit from the specializer also conform to the
specialized argument’s type. Unspecialized arguments cannot safely be covariantly redefined,
because there is no run-time dispatching on such arguments ensuring that the method will only be
invoked when the type declaration is correct.

Singly-dispatched languages make the same distinction between specialized and unspecialized
arguments implicitly in the way they treat the type of the receiver. For most singly-dispatched
languages, the receiver argument is omitted from the signatures being compared, leaving only
unspecialized arguments and hence the contravariant redefinition rule. If the receiver type were
included as an explicit first argument, it would be given special treatment and allowed to differ
covariantly. (In fact, it must, since the receiver’s type determines when one method overrides
another!) For Cecil, any of the arguments can be specialized or unspecialized, requiring us to make
the distinction explicit. If all methods in a Cecil program specialized on their first argument only,
Cecil’s type checking rules would reduce to those found in a traditional singly-dispatched
language.

Few multiply-dispatched languages support static type systems. Two that are most relevant are
Polyglot [Agrawalet al. 91] and Kea [Mugridgeet al. 91]. In both of these systems, type checking
of method consistency and completeness requires that all “related” methods (all methods in the
same generic function in Polyglot and all variants of a function in Kea) be available to the type
checker, just as does Cecil. Neither Polyglot nor Kea distinguishes subtyping from inheritance nor
interfaces from implementations. Additionally, neither Polyglot nor Kea supports a notion of
abstract classes that are not required to be completely implemented but that include some notion
of an operation that is expected to be implemented by subclasses; signatures play this role in Cecil.

3.6.4 Type Checking Inherited Methods

Cecil does not require that a method be re-type-checked when inherited by a descendant, even if
that descendant is not a subtype. This feat is accomplished by verifying that all descendant objects
conform to the declared type of the corresponding formal of the inherited method. If the declared
type is the type of the specializer, such as would arise with a type declaration using the@: syntax,
then all descendant objects are required to be subtypes of the specializer as well. This may be
constraining. For example, consider the followingset andbag implementation fragments:

template object bag isa unordered_collection;
field elems(@:bag):list;
method add(b@:bag, x:int):void {

b.elems := cons(b.elems, x); }
method includes(b@:bag, x:int):bool {

b.elems.includes(x) }
...

58

template object set isa unordered_collection inherits bag;
method add(s@:set, x:int):void {

if_not(includes(s, x), { resend(s, x) }) }

Here the type checker would report an error, sinceset inherits frombag but is not a subtype,
violating the conformance requirements forbag ’s elems , add , andincludes methods.* In this
case, a new typebag_like_object could be created that understood theelems and
set_elems messages and theb formal of thebag add and includes methods should be
changed to be of this type:

abstract object bag_like_object;
field elems(@:bag_like_object):list;

template object bag isa unordered_collection, bag_like_object;
method add(b@bag:bag_like_object, x:int):void {

b.elems := cons(b.elems, x); }
method includes(b@bag:bag_like_object, x:int):bool {

b.elems.includes(x) }
...

template object set isa unordered_collection, bag_like_object inherits bag;
method add(s@set:bag_like_object, x:int):void {

if_not(includes(s, x), { resend(s, x) }) }

The programmer could go further and move many of thebag operations into the
bag_like_object . Eventually,set would simply inherit frombag_like_object , not
bag . In this situation, all inheritance links would parallel subtyping links, and the two would not
need to be distinguished.

If such reorganizations can always be made satisfactorily, with the resulting inheritance and
subtyping graphs parallel, then it may not be necessary to separate inheritance from subtyping in
the language. However, such an approach may not always be feasible. Creating the intermediate
bag_like_object is somewhat tedious; the original code was easy to read and dynamically
type-safe. Moreover, the implementation ofbag might be written independently and not under
control of the programmer buildingset . In these cases, simply reusing the implementation ofbag
for set is convenient. Unfortunately, Cecil’s type rules currently seem to prevent the simple
solution. One alternative would simply be to re-type-check a method whenever it was inherited by
an object that was not also a subtype. The@: notation could be interpreted as indicating that this
sort of re-type-checking was to be done. Re-type-checking would require access to at least part of
the inherited method’s source code, however. Another alternative would be to relax the
conformance constraint for any object that inherited an overriding method. In this example, the
bag add method would not need to be rewritten, since theset add method “shadows” it for the
only descendant object that is not also a subtype; theincludes method would still need to be
rewritten. Also, the resend in the set add method would become type-incorrect, since it is passing
an argument of typeset to a method expecting an argument of typebag . This alternative is close
to the idea of encapsulating the use of inheritance from clients, as with private inheritance in C++.

* Sets are not subtypes of bags since sets do not support the behavioral specification of bags. A client could detect the
difference between a set and a bag by adding the same element twice to an unordered collection and testing how much
the size of the collection changed.

59

We consider the separation of subtyping from inheritance, when coupled with the desire to avoid
retypechecking methods when inherited, to be an important area for future work.

3.7 Type Checking Expressions, Statements, and Declarations

Type checking an expression or statement determines whether it is type-correct, and if type-correct
also determines the type of its result. Type checking a declaration simply checks for type
correctness. All constructs are type-checked in a typing context containing the following
information:

• a binding for each variable or object name in scope to either:

• the variable’s declared type and an indication of whether the variable binding is assignable
or constant, or

• to an object with a role annotation and a set of conformed-to types.

• the set of inheritance relations currently in scope;

• a binding for each type name in scope to the corresponding type;

• the set of subtyping relations currently in scope;

• the set of signatures currently in scope (for type checking messages);

• the set of method declarations currently in scope (for type checking resends).

The type checking rules for expressions are as follows:

• A literal constant is always type-correct. The type of the result of a literal constant is the
corresponding predefined type.

• A referencename is type-correct iffname is defined in the typing context (i.e., if there exists a
declaration of that name earlier in the same scope or in a lexically-enclosing scope) as either a
variable or an object. If a variable, then the reference is type-correct, with the type of the result
being the associated type of the variable in the typing context. If an object, then the reference
is type-correct iff the object is a concrete or dynamic object, with the type of the result being
the type of the named object.

• An object constructor expression of the general form
role-annotation object inherits parent1, ..., parentK

subtypes supertype1, ..., supertypeL
isa parent-and-supertype1, ..., parent-and-supertypeM
{ field1@obj1 := expr1, ..., fieldN@objN := exprN }

is type-correct iff:

• eachparenti name is bound to a non-abstract non-void object in the typing context;

• eachsupertypei notates a type other thannone in the current typing context;

• eachparent-and-supertypej name is bound to a non-abstract non-void object in the typing
context;

• if @obji is present, thenobji names an ancestor of the newly created object (if absent, it is
considered to be the same as the newly created object);

• eachfieldi names a fieldFi specialized on or inherited unambiguously byobji, ignoring any
overriding methods, andFi is notshared ;

60

• eachexpri is type-correct, returning an object of static typeTi, andTi is a subtype of the type
of the contents of the fieldFi;

• no fieldFi is initialized more than once;
• role-annotation is neitherabstract nor template ; and
• if role-annotation is concrete , then there do not exist any fields specialized on or

inherited by the newly created object that do not have a default initial value and are not
initialized as part of the object creation expression.

The representation keyword may be used in place of theobject keyword without
effect. The type of the result of an object constructor expression is a new anonymous type that
is a subtype of each of thesupertypei types and each of the types of theparent-and-supertypej
objects.

• A closure constructor expression of the general form
&(x1: type1, ..., xN: typeN): typeR { body }

is type-correct iff:

• thexi, where provided, are distinct;
• each of thetypei, if provided, notates a non-void type in the current typing context;
• typeR, if provided, notates a type in the current typing context;
• body is type-correct, checked in a typing context constructed by extending the current

typing context with constant variable bindings for each of thexi to the corresponding type
typei; and

• the type of the result ofbody is a subtype oftypeR, if provided; if : typeR is omitted, then
typeR is inferred to be the type of the result ofbody.

The type of the result of a closure constructor expression of the above form is
&(type1, ..., typeN): typeR.

• A vector constructor expression of the general form[expr1, ..., exprN] type-correct iff each of
theexpri is type-correct, with static typeTi which is notvoid . The type of the result of a vector
constructor expression is the predefined parameterized typei_vector instantiated with the
least upper bound of theTi. (See section 4 for information on parameterized types.)

• A message expression of the general formname(expr1, ..., exprN) is type-correct iff:

• each of theexpri is type-correct, with static typeTi which is notvoid ;* and
• the setS = {S1, ..., SM} of applicable signatures is non-empty, whereS is the set of

signatures in the current typing context of the formSi = signature name(ti1, ...,
tiN): tiR where eachTi is a subtype ofti.

The type of the result of a message is the greatest lower bound of each of the result typestiR of
the applicable signatures. Verifying correctness of the implementation of signatures is
described in subsection 3.6.2.

• A resend expression of the general form
resend (..., xi@parenti, ..., exprj, ...)

is type-correct iff:

* The check that the argument type is notvoid is not strictly necessary, since no signature will have an argument type
that is a supertype ofvoid .

61

• each of the argumentsxi or expri is type-correct, with static typeTi which is notvoid ;
• the resend is nested textually in the body of a methodM;
• M takes the same number of arguments,N, as does the resend;
• for each specialized formal parameterformali of M, specialized onobjecti, theith argument

to the resend isformali, possibly suffixed with@parenti, andformali is not shadowed with
a local variable of the same name;

• for each unspecialized formal parameterformalj of M, thejth argument to the resend is not
be suffixed with@parentj;

• for each resend argument of the formformali@parenti, parenti is a proper ancestor of
objecti, the specializer offormali, other thanvoid ; and

• when method lookup is simulated with a message name the same asM and with N
arguments, where argumenti is eitherany (if formali of M is unspecialized),parenti (if the
argument of the resend is directed using the@parenti suffix notation), orobjecti, the
specializer offormali (otherwise), and where the resending methodM is removed from the
set of applicable methods in the current typing context, exactly one most-specific target
methodR is located, and the argument type declarations of this target methodSi are
supertypes of the correspondingTi.

The type of the result of a resend expression is the declared result type of the target methodR.

• A parenthetical expression of the form(body) is type-correct iffbody is type-correct. The
type of the result of a parenthetical expression is the type of the result ofbody.

The following rules define type-correctness of statements:

• An assignment statement of the formname:= expr is type-correct iff:

• expr is type-correct, with static typeTexpr;
• name is bound to an assignable variable of typeTname in the current typing context; and
• Texpr is a subtype ofTname.

The type of the result of an assignment statement isvoid .

• A declaration block is type-correct iff its declarations are type-correct, when checked in a
typing context where all names in the declaration block are available throughout the declaration
block. The type of the result of a declaration block isvoid .

• An expression statement is type-correct iff the expression is type-correct, with static typeT.
The type of the result of the expression statement isT.

• A non-local return statement, of the form^ expr, is type-correct iff:

• expr is type-correct, with static typeT;
• the non-local return statement is nested textually inside the body of a methodM; and
• T is a subtype of the declared result type ofM.

The type of the (local) result of a non-local return isnone .

The body of a method, closure, or parenthetical expression is type-correct iff its statements are
type-correct. The type of the result of a body is the type of its last statement, if present, orvoid ,
otherwise.

The following rules define type-correctness of declarations:

62

• A variable declaration of the formlet var name: type := expr, wherevar is eithervar or
empty, is type-correct iff:

• name is not otherwise defined in the same scope;
• type notates a type in the current typing context; and
• expr is type-correct in a typing context wherename and all variables defined later in the

same declaration block are unbound, resulting in static typeT, andT is a subtype oftype.

The typing context is extended to include a variable binding forname to the typetype that is
assignable ifvar is var and constant otherwise.

• A type declaration of the form
type name subtypes supertype1, ..., supertypeN

is type-correct iff each of thesupertypei notates a type other thannone in the current typing
context and no cycles are introduced into the subtyping graph as a result of the declaration. As
a result of the declaration, the typing context is extended to include a type binding fromname
to a new type that is a subtype of each of thesupertypei types.

• A representation declaration of the form
role-annotation kind nameinherits parent1, ..., parentK

subtypes supertype1, ..., supertypeL
isa parent-and-supertype1, ..., parent-and-supertypeM
{ field1@obj1 := expr1, ..., fieldN@objN := exprN }

is type-correct under the same conditions as the analogous object constructor expression, with
the following changes:

• abstract objects may be named ininherits andisa clauses;
• theabstract andtemplate role annotations are allowed; and
• no cycles are allowed to be introduced into the inheritance and subtyping graphs.

The typing context is extended to include an object binding fromname to a new object with
role role-annotation that inherits from theparenti objects and theparent-and-supertypej
objects. Ifkind is the representation keyword, then the new object conforms to the
supertypek types. Otherwise,kind is the keywordobject , and the typing context is also
extended with a type binding fromname to a new type that is a subtype of each of thesupertypei
types, and the new object conforms to the new type.

• A type extension declaration of the form
extend type name subtypes supertype1, ..., supertypeN

is type-correct iff:

• name is bound in the typing context to a type other thanvoid , any , none , anddynamic ;
and

• the same constraints on thesubtypes clause as with the type declaration are satisfied.

As a result of the declaration, the typing context is extended to reflect that the typename is a
subtype of each of thesupertypei types.

• A representation extension declaration of the form
extend kind nameinherits parent1, ..., parentK

subtypes supertype1, ..., supertypeL
isa parent-and-supertype1, ..., parent-and-supertypeM
{ field1@obj1 := expr1, ..., fieldN@objN := exprN }

63

is type-correct iff:

• name is bound in the typing context to an object other thanvoid andany ;
• if kind is object or omitted, thenname also is bound in the typing context to a type other

thanvoid , any , none , anddynamic ;
• the same constraints on theinherits , subtypes , isa , and field initialization clauses

as with the object representation declaration are satisfied; and
• none of thefieldi@obji initialize fields already specialized on or inherited by the object before

the extension.

As a result of the declaration, the typing context is extended to reflect that the objectname
inherits from theparenti objects and theparent-and-supertypej objects. If kind is the
representation keyword, then the typing context is extended to reflect that the object
conforms to thesupertypek types. Otherwise,kind is the keywordobject , and the typing
context is extended to reflect that thename type is a subtype of each of thesupertypei types and
that thename object conforms to thename type.

• A signature declaration of the form
signature name(x1: type1, ..., xN: typeN): typeR

is type-correct iff:

• thexi, when provided, are distinct;
• each of thetypei notates a type other thanvoid in the typing context; and
• typeR notates a type in the typing context.

The typing context is extended to include the corresponding signature.

• A field signature declaration of the form
var field signature name(x: type): typeR

is type-correct iff:

• type notates a type other thanvoid in the typing context; and
• typeR notates a type other thanvoid in the typing context.

The typing context is extended to include the signature
signature name(type): typeR

and, ifvar is var , the signature
signature set_ name(type, typeR):void

• A method implementation declaration of the general form
method kind name(x1@obj1: type1, ..., xN@objN: typeN): typeR { body }

is type-correct iff:

• thexi, when provided, are distinct;
• each of thetypei notates a type other thanvoid in the typing context;
• if @obji is present, thenobji conforms totypei;
• typeR notates a type in the typing context;
• body is type-correct when checked in a typing context constructed by extending the current

typing context with constant variable bindings for each of thexi to the corresponding type
typei; and

• the type of the result ofbody is a subtype oftypeR.

64

The typing context is extended to include the declared method implementation. Ifkind is not
implementation , then the typing context is also extended to include the signature

signature name(type1, ..., typeN): typeR

• A field implementation declaration of the general form

shared var field kind name(x@obj: type): typeR := expr;

is type-correct iff:

• type notates a type other thanvoid in the typing context;

• if @obj is present, thenobj conforms totype;

• typeR notates a type other thanvoid in the typing context;

• if := expr is provided, thenexpr is type-correct, with static typeT, andT is a subtype of
typeR; and

• if shared is shared , then:= expr is provided.

The typing context is extended to include the declared field get accessor method
implementation, plus the set accessor method implementation ifvar is var , plus the get (and
possibly set) signature(s) ifkind is notimplementation .

3.8 Type Checking Subtyping Declarations

When the programmer declares that an object conforms to a type (via asubtypes or isa clause),
the type system trusts this declaration and uses it when checking conformance and subtyping.
However, it is possible that the programmer’s claim is wrong, and that the object in fact does not
faithfully implement the interface of the types to which it supposedly conforms. In this case, the
signature implementation checking, described in section 3.6.2, is sufficient to detect and report the
error, so no additional checking is required. When enumerating and checking message
representatives matching a signature defined on the supertype, the object in question, if not
abstract, will be enumerated, and the error will be detected because some signature will not be
implemented properly for that object. If the object is abstract, no type error will be reported. This
will not affect running programs since the abstract object cannot be used in a message. Also, since
abstract objects are allowed to be incomplete, it is unclear whether a type error really exists.

3.9 Type Checking Predicate Objects

Predicate objects are intended to represent alternative ways of implementing an object’s interface.
Accordingly, it should be possible to type-check programs using predicate objects, under the
assumption that the particular state of the object does not affect its external interface. In particular,
to guarantee type safety in the presence of predicate objects, the type checker must verify that for
each message declared in the interface of some objectO:

• at all times there is an implementation of the message inherited by the objectO; and

• at no time are there several mutually ambiguous implementations of the message inherited by
the objectO.

These two tests correspond to extending the tests of completeness and consistency of method
implementations to cope with the presence of predicate objects.

65

The set of methods inherited by the objectO from normal objects is fixed at program-definition
time and can be type-checked in the standard way. Methods inherited from predicate objects pose
more of a problem. If two predicate objects might be inherited simultaneously by an object, either
one predicate object must be known to override the other or they must have disjoint method names.
For example, in the bounded buffer implementation described in section 2.4, since an object can
inherit from both thenon_empty_buffer and thenon_full_buffer predicate objects, the
two predicate objects should not implement methods with the same name. Similarly, if the only
implementations of some message are in some set of predicate objects, then one of the predicate
objects must always be inherited for the message to be guaranteed to be understood. In other words,
the checker needs to know when one predicate objectimplies another, when two predicate objects
are mutually exclusive, and when a group of predicate objects isexhaustive. Once these
relationships among predicate objects are determined, the rest of type-checking becomes
straightforward.

Ideally, the system would be able to determine all these relationships automatically by examining
the predicate expressions attached to the various predicate objects. However, predicate expressions
in Cecil can run arbitrary user-defined code, and consequently the system would have a hard time
automatically inferring implication, mutual exclusion, and exhaustiveness. Consequently, we rely
on explicit user declarations to determine the relationships among predicate objects; the system can
verify dynamically that these declarations are correct.

A declaration already exists to describe when one predicate object implies another: theisa
declaration. If one predicate object explicitly inherits from another, then the first object’s predicate
is assumed to imply the second object’s predicate. Any methods in the child predicate object
override those in the ancestor, resolving any ambiguities between them.

Mutual exclusion and exhaustiveness are specified using declarations of the following form:

disjoint_decl ::= “disjoint” named_objects “;”
cover_decl ::= “cover” named_object “by” named_objects “;”
divide_decl ::= “divide” named_object “into” named_objects “;”
named_objects ::= named_object { “,” named_object }

The disjoint declaration

disjoint object1, ..., objectn;

implies to the static type checker that the predicate objects named by each of theobjecti will never
be inherited simultaneously, i.e., that at most one of their predicate expressions will evaluate to true
at any given time. Mutual exclusion of two predicate objects implies that the type checker should
not be concerned if both predicate objects define methods with the same name, since they cannot
both be inherited by an object. To illustrate, the following declarations extend the earlier bounded
buffer example with mutual exclusion information:

disjoint empty_buffer, non_empty_buffer;
disjoint full_buffer, non_full_buffer;

The system can infer thatempty_buffer and full_buffer are mutually exclusive with
partially_full_buffer . Note that empty_buffer and full_buffer are not
necessarily mutually exclusive.

66

The cover declaration

cover object by object1, ..., objectn;

implies that whenever an objectO descends fromobject, the objectO will also descend from at
least one of theobjecti predicate objects; each of theobjecti are expected to descend fromobject
already. Exhaustiveness implies that if all of theobjecti implement some message, then any object
inheriting from object will understand the message. For example, the following coverage
declaration extends the bounded buffer predicate objects:

cover buffer by empty_buffer, partially_full_buffer, full_buffer;

Often a group of predicate objects divide an abstraction into a set of exhaustive, mutually-exclusive
subcases. The divide syntactic sugar makes specifying such situations easier. A declaration of the
form

divide object into object1, ..., objectn;

is syntactic sugar for the following two declarations:

disjoint object1, ..., objectn;

cover object by object1, ..., objectn;

Since fields are accessed solely through accessor methods, checking accesses to fields in predicate
objects reduces to checking legality of messages in the presence of predicate objects, as described
above. To ensure that fields are always initialized before being accessed, the type checker simply
checks that the values of all fields potentially inherited by an object are initialized either at the
declaration of the field or at the creation of the object.

3.10 Mixed Statically- and Dynamically-Typed Code

One of Cecil’s major design goals is to support both exploratory programming and production
programming and in particular to support the gradual evolution from programs written in an
exploratory style to programs written in a production programming style. Both styles benefit from
object-oriented programming, a pure object model, user-defined control structures using closures,
and a flexible, interactive development environment. The primary distinction between the two
programming styles relates to how much effort programmers want to put into polishing their
systems. Programmers in the exploratory style want the system to allow them to experiment with
partially-implemented and partially-conceived systems, with a minimum of work to construct and
subsequently revamp systems; rapid feedback on incomplete and potentially inconsistent designs
is crucial. The production programmer, on the other hand, is concerned with building reliable,
high-quality systems, and wants as much help from the system as possible in checking and
polishing systems.

To partially support these two programming styles within the same language, type declarations and
type checking are optional. Type declarations may be omitted for any argument, result, or local
variable. Programs without explicit type declarations are smaller and less redundant, maximizing
the exploratory programmer’s ability to rapidly construct and modify programs. Later, as a
program (or part of a program) matures, the programmer may add type declarations incrementally
to evolve the system into a more polished and reliable production form.

67

Omitted type declarations are treated asdynamic ; dynamic may also be specified explicitly as
the type of some argument, result, or variable. An expression of typedynamic may legally be
passed as an argument, returned as a result, or assigned to a variable of any type. Similarly, an
expression of any type may be assigned to, passed to, or returned from a variable, argument, or
result, respectively, of typedynamic . This approach to integrating dynamically-typed code with
statically-typed code has the effect of checking type safety statically wherever two statically-typed
expressions interact (assuming that at run-time the objects resulting from evaluating the statically-
typed expressions actually conform to the given types), and deferring to run-time checking at
message sends whenever a dynamically-typed expression is used.

A consequence of this semantics for thedynamic type is that the static type safety of statically-
typed expressions can be broken by passing an incorrect dynamically-typed value to a statically-
typed piece of the program. Dynamic type checking will catch errors eventually, but run-time type
errors can occur inside statically-typed code even if the code passes the type checker. An
alternative approach would check types dynamically at the “interface” between dynamically- and
statically-typed code: whenever a dynamically-typed value is assigned to (or passed to, or returned
as) a statically-typed variable or result, the system could perform a run-time type check of the
dynamically-typed value as part of the assignment. This approach would then ensure the integrity
of statically-typed code: no run-time type errors can occur within statically-typed code labeled
type-correct by the typechecker, even when mixed with buggy dynamically-typed code.
Unfortunately, this approach has some difficulties. One problem is that objects defined in
exploratory mode should not be required to include explicit subtyping declarations; such
declarations could hinder the free-flowing nature of exploratory programming. However, if such
an object were passed to statically-typed code, the run-time type check at the interface would fail,
since the object had not been declared to be a subtype of the expected static type. We have chosen
for the moment to skip the run-time check at the interface to statically-typed code in order to
support use of statically-typed code from exploratory code, relying on dynamic checking at each
message send to ensure that the dynamically-typed object supports all required operations. An
alternative might be to perform some form of inference of the subtyping relationships of
dynamically-typed objects, like that incorporated in object-oriented systems based on implicit
structural subtyping, and use these inferred subtyping relationships for the run-time type check.

Cecil supports the view that static type checking is a useful tool for programmers willing to add
extra annotations to their programs, but that all static efficiently-decidable checking techniques are
ultimately limited in power, and programmers should not be constrained by the inherent limitations
of static type checking. The Cecil type system has been designed to be flexible and expressive (in
particular by supporting multi-methods, separating the subtype and code inheritance graphs, and
supporting explicit and implicit parameterization) so that many reasonable programs will
successfully type-check statically, but we recognize that there may still be reasonable programs
that either will be awkward to write in a statically-checkable way or will be difficult if not
impossible to statically type-check in any form. Accordingly, error reports do not prevent the user
from executing the suspect code; users are free to ignore any type checking errors reported by the
system, relying instead of dynamic type checks. Static type checking is a useful tool, not a
complete solution.

68

4 Parameterization and Parametric Polymorphism

Practical statically-typed languages need some mechanism for parameterizing objects and
methods. Without some mechanism for parameterization or parametric polymorphism,
programmers must resort to multiple similar implementations for abstractions such aslist and
array that differ only in the declared type of the collection’s elements. Similarly, control
structures such asif andmap can be reused for a variety of argument types. Accordingly, Cecil
supports the definition of parameterized object representations, method and field implementations,
types, and signatures.

The next section describes Cecil’s mechanism for explicit parameterization. Section 4.2 introduces
Cecil’s mechanism for implicit parameterization, and sections 4.3 and 4.4 describe aspects of this
feature in more depth. Section 4.5 explains the interaction between parameterized objects and
method lookup, section 4.6 explains the interaction between parameterized constructs and the
object and method syntactic sugars. Section 4.7 discusses Cecil’s version of F-bounded
polymorphism.

Note: the mechanisms for parameterization in Cecil are being redesigned, using a more explicit and
expressive constraint-based core. Programs using the mechanisms described in this section
continue to be supported by the new type system. Part of the work on the new parameterization
mechanism includes a more precise description of the type system and its checking rules.

4.1 Explicit Parameterization

Cecil allows object, type, method, field, and signature declarations to be parameterized by a
sequence of types, as the following examples illustrate:

abstract object collection[T];

abstract object list[T] isa collection[T];

signature do[T](list[T], &(T):void):void;

concrete representation nil[T] isa list[T];

template representation cons[T] isa list[T];

field head[T](@:cons[T]):T;

field tail[T](@:cons[T]):list[T] := nil[T];

method prepend[T](h:T, t:list[T]):list[T] {
concrete object isa cons[T] { head := h, tail := t } }

abstract object table[Key,Value] isa collection[Value];

template object array[T] isa table[int,T];

method new_array[T](size:int, initial_value:T):array[T] {
concrete object isa array[T] {

size := size, initial_value := initial_value } }

type printable_array[T <= printable] subtypes array[T], printable;

69

4.1.1 Parameterized Declarations and Formal Type Parameters

The syntax of type, object, predicate object, method, field, and signature declarations is extended
to allow explicit parameterization as follows:

tp_decl ::= “type” name [formal_params] {type_relation} “;”
object_decl ::= rep_role rep_kind name [formal_params]

{relation} [field_inits] “;”
predicate_decl ::= “predicate” name [formal_params]

{relation} [field_inits] [“when” expr] “;”
method_name ::= msg_name [formal_params] | op_name
formal_params ::= “[” formal_param { “,” formal_param } “]”
formal_param ::= [“‘”] name [“<=” type]

The number of formal type parameters is considered part of the “name” of the declared entity. For
example, multiple objects can be declared with the same name, as long as they are declared with
different numbers of formal type parameters.*

The formal type parameter of the form‘ name<= type is quantified over all types that are subtypes
of type; the leading back-quote symbol is optional. If the<= type upper bound is omitted, then<=
any is assumed. Similar facilities appear under the name of bounded quantification [Cardelli &
Wegner 85] and constrained genericity [Meyer 86].†

Type parameters are scoped over the whole declaration; type parameters must have distinct names.
Within its scope, a type parameter may be used in a type declaration or as an instantiating type for
some other parameterized type or method; a type parameter cannot be used in asubtypes clause,
as this context requires a statically-known type. Cycles are not allowed in the dependency graph
of formal type parameters and their upper bound types (e.g.,[‘A <= B, ‘B <= A] is illegal), but
no other orderings are required. For example,[‘A <= B, ‘B <= int] is legal, with the first
occurrence ofB referring to the instantiating type of the second type parameter.

A parameterized declaration can be typechecked in isolation, independently of any instantiating
clients. This is in contrast with languages such as C++ and Modula-3 where typechecking of a
parameterized class or module must in general be deferred and repeated for each instantiation.
When typechecking the body of a parameterized method or the initialization expression of a
parameterized field, all that can be assumed of a variable whose type is declared to some formal
type parameter is that the variable is some subtype of the upper bound of the type parameter. For
most purposes, this is equivalent to assuming the variable conforms to the upper bound type itself.

4.1.2 Instantiating Parameterized Declarations

A parameterized entity is not a first-class entity that can be manipulated directly, but rather it is an
“entity generator:” a function from a tuple of types to an (instantiated) entity. To use a

* This feature does not interact well with mixed dynamic and static typing, since the number of parameters affects the
execution behavior of the program, violating the principle that static types do not affect the execution semantics. In
the future, the number of parameters may be removed from the “name” of an object or method, so that parameters
are confined to the (optional) static type system. Omitted type parameters would default todynamic , in keeping
with the default for omitted type declarations.

†Lower bounds on type parameters can also be useful, for example to model the case where a more specific closure
type is required to have at least as general argument types.

70

parameterized entity, a client must first instantiate it with actual types for each of its parameters, at
which point the instantiated entity can be used as if it were a regular unparameterized entity where
the formal type parameters have been replaced with the actual type parameters. The syntax of
object references, type references, and messages is extended as follows to allow instantiating
parameters to be provided:

named_object ::= name [params]

named_type ::= name [params]

message ::= msg_name [params] “(” [exprs] “)”

dot_msg ::= dot_expr “.” msg_name [params] [“(” [exprs] “)”]

params ::= “[” types “]”

All instantiations of a parameterized entity with the same actual parameter types name the same
instantiated entity; e.g. two distinct static occurrences ofarray[int] name the same
instantiated object. This semantics is a form of structural type equivalence, patterned after CLU
and Trellis, and contrasts with some other languages where parameterized entities must be
instantiated explicitly and given names before they can be used by client code.

4.1.3 Parameterized Objects and Types

It is not possible to inherit directly from a parameterized object representation, nor to subtype
directly from a parameterized type. However, it is possible (and common) to inherit from an
instantiation of a parameterized object and to subtype from an instantiation of a parameterized
type. A particularly common idiom is for a parameterized object or type to inherit or subtype from
another parameterized object or type instantiated with (some function of) the first parameterized
object or type’s type parameters. For example:

abstract object collection[T];

abstract object table[Key,Value] isa collection[Value];

template object array[T] isa table[int,T];

type printable_array[T <= printable] subtypes array[T], printable;

4.1.4 Method Lookup

Method lookup is extended to include the number of explicit parameters of candidate methods as
part of the method selection process. A message of the form
name[type1, ..., typeM](expr1, ..., exprN) , with M and N zero or greater, will only match
methods namedname with M explicit formal type parameters andN formal arguments. Method
lookup does not depend on the constraints placed on legal instantiating types of explicit formal type
parameters. For example,

method foo[T <= integer]():void { ... }

does not override

method foo[T <= number]():void { ... }

In fact, these two methods could not legally be defined in the same system, since they have the
same name, same number of explicit type parameters, same number of arguments, and same
argument specializers.

71

4.1.5 Type Checking Instantiations

To type-check a message with explicit type parameters, signatures with matching names, number
of parameters, and number of arguments are located. For each signature, the actual type parameters
are bound to the formal type parameters of the signature, and then the formal argument types of the
signature are compared to the actual argument types at the call site. A signature is applicable to the
call site if the actual types are subtypes of the corresponding formal argument types, as described
in section 3.6.1. Once a signature is deemed applicable, then the actual type parameters are
compared against the upper bounds of the formal type parameters; if these actual parameters are
not subtypes of the corresponding upper bounds, then an “illegal instantiation” error is reported.

To type-check the implementation of a parameterized signature, all methods with the same name,
number of type parameters, and number of arguments as the signature are collected. The same rules
on conformance, completeness, and consistency as given in section 3.6.2 are verified, with the
modification that, when checking the formal argument types of the method against those in the
signature, occurrences of the method’s formal type parameters are substituted with the signature’s
corresponding formal type parameters. In addition, the upper bound of a formal type parameter of
the signature must be a subtype of the corresponding upper bound of the method; this is a kind of
contravariance requirement for type parameter constraints.

All instantiations of parameterized objects and types are checked that the instantiating types are
subtypes of the upper bounds of the corresponding formal type parameters.

It can be tricky to verify that an instantiating type parameter is a subtype of the upper bound of the
corresponding formal type parameter, if one formal type parameter is used as the upper bound of
another formal type parameter. In this case, the instantiator must be able to show statically that the
bounded actual type parameter is indeed a subtype of the bounding actual type parameter. If these
actual types are themselves formal type parameters in the caller, then such a relationship may be
difficult to show. For example, consider the following four methods:

method base[T1, T2 <= T1](x:T1, y:T2):void { ... }

method client1() { base[num,int](4.5, 3); }

method middle[S1, S2 <= num](a:S1, b:S2):void { base[S1,S2](a, b); }

method client2() { middle[int,num](3, 4.5); }

The base method requires that its second type parameter always be a subtype of its first type
parameter. Theclient1 method satisfies this requirement, assuming thatint is a subtype of
num. However, themiddle method does not meet this requirement: even though the upper bound
of S2 (num) is known to be a subtype of the upper bound ofS1 (any), a particular instantiation
of middle may not preserve such a relationship. The methodclient2 illustrates such an
instantiation. Consequently, the static type checker will flag the invocation ofbase in middle as
type-unsafe.

4.2 Implicit Parameterization

While explicit parameterization and instantiation is sufficient for programming parameterized
objects and types, it is frequently inconvenient. For example, consider the implementation of an
explicitly-parameterizedpair_do method:

72

method pair_do[T1,T2](c1@:cons[T1], c2@:cons[T2],
closure:&(T1,T2):void):void {

eval(closure, head[T1](c1), head[T2](c2));
pair_do[T1,T2](tail[T1](c1), tail[T2](c2), closure);

}

Singly-dispatched languages do not face this verbosity, because methods are defined within a class
and within the scope of the parameterized class’s type parameters. Additionally, invocations of
methods on a parameterized object, such as thehead message above, would not need to specify
an instantiating parameter because it can be derived from the instantiating parameter of the
distinguished receiver object. The following pseudo-code is representative of the kind of support
found in singly-dispatched languages:

class cons[T] {
field head:T;
field tail:list[T];

method length():int { 1 + tail.length() }

...
}

In this code, the formal type parameterT is introduced in thecons class declaration and is scoped
over all fields and methods defined on the class. Consequently, none of these fields and methods
need be explicitly parameterized, and the recursivelength call need not pass any explicit type
parameters, since it is implied by the type of the receiver expression.

To regain much of the conciseness of parameterization in singly-dispatched languages while still
supporting multi-methods, object extensions, and other of Cecil’s more flexible constructs, Cecil
allowsimplicit type parameter bindings to be present in the type declarations of formal arguments
of a method or field. These implicit type parameters are instantiated automatically with the
corresponding type of the actual argument in each call site. A binding occurrence of such an
implicit type variable is indicated by prefixing the type name with a back-quote character; other
occurrences of the type variable simply name the bound type.

The operations on parameterizedcons objects can be rewritten with implicit type parameters as
follows:

template representation cons[T] isa list[T];

field head(@:cons[‘T]):T;

field tail(@:cons[‘T]):list[T] := nil[T];

method pair_do(c1@:cons[‘T1], c2@:cons[‘T2],
closure:&(T1,T2):void):void {

eval(closure, head(c1), head(c2));
pair_do(tail(c1), tail(c2), closure);

}

method prepend(h:T, t:list[‘T]):list[T] {
concrete object isa cons[T] { head := h, tail := t } }

Like explicit formal type parameters, an implicit formal type parameter may be bounded from
above by some type using the<= type notation, and an implicit formal parameter is quantified over
all types that are subtypes of its upper bound (whereany is used as the default upper bound). Like
explicit type parameters, implicit type parameters are scoped over the entire declaration. An

73

implicit type parameter must have a name that is distinct from any other implicit or explicit type
parameters. Like explicit type parameters, implicit type parameters may be used in the type
declarations of earlier formal arguments, as in theprepend method above, as long as no cyclic
dependencies result. Implicit type parameters are akin to polymorphic type variables in languages
like ML [Milner et al. 90]. Note that unlike'a type variables in ML, the back-quote in Cecil’s‘T
is not part of the type name, but rather identifies that the use of the typeT is a binding occurrence
as opposed to a simple use of a previously-defined type.

Implicit type parameters are useful not only for parameterized types but also for performing simple
calculations on argument types to compute appropriate result types. For example, the following
method describes its result type in terms of its argument types:*

method min(x1:‘T1 <= comparable, x2:‘T2 <= comparable):T1|T2 {
if(x1 < x2, { x1 }, { x2 }) }

User-defined control structures often compute the types of their results from the types of their
arguments:

signature if(condition:bool, true_case:&():‘T1, false_case:&():‘T2):T1|T2;

method if(condition@:true, true_case:&():‘T1, false_case:&():void):T1 {
eval(true_case) }

method if(condition@:false, true_case:&():void, false_case:&():‘T2):T2 {
eval(false_case) }

As illustrated by the above examples, least-upper-bound types over implicit type parameters are
relatively common when expressing the type of a method’s result in terms of its arguments’ types.

Implicit type parameter bindings can only appear in the declared type of a formal parameter or
variable, as the upper bound type of another type parameter, or as the instantiating parameter of a
parameterized object or type being augmented in an extension declaration. A type that can contain
an implicit type parameter binding is called a type pattern. The syntax of several constructs is
updated to reflect where implicit type parameter bindings are legal:

type_pattern ::= binding_type
| named_type_p
| closure_type_p
| lub_type
| glb_type
| paren_type

binding_type ::= “‘” name [“<=” type_pattern]

named_type_p ::= name [param_patterns]

closure_type_p ::= “&” “(” [arg_type_ps] “)” [type_decl_p]

signature_decl ::= “signature” method_name
“(” [arg_type_ps] “)” [type_decl] “;”

field_sig_decl ::= [“var”] “field” “signature” msg_name [formal_params]
“(” arg_type_p “)” [type_decl] “;”

arg_type_ps ::= arg_type_p { “,” arg_type_p }

arg_type_p ::= [name “:”] type_pattern

* Section 4.7 will revise this version ofmin to use a more sophisticatedcomparable type.

74

specializer ::= location [type_decl_p] specialized formal
| [type_decl_p] unspecialized formal
| “@” “:” named_object_p sugar for@named_obj_p :named_obj_p

closure_formal ::= [name] [type_decl_p] formal names are optional, if never referenced

type_ext_decl ::= “extend” “type” named_type_p {type_relation} “;”

obj_ext_decl ::= “extend” extend_kind named_object_p
{relation} [field_inits] “;”

type_relation ::= “subtypes” type_patterns

parents ::= named_object_p { “,” named_object_p }

named_object_p ::= name [param_patterns]

type_decl_p ::= “:” type_pattern

formal_param ::= [“‘”] name [“<=” type_pattern]

param_patterns ::= “[” type_patterns “]”

type_patterns ::= type_pattern { “,” type_pattern }

4.3 Matching Against Type Patterns

If the type of a method’s formal contains a binding occurrence of an implicit type parameter, i.e.,
a type of the form‘ T, then the system is responsible for automatically inferring the right
instantiating actual type for each call of the method. Once bound, implicit type parameters are just
like explicit type parameters. Matching has two parts: message sends are compared against
signatures that may contain implicit type parameters, and method implementations are compared
against signatures, either of which may have implicit type parameters. The first case is easier, since
it requires matching a regular type against a type pattern, while the second case requires the ability
to compare two patterns. Below we describe somewhat informally the process of matching a type
against a type pattern; precise descriptions of both processes remain future work.

4.3.1 Method Formal Type Patterns

In general, formal argument type patterns are of the form

‘ T <= type[param1, ..., paramN]

whereN may be zero. If the‘ T <= prefix is omitted, a fresh type variable is supplied to represent
the type of the argument. Every formal parameter can thus be considered to have an associated
implicit type variable bound to the dynamic type of the corresponding actual. If the<= type[...]
upper bound is omitted, it defaults toany .

The type variable for the formal is bound to the dynamic type of the actual, not the static type of
the actual. Since during typechecking of the caller, only the static type of the actual is known, this
situation can be modeled by treating the type of an actual as some fresh type variable that is known
only to be a subtype of the static type computed for the argument. Normally, this distinction
between the static and dynamic type is not important, but it can be in some situations. In particular,
if the corresponding type variable is used an as upper bound of some other type variable, as in
section 4.1.5, there can be a great difference between the static and dynamic type. This point is
discussed more in section 4.3.4.

75

4.3.2 Upper Bound Type Patterns

If the upper bound type of a formal or (explicit or implicit) type parameter is parameterized, each
parameter type may itself contain an implicit type binding; upper bound types are themselves type
patterns. In general, eachparami has the same form as a formal type:

‘ Ti <= typei[param1, ..., paramN]

Like a formal type, if the<= type[...] upper bound is omitted, it defaults toany . Also like a formal
type, the leading‘ T <= prefix can be omitted. However, there is an important semantic distinction
between a parameter of the form‘ T <= type[...] and a parameter of the formtype[...] . If the ‘ T
<= prefix is omitted, then argument types matching the type pattern must have parameters that
matchtype[...] exactly; for parameters of the form‘ T <= type[...] , matching types need only be
a subtype oftype[...] . To illustrate the distinction, consider the following two methods:

method detabify_all_1(s:array[string]):void { ... }

method detabify_all_2(s:array[‘T <= string]):void { ... }

The first method takes an arguments that is a subtype ofarray of string , i.e., any object that
satisfies the interface ofarray of string . In particular, ifarray supports a store operation,
then any value of typestring must be able to be stored into the arrays .

The second method places different constraints on its argument. It takes an array of things of some
type T, whereT is a subtype ofstring. So a value of typearray[m_string] , where
m_string is some subtype ofstring , would be a legal argument to the second method. Such
an argument wouldnot be legal to the first method, however, since mutable arrays of mutable
strings isnot a subtype of mutable arrays of generic strings; a generic string cannot safely be stored
into an array of mutable strings. For the second method, any value of typeT can be stored safely
into the argument array. Deciding the exact form of a parameterized type declaration can be rather
subtle, and we need to gather more experience with the language to assess how well programmers
are able to pick an appropriate type declaration. Type inference could help suggest the most-
general type for a method, given its implementation.

4.3.3 The Matching Algorithm

When a method with implicit type parameters is invoked, the system first binds any explicit type
parameters to their corresponding actual type parameters and, for each formal with a declared type
with a ‘ Ti <= prefix, binds theTi type parameter to the dynamic type of the corresponding actual
argument. Then the system attempts to match each actual explicit type parameter and each actual
argument dynamic typeD against its corresponding upper bound typetype[param1, ..., paramN]
(whereN may be zero). If the upper bound is a type variable bound elsewhere in the method’s
header, checking this upper bound constraint is deferred until the type variable is bound.
Otherwise, the system searches the supertypes ofD to locate one of the form
type[ptype1, ..., ptypeN] , i.e., one with the same “head” type and the same number of parameters,
if any, with the additional constraint that if any of theparami is a simple type without a‘ T <=
prefix, thenptypei = parami. After finding these matching types for each upper bound, the system
binds type variables: for each parameterparamj with a‘ Tj <= prefix binding,Tj is bound toptypej.
Then the system recursively matches eachptypej against its upper bound, which may bind

76

additional type parameters. Finally, any formal parameter whose upper bound was a type variable
is checked. If any of the matches fail, then a type error results. This matching process subsumes
subtyping checks: if any of the upper bounds are types with no embedded type variable bindings,
the matching process reduces to a simple subtyping check.

For example, consider the following code:

abstract object printable;

signature print(@:printable):void;

abstract object number isa printable;

abstract object collection[T];

signature do(c@:collection[‘T], closure:&(T):void):void;

method print(c@:collection[‘T <= printable]):void {
"[".print;
do(c, &(x:T){ x.print; " ".print; });
"]".print;

}

method expand_tabs(c@:‘T <= collection[char]):T {
-- return a copy ofc , where tab characters have been replaced with spaces

}

abstract object list[T] isa collection[T];

concrete representation nil[T] isa list[T];

template representation cons[T] isa list[T];

abstract object table[Key,Value] isa collection[Value];

abstract object indexed[T] isa table[int,T];

template object array[T] isa indexed[T];

template object string isa indexed[char];

If the messageprint is sent to an object of dynamic typecons[number] , then theprint
method defined oncollection will be found. Then the dynamic typecons[number] will be
matched against the patterncollection[‘T <= printable] to bind the implicit type
parameterT. The supertype graph ofcons[number] will be searched for a type of the form
collection [something]. This search will locate the typecollection[number] , bindingT
to the typenumber . The system then verifies that the binding forT is a subtype of its upper bound
printable .

If, on the other hand, the messageexpand_tabs is sent to an object of dynamic typestring ,
the method defined forcollection[char] will be found. The dynamic typestring will be
matched against the static formal argument type‘T <= collection[char] . This match will
succeed, sincestring is declared as a subtype ofcollection[char] , and the implicit type
parameterT will be bound tostring .

It is illegal for a type variable to be bound more than once in a particular scope, e.g., in a method’s
list of explicit type parameters and in the types of its formals. It is also illegal to use a bound type
variable as a parameter of an upper bound type before that type variable has been bound by the

77

matching process. This implies that uses of a type variable as parameters must occur at greater
“depth” than the binding occurrence of that type variable.

This matching process forms the heart of the semantics of implicit type parameters, and it needs to
be formalized in a clearer and less algorithmic way.

4.3.4 Static vs. Dynamic Matching

At run-time, the dynamic type of the actual argument is used to compute the instantiation of any
implicitly-bound type parameters. During static type checking, however, the type checker does not
know the dynamic type of its arguments. Fortunately, the static type checker can perform a similar
matching process using the static types of the arguments to the call to verify type-correctness of the
call and to compute the static type of the result. The static checker uses type variables to stand for
the dynamic types of the arguments to the call, and these type variables are statically known to be
subtypes of the static type of the arguments. If the matching process succeeds using these static
type variables, then the match is guaranteed to succeed at run-time.

Usually, the distinction between the dynamic and the static type is unimportant. For example, with
the simplemin method defined above, the caller will know that the type of the result is a subtype
of the least-upper-bound of the dynamic types of the two arguments. Given the static knowledge
that both arguments are of some dynamic type that is a subtype of a particular static type, the caller
can infer the static knowledge that the result is some subtype of that static type. Static type
information already implies only that the dynamic type of some expression is some subtype of the
static type, so calculating static approximations to implicitly-bound type variables is what the type
checker has been doing all along.

In two circumstances, however, the distinction between instantiating a type parameter with a
dynamic type versus a static type is important. If a implicitly-bound type parameter is used as a
normal type for another declaration, i.e., as an upper bound type, then legal actual parameters must
be known to be equal to or subtypes of the implicitly bound type variable. For example, ifmin
were rewritten as follows:

method min(x1:‘T <= comparable, x2:T):T {
if (x1 < x2, { x1 }, { x2 })}

the second argument would be required to be a subtype of thedynamic type of the first argument.
This requirement could be quite difficult to guarantee statically and is probably not what the
programmer meant. Type parameters are usually used directly as type declarations when they are
bound to the instantiating parameter of a parameterized type, as in the following method:

method store(a:array[‘T], index:int, value:T):void {
-- storevalue as theindex th element of the arraya

}

Here,T will be bound to the type of the elements of the array, specified when the array was created,
and usually thevalue argument will be known to be a subtype of that type at the call site, perhaps
because it had just been extracted from an array of similar type.

78

The distinction between dynamic types and static types for instantiation also appears when
instantiating a parameterized object. For example, one way to write thenew_array method
might be the following:

method new_array(size:int, initial_value:‘T):array[T] {
concrete object isa array[T] {

size := size, initial_value := initial_value } }

Given an initial value of dynamic typeT, an array is returned with the typeT as the instantiating
value. Because of the fetch and store operations defined on arrays, this array will only be able to
contain elements that are subtypes of thedynamic type of its initial value. Usually, this would be
too restrictive. To correct this problem, the real method to create a new array is explicitly
parameterized with the desired type of the elements:

method new_array[T](size:int, initial_value:T):array[T] {
concrete object isa array[T] {

size := size, initial_value := initial_value } }

Instantiations of parameterized objects record their instantiating types as part of their dynamic run-
time state. The instantiating types are used to determine the subtyping relation of the object and
when matching the parameterized object’s type against a type pattern of the form
type[...,‘ Ti <= typei, ...] .

4.3.5 Constraints on Supertype Graphs for Matching

The process for matching a dynamic type against a static type declaration containing implicit type
parameter bindings depends on locating a single most-specific binding type. This may not always
be possible without additional constraints. For example, in the following declaration:

concrete object strange isa collection[int], collection[string];

if the strange object is sent thedo message, its type will be matched against the type pattern
collection[‘T] . Bothcollection[int] andcollection[string] will match, but
the system needs to locate a single type to bind to the variableT. BindingT to int&string might
seem reasonable, but then a type error will result, becausestrange is not a subtype of
collection[int&string] (such a relationship would have to be explicitly declared). To
avoid this sort of problem at method invocation time, objects likestrange are disallowed.

For an object declaration to be legal, there must be at most one most-specific instantiation for any
of its parameterized supertypes. This check is made when type-checking an object declaration or
constructor expression.

4.3.6 Matching and Bounded Formal Type Parameters

When instantiating a parameterized type with a binding occurrence of an implicit type parameter,
any upper bounds specified at the declaration of the parameterized type are inherited automatically
by the bound type variable. For example, hash tables can require that their keys must be hashable:

template object hash_table[Key <= hashable, Value] isa collection[Value];

Methods defined on hash tables can bind type parameters to the types of the keys and values of the
table:

79

method fetch(t@:hash_table[‘Key,‘Value], key:Key):Value { ... }

Since all hash tables must take hashable keys, when type checking the body of thefetch method,
the type checker can assume that theKey type variable is a subtype ofhashable .

4.4 Implicit Type Parameters in Extension Declarations

An extension declaration can augment either an instance of a parameterized type or a collection of
instances using an implicit type parameter. For example, the following declaration extends a single
instance of a parameterized type:

extend array[char] subtypes string;

and the following declaration extends a collection of related types:

extend collection[‘T <= printable] isa printable;

To extend a parameterized type itself, not just some instances, an extension declaration that updates
all instances is used:

extend list[‘T] subtypes variable_length_collection[T];

4.5 Parameterized Objects and Method Lookup

A method can be attached either to a parameterized object itself, to a group of instances of the
parameterized object, or to a single instance. The form of the instantiating type pattern determines
the scope of the method implementation. For example, the following method is attached to a
parameterized object (i.e., to all instances of the parameterized object), since the parameter to the
parameterized object is universally quantified:

method length(c@:cons[‘T]):int { ... }

To attach a method to a subset of the instances, a bounded implicit type variable is used as the
instantiating parameter:

method hash(c@:cons[‘T <= hashable]):int { ... }

If the instantiating type contains no implicit type parameter bindings, then the method is attached
to a particular instance of the parameterized object:

method detabify(c@:cons[char]):cons[char] { ... }

If multiple method implementations with the same name are defined on the same parameterized
object, but with different degrees of quantification:

method print(c@:collection[‘T]):void { ... }

method print(c@:collection[‘T <= printable]):void { ... }

method print(c@:collection[‘T <= hashable]):void { ... }

method print(c@:collection[char]):void { ... }

then the issue of which method to invoke arises. One reasonable choice would be to declare such
redundant method implementations ambiguous: more than oneprint method of one argument is
defined for collections of characters. An alternative semantics would be to choose the most-specific
matching method implementation, where a method is more specific than another if it is associated
with a subset of the instances of the other. We have little experience with attaching multiple

80

versions of the same method to different subsets of a parameterized types, so initially we have
selected the more-conservative position of allowing only a single version of a method to be
provided for any given instance of a parameterized type; the above declarations are illegal.

4.6 Parameterization and Syntactic Sugars

When desugaring a parameterizedobject declaration, the impliedrepresentation and
type declarations are parameterized with the same formal type parameters. Similarly, when a
method declaration is desugared, the impliedimplementation and signature
declarations have the same explicit type parameters and formal argument types, including any
implicit type parameter bindings. For example, the declarations

abstract object collection[T];

method print(c@:collection[‘T <= printable]):void {...}

method expand_tabs(c@:‘T <= collection[char]):T {...}

abstract object table[Key,Value] isa collection[Value];

abstract object indexed[T] isa table[int,T];

template object array[T] isa indexed[T];

method new_array[T](size:int, initial_value:T):array[T] {...}

are syntactic sugar for the following declarations:

type collection[T];
abstract representation collection[T] subtypes collection[T];

signature print(collection[‘T <= printable]):void;
implementation print(c@:collection[‘T <= printable]):void {...}

signature expand_tabs(‘T <= collection[char]):T;
implementation expand_tabs(c@:‘T <= collection[char]):T {...}

type table[Key,Value] subtypes collection[Value];
abstract representation table[Key,Value] inherits collection[Value]

subtypes table[Key,Value];

type indexed[T] subtypes table[int,T];
abstract representation indexed[T] inherits table[int,T]

subtypes indexed[T];

type array[T] subtypes indexed[T];
template representation array[T] inherits indexed[T]

subtypes array[T];

signature new_array[T](int, T):array[T];
implementation new_array[T](size:int, initial_value:T):array[T] {...}

4.7 F-Bounded Polymorphism

4.7.1 Motivation

In section 4.2, themin method was defined as follows:

method min(x1:‘T1 <= comparable, x2:‘T2 <= comparable):T1|T2 {
if (x1 < x2, { x1 }, { x2 })}

The typecomparable might be defined as follows:

abstract object comparable;

81

signature = (x@:comparable, y@:comparable):bool;
method !=(x@:comparable, y@:comparable):bool { not(x = y) }

signature < (x@:comparable, y@:comparable):bool;
method <=(x@:comparable, y@:comparable):bool { x = y | x < y }
method >=(x@:comparable, y@:comparable):bool { x = y | x > y }
method > (x@:comparable, y@:comparable):bool { y < x }

Numbers could be declared to be comparable as follows:

extend number isa comparable;

With this declaration, any pair of numbers could be used as arguments to themin method. We
would also like to state that collections of comparable things are also comparable:

extend collection[‘T <= comparable] isa comparable;

Unfortunately, these declarations are not likely to both appear in the same Cecil program, because
this would require that numbers could be compared against collections of numbers. Subtyping as
used in the declaration‘T <= comparable in themin method only constrains a single object.
What we need to do for this case is to be able to describe that two objects come from related types,
e.g., that both arguments tomin are subtypes ofnumber or that both are subtypes of the collection
type instantiated with related types.

4.7.2 F-Bounded Polymorphism in Singly-Dispatched Languages

F-bounded polymorphism [Canninget al. 89, Cooket al. 90] supports parameterization where the
upper bound constraint of a type parameter can be a function of the type parameter itself. This
enables parameterized types to be used to describe patterns of types that are not necessarily
subtypes of one another. Versions of F-bounded polymorphism have appeared in single-
dispatching languages such as Emerald [Black & Hutchinson 90], Axiom (formerly Scratchpad II)
[Watt et al. 88, Jenks & Sutor 92], Strongtalk [Bracha & Griswold 93], and k-bench [Santas 93].

In a singly-dispatched language with F-bounded polymorphism, the comparable type could be
defined as follows:

class comparable[T] {
signature =(y:T);
method !=(y:T):bool { not(x = y) }

signature < (y:T):bool;
method <=(y:T):bool { x = y | x < y }
method >=(y:T):bool { x = y | x > y }
method > (y:T):bool { y < x }

};

Then comparable types could be declared as subtypes of instances of this parameterized type:

extend num isa comparable[num];

extend collection[‘T <= comparable[T]] isa comparable[collection[T]];

Functions that are polymorphic over comparable types could be written using explicit
parameterization as follows:

method min[T <= comparable[T]](x1:T, x2:T):T {
if (x1 < x2, { x1 }, { x2 })}

82

The seemingly recursive nature of the explicit type parameter of bothcollection andmin is
not a problem. For a type of the form‘ T <= type[T] , first the actual instantiating type parameter
is bound to the type variableT, then this type is checked againsttype instantiated with the type
bound toT. For example, for the following call:

min[num](3, 4.5)

first T is bound tonum, then the system checks thatnum is a subtype ofcomparable[num] ,
which holds.

4.7.3 F-Bounded Polymorphism in Cecil

In Cecil, F-bounded polymorphism needs to be extended to support multi-methods and implicit
type parameters. Straightforward translation of the parameterizedcomparable class into Cecil,
introducing an explicit formal parameter for the impliedself argument, might lead to the
following declarations:

abstract object comparable[T];

signature = (x@:comparable[‘T], y@:T):bool;
method !=(x@:comparable[‘T], y@:T):bool { not(x = y) }

signature < (x@:comparable[‘T], y@:T):bool;
method <=(x@:comparable[‘T], y@:T):bool { x = y | x < y }
method >=(x@:comparable[‘T], y@:T):bool { x = y | x > y }
method > (x@:comparable[‘T], y@:T):bool { y < x }

Unfortunately, each of these definitions of operations on comparable objects is asymmetric: the
first argument determines the instantiating type forcomparable , which then constrains the type
of the second argument. This is contrary to the Cecil philosophy of treating arguments
symmetrically. Additionally, the body of the> method does not typecheck, since the signature
<(T, comparable[T]) is not defined, only<(comparable[T], T) .

The following revised implementation of comparable treats arguments uniformly:

abstract object comparable[T];

signature = (x@:comparable[‘T], y@:comparable[‘T]):bool;
method !=(x@:comparable[‘T], y@:comparable[‘T]):bool { not(x = y) }

signature < (x@:comparable[‘T], y@:comparable[‘T]):bool;
method <=(x@:comparable[‘T], y@:comparable[‘T]):bool { x = y | x < y }
method >=(x@:comparable[‘T], y@:comparable[‘T]):bool { x = y | x > y }
method > (x@:comparable[‘T], y@:comparable[‘T]):bool { y < x }

Unfortunately, it is not legal Cecil: it binds the same type variable twice in the same scope. If such
as facility were legal, with the semantics that the system would find a single most-specific type to
bind to T that enables both formal type patterns to match, then mixed-type comparisons would
work correctly. The system would locate a single type to which both argumentcomparable
types can be instantiated. For the case of comparing integers to reals, this common type isnum.

In a similar fashion, if multiple bindings of the same type variable were allowed,min could be
written using only implicit type parameters:

method min(x1:‘T1 <= comparable[‘T], x2:‘T2 <= comparable[‘T]):T1|T2 {
if (x1 < x2, { x1 }, { x2 })}

83

This definition ofmin is more convenient than the earlier definition because it does not require the
caller to provide an explicit type parameter.

Since these kinds of non-linear type patterns appear to resolve several problems with types such as
comparable , we are investigating the feasibility of extending Cecil to support them.

4.7.4 F-Bounded Polymorphism among Multiple Types

The typecomparable was self-recursive in a sense: its parameter type was used to link the types
of the arguments to its operations. A more general case involves two or more mutually-recursive
types. For example, consider a simplified model-view framework, where the model and the view
must be able refer to each other and invoke operations on each other.* Moreover, instances of the
model-view framework, such as a drawing model and a drawing view, must be able to invoke
specific operations on each other without loss of type safety. To define such a framework, we
exploit F-bounded style parameterized implementation strategies. The following code shows how
the generic model-view framework can be defined:

abstract object model[‘M <= model[M,V], ‘V <= view[M,V]];

field views(@:model[‘M,‘V]):set[V] := new_set[V]();

method register_view(m@:model[‘M,‘V], view:V):void {
m.views.add(view); }

method update(m@:model[‘M,‘V]):void {
m.views.do(&(v:V){

v.update();
}); }

abstract object view[‘M <= model[M,V], ‘V <= view[M,V]];

field model(@:view[‘M,‘V]):M;

signature update(v@:view[‘M,‘V]):void;

Both model andview are parameterized by the type of the model and the view. These formal
parameters are bounded by seemingly recursively-defined instances of the model and view types.
As discussed above, no problem results from this recursive nature, since the type variablesM and
V are first bound to their actual parameters, and then the upper bounds are checked. By
parameterizing bothmodel andview by each other’s type, with the corresponding upper bound,
the code in the parameterizedmodel andview can be parameterized by the actual type of the
instantiation of the framework. For example, the following code instantiates the generic model-
view framework to construct a bitmap drawing model and view:

template object drawing isa model[drawing,drawing_view];

field bitmap(@:drawing):bitmap;

method set_pixel(m@:drawing, pos:position, value:color):void {
bitmap.pixel(pos) := value;
m.views.do(&(v:drawing_view){

v.update_pixel(pos, value);
}); }

template object drawing_view isa view[drawing,drawing_view];

* Thanks to Gail Murphy for suggesting this problem to us.

84

method update(v@:drawing_view):void {
screen.plot(v.model.bitmap); }

method update_pixel(v@:drawing_view, pos:position, value:color):void {
screen.plot_pixel(pos, value); }

method new_drawing_view(m@:drawing):drawing_view {
concrete object isa drawing_view { model := m } }

Bothdrawing anddrawing_view add new operations that need to be called by the other type.
By parameterizingmodel as was done, the type of theviews field in drawing is known
statically to be set of (subtypes of)drawing_view . This knowledge allows theset_pixel
operation indrawing to invoke theupdate_pixel operation without generating either a static
type-error or requiring a dynamic “typecase” or “narrow” operation. Similarly, because of the way
view is parameterized, themodel field in its childdrawing_view will be known statically to
refer to a (subtype of)drawing , allowing theupdate operation ofdrawing_view to access
thebitmap field of the model in a statically type-safe manner.

85

5 Modules

Object-oriented methods encourage programmers to develop reusable libraries of code. However,
multi-methods can pose obstacles to smoothly integrating code that was developed independently.
Unlike with singly-dispatched systems, if two classes that subclass a common class are included
into a program, it is possible for incompleteness or inconsistency to result. The additional
expressiveness and flexibility of multi-methods creates new pitfalls for integration.

Encapsulation and modularity of multi-methods is a related problem. To enable easier program
reuse and maintenance, it is often desirable to encapsulate a data structure’s implementation.
However, in a multiply-dispatched language achieving this encapsulation is less straightforward
than it would be in either an abstract data type based language, such as CLU, or a singly dispatched
object-oriented language, such as C++ or Smalltalk. In ADT-based or singly-dispatched languages,
direct access to an object’s representation can be limited to a statically-determined region of the
program. An earlier approach to encapsulation in Cecil suffered from the problem that privileged
access could always be gained by writing methods that specialized on the desired data structures
[Chambers 92b].

The Cecil module system has been designed to support integration of separately developed code,
encapsulation, and modular design. This system can restrict access to parts of an implementation
to a bounded region of program text while preserving the flexibility of multi-methods. Individual
modules can be reasoned about and typechecked in isolation from modules not explicitly imported.
Modules canextend existing modules with subclasses, subtypes, and augmenting multi-methods.
If any conflicts arise between independent extensions, they are resolved throughresolving modules
that extend each of the conflicting modules. A simple check for the presence of the necessary
resolving modules is all that is needed at link-time to guarantee type safety. Chambers and Leavens
describe the Cecil module system in more detail [Chambers and Leavens 94].

The syntax of declarations is extended to support modules as follows:

decl ::= module_decl
| import_decl
| let_decl
| tp_decl
| type_ext_decl
| object_decl
| obj_ext_decl
| predicate_decl
| disjoint_decl
| cover_decl
| divide_decl
| signature_decl
| method_decl
| field_sig_decl
| field_decl
| precedence_decl
| include_decl
| prim_decl

privacy ::= “public” | “protected” | “private”

module_decl ::= [privacy] “module” module_name [extension] “{”
{friendship | decl} “}” [“;”]

86

extension ::= “extends” module_names
friendship ::= “friend” module_names “;”
module_names ::= module_name {“,” module_name}
module_name ::= name
import_decl ::= [privacy] “import” [“friend”] module_names “;”

Also, most declarations have an optional privacy annotation allowed.

[The precise semantics of modules is still under development.]

87

6 Related Work

Cecil builds upon much of the work done with the Self programming language [Ungar & Smith 87,
Hölzleet al. 91a]. Self offers a simple, pure, classless object model with state accessed via message
passing just like methods. Cecil extends Self with multi-methods, copy-down and initialize-only
data slots, lexically-scoped local methods and fields, object extensions, static typing, and a module
system. Cecil has simpler method lookup and encapsulation rules, at least when considering only
the single dispatching case. Cecil’s model of object creation is different than Self’s. However, Cecil
does not incorporate dynamic inheritance, one of the most interesting features of Self; predicate
objects are Cecil’s more structured but more restricted alternative to dynamic inheritance.
Freeman-Benson independently developed a proposal for adding multi-methods to Self [Freeman-
Benson 89].

Common Loops [Bobrowet al. 86] and CLOS [Bobrowet al. 88, Gabrielet al. 91] incorporate
multi-methods in dynamically-typed class-based object-oriented extensions to Lisp. Method
specializations (at least in CLOS) can be either on the class of the argument object or on its value.
One significant difference between Cecil’s design philosophy and that in CLOS and its
predecessors is that Cecil’s multiple inheritance and multiple dispatching rules are unordered and
report any ambiguities in the source program as message errors, while in CLOS left-to-right
linearization of the inheritance graph and left-to-right ordering of the argument dispatching serves
to resolve all message ambiguities automatically, potentially masking real programming errors. We
feel strongly that the programmer should be made aware of potential ambiguities since automatic
resolution of these ambiguities can easily lead to obscure errors in programs. Cecil offers a simpler,
purer object model, optional static type checking, and encapsulation. CLOS and its predecessors
include extensive support for method combination rules and reflective operations [Kiczaleset al.
91] not present in Cecil.

Dylan [Apple 92] is a new language which can be viewed as a slimmed-down CLOS, based in a
Scheme-like language instead of Common Lisp. Dylan is similar to CLOS in most of the respects
described above, except that Dylan always accesses state through messages. Dylan supports a form
of type declarations, but these are not checked statically, cannot be parameterized, and are treated
both as argument specializers and type declarations, unlike Cecil where argument specializers and
argument type declarations are distinct.

Polyglot is a CLOS-like language with a static type system [Agrawalet al. 91]. However, the type
system for Polyglot does not distinguish subtyping from code inheritance (classes are the same as
types in Polyglot), does not support parameterized or parametrically polymorphic classes or
methods, and does not support abstract methods or signatures. To check consistency among multi-
methods within a generic function, at least the interfaces to all multi-methods of a generic function
must be available at type-check-time. This requirement is similar to that of Cecil that the whole
program be available at type-check-time to guarantee that two multi-methods are not mutually
ambiguous for some set of argument objects.

Kea is a higher-order polymorphic functional language supporting multi-methods [Mugridgeet al.
91]. Like Polyglot (and most other object-oriented languages), inheritance and subtyping in Kea

88

are unified. Kea’s type checking of multi-methods is similar to Cecil’s in that multi-methods must
be both complete and consistent. It appears that Kea has a notion of abstract methods as well.

Leavens describes a statically-typed applicative language NOAL that supports multi-methods
using run-time overloading on the declared argument types of methods [Leavens 89, Leavens &
Weihl 90]. NOAL was designed primarily as a vehicle for research on formal verification of
programs with subtyping using behavioral specifications, and consequently omits theoretically
unnecessary features that are important for practical programming, such as inheritance of
implementation, mixed static and dynamic type checking, and mutable state. Other theoretical
treatments of multi-methods have been pursued by Rouaix [Rouaix 90], Ghelli [Ghelli 91],
Castagna [Castagnaet al. 92, Castagna 95], and Pierce and Turner [Pierce & Turner 92, Pierce &
Turner 93].

The RPDE3 environment supportssubdivided methodswhere the value of a parameter to the
method or of a global variable helps select among alternative method implementations [Harrison
& Ossher 90]. However, a method can be subdivided only for particular values of a parameter or
global variable, not its class; this is much like supporting only CLOS’seql specializers.

A number of languages, including C++ [Stroustrup 86, Ellis & Stroustrup 90], Ada [Barnes 91],
and Haskell [Hudaket al. 90], support static overloading on function arguments, but all
overloading is resolved at compile-time based on the static types of the arguments (and results, in
the case of Ada) rather than on their dynamic types as would be required for true multiple
dispatching.

Trellis* supports an expressive, safe static type system [Schaffertet al. 85, Schaffertet al. 86].
Cecil’s parameterized type system includes features not present in Trellis, such as implicitly-bound
type variables and uniform treatment of constrained type variables. Trellis restricts the inheritance
hierarchy to conform to the subtype hierarchy; it only supportsisa -style superclasses.

POOL is a statically-typed object-oriented language that distinguishes inheritance of
implementation from inheritance of interface [America & van der Linden 90]. POOL generates
types automatically from all class declarations (Cecil allows the programmer to restrict which
objects may be used as types). Subtyping is implicit (structural) in POOL: all possible legal
subtype relationships are assumed to be in force. Programmers may add explicit subtype
declarations as a documentation aid and to verify their expectations. One unusual aspect of POOL
is that types and classes may be annotated withproperties, which are simple identifiers that may
be used to capture distinctions in behavior that would not otherwise be expressed by a purely
syntactic interface. This ameliorates some of the drawbacks of implicit subtyping.

Emerald is another classless object-oriented language with a static type system [Blacket al. 86,
Hutchinson 87, Hutchinsonet al. 87, Black & Hutchinson 90]. Emerald is not based on multiple
dispatching and in fact does not include support for inheritance of implementation. Types in
Emerald are arranged in a subtype lattice, however.

* Formerly known as Owl and Trellis/Owl.

89

Rapide [Mitchellet al. 91] is an extension of Standard ML modules [Milneret al. 90] with
subtyping and inheritance. Although Rapide does not support multi-methods and relies on implicit
subtyping, many other design goals for Rapide are similar to those for Cecil.

Some more recent languages support some means for distinguishing subtyping from inheritance.
These languages include Theta [Dayet al. 95], Java [Sun 95], and Sather [Omohundro 93]. Theta
additionally supports an enhanced CLU-like where-clause mechanism that provides an alternative
to F-bounded polymorphism. C++’s private inheritance supports a kind of inheritance without
subtyping.

Several languages support some form of mixed static and dynamic type checking. For example,
CLU [Liskov et al. 77, Liskovet al. 81] allows variables to be declared to be of typeany . Any
expression may be assigned to a variable of typeany , but any assignments of an expression of type
any to an expression of another type must be explicitly coerced using the parameterizedforce
procedure. Cedar supports a similar mechanism through itsREF ANY type [Teitelman 84]. Modula-
3 retains theREFANY type and includes several operations includingNARROW andTYPECASE
that can produce a more precisely-typed value from aREFANY type [Nelson 91, Harbison 92].
Cecil provides better support for exploratory programming than these other languages since there
is no source code “overhead” for using dynamic typing: variable type declarations are simply
omitted, and coercions between dynamically-typed expressions and statically-typed variables are
implicit. On the other hand, in Cecil it sometimes can be subtle whether some expression is
statically-typed or dynamically-typed.

90

7 Conclusion

Cecil is a pure object-oriented language intended to support the rapid construction of reliable,
extensible systems. It incorporates a relatively simple object model which is based on multiple
dispatching. Cecil compliments this object model with a static type system that describes the
interfaces to objects instead of their representations and a module system to group and encapsulate
objects and methods. Cecil’s type system distinguishes subtyping from code inheritance, but uses
notation that strives to minimize the burden on the programmer of maintaining these separate
object and type relationships. The type system supports explicitly and implicitly parameterized
types and methods to precisely capture the relationships among argument types and result types in
a convenient and concise way. Cecil supports both an exploratory programming style and a
production programming style, in part by allowing a program to mature incrementally from a
dynamically-typed system to a statically-typed system. Some areas of Cecil’s design are the subject
of current work, including the details of the parameterization mechanism in the static type system,
the precise semantics of the module system, and a formal specification of the static and dynamic
semantics of the language.

Acknowledgments

The Cecil language design and the presentation in this document have benefitted greatly from
discussions with members of the Self group including David Ungar, Urs Hölzle, Bay-Wei Chang,
Ole Agesen, Randy Smith, John Maloney, and Lars Bak, with members of the Kaleidoscope group
including Alan Borning, Bjorn Freeman-Benson, Michael Sannella, Gus Lopez, and Denise
Draper, with the Cecil group including Claudia Chiang, Jeff Dean, Charles Garrett, David Grove,
Vassily Litvinov, Vitaly Shmatikov, and Stuart Williams, and others including Peter Deutsch, Eliot
Moss, John Mitchell, Jens Palsberg, Doug Lea, Rick Mugridge, John Chapin, Barbara Lerner, and
Christine Ahrens. Gary Leavens collaborated with the author to refine the static type system, devise
the module system, and develop an efficient typechecking algorithm. Claudia Chiang implemented
the first version of the Cecil interpreter, in Self. Stuart Williams augmented this interpreter with a
type checker for the monomorphic subset of the Cecil type system. Jeff Dean, Greg DeFouw,
Charles Garrett, David Grove, MaryAnn Joy, Vassily Litvinov, Phiem Huynh Ngoc, Vitaly
Shmatikov, Ben Teitelbaum, and Tina Wong have worked on various aspects of the Vortex
optimizing compiler for object-oriented languages, a.k.a. the UW Cecil implementation. A
conversation with Danny Bobrow and David Ungar at OOPSLA ’89 provided the original
inspiration for the Cecil language design effort.

This research has been supported by a National Science Foundation Research Initiation Award
(contract number CCR-9210990), a NSF Young Investigator Award (contract number CCR-
945767), a University of Washington Graduate School Research Fund grant, a grant from the
Office of Naval Research (contract number N00014-94-1-1136), and gifts from Sun Microsystems,
IBM Canada, Xerox PARC, Edison Design Group, and Pure Software.

More information on the Cecil language and Vortex optimizing compiler projects are available via
http://www.cs.washington.edu/research/projects/cecil and via
anonymous ftp fromcs.washington.edu:pub/chambers .

91

References

[Agrawal et al. 91] Rakesh Agrawal, Linda G. DeMichiel, and Bruce G. Lindsay. Static Type Checking of
Multi-Methods. InOOPSLA ’91 Conference Proceedings, pp. 113-128, Phoenix, AZ, October, 1991.
Published asSIGPLAN Notices 26(11), November, 1991.

[America & van der Linden 90] Pierre America and Frank van der Linden. A Parallel Object-Oriented
Language with Inheritance and Subtyping. InOOPSLA/ECOOP ’90 Conference Proceedings, pp. 161-
168, Ottawa, Canada, October, 1990. Published asSIGPLAN Notices 25(10), October, 1990.

[Andersen & Reenskaug 92] Egil P. Andersen and Trygve Reenskaug. System Design by Composing
Structures of Interacting Objects. InECOOP ’92 Conference Proceedings, pp. 133-152, Utrecht, the
Netherlands, June/July 1992. Published asLecture Notes in Computer Science 615, Springer-Verlag,
Berlin, 1992.

[Apple 92]Dylan, an Object-Oriented Dynamic Language. Apple Computer, April, 1992.

[Barnes 91] J. G. P. Barnes.Programming in Ada, 3rd Edition. Addison-Wesley, Wokingham, England,
1991.

[Black et al. 86] Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object Structure in the
Emerald System. InOOPSLA ’86 Conference Proceedings, pp. 78-86, Portland, OR, September, 1986.
Published asSIGPLAN Notices 21(11), November, 1986.

[Black & Hutchinson 90] Andrew P. Black and Norman C. Hutchinson. Typechecking Polymorphism in
Emerald. Technical report TR 90-34, Department of Computer Science, University of Arizona,
December, 1990.

[Bobrow et al. 86] Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik, and
Frank Zdybel. CommonLoops: Merging Lisp and Object-Oriented Programming. InOOPSLA ’86
Conference Proceedings, pp. 17-29, Portland, OR, September, 1986. Published asSIGPLAN Notices
21(11), November, 1986.

[Bobrow et al. 88] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, D. A. Moon.
Common Lisp Object System Specification X3J13. InSIGPLAN Notices 23(Special Issue), September,
1988.

[Borning 86] A. H. Borning. Classes Versus Prototypes in Object-Oriented Languages. InProceedings of
the 1986 Fall Joint Computer Conference, pp. 36-40, Dallas, TX, November, 1986.

[Bracha & Griswold 93] Gilad Bracha and David Griswold. Strongtalk: Typechecking Smalltalk in a
Production Environment. InOOPSLA ’93 Conference Proceedings, pp. 215-230, Washington, D.C.,
September 1993. Published asSIGPLAN Notices 28(10), October 1993.

[Canninget al. 89] Peter S. Canning, William R. Cook, Walter L. Hill, John C. Mitchell, and William
Olthoff. F-Bounded Quantification for Object-Oriented Programming. InProceedings of the
Conference on Functional Programming Languages and Computer Architecture, 1989.

[Cardelli & Wegner 85] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction, and
Polymorphism. InComputing Surveys 17(4), pp. 471-522, December, 1985.

[Castagnaet al. 92] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A Calculus for Overloaded
Functions with Subtyping. InProceedings of the 1992 ACM Conference on Lisp and Functional
Programming, pp. 182-192, San Francisco, June, 1992. Published asLisp Pointers 5(1), January-
March, 1992.

[Castagna 95] Giuseppe Castagna. Covariance and Contravariance: Conflict without a Cause. InACM
Transactions on Programming Languages and Systems 17(3), pp. 431-447, May 1995.

92

[Chamberset al. 89] Craig Chambers, David Ungar, and Elgin Lee. An Efficient Implementation of Self, a
Dynamically-Typed Object-Oriented Language Based on Prototypes. InOOPSLA ’89 Conference
Proceedings, pp. 49-70, New Orleans, LA, October, 1989. Published asSIGPLAN Notices 24(10),
October, 1989. Also published inLisp and Symbolic Computation 4(3), Kluwer Academic Publishers,
June, 1991.

[Chamberset al. 91] Craig Chambers, David Ungar, Bay-Wei Chang, and Urs Hölzle. Parents are Shared
Parts: Inheritance and Encapsulation in Self. InLisp and Symbolic Computation 4(3), Kluwer Academic
Publishers, June, 1991.

[Chambers & Ungar 91] Craig Chambers and David Ungar. Making Pure Object-Oriented Languages
Practical. InOOPSLA ’91 Conference Proceedings, pp. 1-15, Phoenix, AZ, October, 1991. Published
asSIGPLAN Notices 26(10), October, 1991.

[Chambers 92a] Craig Chambers.The Design and Implementation of the Self Compiler, an Optimizing
Compiler for Object-Oriented Programming Languages. Ph.D. thesis, Department of Computer
Science, Stanford University, March, 1992.

[Chambers 92b] Craig Chambers. Object-Oriented Multi-Methods in Cecil. InECOOP ’92 Conference
Proceedings, pp. 33-56, Utrecht, the Netherlands, June/July, 1992. Published asLecture Notes in
Computer Science 615, Springer-Verlag, Berlin, 1992.

[Chambers 93a] Craig Chambers. The Cecil Language: Specification and Rationale. Technical report #93-
03-05, Department of Computer Science and Engineering, University of Washington, March, 1993.

[Chambers 93b] Craig Chambers. Predicate Classes. InECOOP ’93 Conference Proceedings, pp. 268-296,
Kaiserslautern, Germany, July, 1993. Published asLecture Notes in Computer Science 707, Springer-
Verlag, Berlin, 1993.

[Chambers & Leavens 94] Craig Chambers and Gary T. Leavens. Typechecking and Modules for Multi-
Methods. InOOPSLA ’94 Conference Proceedings, pp. 1-15, Portland, OR, October 1994. Published
as SIGPLAN Notices 29(10), October 1994. An expanded and revised version to appear inACM
Transactions on Programming Languages and Systems.

[Chang & Ungar 90] Bay-Wei Chang and David Ungar. Experiencing Self Objects: An Object-Based
Artificial Reality. Unpublished manuscript, 1990.

[Cook 89] W. R. Cook. A Proposal for Making Eiffel Type-Safe. InECOOP ’89 Conference Proceedings,
pp. 57-70, Cambridge University Press, July, 1989.

[Cooket al. 90] William Cook, Walter Hill, and Peter Canning. Inheritance is not Subtyping. InConference
Record of the 17th Annual ACM Symposium on Principles of Programming Languages, San Francisco,
CA, January, 1990.

[Cook 92] William R. Cook. Interfaces and Specifications for the Smalltalk-80 Collection Classes. In In
OOPSLA ’92 Conference Proceedings, pp. 1-15, Vancouver, Canada, October, 1992. Published as
SIGPLAN Notices 27(10), October, 1992.

[Day et al. 95] Mark Day, Robert Gruber, Barbara Liskov, and Andrew C. Meyers. Subtypes vs. Where
Clauses: Constraining Parametric Polymorphism. InProceedings of the 1995 ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA ’95), pp. 156-168,
Austin, TX, October 1995.

[Dean & Chambers 94] Jeffrey Dean and Craig Chambers. Towards Better Inlining Decisions Using
Inlining Trials. InProceedings of the ACM Symposium on Lisp and Functional Programming, pp. 273-
282, Orlando, FL, June 1994. Published asLisp Pointers 7(3), July-September 1994.

[Dean et al. 95a] Jeffrey Dean, Craig Chambers, and David Grove. Selective Specialization in Object-
Oriented Languages. InProceedings of the 1995 SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’95), La Jolla, CA, June 1995.

93

[Dean et al. 95b] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of Object-Oriented
Programs Using Static Class Hierarchy Analysis. InProceedings of the European Conference on
Object-Oriented Programming (ECOOP ’95), Århus, Denmark, August 1995.

[Ellis & Stroustrup 90] Margaret A. Ellis and Bjarne Stroustrup.The Annotated C++ Reference Manual.
Addison-Wesley, Reading, MA, 1990.

[Freeman-Benson 89] Bjorn N. Freeman-Benson. A Proposal for Multi-Methods in Self. Unpublished
manuscript, December, 1989.

[Gabriel et al. 91] Richard P. Gabriel, Jon L White, and Daniel G. Bobrow. CLOS: Integrating Object-
Oriented and Functional Programming. InCommunications of the ACM 34(9), pp. 28-38, September,
1991.

[Ghelli 91] Giorgio Ghelli. A Static Type System for Message Passing. InOOPSLA ’91 Conference
Proceedings, pp. 129-145, Phoenix, AZ, October, 1991. Published asSIGPLAN Notices 26(11),
November, 1991.

[Goldberg & Robson 83] Adele Goldberg and David Robson.Smalltalk-80: The Language and Its
Implementation. Addison-Wesley, Reading, MA, 1983.

[Goldberg 84] Adele Goldberg.Smalltalk-80: The Interactive Programming Environment. Addison-
Wesley, Reading, MA, 1984.

[Groveet al. 95] David Grove, Jeffrey Dean, Charles Garrett, and Craig Chambers. Profile-Guided Receiver
Class Prediction. InProceedings of the 1995 ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA ’95), Austin, TX, October 1995.

[Grove 95] David Grove. The Impact of Interprocedural Class Analysis on Optimization. InProceedings of
CASCON ’95, pp. 195-203, Toronto, Canada, November 1995.

[Halbert & O’Brien 86] Daniel C. Halbert and Patrick D. O’Brien. Using Types and Inheritance in Object-
Oriented Languages. Technical report DEC-TR-437, Digital Equipment Corp., April, 1986.

[Harbison 92] Samuel P. Harbison.Modula-3. Prentice Hall, Englewood Cliffs, NJ, 1992.

[Harrison & Ossher 90] William Harrison and Harold Ossher. Subdivided Procedures: A Language
Extension Supporting Extensible Programming. InProceedings of the 1990 International Conference
on Computer Languages, pp. 190-197, New Orleans, LA, March, 1990.

[Harrison & Ossher 93] William Harrison and Harold Ossher. Subject-Oriented Programming (A Critique
of Pure Objects). InOOPSLA ’93 Conference Proceedings, pp. 411-428, Washington, D.C., September
1993. Published asSIGPLAN Notices 28(10), October 1993.

[Hölzle et al. 91a] Urs Hölzle, Bay-Wei Chang, Craig Chambers, Ole Agesen, and David Ungar.The Self
Manual, Version 1.1. Unpublished manual, February, 1991.

[Hölzle et al. 91b] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing Dynamically-Typed Object-
Oriented Programming Languages with Polymorphic Inline Caches. InECOOP ’91 Conference
Proceedings, pp. 21-38, Geneva, Switzerland, July, 1991.

[Hölzleet al. 92] Urs Hölzle, Craig Chambers, and David Ungar. Debugging Optimized Code with Dynamic
Deoptimization. To appear inProceedings of the SIGPLAN ’92 Conference on Programming Language
Design and Implementation, San Francisco, CA, June, 1992.

[Hölzle 93] Urs Hölzle. Integrating Independently-Developed Components in Object-Oriented Languages.
In ECOOP ’93 Conference Proceedings, pp. 36-56, Kaiserslautern, Germany, July 1993. Published as
Lecture Notes in Computer Science 707, Springer-Verlag, Berlin, 1993.

[Hudak et al. 90] Paul Hudak, Philip Wadler, Arvind, Brian Boutel, Jon Fairbairn, Joseph Fasel, Kevin
Hammond, John Hughes, Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil, Simon Peyton Jones,
Mike Reeve, David Wise, Jonathan Young.Report on the Programming Language Haskell, Version 1.0.
Unpublished manual, April, 1990.

94

[Hutchinson 87] Norman C. Hutchinson.Emerald: An Object-Based Language for Distributed
Programming. Ph.D. thesis, University of Washington, January, 1987.

[Hutchinsonet al. 87] Norman C. Hutchinson, Rajendra K. Raj, Andrew P. Black, Henry M. Levy, and Eric
Jul. The Emerald Programming Language Report. Technical Report 87-10-07, Department of
Computer Science, University of Washington, October, 1987.

[Ingalls 86] Daniel H. H. Ingalls. A Simple Technique for Handling Multiple Polymorphism. InOOPSLA
’86 Conference Proceedings, pp. 347-349, Portland, OR, September, 1986. Published asSIGPLAN
Notices 21(11), November, 1986.

[Jenks & Sutor 92] Richard D. Jenks and Robert S. Sutor.Axiom: the Scientific Computing System. Springer-
Verlag. 1992.

[Kiczaleset al. 91] Gregor Kiczales, James des Rivières, and Daniel G. Bobrow.The Art of the Meta-Object
Protocol. MIT Press, Cambridge, MA, 1991.

[Kristensenet al. 87] B. B. Kristensen, Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen
Nygaard. The BETA Programming Language. InResearch Directions in Object-Oriented
Programming, MIT Press, Cambridge, MA, 1987.

[LaLondeet al. 86] Wilf R. LaLonde, Dave A. Thomas, and John R. Pugh. An Exemplar Based Smalltalk.
In OOPSLA ’86 Conference Proceedings,pp. 322-330, Portland, OR, September, 1986. Published as
SIGPLAN Notices 21(11), November, 1986.

[Leavens 89] Gary Todd Leavens.Verifying Object-Oriented Programs that use Subtypes. Ph.D. thesis,
MIT, 1989.

[Leavens & Weihl 90] Gary T. Leavens and William E. Weihl. Reasoning about Object-Oriented Programs
that use Subtypes. InOOPSLA/ECOOP ’90 Conference Proceedings, pp. 212-223, Ottawa, Canada,
October, 1990. Published asSIGPLAN Notices 25(10), October, 1990.

[Lieberman 86] Henry Lieberman. Using Prototypical Objects to Implement Shared Behavior in Object-
Oriented Systems. InOOPSLA ’86 Conference Proceedings, pp. 214-223, Portland, OR, September,
1986. Published asSIGPLAN Notices 21(11), November, 1986.

[Liebermanet al. 87] Henry Lieberman, Lynn Andrea Stein, and David Ungar. The Treaty of Orlando. In
Addendum to the OOPSLA ’87 Conference Proceedings, pp. 43-44, Orlando, FL, October, 1987.
Published asSIGPLAN Notices 23(5), May, 1988.

[Liskov et al. 77] Barbara Liskov, Alan Snyder, Russell Atkinson, and J. Craig Schaffert. Abstraction
Mechanisms in CLU. InCommunications of the ACM 20(8), pp. 564-576, August, 1977.

[Liskov et al. 81] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaffert, Robert
Scheifler, and Alan Snyder.CLU Reference Manual. Springer-Verlag, Berlin, 1981.

[Meyer 86] Bertrand Meyer. Genericity versus Inheritance. InOOPSLA ’86 Conference Proceedings, pp.
391-405, Portland, OR, September, 1986. Published asSIGPLAN Notices 21(11), November, 1986.

[Meyer 88] Bertrand Meyer.Object-Oriented Software Construction. Prentice Hall, New York, 1988.

[Meyer 92] Bertrand Meyer.Eiffel: The Language. Prentice Hall, New York, 1992.

[Milner et al. 90] Robin Milner, Mads Tofte, and Robert Harper.The Definition of Standard ML. MIT Press,
Cambridge, MA, 1990.

[Mitchell et al. 91] John Mitchell, Sigurd Meldal, and Neel Hadhav. An Extension of Standard ML Modules
with Subtyping and Inheritance. InConference Record of the ACM Symposium on Principles of
Programming Languages, Williamsburg, VA, January, 1991.

[Moon 86] David A. Moon. Object-Oriented Programming with Flavors. InOOPSLA ’86 Conference
Proceedings,pp. 1-8, Portland, OR, September, 1986. Published asSIGPLAN Notices 21(11),
November, 1986.

95

[Mugridgeet al. 91] W. B. Mugridge, J. G. Hosking, and J. Hamer. Multi-Methods in a Statically-Typed
Programming Language. Technical report #50, Department of Computer Science, University of
Auckland, 1991. Also inECOOP ’91 Conference Proceedings, Geneva, Switzerland, July, 1991.

[Nelson 91] Greg Nelson, editor.Systems Programming with Modula-3. Prentice Hall, Englewood Cliffs,
NJ, 1991.

[Omohundro 93] Stephen Omohundro.The Sather 1.0 Specification. Unpublished manual, June 1993.

[Pierce & Turner 92] Benjamin C. Pierce and David N. Turner. Statically Typed Multi-Methods via Partially
Abstract Types. Unpublished manuscript, October, 1992.

[Pierce & Turner 93] Benjamin C. Pierce and David N. Turner. Object-Oriented Programming Without
Recursive Types. InConference Record of the 20th Annual ACM Symposium on Principles of
Programming Languages, January, 1993.

[Rees & Clinger 86] Jonathan Rees and William Clinger, editors.Revised3 Report on the Algorithmic
Language Scheme. In SIGPLAN Notices 21(12), December, 1986.

[Rouaix 90] Francois Rouaix. Safe Run-Time Overloading. InConference Record of the 17th Annual ACM
Symposium on Principles of Programming Languages, pp. 355-366, San Francisco, CA, January, 1990.

[Santas 93] Philip S. Santas. A Type System for Computer Algebra. InInternational Symposium on
Symbolic and Algebraic Computation. 1993.

[Schaffertet al. 85] Craig Schaffert, Topher Cooper, and Carrie Wilpolt. Trellis Object-Based Environment,
Language Reference Manual. Technical report DEC-TR-372, November, 1985.

[Schaffertet al. 86] Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie Wilpolt. An
Introduction to Trellis/Owl. InOOPSLA ’86 Conference Proceedings, pp. 9-16, Portland, OR,
September, 1986. Published asSIGPLAN Notices 21(11), November, 1986.

[Snyder 86] Alan Snyder. Encapsulation and Inheritance in Object-Oriented Programming Languages. In
OOPSLA ’86 Conference Proceedings, pp. 38-45, Portland, OR, September, 1986. Published as
SIGPLAN Notices 21(11), November, 1986.

[Steele 84] Guy L. Steele Jr.Common LISP. Digital Press, 1984.

[Stroustrup 86] Bjarne Stroustrup.The C++ Programming Language. Addison-Wesley, Reading, MA,
1986.

[Sun 95] Sun Microsystems.The Java Language Specification. Unpublished manual, May 1995.

[Teitelman 84] Warren Teitelman.The Cedar Programming Environment: A Midterm Report and
Examination. Xerox PARC technical report CSL-83-11, June, 1984.

[Touretzky 86] D. Touretzky.The Mathematics of Inheritance Systems. Morgan-Kaufmann, 1986.

[Ungar & Smith 87] David Ungar and Randall B. Smith. Self: The Power of Simplicity. InOOPSLA ’87
Conference Proceedings, pp. 227-241, Orlando, FL, October, 1987. Published asSIGPLAN Notices
22(12), December, 1987. Also published inLisp and Symbolic Computation 4(3), Kluwer Academic
Publishers, June, 1991.

[Ungar et al. 91] David Ungar, Craig Chambers, Bay-Wei Chang, and Urs Hölzle. Organizing Programs
without Classes. InLisp and Symbolic Computation 4(3), Kluwer Academic Publishers, June, 1991.

[Ungar 95] David Ungar. Annotating Objects for Transport to Other Worlds. InProceedings of the 1995
ACM Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA
’95), pp. 73-87, Austin, TX, October 1995.

[Watt et al. 88] Steven M. Watt, Richard D. Jenks, Robert S. Sutor, and Barry M. Trager. The Scratchpad II
Type System: Domains and Subdomains. InProceedings of the International Workshop on Scientific
Computation, Capri, Italy, 1988. Published inComputing Tools for Scientific Problem Solving, A. M.
Miola, ed., Academic Press, 1990.

96

Appendix A Annotated Cecil Syntax

In our EBNF notation, vertical bars (|) are used to separate alternatives. Braces ({...}) surround
strings that can be repeated zero or more times. Brackets ([...]) surround an optional string.
Parentheses are used for grouping. Literal tokens are included in quotation marks (“...”).

A.1 Grammar
a program is a sequence of declaration blocks and statements;
a file included through aninclude_decl can contain only declarations
program ::= top_level_file

top_level_file ::= { top_decl_block | stmt | pragma }

included_file ::= top_decl_block

a declaration block is an unbroken sequence of declarations where names are available throughout;
declaration blocks at the top level can be interspersed with pragmas
top_decl_block ::= { decl | pragma }

decl_block ::= decl { decl }

a declaration is a variable, a field, or a method declaration
decl ::= module_decl

| import_decl
| let_decl
| tp_decl
| type_ext_decl
| object_decl
| obj_ext_decl
| predicate_decl
| disjoint_decl
| cover_decl
| divide_decl
| signature_decl
| method_decl
| field_sig_decl
| field_decl
| precedence_decl
| include_decl
| prim_decl

privacy of a declaration defaults to public
privacy ::= “public” | “protected” | “private”

modules package up independent subsystems
module_decl ::= [privacy] “module” module_name [extension] “{”

{friendship | decl} “}” [“;”]

extension ::= “extends” module_names

friendship ::= “friend” module_names “;”

module_names ::= module_name {“,” module_name}

module_name ::= name

import declarations specify used modules
import_decl ::= [privacy] “import” [“friend”] module_names “;”

97

variable declarations bind names to objects; if “var” is present then variable is assignable
let_decl ::= [privacy] “let” [“var”] name [type_decl]

“:=” expr “;”

type, representation, and object declarations create new implementations and/or types
tp_decl ::= [privacy] “type” name [formal_params]

{type_relation} “;” declares an object type
object_decl ::= [privacy] rep_role rep_kind name [formal_params]

{relation} [field_inits] “;”

rep_role ::= “abstract” only inherited from by named objects;
allowed to be incomplete

| “template” only inherited from or instantiated;
uninitialized fields allowed

| “concrete” completely usable;
must be complete and initialized

| [“dynamic”] completely usable; accesses checked dynamically
rep_kind ::= “representation” declares an object implementation

| “object” declares an object type and implementation
type_relation ::= “subtypes” type_patterns

relation ::= type_relation type subtypes from type, or impl conforms to type
| “inherits” parents impl inherits from impl
| “isa” parents impl inherits from impl, type subtypes from type

parents ::= named_object_p { “,” named_object_p }

field_inits ::= “{” field_init { “,” field_init } “}”

field_init ::= msg_name [location] “:=” expr

location ::= “@” named_object

predicate object declaration
predicate_decl ::= [privacy] “predicate” name [formal_params]

{relation} [field_inits] [“when” expr] “;”

declarations of the relationships among predicate objects
disjoint_decl ::= [privacy] “disjoint” named_objects “;”

cover_decl ::= [privacy] “cover” named_object “by” named_objects “;”

divide_decl ::= [privacy] “divide” named_object “into” named_objects “;”

named_objects ::= named_object { “,” named_object }

extensions adjust the declaration of an existing object and/or type
type_ext_decl ::= [privacy] “extend” “type” named_type_p {type_relation} “;”

obj_ext_decl ::= [privacy] “extend” extend_kind named_object_p
{relation} [field_inits] “;”

extend_kind ::= “representation” extend representation
| [“object”] extend both type and representation

signature declarations declare method signatures
signature_decl ::= [privacy] “signature” method_name

“(” [arg_type_ps] “)” [type_decl] “;”

arg_type_ps ::= arg_type_p { “,” arg_type_p }

arg_type_p ::= [[name] “:”] type_pattern

method_name ::= msg_name [formal_params] | op_name

msg_name ::= name

98

implementation declarations define new method implementations; method decls define signatures, too
method_decl ::= [privacy] impl_kind method_name

“(” [formals] “)” [type_decl] {pragma}
“{” (body | prim_body) “}” [“;”]

impl_kind ::= [“method”] “implementation” declares a method implementation
| “method” declares a method signature and implementation

formals ::= formal { “,” formal }

formal ::= [name] specializer formal names are optional, if never referenced
specializer ::= location [type_decl_p] specialized formal

| [type_decl_p] unspecialized formal
| “@” “:” named_object_p sugar for@named_obj_p :named_obj_p

field declarations declare accessor method signatures and/or implementations
field_sig_decl ::= [field_privacy] [“var”] “field” “signature”

msg_name [formal_params] “(” arg_type_p “)” [type_decl]
 “;”

field_decl ::= [field_privacy] [“shared”] [“var”] “field” field_kind
msg_name [formal_params] “(” formal “)” [type_decl]

 [“:=” expr] “;”

field_kind ::= empty declare accessor method impl(s) and sig(s)
| “implementation” declare just accessor method implementation(s)

field_privacy ::= privacy [(“get” [privacy “set”] | “set”)]

precedence declarations control the precedence and associativity of binary operators
prec_decl ::= [privacy] “precedence” op_list

[associativity] {precedence} “;”

associativity ::= “left_associative” | “right_associative” | “non_associative”

precedence ::= “below” op_list | “above” op_list | “with” op_list

op_list ::= op_name { “,” op_name }

include declarations control textual file inclusions (implementation specific)
include_decl ::= “include” file_name “;”

file_name ::= string

primitive body declarations include an arbitrary piece of code in the compiled file (implementation specific)
prim_decl ::= prim_body “;”

primitive method bodies support access to code written in other languages (implementation specific)
prim_body ::= “prim” { language_binding }

language_binding::= language “:” code
| language “{” tokens “}”

language ::= name currently recognizertl andc_++

code ::= string

tokens ::= any of Cecil’s tokens, with balanced use of “{“ and “}”

body of a method or closure
body ::= {stmt} result

| empty returnvoid

stmt ::= decl_block
| assignment “;”
| expr “;”

99

result ::= normal_return return an expression
| non_local_rtn return from the lexically-enclosing method

normal_return ::= decl_block returnvoid
| assignment [“;”] returnvoid
| expr [“;”] return result of expression

non_local_rtn ::= “^” [“;”] do a non-local return, returningvoid
| “^” expr [“;”] do a non-local return, returning a result

assignment only allowed if name is assignable; returnsvoid
assignment ::= qualified_name “:=” expr

| assign_msg assignment-like syntax for messages
assign_msg ::= lvalue_msg “:=” expr sugar forset_ msg(exprs..., expr)
lvalue_msg ::= message

| dot_msg
| unop_msg
| binop_msg

expressions
expr ::= binop_expr

binary msgs have lowest precedence
binop_expr ::= binop_msg | unop_expr

binop_msg ::= binop_expr op_name binop_expr
predecence and associativity as declared

unary msgs have second-lowest precedence
unop_expr ::= unop_msg | dot_expr

unop_msg ::= op_name unop_expr & and^ are not allowed as unary operators

dotted messages have second-highest precedence
dot_expr ::= dot_msg | simple_expr

dot_msg ::= dot_expr “.” msg_name [params] [“(” [exprs] “)”]
sugar formsg_name[params](dot_expr,exprs...)

simple messages have highest precedence
simple_expr ::= literal

| ref_expr
| vector_expr
| closure_expr
| object_expr
| message
| resend
| paren_expr

literal constants
literal ::= integer

| float
| character
| string

reference a variable or a named object implementation
ref_expr ::= qualified_name reference a local or global variable

| named_object reference a named object

100

build a vector
vector_expr ::= “[” [exprs] “]”

exprs ::= expr { “,” expr }

build a closure
closure_expr ::= [“&” “(” [closure_formals] “)” [type_decl]] “{” body “}”

closure_formals::= closure_formal { “,” closure_formal }

closure_formal ::= [name] [type_decl_p] formal names are optional, if never referenced

build a new object
object_expr ::= rep_role rep_kind {relation} [field_inits]

send a message
message ::= msg_name [params] “(” [exprs] “)”

resend the message
resend ::= “resend” [“(” resend_args “)”]

resend_args ::= resend_arg { “,” resend_arg }

resend_arg ::= expr corresponding formal of sender must be
 unspecialized

| name undirected resend (name is a specialized formal)
| name location directed resend (name is a specialized formal)

introduce a new nested scope
paren_expr ::= “(” body “)”

name something perhaps in another module
qualified_name ::= [module_name “$”] name

name an object
named_object ::= qualified_name [params]

named_object_p ::= qualified_name [param_patterns]

syntax of types
type ::= named_type

| closure_type
| lub_type
| glb_type
| paren_type

named_type ::= qualified_name [params]

closure_type ::= “&” “(” [arg_types] “)” [type_decl]

arg_types ::= arg_type { “,” arg_type }

arg_type ::= [[name] “:”] type

lub_type ::= type “|” type

glb_type ::= type “&” type

paren_type ::= “(” type “)”

types ::= type { “,” type }

101

formal types are types that can contain binding occurrences of implicit type parameters
type_pattern ::= binding_type

| named_type_p
| closure_type_p
| lub_type
| glb_type
| paren_type

binding_type ::= “‘” name [“<=” type_pattern]

named_type_p ::= qualified_name [param_patterns]

closure_type_p ::= “&” “(” [arg_type_ps] “)” [type_decl_p]

type_patterns ::= type_pattern { “,” type_pattern }

type_decl ::= “:” type

type_decl_p ::= “:” type_pattern

formal parameters for objects and methods
formal_params ::= “[” formal_param { “,” formal_param } “]”

formal_param ::= [“‘”] name [“<=” type_pattern]

actual parameters for objects and methods
params ::= “[” types “]”

actual parameters for types that may contain binding occurrences of implicit type variables
param_patterns ::= “[” type_patterns “]”

pragmas can be added at various points in a program to provide implementation-specific hints/commands
pragma ::= “(**” exprs “**)”

A.2 Tokens

Bold-faced non-terminals in this grammar are the tokens in the full grammar of A.1. As usual,
tokens are defined as the longest possible sequence of characters that are in the language defined
by the grammar given below. The meta-notations “one of “...” ”, “ any but x,” and “x.. y”
are used to concisely list a range of alternative characters.space , tab , andnewline stand for
the corresponding characters.

name ::= letter {letter | digit} [id_cont]
| “_” {“_”} op_name the first underscore is not part of the msg name

op_name ::= punct {punct} [id_cont]
| “_” {“_”} name the first underscore is not part of the msg name

id_cont ::= “_” {“_”} [name | op_name]

integer ::= [radix] hex_digits a leading “- ” is considered a unary operator
radix ::= digits “_”

hex_digits ::= hex_digit {hex_digit}

hex_digit ::= digit | one of “a..fA..F”

float ::= integer “.” hex_digits [exponent]
| integer exponent

exponent ::= “^” [“+” | “-”] digits

102

digits ::= digit {digit}

character ::= “'” char “'”
string ::= “"” { char | line_break } “"”
char ::= any | “\” escape_char
escape_char ::= one of “'"nrtvba”

| [“o”] digit [digit [digit]]
| “x” hex_digit [hex_digit]

line_break ::= “\” {whitespace} new_line {whitespace} “\”
characters between \’s are not part of the string

letter ::= one of “a..zA..Z”
digit ::= one of “0..9”
punct ::= one of “!#$%^&*-+=<>/?~\|”

A.3 White Space

Whitespace is allowed between any pair of tokens in the grammar in A.1.

whitespace ::= space | tab | newline | comment
comment ::= “--” {any but newline} newline comment to end of line

| “(--” {any} “--)” bracketed comment; can be nested

