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Because of the growing recognition that a major con- 
tributing factor in the so-called "software engineering" 
problem is our lack of techniques for precisely specify- 
ing program segments without revealing too much in- 
formation [1, 2], I would like to report on a technique 
for module specification which has proven moderately 
successful in a number of test situations. 

Without taking the space to justify them [2] I would 
like to list the goals of the specification scheme to be 
described: 
1. The specification must provide to the intended user 
all the information that he will need to use the program 
correctly, and nothing more. 
2. The specification must provide to the implementer, 
all the information about  the intended use that he 
needs to complete the program, and no additional in- 
formation; in particular, no information about  the 
structure of  the calling program should be conveyed. 
3. The specification must be sufficiently formal that it 
can conceivably be machine tested for consistency, com- 
pleteness (in the sense of defining the outcome of all 
possible uses) and other desirable properties of a speci- 
fication. Note that we do not insist that machine testing 
be done, only that it could conceivably be done. By this 
requirement we intend to rule out all natural language 
specifications. 1 
4. The specification should discuss the program in the 
terms normally used by user and implementer alike 
rather than some other area of discourse. By this we in- 
tend to exclude the specification of programs in terms 
of the mappings they provide between large input do- 
mains and large output domains or their specification 
in terms of mappings onto small automata,  etc. 

The basis of the technique is a view of a program 
module as a device with a set of switch inputs and read- 
out indicators. The technique specifies the possible posi- 
tions of the input switches and the effect of moving the 
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switches on the values o f  the readout  indicators. We 
insist that  the values of  the readout  indicators be com- 
pletely determined by the previous values of  those indi- 
cators and the positions o f  the input switches. 

[Aside: The notat ion allows for some of  the push- 
but tons to be combined with indicator lights or read- 
outs  (with the result that  we must  push a but ton in order 
to read), but  we have not  yet found occasion to use that  
facility. A simple extension of  the notat ion allows the 
specification of  mechanisms in which the values of  the 
readout  indicators are not  determined by the above 
factors, but  can be predicted only by knowing the values 
o f  certain "h idden"  readout  indicators which cannot  
actually be read by the user of  the device. We have con- 
siderable doubts  about  the advisability of  building de- 
vices which must  be specified using this feature, but the 
ability to specify such devices is inexpensively gained.] 

In  software terms we consider each module  as pro- 
viding a number  of  subroutines or functions which can 
cause changes in state, and other functions or proce- 
dures which can give to a user p rogram the values of  the 
variables making up that  state. We refer to these all as 
functions. 

We distinguish two classes of  readout  functions:  the 
most  impor tant  class provides informat ion which can- 
not be determined without  calling that  function unless 
the user maintains duplicate information in his own 
program's  data structures. A second class, termed map- 
ping functions, provides redundant  information,  in that  
the value of  these functions is completely predictable 
f rom the current values of  other readout  functions. The 
mapping  functions are provided as a notat ional  con- 
venience to keep the specifications and the user pro- 
grams smaller. 

For  each function we specify: 
1. The set of  possible values: (integers, reals, t ruth 
values, etc.). 
2. Initial values: (either "undef ined"  or a member  of  
the set specified in item 1). "Undef ined"  is considered 
a special value, rather than an unpredictable value. 
3. Parameters:  each parameter  is specified as belonging 
to one of  the sets named in item 1. 
4. Effect: with the exception of  mapping  functions, 
almost  all the information in the specification is con- 
tained in section 4. Under  "effect":  we place two distinct 
types of  items which require a more detailed discussion. 

First, we state that  if the "effect" section is empty, 
then there is absolutely no way to detect that  the func- 
tion has been called. One may call it arbitrarily often 

1 It should be clear that while we cannot afford to use natural 
language specifications we cannot manage to do without natural 
language explanations. Any formal structure is a hollow shell to 
most of us without a description of its intended interpretation. The 
formal specifications given in this paper would be meaningless 
without a natural language description of the intended usage of the 
various functions and parameters. On the other hand, we insist that 
once the reader is familiar with the intended interpretation the 
specifications should answer all of his questions about the behavior 
of the programs without reference to the natural language text. 
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and observe no effect other than the passage o f  time. 
The modules that  we have specified have " t r aps"  

built in. There is a sequence o f  statements in the "effect" 
section which specifies the condit ions under  which cer- 
tain "e r ro r "  handling routines will be called. These 
condit ions are treated as incorrect usage of  the module  
and response is considered to be the responsibility o f  
the calling program. Fo r  that  reason it is assumed that  
the "e r ro r "  handling rout ine 's  body  will not  be con- 
sidered part  of  the module specified, but  will be written 
by the users o f  the module.  I f  such a condit ion occurs, 
there is to be no observable result of  the call of  the 
routine except the transfer o f  control .  When  there is a 
sequence of  error statements, the first one in the list 
which applies is the only one which is invoked. In some 
cases, the calling p rogram will correct  its error and re- 
turn to have the function try again; in others, it will 
not. I f  it does return, the function is to behave as if 
this were the first call. There is no memory  of  the 
erroneous call. 

This approach  to error handling is motivated by 
two considerations which are peripheral to this paper. 
First, we wish to make it possible to write the code 
for the " n o r m a l "  cases without  checking for the occur- 
rence of  unusual or erroneous situations. The " t r ap"  
approach  facilitates this. Second, we wish to encourage 
the proper  handling of  errors in many-leveled soft- 
ware. In our opinion this implies that each routine 
receives all messages from the routines that it uses and 
either (1) hides the trap from its user or (2) passes 
to its user an error indication which is meaningful 
to a p rogram which knows only the specification of  
the routine that it called and does not know of  the 
existence of  routines called by that  routine. The reader 
will find that  our insistence that  (1) response to  errors 
is the responsibility of  any routine which called another  
routine in an " incorrect"  way and (2) that  when such 
an error call is made, there is no record of  the previous 
call, places quite a demand  on the implementers o f  
each module.  They must  not make irreversible changes 
unless they are certain that  they can complete the 
changes to be made without  calling any "e r ro r "  rou- 
tines. The reader will note that  we generally specify a 
separate routine for each case which might be handled 
separately. The user may make several routines have 
identical bodies, if the distinction between those cases 
is not  impor tant  to him. 

The remaining statements are sequence independent.  
They can be "shuffled" without  changing their mean- 

The experience of the author has shown that if one makes use 
of names with a high mnemonic value, both reader and writer tend 
to become sloppy and use the intended interpretation implied by 
the mnemonic name to answer questions which should be answered 
from the formal statements. For that reason the function names 
have not been designed to be highly mnemonic but are instead 
rather obscure. The functions will only be completely understood 
after the reader studies the text which follows. The use of obscure 
mnemonics is clearly a matter of personal taste, and should not be 
considered essential to the technique being described. 
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ing. These statements are equations describing the 
values (after the function call) of  the other functions 
in the module. It  is specified that no changes in any 
functions (other than mapping functions) occur unless 
they are implied by the effect section. The effect sectioo 
can refer only to values of  the function parameters and 
values of  readout functions. The value changes of  the 
mapping functions are not mentioned; those changes 
can be derived from the changes in the functions used 
in the definitions of the mapping functions. All of 
this will become much clearer as we discuss the follow- 
ing examples. 

In some cases we may specify the effect of a sequence 
to be null. By this we imply that that sequence may be 
inserted in any other sequence without changing the 
effect of  the other sequence. 

Example 1. 

Function PUSH(a)  

possible values: none 
integer: a 
effect: call ERRI  i r a  > 02 V a < 0 V I D E P T H  1 = pl  

else [VAL = a; D E P T H  = I D E P T H t q - I ; ]  

Function POP 

possible values: none 
parameters: none 
effect: call ERR2 if  fDEPTH I = 0 

the sequence "PUSH(a) ;  POP"  has no net effect i f  no error calls occur. 

Function VAL 

possible values: integer initial; value undefined 
parameters: none 
effect: error call i f  IDEPTHI  = 0 

Function D E P T H  

possible values: integer; initial value 0 
parameters: none 
effect: none 
pl  and p2 are parameters, pl  is intended to represent the maximum depth of  the 
stack and p2 the maximum width or maximum size for each item. 

N o t a t i o n  2 

The notation is mainly ALGOL-like and requires 
little explanation. To distinguish references to the 
value of a function before calling the specified function 
from references to its value after the call, we enclose 
the old or previous value in single quotes (e.g. 'VAL'). 
I f  the value does not change, the quotes are optional. 
Brackets ("[" and "]") are used to indicate the scope 
of quantifiers. " = "  is the relation "equals" and not 
the assignment operator as in FORTRAN. 

We propose that the definition of a stack shown in 
Example 1 should replace the usual pictures of  im- 
plementations (e.g. the array with pointer or the linked 
list implementations). All that you need to know about  
a stack in order to use it is specified there. There are 
countless possible implementations (including a large 
number of sensible ones). The implementation should 
be free to vary without changing the using programs. 
I f  the using programs assume no more about  a stack 
than is stated above, that will be true. 

Example 2 shows a "binary tree." This example is 
of interest because we have provided the user with 
sufficient information that he may search the tree, 
yet we have not defined the values of  the main func- 
tions, only properties of those values. Thus, those 
values might well be links in a linked list implementa- 
tion, array indices in a T R E E S O R T  [ 3 ]  style implementa- 
tion or a number of  other possibilities. The important  
fact is that if we implement the functions as defined 
by any method, any usage which assumes only what is 
specified will work. 

2 Although this paper introduces a new notation it must be 
emphasized that the notation is not intended to be a contribution 
of this paper. In making a specification we include some information 
about a module and omit some. We are concerned primarily with 
the choice of the information to be supplied. We introduce notation 
only as needed to make that choice clear. Although we have made 
some attempt to adhere to a consistent notation, this paper is not 
a proposal that this notation be considered a language to be adopted 
for specification writing. We are not yet at a point where that is 
an important issue. 
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To make this specification complete the names of  
the error routines must be supplied. 

Example 3 shows a more specialized piece of soft- 
ware. It is a storage module intended for use in such 
applications as producing KWIC indexes. It  is designed 
to hold "lines" which are ordered sets of "words ,"  
which are ordered sets of  characters, to be dealt with 
by an integer representation. For  this example there 
are some restrictions on the way that material may be 
inserted (only at the end of the last line) which reflect 
the intended use. That  might well be a design error, 
but for our purposes the important  thing to note is 
that the restrictions are completely and precisely 
specified without revealing any of the internal reasons 
for making such restrictions. 

Some readers may feel that the specification re- 
veals an obvious implementation in terms of arrays. 
In fact, the module was implemented several times in 
tutorial projects and this obvious implementation was 
never used. Such an implementation would be imprac- 
tical in most cases and a much more complex implemen- 
tation was needed. The details of that implementation 
are hidden by this description of the module. 

The limitations of the module (pl ,  p2, p3) were 
expressed in terms of the array model for several 
reasons, among them ease of  use and the fact that it 
permits the array implementation. The decision to 
use those three parameters rather than one "space" 
parameter  is a questionable one because in some cases 
we may exceed the apparent capacity without exceed- 
ing the real capacity. In our experience this has not 
been a problem. 

In making the line holder of  Example 3 it may prove 
advantageous to (1) separate out the problem of stor- 
ing the individual characters that make up a word 
from the problem of storing the makeup of lines out of 
words, and (2) avoid duplicate storing of identical 
words. Both can be accomplished by use of the mecha- 
nism defined in Example 4 as a submodule for that 
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E x a m p l e  2. I n  t h e  f o l l o w i n g  m o d u l e  a l l  f u n c t i o n  v a l u e s  a n d  
p a r a m e t e r s  a r e  i n t e g e r s  e x c e p t  w h e r e  s t a t e d  o t h e r w i s e .  I n  t h e  i n t e r -  
e s t  o f  b r e v i t y  w e  s h a l l  n o t  s t a t e  t h i s  r e p e a t e d l y .  F o r  s o m e  v a l u e s  t h e  
v a l u e s  a r e  not  p r e d i c t e d  b y  t h e  d e f i n i t i o n .  T h e y  a r e  c h o s e n  a r b i -  

t r a r i l y  b y  t h e  s y s t e m .  T h i s  is  d o n e  b e c a u s e  t h e  u s e r  s h o u l d  n o t  
m a k e  u s e  o f  a n y  r e g u l a r i t y  w h i c h  m i g h t  e x i s t  i n  t h e  v a l u e s  a s s i g n e d .  
T h e  n e c e s s a r y  r e l a t i o n s  b e t w e e n  t h e  v a l u e s  o f  t h o s e  f u n c t i o n s  a n d  
t h e  v a l u e s  o f  o t h e r  f u n c t i o n s  a r e  s t a t e d  e x p l i c i t l y .  S u c h  i n c o m p l e t e l y  

d e f i n e d  f u n c t i o n s  a r e  n o t e d  w i t h  a n  *. T h e  u s e r  m a y  s t o r e  t h e  v a l u e s  
o f  t h o s e  f u n c t i o n s  a n d  u s e  t h e m  t o  a v o i d  r e p e a t e d  n e s t e d  f u n c t i o n  

ca l l s .  

Intended Interpretation: 

FA = father,  LS = leftson, RS = rightson, 
SLS = set Is. SRS = set rs, SVA = set val, 
VAL = value, D E L  = delete, ELS = exists Is, 
ERS = exists rs. 

Function FA (i)* 

possible values: integers 
initial value: FA(0) = 0; otherwise undefined 
effect: error call i f  TFA I (i) undefined 

Function LS (i)* 

possible values: integers 
initial value: undefined 
effect: error call i fTELSf(i)  = false 

Function RS(i)* 

possible values: integers 
initial value: undefined 
effect: error call i fTERSr(i)  = false 

Function S LS (i) 

possible values: none 
initial value: not applicable 

t T . . effect: error call i f  FA (]) is undefined 
error call i f  T ELST(i) = true 

LS(i) and FA(LS(i))  are given values such that 
[FA(LS(i)) = i and TFAT (LS(i)) was undefined] 
ELS(i) = true; 

Function SRS(i) 

possible values: none 
initial value: not applicable 
effect: error call i f  T FA T (i) is undefined 

error call i f  IERST (i) = true 

RS(i) and FA(RS(i))  are assigned values such that 
[FA(RS(i))  = i and IFAW (RS(i)) was not defined] 
ERS(i) = true; 

Function SVA(i, v) 

possible values: none 
initial value: not applicable 

T I 
effect: error call i f  FA (i) is undefined 
VAL(i) = v 

Function VAL(i) 

possible values: integers 
initial value: undefined 
effect: error call i f  TVALf (i) is undefined 

Function DEL(i) 

possible values: none 
initial value: not applicable 
effect: error call i f  VFA f (i) is undefined 

l t l l error call i f  ELS (i) or ERS (i) = true 
FA(i), VAL(i) are undefined 

l 1 I t t T 
i f i  = LS ( FA (i)) then ILS( FA (i)) is undefined and ELS(WFAW(i)) = 

falsell T 
i f i  = RS (IFAV(i)) then [RS(TFAt(i)) is undefined and ERS(VFAW(i)) = 

false] 

Function ELS(i) 

possible values: true, false 
initial value: false 
effect: error call i f  IFAT (i) undefined 

Function ERS (i) 

possible values: true, false 
initial value: .false 
effect: error call i f  WFAt (i) undefined 

E x a m p l e  3. D e f i n i t i o n  o f  a " L i n e  H o l d e r "  M e c h a n i s m .  T h i s  
d e f i n i t i o n  s p e c i f i e s  a m e c h a n i s m  w h i c h  m a y  b e  u s e d  t o  h o l d  u p  t o  
p l  l i ne s ,  e a c h  l i n e  c o n s i s t i n g  o f  u p  t o  p2  w o r d s ,  a n d  e a c h  w o r d  

m a y  b e  u p  t o  p3 c h a r a c t e r s .  

Function W O R D  

possible values: integers 
initial values: undefined 
parameters:  l,w, c all integer 
effect: 

call E R L W E L  i f  I < 1 or 1 > pl 
call E R L W N L  i f  1 > LINES 
call E R L W E W  i f  w < I or  w > p2 
call E R L W N W  i f  w > WORDS(I )  
call E R L W E C  i f  c < 1 or  c > p3 
call E R L W N C  i f  c > CHARS(/ ,w) 

Function S E T W R D  

possible values: none 
initial values: not applicable 
parameters: l,w,c,d all integers 
effect: 

call ERLSLE i f  I < 1 or I > pl 
call ERLSBL i f  I > VLINESV +1  
call ERLSBL i f  l < ILINES t 
c a I I E R L S W E  i f w  < 1 o r w  > p 2  
call ERLSBW i f  w > rWORDSI(1) q- 1 
call ERLSBW i f  w < tWORDSI( I )  
c a I I E RL SCE  i f c  < l o r c  > p3 
call ERLSBC i f  c .noteq. TCHARSt(I,w) + 1 call E R L S W D  if 1 < o or 
1 > p4 LINES = tLINESt  -{.- 1 

then WORDS(I )  = 
CHARS(/ ,w) = c 
WORD(I,w,e)  = d 

Function W O R D S  

possible values: integers 
initial values: 0 
parameters: I an integer 
effect: 

call E R L W S L  i f  I < 1 or  I > pl 
call E R L W S L  i f  l > LINES 
call E R L W S L  if  I > LINES 

Function LINES 

possible values: integers 
initial value: 0 
parameters:  none 
effect: none 

Function D E L W R D  

possible values: none 
initial values: not applicable 
parameters: I,w both integers 
effect: 

call E R L D L E  i f  1 < 1 or 1 > LINES 
c a I I E R L D W E  i f w  < 1 o r w  :> tWORDS~(I) 
call E R L D L D  i f  t W O R D S  I(1) = 1 
WORDS(I )  = ~WORDSt(I) -- 1 
for all c WORD(I,v,c)  = TWORDr (l vq-I  c) i f  v > w 
for all v > w or v = w CHARS(/ ,v)  = VCHARS (l,v--}-l) 

Function D E L I N E  

possible values: none 
initial values: not applicable 
parameters:  l an integer 
effect: 

call E R L D L L  i f l  < 01orl > ILINES I 
LINES = rLINES v -- 
i f r  = 1 or  r > 1 then for all w, for all c 

(WORDS(r)  = IWORDSI(r-}-I )  
CHARS(r ,w)  = TCHARS w(rq-I w) 
WORD(r ,w,c)  = TWORD~(rq-I,w,c))  

Function C H A R S  

possible values: integer 
initial value: 0 
parameters:  l, w both integers 
effect: 

c a I I E R L C N L  i l l  < 1 o r l  > LINES 
call E R L C N W  i f w  < 1 or w > WORDS(I )  
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described in Example 3. The implementer of the "line 
holder" would pass the individual characters of  the 
"words" to the symbol table whose definition guaran- 
tees him that he will receive a unique encoding of  
every symbol. Note  that the specification in Example 4 
does not rule out an implementation which stores du- 
plicate copies of  words, but it does require that all 
receive the same encoding. 

It is important to note that the user of  the "line 
holder" will never know or need to know of  the ex- 
istence of  the symbol table inner mechanism. 

Example 5 is intended to exhibit the situations in 
which mapping functions are useful in specifications. 
This module is an alphabetizer, intended to work with 
the "line holder" shown earlier. It determines values 
for ITH in such a way that (1) every integer between 1 
and the number of lines is a value of  ITH and if i < j 
then the line numbered ixrt(i) does not come before 
the line numbered ITH(j) in the alphabetic ordering. 

Note  that ITH as defined might be an array in which 
the values specified are stored by the routine ALert, 
or it might be a routine which searches for the appro- 
priate line each time called. An interesting alternative 
would be to make use of  FIND [4] within ITH SO that 
the computat ion is distributed over the calls of  ITH 
and so that in some situations unnecessary work may be 
avoided. We repeat that the important feature of  this 
specification is that it provides sufficient information 
to use a module which is correctly implemented accord- 
ing to any of  these methods, without the user having 
any knowledge of the method. 

Using the Specifications 

The specifications will be of  maximum usefulness 
only if we adopt methods that make full use of  them. 
Our aim has been to produce specifications which are 
in a real sense just as testable as programs. We will 
gain the most  in our system building abilities if we 
have a technique for usage of  the specifications which 
involves testing the specifications long before the pro- 
grams specified are produced. The statements being 
made at this level are precise enough that we should 
not have to wait for a lower level representation in 
order to find the errors. 

Such specifications are at least as demanding of  pre- 
cision as are programs; they may well be as complex 
as some programs. Thus they are as likely to be in 
error. Because specifications cannot be "run," we may 
be tempted to postpone their testing until we have pro- 
grams and can run them. For many reasons such an 
approach is wrong. 

We are able to test such specifications because they 
provide us with a set of  axioms for a formal deductive 
scheme. As a result, we may be able to prove certain 

E x a m p l e  4. S y m b o l  T a b l e  Def in i t i on .  
p l  = m a x i m u m  n u m b e r  o f  s y m b o l s  
p 2  = m a x i m u m  n u m b e r  o f  characters  

per s y m b o l  
p 3  = m a x i m u m  va lue  o f  charac ter  

Function STRTSM 

possible values: none 
initial values: not applicable 
parameters: none 
effects: call ERFAST if VMAYIN! = true 

MAYIN = true 

Function MAYIN 

possible values: true, false 
initial values: .false 
parameters: none 
effects: none 

Function C H A R I N  

possible values: none 
initial values: not applicable 
parameters: call ERCHIL i f c  < 0 or c > p3 

call E R M N I N  if  VMAYIN t = false 
call E R B U F X  if VBUFFERCNTV = p2 
B U F F E R ( I B U F F E R C N T  I + l )  = c 
B U F F E R C N T  = IBUFFERCNTV -]- I 

Function B U F F E R  

possible values: integers 
initial values: not applicable 
parameters: c, an integer 
effects: call E R B U F E  i f c  < 1 or c > I B U F F E R C N T  ~ 

Function B U F F E R C N T  

possible values: integers 0 < B U F F E R C N T  < p2 
initial values: 0 
parameters: none 
effects: none 

SYMEND 

possible values: integers 0 < SYMEND _< VSMCNT t) + 1 
initial values: not applicable 
parameters: none 
effects: call ERNOIN if  IMAYINI = false 

call E R N U T N  if  VBUFFERCNTI = 0 
MAYIN = false 
if there is an s (0 < s < tSMCNTI) such that 
IBUFFERCNTI  = ICHCNTI(s)-- and 

[if for all c (0 < c < VBUFFERCNTV) 
BUFFER(c)  = VCHAR f (s,c)] then 

SYMEND = s 
else [call ERSYL if  ISMCNTI =p l  

for at lc  (0 < c < I B U F F E R C N T  I) 
[CHAR(ISMCNT I -]- I ,c) = IBUFFERI (c) 

I I I I 
CHCNT( SMCNT + l ) =  B U F F E R C N T  
SMCNT = l SMCNT v -1-1 ] 

B U F F E R C N T  = 0 

Function CHAR 

possible values: integers 0 < CHAR _< p3 
initial values: not applicable 
parameters: s and c, both integers 
effects: call ERNOSY i f a  < I or s > HVMSCN 

c a l l E R N O C H i f c  < 1 o r c >  (s)ITCITN I C 

Function SMCNT 

possible values: integers 0 _< SMCNT _< pl 
initial values: 0 
parameters: none 
effects: none 

Function CHCNT 

possible values: integers 0 < CHCNT < p2 
initial values: not applicable 
parameters: s, an integer 
effects: call ERNOSY i f s  < 1 o r s  > ISMCNTI 

l i n t e n d e d  in terpre ta t ion  

J 
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Example  5. Alphabetizer for l ine holder.  Th i s  m o d u l e  a c c o m -  
plishes the a lphabet iza t ion  o f  the contents  o f  the m o d u l e s  referred 
to  a b o v e  by  produc ing  a pointer  funct ion,  I T H ,  which  gives the 
index  o f  the ith l ine in the a lphabet ized  sequence.  

Function ITH: 

possible values: integers 
initial values: undefined 
parameters: i an integer 
effect: 

call ERA1ND i f  value of function undefined for parameter given 

Function ALPHC: 

possible values: integers 
initial value: ALPHC(I) = index of l in alphabet used 

ALPHC(I) infinite if  character not in alphabet 
parameter: l an integer 
effect: 

call ERAABL i f / n o t  in alphabet being used, i.e. i fALPHC(I )  = 0o 

Mapping Function EQW: 
possible values: true, false 
parameters: ll,12,wl,w2 all integers 
values: 

EQW (ll,wl,12,w2) = for all c (I WORD I (/l,wl,c) = !WOR D! (12,w2,c)) 
effect: 

call ERAEBL i f  11 < 1 or l i  > tLINES ! 
call ERAEBL i f  12 < 1 or 12 > ILINES v 
call ERAEBW i f  wl < I or wl > IWORDSI(II) 
call ERAEBW i f  w2 < 1 or w2 > tWORDS t (12) 

Mapping Function ALPHW: 
possible values: true, false 
parameters: 11, 12,wl,w2 all integers 
values: 

ALPHW 11 w112 w2) = if-'a IEQWt(II w112 w2) and 
k = min c such that (WWORDI (11 wl c) "~eq. VWORDI (12 w2 c)) 
then rALPHCr (IWORDI (ll,wl,k)) < WALPHC v (WWORDI (12,w2,k)) 

else .false 
effect: 

call ERAWBL i f l l  < 1 or II > ILINES I 
call ERAWBL i l l2  < 1 or 12 > ILINES v 
ca l IERAWBW i f w l  < l o r w l  > IWORDSt(II)  
call ERAWBW i f  w2 < l or w2 > ~WORDSI(12) 

Mapping Function EQL: 
possible values: true, false 
parameters: 11,12 both integers 
values: 

EQL (11,12) = for all k (WEQWr(/l,k,12,k)) 
effect: 

call ERALEL i f l l  < 1 or I > ILINESI 
call ERALEL i f l2  < 1 or 12 > fLINES w 

Mapping Function ALPHL: 
possible values: true, false 
parameters: 11,12 both integers 
value: 

ALPHL(III,2) = i f " 1  IEQLI(II,12) then 
(let k = min c such that 'EQW ~ (ll,k,12,k)) 
rALPHW r (ll,k,/2,k) else true 

effect: 
call ERAALB i f  I1 < 1 or 11 > rLINESI 
call ERAALB i f  12 < 1 or 12 )- ILINESt 

Function ALPH: 
possible values: none 
initial values: not applicable 
effect: 

for all i -a < 1 and i -'1 > ILINESr ( 
ITH (i) is given values such that( 

for all j -7 < I and "-a > LINES 
there exists a k such that ITH(k) = j 

l b r i  _> --I and < rLINESI [thatlALPHLI(ITH(i),  ITH(i-~-I))] 

"theorems" about our specifications. Example "theo- 
rems" might be: 
1. The specification never refers to F l (p)  unless it is 
certain that p is less than 9. 
2. Whenever F3(x) is true F4(x) is defined and con- 
versely. 
3. It is not possible for F5(x) to take on values greater 
than p3. 
4. Error routine ERRX will never be called. 
5. There exists a sequence of function calls which 
will set F2(x) = F5(x) = 0. 
6. There will never exist distinct integers i and j such 
that FI(i)  = F2(j). 

By asking the proper set of such questions, the 
"correctness" of a set of specifications may be veri- 
fied. The choice of the questions, therefore the mean- 
ing of "correctness," is dependent on the nature of 
the object being specified. 

Using the same approach of taking the specifica- 
tions as axioms and attempting to prove theorems, 
one may ask questions about possible changes in sys- 
tem structure. For example, one may ask which mod- 
ules will have to be changed, if certain restrictions 
assumed before were removed. 

It would be obviously useful if there were a support 
system which would input the specifications and pro- 
vide question answering or theorem proving ability 
above the specifications. That, however, is not essen- 
tial. What is essential is that system builders develop 
the habit of verifying the specifications whether by 
machine or by hand 6efore building and debugging 
the programs. 

Incidentally, the theorem proving approach might 
also be considered as a basis for a program which 
searches automatically for implementations of a speci- 
fied module. We see this as more difficult and perhaps 
less urgently needed than the above. 

Hesitations 

To date the technique has received only limited 
evaluation. It has been used with reasonable success 
in the construction of small systems with simple mod- 
ules in an undergraduate class. The largest completed 
specification is a description of a simplified man/  
machine interface for a graphics based editor system 
[6]. However, any attempt to use this on a larger project 
(where the probability of failure without the technique 
is high) is in a very early stage. Clearly the idea needs 
further practical use before its usefulness can be evalu- 
ated. I hope that some of my readers will be in a 
position to do this. 

There appears to be a weak limitation on the tech- 
nique in that it makes it easy to describe objects which 
receive data in small units, and where the calli0g pro- 
gram must be aware of the period between receipt 
of such small units. So far we have not found a way 
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to follow the technique for such objects as a com- 
piler where the user sends one very large unit and does 
not  want  to know of  internal steps in the processing 
of  individual characters, phrases, etc. For  such situa- 
t ions we have been forced to make use of  techniques 
similar to that  of  Wirth and Weber  [5]. We did, how- 
ever, combine  the two techniques with some success. 

In  usage of  these techniques it has become clear 
that  there is a great initial resistance to their use. 
This approach  to the description of  programs as some- 
what static objects, rather than sequential decision 
makers, is unfamiliar to men with lots of  program-  
ming experience. The first few at tempts always fail 
and require the patient guidance of  an instructor.  The 
idea is, however, simple and is eventually mastered by 
a lmost  everyone. 
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