
Programming R. Morris
Techniques Editor

A Technique for
Software Module
Specification with
Examples
D. L. Parnas
Carnegie-Mellon University*

This paper presents an approach to writing
specifications for parts of software systems. The main
goal is to provide specifications sufficiently precise and
complete that other pieces of software can be written to
interact with the piece specified without additional
information. The seeopdary goal is to include in the
specification no more information than necessary to meet
the first goal. The technique is illustrated by means of a
variety of examples from a tutorial system.

Key Words and Phrases: software, specification,
modules, software engineering, software design

CR Categories: 4.0, 4.29, 4.9

Copyright @ 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part

of this material is granted, provided that reference is made to this
publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Com-
puting Machinery.

* This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (F44610-70-C-0107)
and was monitored by the Air Force Office of Scientific Research.
Computer Science Department, Pittsburgh, PA 15213.

330

Because of the growing recognition that a major con-
tributing factor in the so-called "software engineering"
problem is our lack of techniques for precisely specify-
ing program segments without revealing too much in-
formation [1, 2], I would like to report on a technique
for module specification which has proven moderately
successful in a number of test situations.

Without taking the space to justify them [2] I would
like to list the goals of the specification scheme to be
described:
1. The specification must provide to the intended user
all the information that he will need to use the program
correctly, and nothing more.
2. The specification must provide to the implementer,
all the information about the intended use that he
needs to complete the program, and no additional in-
formation; in particular, no information about the
structure of the calling program should be conveyed.
3. The specification must be sufficiently formal that it
can conceivably be machine tested for consistency, com-
pleteness (in the sense of defining the outcome of all
possible uses) and other desirable properties of a speci-
fication. Note that we do not insist that machine testing
be done, only that it could conceivably be done. By this
requirement we intend to rule out all natural language
specifications. 1
4. The specification should discuss the program in the
terms normally used by user and implementer alike
rather than some other area of discourse. By this we in-
tend to exclude the specification of programs in terms
of the mappings they provide between large input do-
mains and large output domains or their specification
in terms of mappings onto small automata, etc.

The basis of the technique is a view of a program
module as a device with a set of switch inputs and read-
out indicators. The technique specifies the possible posi-
tions of the input switches and the effect of moving the

Communications May 1972
of Volume 15
the ACM Number 5

switches on the values o f the readout indicators. We
insist that the values of the readout indicators be com-
pletely determined by the previous values of those indi-
cators and the positions o f the input switches.

[Aside: The notat ion allows for some of the push-
but tons to be combined with indicator lights or read-
outs (with the result that we must push a but ton in order
to read), but we have not yet found occasion to use that
facility. A simple extension of the notat ion allows the
specification of mechanisms in which the values of the
readout indicators are not determined by the above
factors, but can be predicted only by knowing the values
o f certain "h idden" readout indicators which cannot
actually be read by the user of the device. We have con-
siderable doubts about the advisability of building de-
vices which must be specified using this feature, but the
ability to specify such devices is inexpensively gained.]

In software terms we consider each module as pro-
viding a number of subroutines or functions which can
cause changes in state, and other functions or proce-
dures which can give to a user p rogram the values of the
variables making up that state. We refer to these all as
functions.

We distinguish two classes of readout functions: the
most impor tant class provides informat ion which can-
not be determined without calling that function unless
the user maintains duplicate information in his own
program's data structures. A second class, termed map-
ping functions, provides redundant information, in that
the value of these functions is completely predictable
f rom the current values of other readout functions. The
mapping functions are provided as a notat ional con-
venience to keep the specifications and the user pro-
grams smaller.

For each function we specify:
1. The set of possible values: (integers, reals, t ruth
values, etc.).
2. Initial values: (either "undef ined" or a member of
the set specified in item 1). "Undef ined" is considered
a special value, rather than an unpredictable value.
3. Parameters: each parameter is specified as belonging
to one of the sets named in item 1.
4. Effect: with the exception of mapping functions,
almost all the information in the specification is con-
tained in section 4. Under "effect": we place two distinct
types of items which require a more detailed discussion.

First, we state that if the "effect" section is empty,
then there is absolutely no way to detect that the func-
tion has been called. One may call it arbitrarily often

1 It should be clear that while we cannot afford to use natural
language specifications we cannot manage to do without natural
language explanations. Any formal structure is a hollow shell to
most of us without a description of its intended interpretation. The
formal specifications given in this paper would be meaningless
without a natural language description of the intended usage of the
various functions and parameters. On the other hand, we insist that
once the reader is familiar with the intended interpretation the
specifications should answer all of his questions about the behavior
of the programs without reference to the natural language text.

331

and observe no effect other than the passage o f time.
The modules that we have specified have " t r aps"

built in. There is a sequence o f statements in the "effect"
section which specifies the condit ions under which cer-
tain "e r ro r " handling routines will be called. These
condit ions are treated as incorrect usage of the module
and response is considered to be the responsibility o f
the calling program. Fo r that reason it is assumed that
the "e r ro r " handling rout ine 's body will not be con-
sidered part of the module specified, but will be written
by the users o f the module. I f such a condit ion occurs,
there is to be no observable result of the call of the
routine except the transfer o f control . When there is a
sequence of error statements, the first one in the list
which applies is the only one which is invoked. In some
cases, the calling p rogram will correct its error and re-
turn to have the function try again; in others, it will
not. I f it does return, the function is to behave as if
this were the first call. There is no memory of the
erroneous call.

This approach to error handling is motivated by
two considerations which are peripheral to this paper.
First, we wish to make it possible to write the code
for the " n o r m a l " cases without checking for the occur-
rence of unusual or erroneous situations. The " t r ap"
approach facilitates this. Second, we wish to encourage
the proper handling of errors in many-leveled soft-
ware. In our opinion this implies that each routine
receives all messages from the routines that it uses and
either (1) hides the trap from its user or (2) passes
to its user an error indication which is meaningful
to a p rogram which knows only the specification of
the routine that it called and does not know of the
existence of routines called by that routine. The reader
will find that our insistence that (1) response to errors
is the responsibility of any routine which called another
routine in an " incorrect" way and (2) that when such
an error call is made, there is no record of the previous
call, places quite a demand on the implementers o f
each module. They must not make irreversible changes
unless they are certain that they can complete the
changes to be made without calling any "e r ro r " rou-
tines. The reader will note that we generally specify a
separate routine for each case which might be handled
separately. The user may make several routines have
identical bodies, if the distinction between those cases
is not impor tant to him.

The remaining statements are sequence independent.
They can be "shuffled" without changing their mean-

The experience of the author has shown that if one makes use
of names with a high mnemonic value, both reader and writer tend
to become sloppy and use the intended interpretation implied by
the mnemonic name to answer questions which should be answered
from the formal statements. For that reason the function names
have not been designed to be highly mnemonic but are instead
rather obscure. The functions will only be completely understood
after the reader studies the text which follows. The use of obscure
mnemonics is clearly a matter of personal taste, and should not be
considered essential to the technique being described.

Communications May 1972
of Volume 15
the ACM Number 5

ing. These statements are equations describing the
values (after the function call) of the other functions
in the module. It is specified that no changes in any
functions (other than mapping functions) occur unless
they are implied by the effect section. The effect sectioo
can refer only to values of the function parameters and
values of readout functions. The value changes of the
mapping functions are not mentioned; those changes
can be derived from the changes in the functions used
in the definitions of the mapping functions. All of
this will become much clearer as we discuss the follow-
ing examples.

In some cases we may specify the effect of a sequence
to be null. By this we imply that that sequence may be
inserted in any other sequence without changing the
effect of the other sequence.

Example 1.

Function PUSH(a)

possible values: none
integer: a
effect: call ERRI i r a > 02 V a < 0 V I D E P T H 1 = pl

else [VAL = a; D E P T H = I D E P T H t q - I ;]

Function POP

possible values: none
parameters: none
effect: call ERR2 if fDEPTH I = 0

the sequence "PUSH(a) ; POP" has no net effect i f no error calls occur.

Function VAL

possible values: integer initial; value undefined
parameters: none
effect: error call i f IDEPTHI = 0

Function D E P T H

possible values: integer; initial value 0
parameters: none
effect: none
pl and p2 are parameters, pl is intended to represent the maximum depth of the
stack and p2 the maximum width or maximum size for each item.

N o t a t i o n 2

The notation is mainly ALGOL-like and requires
little explanation. To distinguish references to the
value of a function before calling the specified function
from references to its value after the call, we enclose
the old or previous value in single quotes (e.g. 'VAL').
I f the value does not change, the quotes are optional.
Brackets ("[" and "]") are used to indicate the scope
of quantifiers. " = " is the relation "equals" and not
the assignment operator as in FORTRAN.

We propose that the definition of a stack shown in
Example 1 should replace the usual pictures of im-
plementations (e.g. the array with pointer or the linked
list implementations). All that you need to know about
a stack in order to use it is specified there. There are
countless possible implementations (including a large
number of sensible ones). The implementation should
be free to vary without changing the using programs.
I f the using programs assume no more about a stack
than is stated above, that will be true.

Example 2 shows a "binary tree." This example is
of interest because we have provided the user with
sufficient information that he may search the tree,
yet we have not defined the values of the main func-
tions, only properties of those values. Thus, those
values might well be links in a linked list implementa-
tion, array indices in a T R E E S O R T [3] style implementa-
tion or a number of other possibilities. The important
fact is that if we implement the functions as defined
by any method, any usage which assumes only what is
specified will work.

2 Although this paper introduces a new notation it must be
emphasized that the notation is not intended to be a contribution
of this paper. In making a specification we include some information
about a module and omit some. We are concerned primarily with
the choice of the information to be supplied. We introduce notation
only as needed to make that choice clear. Although we have made
some attempt to adhere to a consistent notation, this paper is not
a proposal that this notation be considered a language to be adopted
for specification writing. We are not yet at a point where that is
an important issue.

332

To make this specification complete the names of
the error routines must be supplied.

Example 3 shows a more specialized piece of soft-
ware. It is a storage module intended for use in such
applications as producing KWIC indexes. It is designed
to hold "lines" which are ordered sets of "words ,"
which are ordered sets of characters, to be dealt with
by an integer representation. For this example there
are some restrictions on the way that material may be
inserted (only at the end of the last line) which reflect
the intended use. That might well be a design error,
but for our purposes the important thing to note is
that the restrictions are completely and precisely
specified without revealing any of the internal reasons
for making such restrictions.

Some readers may feel that the specification re-
veals an obvious implementation in terms of arrays.
In fact, the module was implemented several times in
tutorial projects and this obvious implementation was
never used. Such an implementation would be imprac-
tical in most cases and a much more complex implemen-
tation was needed. The details of that implementation
are hidden by this description of the module.

The limitations of the module (pl , p2, p3) were
expressed in terms of the array model for several
reasons, among them ease of use and the fact that it
permits the array implementation. The decision to
use those three parameters rather than one "space"
parameter is a questionable one because in some cases
we may exceed the apparent capacity without exceed-
ing the real capacity. In our experience this has not
been a problem.

In making the line holder of Example 3 it may prove
advantageous to (1) separate out the problem of stor-
ing the individual characters that make up a word
from the problem of storing the makeup of lines out of
words, and (2) avoid duplicate storing of identical
words. Both can be accomplished by use of the mecha-
nism defined in Example 4 as a submodule for that

Communications May 1972
of Volume 15
the ACM Number 5

E x a m p l e 2. I n t h e f o l l o w i n g m o d u l e a l l f u n c t i o n v a l u e s a n d
p a r a m e t e r s a r e i n t e g e r s e x c e p t w h e r e s t a t e d o t h e r w i s e . I n t h e i n t e r -
e s t o f b r e v i t y w e s h a l l n o t s t a t e t h i s r e p e a t e d l y . F o r s o m e v a l u e s t h e
v a l u e s a r e not p r e d i c t e d b y t h e d e f i n i t i o n . T h e y a r e c h o s e n a r b i -

t r a r i l y b y t h e s y s t e m . T h i s is d o n e b e c a u s e t h e u s e r s h o u l d n o t
m a k e u s e o f a n y r e g u l a r i t y w h i c h m i g h t e x i s t i n t h e v a l u e s a s s i g n e d .
T h e n e c e s s a r y r e l a t i o n s b e t w e e n t h e v a l u e s o f t h o s e f u n c t i o n s a n d
t h e v a l u e s o f o t h e r f u n c t i o n s a r e s t a t e d e x p l i c i t l y . S u c h i n c o m p l e t e l y

d e f i n e d f u n c t i o n s a r e n o t e d w i t h a n *. T h e u s e r m a y s t o r e t h e v a l u e s
o f t h o s e f u n c t i o n s a n d u s e t h e m t o a v o i d r e p e a t e d n e s t e d f u n c t i o n

ca l l s .

Intended Interpretation:

FA = father, LS = leftson, RS = rightson,
SLS = set Is. SRS = set rs, SVA = set val,
VAL = value, D E L = delete, ELS = exists Is,
ERS = exists rs.

Function FA (i)*

possible values: integers
initial value: FA(0) = 0; otherwise undefined
effect: error call i f TFA I (i) undefined

Function LS (i)*

possible values: integers
initial value: undefined
effect: error call i fTELSf(i) = false

Function RS(i)*

possible values: integers
initial value: undefined
effect: error call i fTERSr(i) = false

Function S LS (i)

possible values: none
initial value: not applicable

t T . . effect: error call i f FA (]) is undefined
error call i f T ELST(i) = true

LS(i) and FA(LS(i)) are given values such that
[FA(LS(i)) = i and TFAT (LS(i)) was undefined]
ELS(i) = true;

Function SRS(i)

possible values: none
initial value: not applicable
effect: error call i f T FA T (i) is undefined

error call i f IERST (i) = true

RS(i) and FA(RS(i)) are assigned values such that
[FA(RS(i)) = i and IFAW (RS(i)) was not defined]
ERS(i) = true;

Function SVA(i, v)

possible values: none
initial value: not applicable

T I
effect: error call i f FA (i) is undefined
VAL(i) = v

Function VAL(i)

possible values: integers
initial value: undefined
effect: error call i f TVALf (i) is undefined

Function DEL(i)

possible values: none
initial value: not applicable
effect: error call i f VFA f (i) is undefined

l t l l error call i f ELS (i) or ERS (i) = true
FA(i), VAL(i) are undefined

l 1 I t t T
i f i = LS (FA (i)) then ILS(FA (i)) is undefined and ELS(WFAW(i)) =

falsell T
i f i = RS (IFAV(i)) then [RS(TFAt(i)) is undefined and ERS(VFAW(i)) =

false]

Function ELS(i)

possible values: true, false
initial value: false
effect: error call i f IFAT (i) undefined

Function ERS (i)

possible values: true, false
initial value: .false
effect: error call i f WFAt (i) undefined

E x a m p l e 3. D e f i n i t i o n o f a " L i n e H o l d e r " M e c h a n i s m . T h i s
d e f i n i t i o n s p e c i f i e s a m e c h a n i s m w h i c h m a y b e u s e d t o h o l d u p t o
p l l i ne s , e a c h l i n e c o n s i s t i n g o f u p t o p2 w o r d s , a n d e a c h w o r d

m a y b e u p t o p3 c h a r a c t e r s .

Function W O R D

possible values: integers
initial values: undefined
parameters: l,w, c all integer
effect:

call E R L W E L i f I < 1 or 1 > pl
call E R L W N L i f 1 > LINES
call E R L W E W i f w < I or w > p2
call E R L W N W i f w > WORDS(I)
call E R L W E C i f c < 1 or c > p3
call E R L W N C i f c > CHARS(/ ,w)

Function S E T W R D

possible values: none
initial values: not applicable
parameters: l,w,c,d all integers
effect:

call ERLSLE i f I < 1 or I > pl
call ERLSBL i f I > VLINESV +1
call ERLSBL i f l < ILINES t
c a I I E R L S W E i f w < 1 o r w > p 2
call ERLSBW i f w > rWORDSI(1) q- 1
call ERLSBW i f w < tWORDSI(I)
c a I I E RL SCE i f c < l o r c > p3
call ERLSBC i f c .noteq. TCHARSt(I,w) + 1 call E R L S W D if 1 < o or
1 > p4 LINES = tLINESt -{.- 1

then WORDS(I) =
CHARS(/ ,w) = c
WORD(I,w,e) = d

Function W O R D S

possible values: integers
initial values: 0
parameters: I an integer
effect:

call E R L W S L i f I < 1 or I > pl
call E R L W S L i f l > LINES
call E R L W S L if I > LINES

Function LINES

possible values: integers
initial value: 0
parameters: none
effect: none

Function D E L W R D

possible values: none
initial values: not applicable
parameters: I,w both integers
effect:

call E R L D L E i f 1 < 1 or 1 > LINES
c a I I E R L D W E i f w < 1 o r w :> tWORDS~(I)
call E R L D L D i f t W O R D S I(1) = 1
WORDS(I) = ~WORDSt(I) -- 1
for all c WORD(I,v,c) = TWORDr (l vq-I c) i f v > w
for all v > w or v = w CHARS(/ ,v) = VCHARS (l,v--}-l)

Function D E L I N E

possible values: none
initial values: not applicable
parameters: l an integer
effect:

call E R L D L L i f l < 01orl > ILINES I
LINES = rLINES v --
i f r = 1 or r > 1 then for all w, for all c

(WORDS(r) = IWORDSI(r-}-I)
CHARS(r ,w) = TCHARS w(rq-I w)
WORD(r ,w,c) = TWORD~(rq-I,w,c))

Function C H A R S

possible values: integer
initial value: 0
parameters: l, w both integers
effect:

c a I I E R L C N L i l l < 1 o r l > LINES
call E R L C N W i f w < 1 or w > WORDS(I)

3 3 3 C o m m u n i c a t i o n s M a y 1972
o f V o l u m e 15
t h e A C M N u m b e r 5

described in Example 3. The implementer of the "line
holder" would pass the individual characters of the
"words" to the symbol table whose definition guaran-
tees him that he will receive a unique encoding of
every symbol. Note that the specification in Example 4
does not rule out an implementation which stores du-
plicate copies of words, but it does require that all
receive the same encoding.

It is important to note that the user of the "line
holder" will never know or need to know of the ex-
istence of the symbol table inner mechanism.

Example 5 is intended to exhibit the situations in
which mapping functions are useful in specifications.
This module is an alphabetizer, intended to work with
the "line holder" shown earlier. It determines values
for ITH in such a way that (1) every integer between 1
and the number of lines is a value of ITH and if i < j
then the line numbered ixrt(i) does not come before
the line numbered ITH(j) in the alphabetic ordering.

Note that ITH as defined might be an array in which
the values specified are stored by the routine ALert,
or it might be a routine which searches for the appro-
priate line each time called. An interesting alternative
would be to make use of FIND [4] within ITH SO that
the computat ion is distributed over the calls of ITH
and so that in some situations unnecessary work may be
avoided. We repeat that the important feature of this
specification is that it provides sufficient information
to use a module which is correctly implemented accord-
ing to any of these methods, without the user having
any knowledge of the method.

Using the Specifications

The specifications will be of maximum usefulness
only if we adopt methods that make full use of them.
Our aim has been to produce specifications which are
in a real sense just as testable as programs. We will
gain the most in our system building abilities if we
have a technique for usage of the specifications which
involves testing the specifications long before the pro-
grams specified are produced. The statements being
made at this level are precise enough that we should
not have to wait for a lower level representation in
order to find the errors.

Such specifications are at least as demanding of pre-
cision as are programs; they may well be as complex
as some programs. Thus they are as likely to be in
error. Because specifications cannot be "run," we may
be tempted to postpone their testing until we have pro-
grams and can run them. For many reasons such an
approach is wrong.

We are able to test such specifications because they
provide us with a set of axioms for a formal deductive
scheme. As a result, we may be able to prove certain

E x a m p l e 4. S y m b o l T a b l e Def in i t i on .
p l = m a x i m u m n u m b e r o f s y m b o l s
p 2 = m a x i m u m n u m b e r o f characters

per s y m b o l
p 3 = m a x i m u m va lue o f charac ter

Function STRTSM

possible values: none
initial values: not applicable
parameters: none
effects: call ERFAST if VMAYIN! = true

MAYIN = true

Function MAYIN

possible values: true, false
initial values: .false
parameters: none
effects: none

Function C H A R I N

possible values: none
initial values: not applicable
parameters: call ERCHIL i f c < 0 or c > p3

call E R M N I N if VMAYIN t = false
call E R B U F X if VBUFFERCNTV = p2
B U F F E R (I B U F F E R C N T I + l) = c
B U F F E R C N T = IBUFFERCNTV -]- I

Function B U F F E R

possible values: integers
initial values: not applicable
parameters: c, an integer
effects: call E R B U F E i f c < 1 or c > I B U F F E R C N T ~

Function B U F F E R C N T

possible values: integers 0 < B U F F E R C N T < p2
initial values: 0
parameters: none
effects: none

SYMEND

possible values: integers 0 < SYMEND _< VSMCNT t) + 1
initial values: not applicable
parameters: none
effects: call ERNOIN if IMAYINI = false

call E R N U T N if VBUFFERCNTI = 0
MAYIN = false
if there is an s (0 < s < tSMCNTI) such that
IBUFFERCNTI = ICHCNTI(s)-- and

[if for all c (0 < c < VBUFFERCNTV)
BUFFER(c) = VCHAR f (s,c)] then

SYMEND = s
else [call ERSYL if ISMCNTI =p l

for at lc (0 < c < I B U F F E R C N T I)
[CHAR(ISMCNT I -]- I ,c) = IBUFFERI (c)

I I I I
CHCNT(SMCNT + l) = B U F F E R C N T
SMCNT = l SMCNT v -1-1]

B U F F E R C N T = 0

Function CHAR

possible values: integers 0 < CHAR _< p3
initial values: not applicable
parameters: s and c, both integers
effects: call ERNOSY i f a < I or s > HVMSCN

c a l l E R N O C H i f c < 1 o r c > (s)ITCITN I C

Function SMCNT

possible values: integers 0 _< SMCNT _< pl
initial values: 0
parameters: none
effects: none

Function CHCNT

possible values: integers 0 < CHCNT < p2
initial values: not applicable
parameters: s, an integer
effects: call ERNOSY i f s < 1 o r s > ISMCNTI

l i n t e n d e d in terpre ta t ion

J

3 3 4 C o m m u n i c a t i o n s M a y 1972
o f V o l u m e 15
the A C M N u m b e r 5

Example 5. Alphabetizer for l ine holder. Th i s m o d u l e a c c o m -
plishes the a lphabet iza t ion o f the contents o f the m o d u l e s referred
to a b o v e by produc ing a pointer funct ion, I T H , which gives the
index o f the ith l ine in the a lphabet ized sequence.

Function ITH:

possible values: integers
initial values: undefined
parameters: i an integer
effect:

call ERA1ND i f value of function undefined for parameter given

Function ALPHC:

possible values: integers
initial value: ALPHC(I) = index of l in alphabet used

ALPHC(I) infinite if character not in alphabet
parameter: l an integer
effect:

call ERAABL i f / n o t in alphabet being used, i.e. i fALPHC(I) = 0o

Mapping Function EQW:
possible values: true, false
parameters: ll,12,wl,w2 all integers
values:

EQW (ll,wl,12,w2) = for all c (I WORD I (/l,wl,c) = !WOR D! (12,w2,c))
effect:

call ERAEBL i f 11 < 1 or l i > tLINES !
call ERAEBL i f 12 < 1 or 12 > ILINES v
call ERAEBW i f wl < I or wl > IWORDSI(II)
call ERAEBW i f w2 < 1 or w2 > tWORDS t (12)

Mapping Function ALPHW:
possible values: true, false
parameters: 11, 12,wl,w2 all integers
values:

ALPHW 11 w112 w2) = if-'a IEQWt(II w112 w2) and
k = min c such that (WWORDI (11 wl c) "~eq. VWORDI (12 w2 c))
then rALPHCr (IWORDI (ll,wl,k)) < WALPHC v (WWORDI (12,w2,k))

else .false
effect:

call ERAWBL i f l l < 1 or II > ILINES I
call ERAWBL i l l2 < 1 or 12 > ILINES v
ca l IERAWBW i f w l < l o r w l > IWORDSt(II)
call ERAWBW i f w2 < l or w2 > ~WORDSI(12)

Mapping Function EQL:
possible values: true, false
parameters: 11,12 both integers
values:

EQL (11,12) = for all k (WEQWr(/l,k,12,k))
effect:

call ERALEL i f l l < 1 or I > ILINESI
call ERALEL i f l2 < 1 or 12 > fLINES w

Mapping Function ALPHL:
possible values: true, false
parameters: 11,12 both integers
value:

ALPHL(III,2) = i f " 1 IEQLI(II,12) then
(let k = min c such that 'EQW ~ (ll,k,12,k))
rALPHW r (ll,k,/2,k) else true

effect:
call ERAALB i f I1 < 1 or 11 > rLINESI
call ERAALB i f 12 < 1 or 12)- ILINESt

Function ALPH:
possible values: none
initial values: not applicable
effect:

for all i -a < 1 and i -'1 > ILINESr (
ITH (i) is given values such that(

for all j -7 < I and "-a > LINES
there exists a k such that ITH(k) = j

l b r i _> --I and < rLINESI [thatlALPHLI(ITH(i), ITH(i-~-I))]

"theorems" about our specifications. Example "theo-
rems" might be:
1. The specification never refers to F l (p) unless it is
certain that p is less than 9.
2. Whenever F3(x) is true F4(x) is defined and con-
versely.
3. It is not possible for F5(x) to take on values greater
than p3.
4. Error routine ERRX will never be called.
5. There exists a sequence of function calls which
will set F2(x) = F5(x) = 0.
6. There will never exist distinct integers i and j such
that FI(i) = F2(j).

By asking the proper set of such questions, the
"correctness" of a set of specifications may be veri-
fied. The choice of the questions, therefore the mean-
ing of "correctness," is dependent on the nature of
the object being specified.

Using the same approach of taking the specifica-
tions as axioms and attempting to prove theorems,
one may ask questions about possible changes in sys-
tem structure. For example, one may ask which mod-
ules will have to be changed, if certain restrictions
assumed before were removed.

It would be obviously useful if there were a support
system which would input the specifications and pro-
vide question answering or theorem proving ability
above the specifications. That, however, is not essen-
tial. What is essential is that system builders develop
the habit of verifying the specifications whether by
machine or by hand 6efore building and debugging
the programs.

Incidentally, the theorem proving approach might
also be considered as a basis for a program which
searches automatically for implementations of a speci-
fied module. We see this as more difficult and perhaps
less urgently needed than the above.

Hesitations

To date the technique has received only limited
evaluation. It has been used with reasonable success
in the construction of small systems with simple mod-
ules in an undergraduate class. The largest completed
specification is a description of a simplified man/
machine interface for a graphics based editor system
[6]. However, any attempt to use this on a larger project
(where the probability of failure without the technique
is high) is in a very early stage. Clearly the idea needs
further practical use before its usefulness can be evalu-
ated. I hope that some of my readers will be in a
position to do this.

There appears to be a weak limitation on the tech-
nique in that it makes it easy to describe objects which
receive data in small units, and where the calli0g pro-
gram must be aware of the period between receipt
of such small units. So far we have not found a way

335 C o m m u n i c a t i o n s M a y 1972

o f V o l u m e 15

the A C M N u m b e r 5

to follow the technique for such objects as a com-
piler where the user sends one very large unit and does
not want to know of internal steps in the processing
of individual characters, phrases, etc. For such situa-
t ions we have been forced to make use of techniques
similar to that of Wirth and Weber [5]. We did, how-
ever, combine the two techniques with some success.

In usage of these techniques it has become clear
that there is a great initial resistance to their use.
This approach to the description of programs as some-
what static objects, rather than sequential decision
makers, is unfamiliar to men with lots of program-
ming experience. The first few at tempts always fail
and require the patient guidance of an instructor. The
idea is, however, simple and is eventually mastered by
a lmost everyone.

Received April 1971; revised June 1971

References

1. Buxton, J.N. and Randell, B. (Eds.), Software Engbleering
Methods. Report of a conference sponsored by the NATO Science
Committee, Rome, Italy, 27-31 October 1969.
2. Parnas, D.L. Information Distribution Aspects of Design
Methodology. Technical Report, Depart. of Comput. Science,
Carnegie-Mellon U., Feb., 1971. Presented at the IFIP
Congress, 1971, Ljubljana, Yugoslavia, and included in
the proceedings.
3. Floyd, R.W. Treesort 3 Algorithm 245. Comm. A C M 7, 12
(Dec. 1964), 701.
4. Hoare, C.A.R. Proof of a program, FIND. Comm. A C M 14, 1
(Jan. 1971), 39-45.
5. Wirth, N. and H. Weber. Euler: A generalization of ALGOL
and its formal definition. Comm. A C M 9, 1 (Jan. 1966), 13-23.
6. Parnas, D.L., Sample Specification for the Man Machine
Interface. Presented at the NATO Advanced Study Institute on
Graphics and the Man Machine Interface, April 1971, Erlangen,
West Germany (to be included in the proceedings of that
institute).

336 Communications
of
the ACM

May 1972
Volume 15
Number 5

