1972 ACM Turing
Aoward Lecture

Hxtrace from the Turing Award Ci-
tation reud by MDD Mellroy, chair-
pici of the ACM Turing Award Com-

mattee, ar the presgntalivn of thiy

fecire o August 14, 1972, at the
ACM Annpal Conference in Boston.

The working vocabulary of pro-
grammers cyerywhers is stodded with
words uriginaled or foreefully prom-
ulgated by BEW. Dijkstra—display,
duadly embrace, semaphore, go-to-
less programming, stroclured pro-
grumming. But his influence on pro-
Sramming is more pervasive than any

glossary can possibly indicate. The
precious gift that this Turing Award
acknowledges s Dijkstra's siyle: his
approach to programming as a high,
intelectual challenge; his cloquent
msistence and practica! demonstra-
tion thal programs should be com-
poszd correctly, not just debugged
into correctness, and his Huminating
pereeption of problems at the foun-
dations of program design. He has
published about a dozen papers, both
teehnical and reflective, among which
are especially to be noted his philo-

sophical addresses at 1519, his al
ready classic papers on cooperating
seguential processes,® and his mem-
orable indictment of the go-to state-
ment.” An influgntial series of letters
by Dijkstra have recently surfaced as
a polished monograph on the art of
composing programs.?

We have come tovalue good pro-
grums in much the same way as we
value good lirerature. And at the
center of this movement, creating and
reflecting patterns no less beautiful
than useful, stands EW. Dijkstra.

The Humble Programmer

by Edsger W, Dijkstra

8B5S

As oa result of a long sequence
of coincidences T entered the pro-
gramming profession officially on the
first spring morning of 1932, and as
far as I have been able to trace, |
was the first Dutchman to do so in
my country. In retrospoct the most
amuazing thing 5 the slowness with
which, at least in my part of the
world, the programming profession
emerged, o siowness which 5 now
hard 1o believe, Buat ¥ am grawful for
two vivid recollections from that
period that establish that slowness
heyond any doubt,

After having programmed for
some three vears, 1 had a discussion
with van Wijngaarden, who was then
my boss a1 the Mathematical Centre
in Amsterdam--g discussion for
which 1 shall remain grateful o him
as long as | live. The poiat was that

Conmmumicaiions
of
the ACM

I was supposed to study theoretical
physics at the University of Leiden
simultanecusty, and as { found the
two activities harder and harder 10
combine, 1 had o make up my
mind, either (o stop programming
and become a real, respectable theo-
retical physicist, or o carry my siudy
of physics to a formal completion
only, with g minimum of cffort, and
to become ..., yes what? A pro-
grammer? Bt was that a gespect-
able profession? After all, what was
programming? Where was the sound
body of knowledge that could sup-

Copyright) 1972, Association for

Computing Machinery. Inc. Geonorsl per-
sson o republish, but got for piofig,
all wr part of this materisl 3 gronted,
provided that reference i made to this
publication, W b5 date of buwe, and o
the facl that repeintiog proivileges ware
granted by permission of the Assoccistion
for Computing Machinery.
L334 Foomoms are on page B64,

Oiober 1972
Yodume 1§
Mamber 10

port i as an intellectnally respectahle
diseipline? T remember guile vividly
how 1
leagues, who, when asked about ther

envied my hardware cel-
professional m*wp»**cm:@. could af
least point oul that they Know overy-
thing about vacuum tubes, amplidicr

and the resi, whereas 1 felt i?m&

when faced with that guosi I
wld 3&:’151@ empty-handed. of

misgivings 1 knocked on van Win-
gaarden's office door, askisg him
wmzizcr 1 could speak 1o him for a
moment; when I left his office o
nwnbor of houss fater, T owas an-
other person, For after having hs-
rened to my wm‘a? ns patiently, i
agreed that up till that moment there
was not mauach o{ #Programuming
discipline, but then he went on o
explain quicty that auromatic con-
puters were here (o stay, thal we
were just at the beginning and could
not T be one of the persons called
o muke programming a r‘c:;pa:i:zabéc
disciphne in the years to come”? This
was & furning point in omy life and
b ocompleted my study of physics
formally us guickly as I couid, One
pmeoral of the above story s, of
course, that we must be very careful
when we give advice 10 younger
i}ﬁﬂpi“‘ sometimes ﬂgm follow it}
wo years later, i 1937, 1 mar-
ded, and Dutch marriage riies re-
guirc vou {0 state your profession
angd I siated that I was a program-
mer, But the municipal authorities
of the town of Amsterdam did not
accept i on the grounds that there
was no such profession. And, be-
Heve it or not, but under the bhead-
g “profession” my marriage record
shows the ridiculous oniry “theo-
retheal physicist™
So much for the slowness with

bl

which | siw the programsung pro-
fession cmerge B my OWR LOUTItTY.

Singe then 1 have af the
world, and B s my gonacral impres-
sion tha in u‘ﬁ"i’ countries, apart
from a possible shift of dates, the
prowth paticrs has been very much
the same,

Let me by 10 caplure the silua-
i in those old davs in 5 Littke bl
more deiail, 1 the hope of gesting
u betier understunding of the shiua-

Ry rRnre

Bad

don oday, While we
analysis, we shall sce how
common misunderstandings about
the true natre of the programming
task can be tracaed back o that now
dhisrant past,

The Dirst sutomuatic elecirone
computers were all unique, single-

pursue our
muany

copy machines and they were all 1o
b found i an environment with
the exciting Bavor of an oxperimental
laboratory, Once the volon of the
autamaric compurer was thers, i
resbization was o tremendous chal-
fenge w the electronic technology
Iable, and one tung is cor-
main: we cannet deny the courage
of the groups that decided o 1ty 1o
build such a fantastic piece of cquip-
ment, For fantastic pieces of equip-
ment they were: i retrospect one
can only wonder that those ﬁm;l ma-
chines worked at all, at least some-
times, The overwhelming problem
wias (o get and keep the machine in
working order, The preoccupation
with the physical aspecis of auio-
matic computing {5 still refleced in
the names of the older scientific so-
civtics 1 the fizld, xm‘? as the Asso-
ciation for Computing Machinery or
the Britksh Compuier Sotiely, names
in which explicit reference s made
to the physical couipment

What about the poor program-
mer? Well, to tell the honest truth,
he was hardly noticgd. For one thing,
the frst machines were s0 bulky that
vou could hardiyv move them and
besides that, they reguired such ex-
iensive maintenance that it was quite
natural that the place where people
wied w0 use thy mochine was the
same laboratory where the machine
had been developed, Secondly, the
programmer’s somewhat invisible
work was without any glamour: you
could show the machine 0 visitors
and th wius several orders of mag-
nitude more spectacular than some
shenis of coding. Bul most important
of all, the programmer himself had
aowery modest view of his own work:
his work derived all s significance
from the existence of that wonderful
maching. Because that was a unigue
mezching, he know only top well thas
his programs had only local signifi-

5

then o

Comuminioations
wi
Th AL

cance, and also beceuse It was pak
ently obvious that this machine woold
have a Hmited Wetime, he koow 1hat
very Bitle of his work would have

a lasting value, Fioally, there s
vel another circumsiange that had o

profound
mer's attifude wowand his work, on
the one hand, besides being vore-
hable, his machine was usually oo
sfow and Hs memory was usually

influence on the program-

oo small, Lo he was faced with
a pinching shoc, while on the other
hand ity wsnally somewhat queer
order code would cater for the most
pnexpected constructions, And in
those days many a clever program-
mer dertved an immense intellectual
satisfaction from the cunning tricks
by means of wihich he contrived to
squeeze the impossible into the con-
straints of his cquipment,

Two opmlons about program-
ming date from those days T men-
fion them now: I shall rtoturn w
them later. The one opinion was that
a really competent programmer
should be puzzie-minded and very
fond of clever tricks; the other opin-
ion was that programming was noth-
ing more than optimizing the effi-
ciency of the computarional process,
in one direetion or the other.

The latter opinion was the resuit
of the frequent circumstance that,
wmdced, the avaifable sguipment was
a painfully pinching shpe, and in
those days one oflen cncountered
the nalve expectation that, once more
powerful machines were available,
programmung would no longer be a
problem, Tor then the struggle to
push the machine 1o U8 limits would
no jonger be necessary and that was
all that programming was about,
wasn't 117 But in the next decades
something completely different hap-
pencd: more powerful machines be-
came available, not just an order
of magnitude more powerful, even
several orders of magutude more
powerfyl, But instead of finding our-
selves in a state of erernal bliss with
all programming problems solved,
we found ourseives up to our necks
in the software erisis! How come?

There is o minor cause: in one
of two respeois modern machinory

Oiober 1972
Wolume 15
Marber 10

i basiwally more difficulr 1o handic
than the old machinery, Firstly, we
havi gol the Lo mtorrepls, o
ring ad Uﬂi"li”i,‘ijihilihsf&,' and wreproduc.
wrred with the ald

ST

thic momenis: ¢

sequenticl machine that pretended

10 Be o fully deterministie antomaton,
this has beerr o dramatic chunge,
aned many g osystoms proprammer’s

PR owiinesy 0 the fact

groy hair |

that we should not wdk hghdy abous
the logical probiems creared by that

Secondly we have 2ot e

mppod with meliilovel
presenting us probloms of
management sivategy thal, W ospile
of the oxtemsive lersiure on the
subjoct, sl remaim rathoer olusive.
S0 much for the gdded vomplication
structural changes of the

s

dug 1o
actual machines,

Bur §ocallod this a2 minor cause;
the major cuuse is .. that the ma-
chines huve become several orders
of mugniiude more powsrfud! To
put i quile bluntly: as long as there
were 10 machines, programmimg was
no probivm al all; when we had a
fow woak compuiers, programming
hecame & mikd problem, and now
we have gigantic computers, pro-
graming has bocome an egually
gigantic problem. In this sense the
electronic industry has not sobved &
sigle problom, it has only croated
iem-it has croated the problem of
asing s peoducts. To put i i an-
wther way: as the power of available
machings grow by
than a thousand, society’s ambition
to apply thase machings grow in pro-
portwon, and 1 was the poor pro-
grammer who found his job in this
eaploded fiehl ol twension between
ends and means, The increased power
of the hardware, together with the
perhaps even more dramatic norsasg
in its reliabilily, made solutions fea
sible that the programmer had pot
dared 10 dream about o fow vears
before, Amd now, a fow years fater,
he Aud o deoam about them and,
even worse, he had o ransform
such drooms Info reality! s it a4
wongder that we found ourselves in
a software orisis? No, certainly not,
and as you Way guess, 1D was oven
prodicted well in sadvance: but the

a facior of more

wh

#51

trouble
COATRE,
later that wou really
had been right.
Thea, i the mid sixtics soma-
thing torrible happencd: the com-
puters of the Pihird genera-
tion made thetr appearance. The
othcial ferature rells uys that their
price/performance ratio has hoen
ong of the major dosign objectives.
But i vou ake as g}:rfunmmw”
Ao of the machine's vart-

with miner prophets, of
s that it is only five vears
© know that thoy

TV TSR] 3

the duty cve
ous compononty, itk will provent
vou from ending up with a design
mowhich the mador part of your per-
formance goal s reuched by internal
houstkeeping activities of doubtful
necessity, And I youwr delnition of
price is the price to be paid for
the hardware, little will prevent you
from ending up with a design thar
is werribly hard o program for for
instance the order code might be
such as to onforce, cither upon the
programner of upon the svstem,
carly bunding decisions presenting
conflicts that really cannot be re-
solved. And to a large extent these
unpleasant possibilitios seem 1o have
becomn reality.

When these machines were ape-
nounced wnd their functional speci-
figations bevame known, many
among us must have boecome gulie
muserable:; at least 1 was, 1L owas
only reasonable o oxpect that such
machines woulld Hood the comput-
g community, and it was therefore
aff the more important that their de-
sign should be as sound s possibis.
Bur the design embodiod soch seri-
ous Haws that 1 feli that with a
single siroke the progress of com-
puting science had been rotarded by
at fea b ten years: i owas thes that
1 had the blackost week in the whole
of my piofessional ife. Perhaps the
most saddening thing now ig that,
=ven after all those vears of Trustrat-
ing ecpenence, still so many people
songsily spdiove e some law of
mahwe teHs s that machines have
w b thar way, They stience ther
doubss by observing how many of
these machines bave been soll, and
derive from that observation the false
sense of seourity that, aflter all, the

Coranunnatons
ot
the AUM

design cannot have been that bad.
But apon closer inspection, thar line
of defense has the same conving ing
strength as the argument that cig-
areile smoking must be healthy be-
cuuse soomany people do i

[t is in this coanection that 1
regrel hat it s not cestomary for
scientifiic journals in the computing
area 10 publish reviews of iwwi'j; il
nounced computzrs in much the same
Wiy a5 W review seientific pubiimm
iew machines would be
at least as ampostant, And here |
have a confession o make: in the
carly sixties I owrote such a review
with the intention of submitting it
to Communications, but in spite of
the fact that the few colleagues to
whom the text was sent for their ad-
vice urged me o do so, [did not dare
to do i, feanng that the difficulties
gither for myself or for the Ediiorial
Board would prove o be o greal
This suppression was an act of cow-
ardice on my side for which 1 blame
aryseil more and more, The difficul-
ties { foresaw werd i consequence of
the absence of generally accepted
criferia, and although 1 was coa-
vinced of the validiry of the critenia
i had chusen o apply, 1 feared that
my veview would be refused or dis-

Hons: 1o rev

carded Ta mailer of personsal
tasie.” 1 st think that such reviews

would be extremely useful and 1 am
longing 1w sve them appear, for their
accepied appesrance would be a
sufe sign of maturity ol the com-
puling communily.

The reason that | have pad the
above altentivn to the hardware scene
5 because I ohave the fecling tha
one of the mosl @aporiant ppects
of any computing tool is s influence
on the thinking habits of those who
iy o ouse i, and becawse 1 have
reasons 1o bolieve that that influence
s many ey stronger than s com-
moniy assumed. Let us npow switch
ol aliention o the softwarg scosg.

Heve the diversiy has been so
large thar | must confine mysell to
a fow stepping siones, | am painfully
awarg of the wrbdranness of my
choden, and 1 beg you soy 1o draw
any conclusions with regard W my
apprecisiion of ¢ y effors et

575y

Octoabey 1Y72
Wolme 13
Mamber 10

will have to remain unmentioned,

In the beginning there was the
epsac it Cambridge, England, and
I think It quite buprossive that right
from the start the notion of a sub-
routing library played o coniral role
in the design of that muchine and
of the way in which
wsed. It is now nearly 25 vears later
and the computing seence has changed
dramatically, but the notion of basic
software s stiil with wus, and the
notion of the closed subroutine s
stitf one of the key concepts in pro-
gramming. We should recognize the
closed subroutine as one of the greal-
est software lnventions: it hax ES
vived three generations of computers
and it will survive & fow more, be-
cause it caters for the mmplementa-
don of one of our basic putterns of
abstraction. Regrottably enough, s
importance hus been underesiimated
in the design of the third generation
computers, in which the great num-
per of explicitly named registers of
the arithmeiic unit implies a large
overhead on the subrouline mccha-
nism, But even that did not kil the
voncept of the subroutine, and we
can only pray that the mulation
won't prove to be hereditary,

The second major development
on the software scene thar T would
fike o moention is the birth of
FORTRAN. At that Hime this way a
project of great temerity, and the
people responsible for it deserve our
great admiration. It would be abso-
lutely untair to blame them for short-
comings that only became apparent
after a decade or 30 of oxtensive
usage: groups with a successful look-
ahead of ten years are guite rare!
In retrospect we must rate FORTRAN
as a successful coding iechnigue,
but with very few effective aids to
coaceplion, wids which are now so
urgently needed that tme has come
1o consider it out of date, The sooner
we can forget that PORTRAN ©ver ex-
wsted, the better, for a5 a vehicle of
thought it is no longer adeguate: it
wastes owr brainpower, and It 15 w0
tisky and therefore oo expensive to
e FORTRAN'S tragic fate has been
its wide acceptance, mentally chain-
ing thousands and thousands of pro-

should ba

842

grammers G our past mistakes, |
pray daily that more of my fellow-
programmers may fnd the means of
frecing thenselves {rom the curse of
compatihiity,

The thrd project 1 would not
ke to leave unmentioped iy wsp,
a fascinating cmierprise of a come
pletely different nature, With a few
very basic principles at s founda-
tien. i has shown a remarkab
bility, Besides that, visp has been
the carrer for a considerable nun-
her of, in & sense, our moOst &0-
phisticated computer applications,
Lis¥ has jokingly been desenibed as
Cthe most intelligent way 10 misuse
a computer.” T think that description
a great compliment because §f trans-
mits the full favor of lberation: @
hay assisied g number of our most
gifted fellow humans in thinking
previously impossible thoughts.

The fourth project W be men-
tioned is ALGOL 600 While up to the
present day FORTRAN PrOgrammers
still tend 1o understand their pro-
gramming language in terms of the
specific implementation they are
working with—hence the prevalence
of octal or hexadecimal dumps—
while the defininon of Lisp is still
a curious muxture of what the lan-
guage means and how the mecha-
wism works, the famous Report on
the Algorithmic Language alcot 60
is the fruit of s genuine effort to
carry abstraction a vital step further
and to define a programming lan-
guage m an implementaton-inde-
pendent way. One could argue that
in this respect its agrhors have been
so successiul that they have created
seripus doubts as 1o whether it could
be implemented at alll The report
gloriously demonstrated the power of
the formal method surF, now fairy
known as Backus-Naur-Form, and
the power of carefully phrased Eng-
lish, ar least when used by some-
one as brilliant as Peter MNaur.]
think that it s fair 1o say that only
very few documenis as short as this
have had an egually profound in-
fluence on the computing commu-
nity. The ease with which in later
years the names ALGOL and aLGOL-
fike have been wsed, a5 an unpro-

o sta-

Communicatons
of
the A0M

tected trademark. 1o lend glovy 1o
a nuwmber of sometimes hardly re-
faterd vounger projects IS a some-
what shocking complimentio a1.GoL s

stunding. The suength of sNE Uy 2
defimng dovice is responsible Tor

as oone of the weak-
tanguage: an over-

what 1 regard
nesses of the
ciaborale and not 0o systematic
syntax could now be crammed into
the confines of very fow pages. With
a device as powerful as any, the
Report on the Algorithmic Lan-
guage aranl HU should have been
much shorter. Besides that, 1 oam
getting very doubtful about ancor
60’s parameter mechanism: it al
lows the programmer so much com-
binatorial freedom that its confide;
use requires a strong discipline from
the programmer, Bosides heing ex-
pensive o fmplement, it secms dan-
BUTOUS Tey s,

Finally, ulthough the subpst i3
ot o pleasant one, [omust mention
PL/1, a programming language for
which the defining documentation is
of a frightening size and complexity.
Using eL/1 must be hike flying
plane with 7,000 buttons, switches,
and handles to manipulate in the
cockpit. T absolutely fail to see how
we cait Keep our growing programs
firmly within our intellectzal grip
when by its sheer barogueness the
programming language—our basic

tool, mind youl—already escapes
our inteliectual control. And i 1

have to describe the influence pL/i
can have on its users, the closest
metaphor that comes to my mind
is that of a drug, I remember
from a symposium on higher lovel
programming languages a lecture
given in defense of i/t by a man
who described himsalf as ong of its
devoted users. But within a one-hour
lecture in praise of pr/i, he man-
aged to ask for the addition of abowt
30 new “features,” little supposing
that the main source of hig problems
could very well be that it contained
already far too many “features.”
The speaker displayed all the de-
prossing symptoms of addiction, re-
duced as he was to the state of
mental stagnation in which he could
only ask for more, more, more. ...

Oictober 1972
WVedume 15
Wimber

When FORTRAN §‘z;1}y boen called un
mfantile disorder, full pr /i, with
ity growth characteristios of a dan-

gerous fumor, could turn out o b
tal disease,
S0 much for the past. But there

i no point in omaking mslakes un-
fad

afat

less therealter we are able to learn
from thom, matter of fact, 1
think that wo have fearned so much
that within & fow

Ax g

Yoars Program-
ming can beoan activity vastly dif-
forent from what it has heen up
il mow, so different that we had
hetrer propare ourselves for the
shock. Lot me sketch for you one of
the pessible fafures At first sight
this vision of programming In per-
haps afready the near futlure may
strike vou as utiorly Tantastic, Lt
me therefore also add the considera-
tians that nught lead one to the con-
clusion that thix vision could be a
very raal possibility.

The vision s thet, well before
the seventies have run Lo comple-
ton, we shall be able to design and
implement the kind of svstems that
are now Siraining our ;*;rrm';mamism
ability at the expense of only a fow
percent in man-years of what they
cost us now, and that besides that,
these systems will be virtually free of
bugs. These two mmprovements go
hand in hand. In the latter respect
software scems to by differeat from

many other products, where as a rule
a higher gualiy implies o higher
price. Those who want really reli-
able software will discover that they
must find means of avoiding the
majority of bugs to start with, and
as i resuit the programming process
will become cheaper. 1T you want
more offective programmers, you will
discover that they should not waste
thelr time debugging--they should
aot infroduce the bugs fo start with.
in other words, both goals point 0
the same change.

Such a drastic change in such
a short peried of time would be a
revoiution, amd o all persons that
hase therr expectations for the future
on smooth extrapelation of the re-
cent pasi—appes "mg 10 some unwril-
ten taws of social and cultural in-
ertin—~the chance that this drastic

&6

change will take place must seem
negligible. Hur we all know that
spmetimes revolutions do teke place!
And what are the chances for this
ong?

There scem 1o he three major
conditions that must be fulfilled, The
world al large must recognize the
nged for the O},mé,, secondly, the
coonomiy need for b must be sob-
ficiently strong; and, thirdly, the
change roust be eohnically feasible
Let me discuss those three wnd;t;{.m&
in the above order

With rospect e the rocognition
of the peed for greator reliability of
software, 1 expect no disagresment
anymore, Only a few years ago this
was different: to talk about a soft-
wiare erists was blasphemy. The turn-
ing point was the Conference on
Seftware Engimcering i Garmisch,
October 1968, a conference thai
created a sensation as there occurred

the first open admission of the sofr-
ware orisis. And by now it i3 gen-
grally recognized that the design of
any large sophisticated system 15 go-
ing 1o be a very difficult job, and
whenever ong meets people respon-
sihle for such undertakings, one finds
them wery much concerned about
the reliability issue, and rightly so
In short, our first condition seems
1o he satisfied.
Now for the cconomic need
Nowadays onc oflen cncounters the
opinion that in the sixties pmgﬂmz—
ming has been an overpaid profes-
sion, and that in the coming yoars
programmer salaries may be expected
to po down. Usually this opimion is
expressed o connection with the re-
cossion, but it could be a symptom
of something different and guite
healthy, viz. that perhaps the pro-
grammers of the pust decade have
not donz so pood a job as they
should have done. Society is gelting
dissatisfied with the performance of
programmers and of their products.
But there is another factor of much
greater weight. In the present situs-
ton it is qutte wusl that for a
specific system. the price 1o be paid
for the development of the soltware
i« of the same order of magnitude
s the price of the hardware needed,

Comenanications

af
the AUM

and socicty more or loss accepls
that, Bul hardware manufaciorers

el us that 1 the next decade hard-

re prives can be expected o drop
with a factor of ten If software de-
vilopment wore 1o continue (o be
the samce cluimsy and expensive
process as it 15 now, things would
get completely out of balunce, You
cannol cxpect society 1o accept this,
and therelors
gram an order of magnitude more
cflecuvely, To put it i another way:
as long as machines wua, the largest
ey on the budget, the program-
ming profession conld get away with
its clumsy technigues; but that um-
brella will fold very ranidly. In short,
also our seeond condition seems 1o
be satisfied.

And now the third condition: is
it technically feasible? | think it
might be, and [shall give you six ar-
pumenis in support of that opinion,

A ostudy of program structure
has rovealed that programs—even al-
ternative programs for the same task
and with the same mathematical con-
tent—can difter remendously in their
ntellecrual manageability, A num-
her of rules have been discovered,
violation of which will cither seri-
ously impair or totally destroy the
m%uhcmuai manageability of the pro-
geam. These rales are of two kKinds.
Those of the Brst kind are casily
impased mechanically, wiz. by a
suitably chosen programming lan-
gunge, Examples are the exclusion
of goto-statements and of procedures
with more than ong oulpu! para-
meter. For those of the second kind,
[at least—bul that may be duc (o
lack ©f compelencs op my side—
see no way of imposing them me-
chanically, as i seems o need seme
sort of awtomatic theorem prover
for which { have no existence proof,
Therefore, for the time being and
perhaps forever, the rules of the
speopd kind present themselves as
clements of discipling required from
the programmer. Some of the rules
! have n mind are 30 clear that they
can be taught and that there never
needs 1o be an argoment ay o
whether 8 given program vicolales
them or not, Exsmples are the ree

we shusl learn 1o pro-

Oetober 1972
Yolume 13
Mumber 1

quircments that no leop should by
written down withoul providing a
proof for termination or without
stating the relation whose Invariance
will not he destroved by the oxg
ton of the repeawsble statement,

I now suppest that we confine
ourselves 1o the design and imple
mentation of intelfectually manage-
sble programs. If someone fears that
this restriction 18 so severe that we
cannot live with i1, 1 can reassure
nim; the colass of intellectually man-

le programs is stull sufficiently
rich o contaln many very realistic
programs for any problem capable
of algorithmic solution. Wo must
not forget that it 18 sor our business
o make prs;wmrras; it is our business
ty design < of computations
that will display a desired behavior,
The suggestion of confining oursalves
o intellectually manageable programs
is the basis for the first two of my
announced six arguments.

Argument one 8 that, as the
programumer only needs o consider
intellectually manageable programs,
the alternatives he & choosing from
are much, much casier to cope with,

Argument two i3 that, as soon
as we have decided to restrict our-
selves to the subset of the intellectu-
ally manageable programs, we have
achieved, once and for all, a drastic
reduction of the solution space (o
be considerad, And this argument is
distingt from arpument ong.

Argument three is based on the
constructive approach to the prob-
lem of program correciness, Today
a usual technigue is to make a pro-
gram and then to test it But: pro-
gram festing can be a very effeciive
way 1o show the presence of bugs,
but it is hopelessly inadequate for
showing their absence. The only f
fective way o rabe the confidence
lewel of 2 program aa%gnéiicaﬂﬁ%y i5
o give 2 convincing proo! of s cor-
reciness, Bui one should not frst

make the program and then prove
Hs correciness, because then the re
guirement of providing the proof
would only increase the poor pro-
grammer’s burden, Os the oo
trary; the programmer should et
correcipess prool and program

£64

hand in hand, Argument throe
hased oo the following
first asks oneself
SNV ::mmﬂ

B
is paspntiadlv
observation. f one
what the siructure of o
proot would be und, huving found
this. then constucts & program satis-
fving this proof's reguircieats, then
these Correctness Coneerns furn ow
1o be o very offective heuriste gund-
ance, By Jdefinition this ;u\pz‘mif:h 15
only applicable when we restrict our-
sobves 1o intellcctually manageable
programs, bui It provides us with
effective means for finding a satis-
faciory one among these,

Argunmm four has to do with
the wav i which the amount of in-
tellectual effon needed o design a
pragram depends on the program
ippgth. It hus been suggested that
there s some law of nature telling us
that the amount of intclicctual effort
needed grows with the sguare of
program length. But, thank good-
ness, noe one has been able 1o prove
And this 15 because it peed
not b ue. We ol koow that the
only mcm&% tool by means of which
a very finite picce of reasoning can
cover & myriad of cases is called
“abstraction”: as a vesult the cffec-
tve explowtation of his powers of
abstraction must be regarded as one
of the most vital activitics of a
competent programmer. In this con-
nection it mught be worthwhile 1o
pomnc out that ithe pur p)sg of ab-
stracting is el b1 gue, but to
Ccreate & new semantii i ved in which
one can be abscluiely precise OF
course [have tried fo find a funda-
mental cause that would proveur our
abstraction mechanisms from being
sutliciently effective, Bul no malier
how hard I tried, 1 did not find such
a vause. As g result T tend to the
assuwmption--up il now notdisproved
by experience-—that by suitable ap-
plication of our powers of abstrac-
tion, the armiiu"a.zsa'i efort reguired
10 conceive or w understand 4 pro-
gram nieed ol grow more than pro-
portional 1o program length. A by-
product of these iavestigations may
be of much greater practical signifi-
capce, and is, in fact, the basis of
my fourih argument, The by-product
wis the wentification of a number
Communications

of
the A %1

of patterns of abstraction that play
a vital role 'm the whole

PrOCEs
of composing programs. Poough
knowr aboul these palterns of ghe

\?&‘W}{Q 3
Wihat the
and conscious kaowledge

stragtion that you couhd
lecture 1o vach of them
familianty
of these patterns of abstraction im-
phy dawned upon me when | realized
that, had they been common knowl-
edges 15 vewrs ago, the step from
BNEF 0 syntax-direeted compilers, for
could have taken o fow
minutes mstead of a few yvears. There-
fore 1 present our recent knowledge
of wvial abstraction patterns as the
fourth argument.

Now for the Rith argoment [t
has to do with the influence of the
tool we are (rying o ust GUpon our own
thinking habus. I observe o culiural
tradition, whéch in all probability
has its rovts in the Renaissance, to
wnore this iznhz nee, o rogard the
human mind a8 z‘nf: supreme and
autonomous master of s artifucts,
But i | start to analyze the thinking
habits of myself and of my fel
low human beings, | come, whether
I Bike it or not, 10 a2 completely dif-
ferent conclusion, wiz. that the tools
wooare trving 1o use and the las-
guage or notalion we are using to
express or record our thoughts are
the major factors determining what
we can think or express at ali! The
analysis of the mflucnce that pro-
pramming fanguages have on the
thinking habits of their users, and
the recognition that, by now, brain-
power 3& by far ocur scarcest re-
source, these together give us a new
collection of vardsticks for compar-
ing the relative merits of various
programming langusges. The com-
petent programmer 15 fully aware of
the strictly Hmited size of his own
skull; therefore he approaches the
programming task in full bumility,
and among other things he avoids
clever tricks like the plague. In the
case of g well-known conversational
programming langnage 1 have been
told from various sides that as soon
as a8 programming cmmmmiiy is
equipped with a fermial for it 2
specific phenomenon ocours that even
has 2 wellestablished name it is

mstance,

October 1972
YWolurmne 15
e liniensdnma 14y

called “the onechners ™ It takes one
of two different forms: ene program-
mer places a one-line program on
the desk another amd cither he
proudly tells what it does and adids
the guestion, “Can vou code this in
less symbols? —as 07 this were of
any cc)m‘cg*nm; refevinesior be just
says, "CGuess whal it dogs?™ From
this observation we must conclude
that this language as a ool is an
open invitation {or clever tricks: and
while cxacily this may be the cx-
planation for some of ils appeal,
vizo 1o those who like to show how
clever they are, 1 oam sorry, but
Eomust regard this as one of the
most damning things that can be
said abour a programming lan-
punge. Another lesson we should
have dearned from the reeent past is
that the developrent of “richer” or
“more powerful” programming fan.
guages was a mistake in the sense
that these barogque monstrosities,
these conglomerations of idiosyn-
crasics, are really unmanageable, both
mechanically and mentally. 1 see a
great future {or veory sysiemalic and
very medest programming languages.
When 1 say “modest,” T mean that,
tor anstance, not only aLcor 60'
“for clause,” but even FORTRAN’S DD
toop™ may find themsclves thrown
out as being too barogue. [have run
a little programming experiment with
reaily expenenced voluniesrs, but
something quite unintended and quite
unexpected turned up, Nowe of my
velunicers found the obvieus and
most clegant solution, Upon closer
analysiy this turned out to have a
common source; their aotion of rep-
etition was so dghtly connected 1o
the idea of an assoviated controlled
variable to be stepped up, that they
were mentally blocked from seeing
the obvicus. Thelr solutions were
fess efficient, necdlessly hard to un-
derstand, and @ ook them a very
long time o find them. {r was a re-
caling, but also shocking exper-
ence for me. Finally, in one respect
one hopes that [omorrow’s program-
ming laxoaguages will differ greatly
from what we are ased 10 now: (o
a much groater extent than hithento
they should dnvite us w reflect in

65

the structure of what we wriie down
all abstractions needed 10 cope con-
ceptualiy with the complexity of what
we are designing. So much for the
greater adequacy of pur future tools,
which was the basis of the ffth
argument,

As an aside 1 would like 1o in-
sert @ warning to those who identify
the difficulty of the programming
task with the siruggle against the
madequacies of our current tools,
beeause they mizzlxt conclude that,
once our iools will be much more
adequate, programming will no longer
be a problem. Programuning will re-
ery diflicult, because once we
have freed ourselves from the cir-
cumstantial cumbersomeness, we will
find ourselyves free 1o tﬁx:“;EfJ%: the
problems that arc now well beyond
our programraiog \.apdu{y.

You can quarrsl with my sixth
argument, for 1t is not 30 casy to
collect cxperimental evidence for its
support, a fact that will not prevent
me from belicving in its validity. Up
il now I have not mentioned the
word “Chierarchy,” bur I think :hat
it is fair to say ithat this is a key
concept for ail systems embodying a
nicely Factored solution. 1 could even
g0 one step further and make an
arficle of faith ocut of ir, vig that
the only problems we can really
solve in a satisfactory manner are
those that finally admit & nicely fac-
tored solution, At first sight this
view of human limitations may strike
you as a rather depressing view of
our predicament, but T don™t feel it
that way, On the contrary, the best
way to leacn o lve with cur hmila-
tons s o know them. By the time
that we are sufficiently modest o try
factored solutions only, because the
other cfforts oscape our infeliectual
grip, we shall do our utmost 10 avoid
all those mterfaces impairing our abil-
ity to factor the system in a heipful
way. And { can not but cxpect that
this will repeatedly fead © the dis-
wwiy ihm arn mzmiéy untractable
problem can be factored after all,
Afzmuc who has seen how the ma-
jority of the rrouhies of the compil-
ing phase called “code generation”
can be tracked down o fwny prop-

main

Communications
saf

the AUM

erties of the order-code will know
a simple example of the kind of
things 1 have in mind. The wider
applicability of aicely factored sohr-
tiona is pry sixth and lust argument
for the lechnical feasibility of the
revolution that might take place in
the current decade.

In principle 1 leave it 1o you to
decide for yourself how much weight
YOU are going 0 give o my con-
siderations, knowing only too well
that T can force no one ¢lse to share
my belicfs. As in each serious revolu-
tion, it will provoke violent opposi-
tion and one can ask oncself where
to cxpeet the conservative forces
trying to counteract such a develop-
ment, T don't cxpect them primarily
in big busingss, not gven in the com-
puter business; T expeact them rather
in the educational institutions that
provide today’s training and in those
conservative groups of computer
users that think their old programs
so important that they don’t think it
worthwhile to rewrite and improve
them. In this conncetiom it is sad
o obscrve that on many a university
campus the choice of the central
computing facility has too often been
determined by the demands of a few
established but expensive applica-
tions with a disregard of the gues-
tion, how many thousands of “small
users” who are willing to write their
own programs are going o suffer
from this choice. Too often, for
instance, high-energy physics seems

have U lackmailed the scientific
community with the price of i re-
maining experimenial equipment.
The easiest answer, of course, is a
flat denial of the technical feasibil ity,
but I am afraid that you need pretty
strong arguments for that. No reas-
surance, alas, can be obtained from
the remark that the mielectual ceil
ing of today’s average programmar
will prevent the revolution from tak-
ing place: with others programming
50 much more effectively, he is Hable
o be edped out of the pictere any-
way.

There may also be political im-
pedimenis. Even i we know how
o cducate (omorrow’s professiona
programmer, it Is not certain that

Otober 1972
Yolume 13
Number 10

the-sovlery wegre Hving i will allow
us ter o s, The first effect of teach-
ng & wethodelagys=rather than dis-
seminating knowledge—is that of co-
hancing the capacitios of the alveady
capable. thus magnifving the diffe

e i omielhige In o sovwty in

which the cducational system s used
as an instrument for the establish
ment of a homogenized cubture, n
swhich the cream s prevented from
rising to the top. the cducation of
wmpc’c;h programmers coud be
politicaily vapsiaable.

Lot me conclude. Automaug com-
puters have now been with us {or
a gquarter of a century. They have
had a great mpaci onoour seciety
in their capacity of tools bu% in that
capacity thewr influence will be but
a ripple oa the surface of our cul-
tire compared with the much more
profound influence they will have in
their capaciy of intellectnal chal-
lenge which will be without prece-
dent in the celtural history of man-
kind, Hierarchical systems scem to
have the properly that something
considered as an undivided entity on
one fevel is considered as a com-
posite object on the next lowsr level
of greater detall, as a result the
patural grain of space or iime that
is applicable at each level decreases
by an order of magnitude when we
shift our attention from oae level o
the next lower one, We understand
walls in terms of bricks, bricks in
termis of crystals, crystals in terms
of molecules, ote. As a result the
aumber of levels that can be distin-
guished meaningfully in a hievarchica!
system 18 kKind of proportional to the
fogarithm of the ratic befween the
largest and the smallest gram, and
therefore, unless this ratio iz very
large, we cannot expect many levels,
In computer programuming oo basic
building block has an associated time
grain of less than a micresecond,
but our program may take hours of

computation tme. I do not know
of any other fechaology covering »
rano of 107 or more; the compuier,
by virtue of its lantastic spead, scems
10 he the frst to provide us with an
ervironument where highly hierorch-
wal urtifaces are both possible and
pocessary. This challenge, iz the
confrontation with the program-
mng fask, s s0 unigue that this
novel vxperience can teach us o fot
about ourseives. It should deepen
our undemstanding of the processes
of design and creation; it should give
us beiter control over the task of
organizing our thoughts, If i did
not do so, 0 my faste we should
not deserve the computer at alll

It has already raught us a few
lessons, and the one 1 have chosen
to siress in this talk s the follow-
ing. We shall do a much belter pro-
gramming job, provided that we
approach the task with a full appre-
ciation of iis tremendous difficulty,
provided that we stick o modest
and clegant programming languages,
provided thal we respect the inirinsic
limitations of the human mind and
approach the task as Very Homble
Programmers.

{References to the following foot-
noles are {ound m the extract {rom the
Turing Award citation on page 859.3
SSome meditations an advanced programe
mung, Prooeedings of the IFIF Congress
1962, 835528 Programming considered
w8 a human activity, Proceedings of the
P Congress 1963, 213217,

*Eeiution of & problem in coneurrent pro-

846

gramming, control, CACM B (Sep. [9635),
SEY: The structure of the “THE" mniti-
programming system, CACM 11 {(May,
1968}, 341.344,

ot statement copsidered harmful,
LACM 1T (Mar, 19683, 147148,

4 short introdugsion 1o the art of
sompeter programming, Techaische Hoge-
school, Eindhoven, 1971,

Comausreations
o

Cetobur 1972
Valume 15

