
i 9 7 2 ACM Tearing
Award Lee~ture

7

tatio~ read 6y M~D. Mcllroy, chair-,
e,lan o/l/~e A CM Tz~rit,g A ward Cot~>
*nitgee, at tt~e preset~taKot, o/ tkks'
lect~re <~t~ Au,g,~c,t 14, t972, at the
A CM A ~m~at ('o~jere~ce in Bos'ton.]

The workiug vocabulary of pro-
grammers everywhere is studded with
words originated or forcefully prom-
ulgated by E,W. Dijkstra-display0
deadly embrace, semaphore, go-to-
less programming, structured pro-
gramming. But his influence on pro-
grammiag is more pervasive than any

glossary can possibly indicate. The
precious gift that this Turing Award
ack,~owledges is Dijkstra's slyle: his
approach to programming as a high,
intellectual challenge; his eloquent
insistence and practical demonstra-
tion that programs should be corn-.
posed correc@, not just debugged
into correctness; and his illmninating
perception of problems at the foun-
dations of program design. He has
published about a dozen papers, both
technical and reflective, among which
are especially to be noted his philo-

sophical addresses at ~>~p,~ his aL
ready classic papers on cooperating
sequential processes, ~ and his mem~
orable indictment of the go-to state-
r n e n t / A n influential series of letters
by Dijkstra have recently surfaced as
a potished monograph on the art of
composing programs/"

We have come to value good pro-
grams in much the same way as we
value good literature. And at the
center of this movement, creating and
reflecting patterns no less beautiful
than useful, stands E.W. Dijkstra.

)/

The Humble
by E d s g e r W. D i j k s t r a

Programmer
~,~ ~i~!il ~

s '(;:ziii:i!!i;

859

As a result of a long sequence
of coincidences I entered the pro-
gramming profession officially on the
first spring morning of 1952, and as
far as I have been able to trace, I
was the first Dutchman to do so in
my country. In retrospect the mnst
amazing thing is the slowness with
which, at least in my part of the
world, the programming profession
emmlged, a slowness which is now
hard to beiieve, But I am grateful for
two vivid recollections from that
period that establish that slowness
beyond any doubt.

After having programmed %r
some three years~ I had a discussion
with van Wijngaarden, who was then
my boss at the Mathematical Centre
in A m s t e r d a m - a discuss ion for
which 1 shall remain grateR~l ~o him
as toeg as l live, The point was that

Corn ~a ~1~ i¢~a !iiorls
of
the ACM

I was supposed to study theoretical
physics at the University of Leiden
simukaneously, and as I found ~he
two activities harder and harder ,to
combine, I had to make up my
mind, either to stop programming
and become a real respectable theo-
retica~ physicist, or to carry my study
of physics ~o a formal completion
only, with a minimum of effort, and
to b e c o m e . , , , yes what? A pro-
grammer? But was ~ha~ a respect-
able profession? After all, what was
programming? Where was the sound
body of knowledge" that could sup-

Copyright © I972, Association for
Compu*ieg Machinery, Ir~c, Generaf per~
missio~ ~o ~xep~JbF.sh, bus ~mt for profit,
all or part of ~his maa~qa/ is groined,
provided ~hat referenda: is made ~o this
publica~km, to [~s date of ~ssue, and ~o
the fact %a~ reprinti~g 1~rlvileges were
gray, ted by ~rmi:ssioa of the Association!
%r Compu@~g Mad@~ery.

/2J~.~ Foo[no~.e8 a~'e o~'t page 866~

©ctob~r ~ 972
Val~m~e 15
N~amH~r t0

) ~.!;i!!:iii~

port it as an intellectually respectable
discipline? I remember quke vividly
how I envied my ha rdware c o b
leagues, who, when asked about their
professional competence, coukt at
least point out that they knew every-
thing about vacuum tubes, amplifiers
and the rest, whereas I fek that.
when faced wida that questio~, I
would stand empty-handed, Full of
misgRings t knocked on ',an %i.jn-
gaarden's office door, asking him
whether t could speak to him for a
moment; when I left his office a
number of hours later, I was an-
other person. For after having Hs-
tuned to my problems patieud3, he
agreed that up till tiaat moment there
was not much of a programming
disciplin< but then he went on to
explain quiedy @at automatic com-
puters were here to stay. that we
were just at the beginning and could
not I be one of the persons called
to make programming a respectable
discipline in the years to come.' This
was a turning point in my life and
I completed my study of physics
formally as quickly as I could. One
moral of the above story is, of
course, that we must be very earefut
when we give advice ~o younger
people: sometimes they follow it!

Two years l a te r in 1957, I mar-
fled, and Dutch marriage rites re-
quire you to state your profession
and I stmed that I was a program-
mer. But. the municipal authorkies
of @e town of Amsterdam did nor
accept it on the grounds thus there
was no such profession. And, be-
lieve it or not, but under the head-
ing ~proflossion" my marriage record
shows the ridiculous entry *{heo~
retical physicist"!

So much for the slowness with
which I saw the programming pro-
fession emerge in my own country.
Since then I have seen more of the
world, and it is my genera1 impres-
sio~ that in other countries, apart
from a possible shift of dates, the
grow@ pattern has been very much
the same.

Let me try to capture the si~ua~
tion in those old days k~ a ti@e bit
more detait, in the hope of getting
a better understar~diag of the siR~a.~

don today. White we pursue our
analysis, we shall see how many
common misunde r s t and ings about
the true nmure of the progranmfing
task ca~ bc traced back to that now
distartt past.

The first au toma t i c e l ec t ron ic
computers wcrc ali unique, singie-
copy' machines and @e~ were all to
be found in an e~wiromnent wkh
the exciting fla~or of an experimental
laboratory. Once @e ',ision of the
automatic computer was @ere. its
realizado~ was a tremendous chair
lunge to the cbctronic technology
then a,,ailable, and one thing is cur-
tam: ',~e cannot deny the courage
of the groups that decided to t O to
build such a fantastic piece of equip-
taunt. For fantastic pieces of equip-
ment they were: in rdrospect one
can only wonder that those first ma-
chines worked at all, at least some-
times. The overwhehning p robbm
was to get and keep the machine in
working order. The preoccupation
with the physical aspects of auto-
matic computing is still reflected in
the names of the older scientific so-
cieties in ~he field, such as the Asso-
ciation for Computing Machinery or
the British Computer Society, names
in which explicit reference is made
to the physical equipment.

What about the poor program-
mer? Well, to tell the honest truth~
he was hardly noticed. For one thing,
the firs~ machines were so bulky that
you could hardty move them and
besides that, they required such ex-
tensive maintenance that it was quite
natural that the place where people
tried to use the machine was the
same Iaboratory where the machine
had been devdoped. Secondly, the
p rogrammer ' s somewhat invisible
work was wid~out any glamour: you
could show the machine ~o visitors
and tha~ was severai orders of m a p
nitude more spectacular than some
sheets of coding. But most important
of nil ~he programmer himself had
a very modest view of his own work:
his work derived all its significance
from the existence of ~hat wonderful
machine, Because that was a unique
machine~ he knew only {oo well that
his programs had only local signifi-

Con}m~.micatior~s
off
1be ACM

cance, and also because it was pat-
endy obvious that this machine would
have a limited lifetime, he knew ~ha,
very Httb of his work would have
a lasti~ G value. Finally, there i~
yet am~thcr circumstance that had u.
profound influence ou the program-
reef's attitude toward his week: on
the one hand, besides being unre-
tiabk', his machine was usually too
slow and its memory was usually
too small, i.e. he was faced with
a pinching shoe, whib on the o@er
hand its usually somewhat queer
order code would cater for the most
unexpected constructions. And in
@ose clays many a clever program-
met derived an immense hucltectual
satisfaction from the cunning tricks
by means of which he contriveci to
squeeze the impossible into the cou-
straints of his equipment.

Two opinions about program-
ruing date from those days. t men-
tion them now; [shall return to
them later. The one opinion was that
a real ly c o m p e t e n t p r o g r a m m e r
should be puzzle-minded and very
fond of clever tricks; the other opin-
ion was @at programming was noth-
ing more than optimizin~,.~ ~ the effi-
cier~cy of the conputat ional process,
in one direction or the other.

The latter opinion was the result
of the frequent circumstance that,
indeed, the available equipment was
a painfully pinching shoe, and in
those days one often encountered
the naive expectation that, once more
powerful machines were available,
programming would no longer be a
problem, for then the struggle to
push the machine to its limits would
no lor~ger he necessary and that was
all that p r o g r a m m i n g was abouL
was[ft it'? But in the next decades
something comple tdy different hap-
pened: more powerful machines be-
came available, not just an order
of magnitude more powerful, even
several orders of magnitude more
powerful, But instead of finding our-
salves in a state of eternal bliss with
at1 programming problems solved,
we found ourselves up to our necks
in the sohware crisis! How come?

There is a minor cause: in one
or two respects modern machinery

October I972
Volume ~ 5
Nt~mber t0

iS hasicuIly more difficult to haI~dlc
than il~c old machirlery..Firsl:ty, wc
h~ve got the I o h~cI~upts, o<:cur.-
rin~.~ n{ unprcdic~abk. ;rod irr<.produc~.
it,to rnolucn~>: camp ~!'cd with the old
scq,teafiat m~chinc {hat preh:ndcd
tO t?C ~ ft~tt ' \ dCt< 'FH}i l l i s~ iC al, l~oH~a.tou~

~)1t, hA5 }~cctl i/ ~ruma!ic c:hm~ge,
' , l l ld l ! l i l i l } il ~}>tCH!~ p f o g r g . u l] ~ l] c r ' s

gre} h~ir {<als wJl~h:ss ~{;) the fact
tha{ we sho~ki r~ot {a]k lightly abou~
~he logical problems crcaied by that
fcm~re. Secondly, eve have got ma-
chines equ ipped with mu!ti lew:]
stores, presenting us problems of
rrmna£cmcnt , ~,-,.,<~.,> thin., i!~ spite
of ~hc extcnsive literature <x~ the
sub}cote stiti rcrmfin rather elusive.
So much for d~e added cornptication
due to :qrueturat chm~ges of the
~ctuaI machines,

Bu~ I ca lkd this a minor cause;
d~c maior cause i s . , . that the ma-
chinc, s have become several orders

O{' lnag;dtude nlore powerful! To
pm i~ quite bkmtly: as long as there
were no machines, programming was
no problem at all; when we haci a
few weak computers, programmh G
became- a mild problem, and now
wc ha',,e gigantic computer< pro-
gramming has become an equat~F
gigandc prob~em~ in this sense ~he
decIronic industry has not solved a
,dng[e problem, i t has only created
them-. i t has created d~e problem of
using its products. 1 o put it in an-
od~er way: as dye power of available
machines grew by a factor of more
than a thousand° society's ambition
to apply these machines grew in pro-
portion, and it was the poor pro~
grammer 'who found his job in this
exploded ~ield of tension between
enct~ and means. The increased power
of the hardware, togdher with the
perhaps even more dramatic increase
in its reliability, made sotutkms fea-
sible that the prograrnmer had not
dared ~o dream about a few years
before. A~d now, a few years later,
he had to dream about them aml,
even worse, he bad {o transform
such dreams into reality! Is i{ a
wo~der that we found ourselves ir~
a sohwarc crisis? No, certainly nob
and as }ou may guess, it was even
predicted well in advauce:, bu~ d~e

t roub le with minor prophets° of
course, is that it is only five years
Inter that y~,m reaSy know that they
had bee~ right.

"lhen, in the mid sixti,cs some-.
thing terrible happened: the coln--
puters of the so~.caited third genera-
tion made their appearance. f h c
official /heraturc tells us that their'
price/performance rmio has been
one of thu major design objectives.
But if yea take as "performance"
the duty cyule of tile machine's vari-
ou,, camp<meres, lhtte wilt prevent
you from cadi~g up with a design
in which thc .major part of your per-
formm~ce goa~ is reached by internal
housekeeping activities of doubtful
necessity. And if your definition of
price is ~he price to be paki for
the hardware, !itSe will prevent you
from endim-,~ up with a design thin
is terribly hard to program for: for
instance the order code .might be
such as to enforce, either upon the
programmer or upon the system,
early binding decisions presenting
conflicts that really cannot be re-
solved. And to a large extent these
unpleasant possibilities seem to have
become reality.

When these machines were an-
nounced and their functional speci-
f ica t ions became k~aowa, many
among us must have become quite
miserable: at bast t was~ It was
orfly reasonable to expect that such
machines would flood the comput-
ing community, and it was therefore
all the more important that their de-
sign shoutd be as sound as possible.
But the design embodied such se r f
ous *laws that I feb that with a
single stroke the progress ot" com-
puting science had been retarded by
a~ lea ~ ~en years; k was d~en vha~
t had the blackest week in ~i~e whole
of my professional /ife~ Perhaps ~he
most saddening ~hing now is that,
even ff~er ali diane years of frustrat-
ing experience, stitI so many people
a<me-,tly ~elicve max some taw of
nat{.>e te[h us dm~ machines have
to b that way I 'hey site~cc their
dout , s by observing how many of
these machines have been sold, a~d
derive from ~hat observation the false
sense of scc{nity I:}mt~ after nil ~he

design cannot have been that bad.
But upon closer inspection, dmt line
of defense has the same convincing
strength as the argurnem that cig-
arette smoking must be healthy be,-
cause so many peopb do i~.

It is ira this connection that I
regret that it is not customary for
scientific journals in the computing
area to publish reviews of newly an-.
nounced computers ia much the same
way as wc review sciemific publica-
lions: to review machines would be
at least as important. And here I
have a confession ~o make: in the
carty sixties I wrote such a review
with ~he intemion of submitting i{
to Communications, but in spite of
the fad that the few colleagues to
whom the text was seat for ~heir ad-
vice urged me to do so, t did not dare
to d o iL fearing that the di~icult ies
either for myself or for the f£di~o~:ial
Board would prove ~o be too great.
This suppression was an act of cow-
amice ca my side for which I blame
myself more and more. The difficuL
ties I foresaw were a consequence of
the absence of generally accepted
criteria, and akhough I was con-
vinced of the vaIidffy of the crimria
I had chosen to apply, I feared that
my review would be refused or dis-
c a rded as "~a ma t t e r of persoaa t
taste." i still think that sucl~ reviews
would be extremely useful and I am
to~giag to see them appear, for ~heir
accepted appearance would be a
sure sign of maturity of ~he com-
puting commuai D'

The reason 4~a[I have paid ~he
above attention to the hardware scene
is because t have the feeling that
one of the mos~ importam, aspects
of any computi~ G tool is hs influence
on ihe thinking habits of those who
try to use i< am] because I have
reasons to bdieve that thai influence
is ma~y Umes sa'onger dmn is cam-
mealy assumed~ .Le~ us ~ow swkch
our auentio~ ~o {he sohware scene

Here die diversity has been so
large d~a~ I must cow,fine myscK to
a few steppMg sIo{aes, t am painfully
away<- of 4~e arbkrarmess of my
choice and t beg you no~ to draw
any co+~ch+sioas wish ~egard to my
appreciation of the m a w efforts d:at

!~/ !

h i
ii

/

e

}ii~i

<' iii
<<a~ ~ ~ii~i

i

86t
d
~he ACM

Od<£wr 1972
Voh~me t 5.
N~m~bel H}

will have to remain unmentioned.
In the beginning there was the

EDSaC in Cambridge, England, and
l think it quite impressive that right
from the start the notion of a sub-
routine library p/a)cd a central role
in the design of that machine and
of the way ia which it should be
used, It is now nearly 25 ,,cars later
and the computing scenic has changed
dramatically, but the notion of basic
software is still with us, and the
notion of the closed subromine is
still one of the key concepts in pro-
gramnfing. Vee should recognize the
closed subroutine as one of the great-
est software inventions; it has sur-
vived three generations of computers
and it will survive a few more, be-
cause it caters for the impiementa-
tion of one of our basic patterns of
abstraction. Regrettably enough, its
importance has been underestimated
in the design of ~he ~hird generation
computers, in which the great nun>
bet of explicitly named registers of
the arithmetic unit implies a targe
overhead on the subroutine mecha-
nism. But even that did not kill the
concept of the subroutine and we
can only pray that the mutation
won't prove to be hereditary.

The second major development
on the software scene that I7 would
like to men t ion is the b i r th of
FORTRAN. At that dine this was a
project of great temerity, and the
people responsible for it deserve our
great admiration. It. would be abso-
lutely unfair to blame them for short-
comings that only became apparent
after a decade or so of extensive
usage: groups with, a successful look-
ahead of ten years are quite fare!
In retrospect we must rate FORTRAN
as a successful coding technique,
but with very few effective aids to
conception, aids which are now so
urgently ~eeded that time has come
to consider it out of date. The sooner
we can forget that FORTRAN ever ex-
isted, the better, for as a vehicle of
thought ig is no longer adequate: it
wastes our brainpower, and it is too
risky a~d therefore too expensive to

~se. FOg'r~AN'S tragic f a n has been
its wide acceptance, mentally chain-
ing thousands and thousands of pro.-

~rammers to our past mistakes I
pray daily that more of my fellow-
programmers may i ind the means of
freeing thcmselxes from the curse of
compatibility.

The third project I would not
like to leaxe unmentioned is ~sP ,
a fascinating emcrprise of a con>
pJetely dilferent nature, \~i th a few
very basic principles at its fotmda-
~ion, it has shown a remarkable sta-
bility. Besides that, Lisp has been

the carrier for a considerable num-
ber of, in a sense, our most so-
phisticated c o m p u t e r applications.
{~sp has jokingly been described as
"'the most intelligent way to misuse
a computer ." I think d~at description
a great compliment because it trans-
mits the full flavor of liberation: it
has assisted a number of our most
gifted fellow hurnans in thinking
previously impossible thoughts.

The fourth project to be men-
tioned is ALGOL 60. While up to the
present day FORTRAN programmers
still tend to understand their pro-
gramming language in terms of the
spec i f ic i m p l e m e n t a t i o n they are
working with--hence the prevalence
of octal or hexadecimal d u m p s -
while the definition of LISP is still
a curious mixture of what the lan-
guage means and how the mecha-
nism works, the famous Repor t on
the Algorithmic Language ALGOL 60
is the fruit of a genuine effort to
carry abstraction a vital step further
and to define a programming lan-
guage in an implementation-inde-
pendent way. One could argue that
in this respect its authors have been
so successful that they have created
serious doubts as to whether it could
be implemented at atl! "['he report
gloriously demonstrated the power of
the formal method ~NF, now fairly
known as Backus-Naur-Form, and
the power of carefully phrased Eng-
lish, at least when used by some-
one as brilliant as Peter Naur. I
think that it is fair to say that only
very few documents as short as this
have had an equally profound in~
fluence on the computing commu-
nity. The ease with which i~~ later
years the names ALGOL and ALGOL-
like have been used, as an unpm~

tooted trademark, to lend glory to
a number of sometimes hardl,, re-,.
Iatcd younger projects is a >,,use-.
v, hat shocki ~g compl imcm to A IXTK)I 'S

standing. The strenglh of ~N~,' as a
deft{ring device is rcsponsible for
what I regard as one of the weak-
~lesses of the languagc: a~ eve>
elaborate and not too systematic
symax could m~w bc c rammed into
the routines of very few pages. With
a device as powerful as ~NF, the
Report on the Algorithmic I.,an-
guagc a~,GOL 60 should have been
much shorter. Besides that, t am
getting very doubtful about AL(;OI.
60's parameter mechanism: it a/-
lows the p rogrammer so much con>
binatoriat freedom that its co~dident
use requires a strong discipline from
the programmer. Besides being ex-
pensive to implement, it seems dan-
gerous to use.

Finally, although the subject is
not a pleasant one, I must mention
e~,/~, a programming language for
which the defining documentat ion is
of a frightening size and complexity.
Using PL/~ must be like flying a
plane with 7,000 buttons, switches,
and handles to manipulate in the
cockpit. ! absolutely fail to see how
we can keep our growing programs
firmly within our intellectual grip
when by its sheer baroqueness the
p r o g r a m m i n g l a n g u a g e - o u r basic
tool, mind y o u ! ~ a t r e a d y escapes
our inteilecmal control. And if I
have to describe the influence PL/I
can have on its users, the closest
metaphor that comes to my mind
is that of a drug. I r e m e m b e r
from a symposium on higher level
programming languages a lecture
given ia defense of PL/I by a man
who described himself as one of its
devoted users. But within a one&our
lecture in praise of eL/g, he man-
aged to ask for the addition of about
50 new "features," little supposing
that the main source of his problems
could very well be that it contained
already far too many "features,"
The speaker displayed all the de-
pressing symptoms of addiction, re~
duced as he was to the state of
mental stagnation in which he could
orfly ask for more, more, more

862 Comrmtmica{{o~s
of
~'he A(~M

October 1972
Voh}me 15
Nt~mber 10

Whc~ F{)}{I}<AN has bccn called an
infamilc disorder, full P t / l , with
its growd~ cha<actcristic>, of a dam
gcrous tumor, could turn out t~ bc
a fatal disease,

S{~ much for ihc past. But there
is no point in it~.aking mistakes um-
Icss thcrcaficr wc :.ire able ~o learn
from d~cm, ,'\> a mat*or of fact, I
think that wc havc learacd so much
that withi~ a few years program.-.
ruing can be a,~ acdvity vastly dif-
ferent from what it has been up

till now, so different that we had
be t te r p r e p a r e ourse lves for the
shock, l.et mc sketch for you o,nc of
the possible futures. At tirst sight.
this vxio,~ of programming in per-
haps already the ~ear future may
strike you as utterly fantastic, Let
me therefore also add the considera-
tions that might lead one to the con-.
clasio~ that this vision could bc a
very real possibility.

The vision is that, well before
the seventies have run to compb-
don, we shall be abtc to dcsigu and
implement the kind of systems that
are uow straining our programming
ability at the expense of only a few
percent in man-years of what they
cost us now, and that besides that,
these systems wilt be virtually free of
bugs. These two improvements go
hm~d in hand. In the latter respect
software seems to be different from
many other products, where as a rule
a higher quality implies a higher
price. "l"hose who want really rdi-
able software witi discover that they
must find means of avoiding the
majority of bugs to start with, and
as a result the programming process
wit[becorne cheaper, If you want
more effective programn~ers, you will
discover that they should not waste
their time debugging- they should
~ot introduce the bugs to start with.
In other words, both goals poim to
the same change.

Such a drastic change in such
a short period of time would be a
revolution, and ~o all persons that
base their expectations for the future
on smooth extrapolation of the re~
cent past-appeal ing to s~m~e unwrit~.
tea laws of social mid cultural in-
ertia--the chm~ce that finis drastic

863

change will take ph.~ce must seem
~egiigib!e. But we aii know that
sometinlcs revoh,tions tJo take place',
Ami wha{ are the chances for this
on:e'?

There sccm to be three major
conditions that must bc fulfilled. The
world at large lm~st recognize the
need for ~}~e change; secondly, the
ccom)mic riced for it must bc suL
ficicntty strong; and, thirdly, the
change must be technically feasible.
I.et me discuss dqese three conditkms
in the above order.

With respect to the recognition
of the riced for greater rcliabitky of
software, I expect no disagreement
anymore. Only a few years ago this
was different: to talk about a soft-
ware crisis was blasphemy. The turn-
ing point was tile Corlference on
Software Engineering in Garmisch,
October I968, a conference that
created a sensation as there occurred
the first open admission of the soft-
ware crisis. And by now it is gen-
erally recognized that the design of
any large sophisticated system ix go-
ing to be a very difficult job, and
whenever one meets people respon-
sine for such undertakings, one finds
them very much concerned about
the reliability issue, and rightly so.
In short, our first condhion seems
to be satisfied.

Now for the e c o n o m i c need.
Nowadays one often encounters the
opinion that in *he sixties program-
miag has been an overpaid profes-
sion, and that in the coming years
programmer salaries may be expected
to go down. Usuatly this opinion is
expressed in connection with the re-
cession, but it could be a symptom
of something different and quite
healthy, viz. that perhaps the pro-
grammers of ~he past decade have
no~ dons so good a job as they
should have done. Society is getting
dissatisfied with the performance of
p~egrammers and of their products,
But there is another factor of much
greater weight I~ the present situa-
tion it is quite usual that for a
specific system, the price to be paid
for the devdopmea t of the software
is of the same order of mag~imde
as the price of {he hardware needed,

of
~he ACM

and society more or tess accepts
fl3aL But hardware manufacturers
tall us that i~ the next decade hard-
ware prices can be expected to drop
with a factor of ten. If software de-
velopmei]t wcrc to coflti~]t~e to be

the same clumsy arid expens ive
process as it is ~low things would
get eornpJetety out of bahmce, You
cannot expect sock'ty to accept this,
and therefore we mu,sl learn to pro-
glare a{] o rde r of magrl] tudc more

effectively, q o put it iz another way:
as king as machines were the targcst
item o~ the budget, the program-
ruing profcsskm could get away with
its clumsy techniques; but that um-
brella wilt fold very rapidty. In short,
also our second condition seems to
be smisfied.

And now the third condition: is
it t echnica l ly feas ible? I think it
mi,oht be, and [shall give you six ar-
guments in support of that opinion.

A study of program structure
has revealed that p rograms-even al-
ternative programs for the same task
and with the same mathematical con-
tent--can differ tremendously in their
intellectual manageability. A num-
ber of rules have been discovered,
violation of which wilt either s e r f
ously impair or totally destroy the
intellectual manageability of the pro-
gram. These rules are of two kinds.
Those of the first kind are easiiy
imposed mechan ica l ly , viz, by a
suitably chosen programming lan-
guage. Exampbs are the exclusion
of gore-statements and of procedures
with more ~han one output para-
meter. For those of the second kind,
1 at leas t -but {hat may be due to
lack of competence oa my s ide -
see no way of imposing them me-
chanically, as it seems to need some
sort of automatic theorem prover
for which [have no existence proof,
Therefore, for the time being and
perhaps forever, the rules of the
second kind present themselves as
dements of discipline required from
d~e programmer, Some of the ruses
I have irl mind are so clear that they
can be taught and that there never
needs to be an arg~m~ent as to
whether a Nven program vioiams
them or rim, Examples are the re-

Octo~r 1972
Volume 15
Number t0

quirements that no loop should be
written down without providing a
proof for termination or without
stating the reiation whose invariance
will not be des:royed by the execu-
tion of the repeatabIe statemenu

I now suggest @at ~e corifi~e
ourselves ~o @c design and imple-
mentation of intelbctuatly manage-
abIe programs. If someone fears that
this restriction is so severe that we
cannot live with it, I can reassure
him: the class of intellectually man-
ageable programs is still sufficiently
rich ~o contain many very realistic
programs for any problem capabb
of algorithmic solution, We must
not forget that it is no," our business
to make programs; it is our ;business
to design cIasses of computations
that will disptay a desired behavior.
The suggestion of confining ourselves
to intellectually manageabb programs
is the basis for the first two of my
announced six arguments,

Argument one is that, as @e
programmer only needs to consider
intellectually manageaNe programs,
the ahemadves he is choosing from
are much, much easier to cope with,

Argument two is @at, as soon
as we have decided to restrict our-
selves to the subset of the intdlectu-
ally manageable programs, we have
achieved, once and for all, a drastic
reduction of the solution space ~o
be considered. And t/his argument is
distinct from argument one.

Argument three is based on the
constructive approach to the prob-
lem of program correctness, Today
a usual technique is to make a pro-
gram and then to test iL But: pro-
gram tesdng can be a very effective
way to show the presence of bug<
but it is hopelessly inadequate for
showing their absence. The only ef-
fective way to raise @e confidence
level of a program significantly is
to give a convincing proof of its cor-
rectness. But one should nor first
make the program and then prove
its correctness, because @,on @e re-
quirement of providing the proof
would only increase the poor pro.~
grammer% butdora Oa the con~
traw: the programmer should Iet
co r r ec tne s s p roo f and p r o g r a m

grow hand in hand. Argument three
is essentially based on d~e following
observation. If one first asks oneself
what tk~e structure of a convincing
proof woutd bc am]. having found
dfis, @cn coastucts a program satis-
fying d i s proof's requirements, then
these correctness concerns turn out
to be a very dfective heuristic guid-
ance. B} definition this approach is
only appUcable when we restrict our-
selves to intellectually manageable
programs, buI i~ provides us with
effe<:'~he means for finding a satis~
factory one among these.

Argument four has to do with
the way in which @c amount of in-
tellectual effort needed to design a
program depends on @e program
lengtL tt has been suggested that
there is some law of ~ature telling us
that the amount of intellectual effort
needed grows with the square of
program length. But, thank good-
ness, no one has been able to prove
this law. And this is because it need
not be true. We alt know ~hat the
only mental tool by means of which
a very tinite piece of reasoning can
cover a myriad of cases is called
'abstract ion"; as a result the effec-
uve exploitation of his Fowers of
abstraction must be regarded as one
of the most vital activities of a
competent programmer. In this con-
nection it might be worthwhile to
point out tl~a~ ~he purpose of ab-
stracting is t~ot to be vague, but to
create a new semandc tevN in which
one can be absolutely precise. Of
course t have tried ~o find a funda-
menta~ cause that wouki prevent our
abstraction mechanisms from being
sufficiently egecdve, But no matter
how hard t tried, I did not find such
a cause, As a resuk I tend to the
assumpt ion-up till now not disproved
by exper ience- tha t by sukabte ap-
plication of our powers of abstrac-
tion, ~he intellectual effort required
{o conceive or to understand a pro-
gram need not grow more ~han pro-
portionaI ~o program length, A by~
product of these investigaJons may
be of much grcmer practical signiG
cance, and is, in facL the basis of
my fourth a<gument. The by-product
was the identification of a number

of patterns of abstraction that play
a vital role in the whole process
of composing programs. Enough is
kno',xr~ about these patterns of ab-
straction that you could de~ote a
k'cturc to each el them. What the
famitkuity and conscious knowledge
of these patterns of 'abstractio~l im-
[qy dawned upon mc whc~ 1 rcatized
that. had they bccn common knowl-
edge 15 years ago, the step from
~XF to s}ntax-dirccted compilers, for
instance, could havc taken a few
minutes instead of a few 3 ems. There-
fore I present our recent knowledge
of vital abstraction patterns as the
fourth argumenu

Now {'or the fifth argument, tt
has to do with the influence of the
tool we are trying to use upon our own
thinking habits. I observe a cuhural
{radkion, which in all probability
has its roots in the Renaissance, to
ignorc this influence, to regard the
human mind as the supreme and
autonomous master of its artifacts,
But if I start to analyze the thinking
habits of myself and of my feL
low human beings, I corne, whether
i like it or not, to a completely dif-
ferent conclusiom ~,i~. that the tools
we are trying ~o use and the lan-
guage or notation we are using to
express or record our thoughts are
the major factors determining what
we can think or express at aIH The
analysis of the influence that pro-
grammmg languages have on the
thinking habits of their users, and
the recognition that, by now, brain-
power is by far our scarcest re-
source, these together give us a new
collection of yardsticks for compar-
ing the relative merits of various
programming languages. The com-
petent programmer is fully aware of
the strictly limited size of his own
skull; therefore he approaches the
programming task in full humility,
and arnong other things he avoids
clever tricks like the plague. In the
case of a weHoknown conversational
programming language I have been
told from various sides {hat as soon
as a programming community is
equipped with a terminal for it, a
specific phenome~soa occurs @at eve~
has a welloestabtished name: it is

864 (/orf~ rrHtr~{gador~5
of
*the A C M

Ocl, ober 1972
Voh~me 15
N~.~mber H}

called "the onoditrcrs~" it takes o n e

o f two difl'crcnt forms: one progran3-
m c r p!accs ;a oncdine program on
the desk <)f another at~d either bc
proudly tclts what it does and adds
the queMioi3, " ' t ' ; l l l y~)tl code this i!]
less syInbols?".°-.as if this were of
any conccptua! rdcv'0.nce!.-or be just
say:q,, "Oucss what it does!" bror]l
this observa{h)n wc nmst conclude
that this !ang<~agc as a too/ i,q an
open invitation for clcver tricks; and
while exactly this may be the ex-
planation for some of its appeal,
v/::. to those who like to show how
clever they arc, I am sorry, but
1 must regard this as o n e of the
most danming thiirgs that can be
said about a p rogra rnming lan-
guage. Another lesson wc should
havc learned from the recent past is
that the development of "richer" or
~'more powerful" programming lan-
guages was a mistake in the sense
that these baroque rnonstrosities,
these conglomerations of idiosyn-
crasies, are really unnmnageable, both
mechanically and mentally. I see a
great future for very systematic and
very modest programming languages.
When I say ~modest," I mean that,
for instance, not only ALGOL 60'S
f o r clause," but even FORTRAN'S ~*DC)
loop" may find themselves thrown
out as being too baroque. I have run
a little programming experiment with
really experienced vohmteers, but
something quite unintended and quite
unexpected turned up. None of my
volunteers found the obvious and
most elegant solution. Upon closer
analysis this turned out to have a
common source: their notion of rep-
etitiort was so tightly connected to
the idea of an associated controlled
variable to be stepped up, that they
were mentally btockcd from seeing
the obvious. Their solutions were
less efficient, needlessly hard to un-
derstand, and it took them a very
long time to find them. It was a re-
vesting, but also shocking experG
ence for me. Finally, in one respect
one hopes that tomorrow's program-
ruing langt~ages will differ greatly
from what we are used to now: to
a much greater extent than hitherto
they should invite us to reflect i~

S65

the structure of what we write down
all ab:4ractions needed to cope con-
ceptually with the complexity of what
we are designing. So much for the
greater adequacy of our future tools,
which was the basis of the fifth
argument.

As an aside I would like to in-
sert a warning to ~hose who identify
the difficulty of the programming
task with the struggle against the
inadequacies of our current tools,
because they might conclude that,
once our toots will be much more
adcquatc, programming will no longer
be a probbtrl. Prograrnming will re-
main very diliicult, because once we
have freed ourselves from the cir-
cumstantial cumbersomeness, we will
fiud ourselves free to tackle the
problems that are now wetl beyond
our programming capacity.

You can quarrel with my sixth
argument, for it is not so easy to
collect experimental evidence for its
support, a fact that witt not prevent
me from believing in its validity. Up
till now I have not mentioned the
word "hierarchy," but I think that
it is fair to say that this is a key
concept for all systems embodying a
nicely factored sok~tion~ I could even
go one step further and make an
article of faith out of it, viz. that
the only problems we can really
solve in a satisfactory manner are
those that finally admit a nicely fac-
tored solution. At first sight this
view of human limitations may strike
you as a rather depressing view of
our predicament, but I don't feel it
that way. On the contrary, the best
way to learn to live with our limita-
tions is to know them. By the time
that we are sufficiently modest to try
factored solutions only, because the
o~her efforts escape our intellectual
grip, we shall do our utmost to avoict
all those interfaces impairingour abil-
ity to factor the system in a helpful
way. And t can not but expect that
this will repeatedly lead to the dis-
covery that an initially untractable
problem can be factored after all.
Anyone who has seen how the ma~
jority of the troubles of the compit~
ing phase called "code generation"
can be tracked down to funny prop-,.

o f
~h¢. AC'M

erties of the orde~ code will know
a simple example of the kSmd of
things I have in mind, The wider
applicability of nicely factored soh~-
tions is my sixth arid last argument
for the technical feasibility of the
revolution that might take ptace in
the current decade.

In principle I leave it to you to
decide for yourself how much weight
you are going to give to my con-
siderations, knowing only too well
that I can force no one else to share
my beliefs. As in each serious revolu-
tion, it will provoke violent opposi-
tion and one can ask oneself where
to expec t the conse rva t ive forces
trying to counteract such a develop-
ment. I don't expect them primarily
in big business, not even in the com-
puter business; I expect them rather
in the educational institutions that
provide today's training and in those
conservative groups of computer
users that think their old programs
so important that they don't think it
worthwhile to rewrite and improve
them. In this connection it is sad
to observe that on many a university
campus the choice of the central
computing facility has too often been
determined by the demands of a few
established but expensive applica-
tions with a disregard of the ques-
tion, how many thousands of "small
users" who are willing to write their
own programs arc going to suffer
f rom this choice. T o o of ten , fo r
instance, high-energy physics seems
to have blackmailed the scientific
community with the price of its re-
maining exper imenta l equipment~
The easiest answer, of course, is a
fiat denim of the technical feasibility,
but I am afraid that you need pretty
strong arguments for that. No reas-
surance, alas, can be obtained from
the remark {hat the intel|ectuat ceil-
ing of today's average programmer
will prevent the revolution from tak-
ing place: with others programming
so much more effectively, he is liable
to be edged out of the picture any-
way.

There may also be pd idca l im~
pedimems. Even if we know how
to educate tomorrow's professio~M
programmer, it is ~ot certain that

Vdume 15
Number tO

k/¢/
t !t ~,

~he society vve ~ e :Hvina in wilI a l b w
us m do so. The ~rst effect of teach-
bag a me~hodobgy~-ra~her than dis-
semi~adng knowledge- i s that of eu-
hanci~g 0~e capacities of ~hc already
capable, thus magnify ~g the diKcr-
ence in intelligence. In a socic b in
which the educationa~ system is used
as an instrun~cn~ for the establish-
ment of a homoge~fized culture, in
which the cream is prcvcmcd trom
rising to the top, the education of
competent programmers couki be
potiticaily unpalataNe.

Let hie conclude Automatic com-
puters have now been with us for
a quarter of a century. They have
had a great impact on our society
in ~heir capacity of tools, but in that
capacity their imluence will be but
a ripple on the surface of our cul-
ture compared wish the nmch more
profound influence they wili have in
their capacity of intellectual chal-
lenge which witt be without prece-
dent in ~he cultural history of man-
kind. Hierarchical systems seem to
have the property that something
considered as an undivided entity on
one tevel is considered as a com-
posite object on the next lower level
of greater de~aii; as a resuk the
natural grain of space or dine that
is applicable a~ each Ievet decreases
by an order of magnitude when we
shift our attention from one bvel to
~he next tower one. We understand
walls in ~erms of bricks, bricks in
terms of crystals, crystals in terms
of moiecubs , etc. As a result the
number of levels t h a can be distin-
guis,hed meaningfully in a hierarchical
system is kind of proport ional to the
logarithm of the ratio between the
largest and the smat~es~ grain, and
therefore, unless this ratio is verb'
large, we cannot expect many levels.
I~l computer programming our basic
building block has an associated dine
grain of less than a microsecond,
butt our program may take hours of

computat ion time. I do not kuow
of ;m) other technology covering a
~atio of l () ~'' or m o r e the con~pu{er,
by virtue of its famas~ic speed, seems
to bc ~hc first to provide us with an
enviromue~, whcrc highly hierarch-
ical ardtac~s arc bod~ possible and
nccessar,,. This challenge, ~'i~:, the
c o n f r o n t a t i o n with the p r o g r a m :
mirlg task, is so unique that this
novel experience can teach us a lot
about ourselves. 1~ should deepen
our m~derstanding of the processes
of design and creation: it should give
us better comrol over d~e task of
organizing our thoughts. If it did
not do so. to nay taste we should
~ot deserve the computer at all!

It has already taught us a few
lessons, and the one t have chosen
to stress in this talk is the follow-
ing. We shall do a much better pro-
g r a m m i n g job , p r o v i d e d tha t we
approach the task with a full appre-
ciation of its t remendous difficulty,
provided that we stick to modest
and ebgan t programming languages,
provided d~at we respect the intrinsic
~imitadons of the human mind and
approach the task as Very Humble
Programmers.

[Referer~ces to the fo{lowir~g foot-
notes are found in the extract from the
Tur[ng Award citation on page 859.]
~gome median*ions ors advanced program-
ruing, Pro~eedings of Ibe IFfP Coagres~
t962, 535~53g; Programmir~g considered
as a human activity, Proceedings of the
|FIP Congre~s {965, 2t3-2i7.
~So/~:ion of a probbm in cor~currem pro~

866

gramrr6ag, control, CACM 8 (Smpt, 1965),
569; The structt~re of the "THE" multi-
programming system, CACM /t (May,
I968), 341~346,
:~Go ~o s~a{emen[considered harmful,
CACM 1~ (Mar, t968), {47-~48,
"~A short h~rod~cdor~ to ~he art of
compmer programmif~g, Technische Hoge~
school, Eindhover L 1971,

(ommgnicafions October 1972
of Volume 15

