
A Paleontological Perspective on Designing Adaptable Software Systems

Oliver Stiemerling and Armin B. Cremers

University of Bonn
Department of Computer Science III

Römerstraße 164
53117 Bonn

Germany
{os | abc}@informatik.uni-bonn.de

Abstract
This paper investigates the application of a recently
developed theory in paleontology and genetics to the design
of adaptable software, i.e. systems whose properties can be
changed in order meet diversified or dynamic requirements.
About 530 Mio years ago, hierarchical “modularization”
appeared as a new property in the genome. It permits rapid
and effective changes to the code on fairly high levels of
abstraction (e.g. by varying the number of eyes or legs).
Paleontologists today believe that this new characteristic
was the cause for an era of enormous evolutionary change –
the Cambrian explosion – which eventually led to the later
move out of the sea onto land. Similar to living systems, for
complex software systems adaptability is a useful property,
because different individuals might use them for different
tasks, in different environments etc. The developer of an
adaptable software system has to choose an architecture that
provides the necessary degree of flexibility. Traditional
approaches include parameterization with ini-files or even
open source policies that permit control over every aspect of
the software system. These approaches have the
disadvantage that their flexibility is either too restricted
(changing parameters in ini-files) or too complicated
(changing the source code) for many applications. This
paper – adopting the way nature successfully provided the
structural foundations for adaptability in the advent of the
Cambrian – presents a component-based approach that
provides scalable adaptability for multi-user software
systems distributed over a network like the Internet.

Introduction

A software system is called adaptable1 if some of its
properties, which are stable during regular use, can be
changed in order to meet diversified or changing
requirements (see e.g. Henderson and Kyng 1991).

1 Synonymous to adaptability, the literature in the area of
human-computer interaction (HCI) often refers to this property of
a software system as tailorability. The term adaptability is used
more frequently in the area of software technology (ST). In this
paper, the terms are used in the following way: if we refer to more
technical aspects, we use adaptability; if we are in a more user-
oriented context (the sections on the MUD application and the 3D
tailoring interface), we use tailorability.

Adaptability is useful for a variety of reasons. For instance,
human users are not alike and there is no “one-best-way” in
supporting their work (Ackermann and Ulich 1987). The
same holds for groups of people and whole organizations. If
a heavily computerized production or service process has to
be changed in order to accommodate dynamic market
conditions or customer profiles, adaptability of the
underlying software system is almost a sine qua non
requirement. Furthermore, with adaptable software,
developers can target larger market segments. Software
development is expensive and most software systems are
not completely custom built anymore.
While the motivation for adaptability is quite clear, the
methods for designing adaptable software are far from
mature. The main reason for this lies in the fact that
adaptability raises a number of quite diverse questions,
requiring expertise in different areas:
� How can we determine the necessary points and degree

of adaptability? This question concerns the design
process and is driven by three factors (Trigg 1992):
fluidity, diversity, and uncertainty of requirements.
Especially the first and third factor involves the future
use of the system and thus we will never have a
complete methodological solution. However, current
requirements capturing and design techniques can be
extended to take anticipated future changes into account
(see e.g. the change case methodology by Ecklund et al.
1996).

� How are adaptations initiated, selected and
implemented? Assuming we have an adaptable system,
this question concerns the way the need for an
adaptation is discovered, how an appropriate adaptation
is developed, how the decision for or against the
adaptation is made, and how the adaptation is finally
implemented. (Kühme et al. 1992) suggest these four
factors as basis for a taxonomy of adaptation control
mechanisms. They distinguish, which step is controlled
by the user or by the system. We call a system adaptive,
if the control resides mostly with the system, and user
tailorable otherwise. In the case of adaptive systems,
there are approaches using techniques similar to
evolutionary selection for the decision step.

� How can we support adaptability in the software
architecture? Regardless of whether adaptations are

controlled by the user or the system, they have to be
supported on the technical level.

This paper addresses the last of the three questions –
software architectures providing adaptability on the
technical level. Thus, we are not concerned with
mechanisms for controlling e.g. the selection of certain
adaptations (second question) or with design methodologies
for eliciting and documenting diverse and dynamic
requirements (first question). The rest of the paper is
structured as follows:
In section 2 we briefly describe the Cambrian explosion, an
event of that time in evolution history that is characterized
by enormous evolutionary change and diversity of life
forms. In the last few years, evolutionary biologists and
geneticists have pinpointed certain regulatory genes as the
culprits of this explosion. The section also describes the
function of these genes. In section 3 we relate them to
concepts in software architecture and discuss how far we
can stretch the similarities and what lessons software
engineers can learn from nature for the design of adaptable
software systems. Section 4 describes the EVOLVE system,
our implementation of the ideas developed earlier. Section
5 describes the use of our system to provide a distributed
multi-user application with the property of adaptability.
Section 6 summarizes and discusses what we have gained
from the paleontological perspective taken in the paper and
proposes directions of future research.

The Cambrian Explosion

Life on our planet can be traced back as far as 3.5 billion
years (most of the information presented in this section is
taken from Erwin et al. 1997). Simple, single-celled
organisms ruled the earth for about 3 billion years. Only
some algae, drifting through the oceans, achieved
multicellular grade about a billion years ago. 565 million
years ago, other, larger multicellular organisms appear in
the fossil record. 35 millions years later, an explosive
increase in organism variety and complexity took place. For
instance, fossils from this area are the first to reflect the
presence of animals with limbs. In the following 10 million
years, it appears as if nature rapidly experimented with
different “animal architectures”, resulting in, for instance,
the fearsome creatures with five eyes in figure 1.
At the end of this period of rapid change, only about 37
distinct “body architectures” remained which are
recognized among present-day animals and form the basis
of the taxonomic classification of phyla. It appears that
during the Cambrian explosion, the differentiation of
simple-structured multicellular organisms into animals with
organs, limbs, etc. was determined. Later changes only
modified elements of these basic body plans.
The explanation of the sudden evolutionary development
during the Cambrian explosion has recently been traced to
genetics.

Figure 1: A (not surviving) result of the Cambrian
explosion: the five-eyed Opabinia. (taken from (Erwin et al.
1997), illustration by D. W. Miller)

Regulatory genes: the genetic culprits of the
Cambrian explosion
The early development of complex animals is controlled by
regulatory genes. The process runs through a sequential
activation of regulatory switches that in turn activate other
genes. Thus the development and differentiation of
different parts of the animal body are organized by
hierarchically structured genetic information.
Examples for regulatory genes are Hox genes, which are
activated very early on in the cascade and determine the
basic body plans of animals. They are arranged together in
a gene cluster and the position of the Hox gene within this
cluster roughly determines the position of the body part the
gene encodes. Thus, the first Hox genes in the cluster
usually specify the head and associated structures, while the
genes in the middle produce arms and so on. The exact
morphology of e.g. an arm is determined later on in the
cascade by other regulator genes. A consequence of this
hierarchical specification is that small changes in the upper
levels of the hierarchy can cause dramatic effects in the
fully developed animal, like e.g. an additional eye.
Furthermore, recent research has shown, that these high
level regulatory genes are extremely similar among
different species. For instance, it was shown that a Hox
gene specifying the existence and position of an eye in an
octopus could be inserted into the genetic information of
Drosophila (the common fruit fly). This causes the fly to
develop additional (Drosophila) eyes, implying the high
degree of similarity of the genetic regulatory system of both
animals.
Concerning the relation between the evolution of the
genetic code and the Cambrian explosion, paleontologists
today propose a scenario in which the existence of a
complex hierarchical regulatory system permitted nature to
experiment very rapidly with many different life forms by
making small but highly effective changes at high
abstraction levels of the genetic information (see Erwin et
al. 1997).
Summing up, we want to make two observations:

� The rapid and highly successful phase of evolutionary
change during the Cambrian was made possible by the
hierarchical organization of the specification of
complex organisms.

� The regulatory system which implements this hierarchy
is remarkable similar in different species.

How does this reflect on the design of adaptable software
systems?

Designing Adaptable Software Systems

Modularization and hierarchical specification of software
systems are being discussed in the software engineering
community for quite some time now. (Parnas 1972)
discusses the use of modularization for limiting the impact
of changes within the software system and with this goal in
mind suggests criteria for the decomposition of complex
systems into modules. (DeRemer and Kron 1976) introduce
the notion of Module Interconnection Languages (MILs) as
the foundation for a discipline of “Programming-in-the-
large” (creating new applications and new functionality by
composing software at a high level of abstraction) as
opposed to “Programming-in-the-small” (coding of
functionality line by line in a traditional programming
language). These languages allow a software system to be
defined on two distinct levels: first, the modules (or
components) of the system are specified in traditional
programming languages. Second, the composition of these
modules is specified in the MIL. Then the specifications are
compiled resulting in the final software system. Today,
many application development systems make use of similar
techniques for rapid prototyping and development. For
instance, VisualBasic (Microsoft 1996) and VisualAge
(IBM 1998) use prefabricated components that are
programmed “in-the-small” in C++ or Java to visually
(hence “Visual...”) compose new applications. (Szyperski
1998) gives an overview of the software technical

foundations of component oriented-programming. The
central concept behind the success of the component-
oriented approach to programming is reuse. Reusing as
many parts of other software system as possible has many
obvious advantages:
� Reduction of development time.
� Reduction of programming errors (“in-the-small”),

because the reused software components have already
been employed in other applications.

� Simplification of the programming (“in-the-large”)
process, if one assumes, that composition of
applications is easier to achieve than programming
them in a traditional language.

Looking at the five-eyed fellow in figure 1, one can observe
the same concept of reuse at work in natural evolution.
Because of the hierarchical specification of genetic
information it was as simple for nature to experiment with
additional eyes or limbs, as it is for the designer of
component-based software today to experiment with
different compositions of basic software components.
However, we believe the structural similarities between
genetic structure and component software cannot be
followed much further. While there are successful
approaches which model compositional aspects of software
using natural science metaphors (e.g. the Chemical Abstract
Machine model, see Inverardi and Wolf 1995), we
currently do not see how the fine technicalities of the
composition of computational entities can benefit from
copying these mechanisms directly from nature. The
connection of an arm to the midsection of the body is
conceptually too different from two software components
interacting via method call.
Coming back the two observations made at the end of the
last section, we now approach the question of how one can
design a software system that permits effective adaptations
at high levels of abstraction and is generic in the sense that
the adaptation functionality can be applied to a variety of

 application

central control

adaptation interface

compositional specification component repository

Figure 2: Conceptual architecture of an integrated run-time and adaptation environment

application domains.
So far we have described the application of the concept of
hierarchical specification in the process of software
development. The software resulting from these
development processes, however, is just as monolithic and
un-adaptable as software resulting from non-component-
based processes, because the hierarchical structure is
usually lost during compilation and therefore cannot be
changed without changing and re-compiling the original
source code.
In order to achieve the goal of adaptability during the
lifetime of one version of a software system, the
hierarchical structure has to be retained in manipulatable
form in the system. Together with the goal of genericity,
this suggests an integrated runtime and adaptation
environment. The conceptual architecture of such an
environment is depicted in figure 2.
The central control retains a specification of the
hierarchical structure (compositional specification) of the
application and a component repository containing the
blueprints (or prototypes) of single components. At system
startup time the compositional specification is evaluated by
the central control and the components are instantiated and
connected accordingly. During run-time, changes can be
made to the compositional specification via the adaptation
interface. The central control immediately implements
changes to the specification within the running application.
Thus, the specification and the application are kept
consistent. Similar environments are used for distributed
application management (see e.g. Magee et al. 1995 and
Bellissard et al. 1996).

The adaptation interface in figure 2 is not a user interface.
It only offers a set of methods to adaptation control
modules. The function of these modules (which are not
shown in figure 2) reflects the second question of the
introduction: “How are adaptations initiated, selected and
implemented?” Possible control modules are user interfaces
(e.g. visual programming style interfaces, see Myers 1990)
or intelligent agents that automatically adapt the
application.
This concludes the description of the motivation and basic
concepts of integrated run-time and adaptation
environments. (Stiemerling 2000) describes the architecture
in more detail in form of a mathematical model that
comprises of the fundamental data structures and
algorithms. In the following we describe the EVOLVE
system that is our implementation of an integrated runtime
and adaptation environment.

The EVOLVE Platform

The EVOLVE platform is designed to support the
deployment and subsequent adaptation of arbitrary
distributed component-based multi-user applications. It is
independent from domain specific functionality and can
thus be used to provide many different software systems
with the property of adaptability. Figure 3 depicts a simple
example for a component-based application made adaptable
by the EVOLVE platform – a shared to-do list employed by
two users to coordinate their tasks:

Figure 3: The EVOLVE platform supports multi-user client-server applications distributed over TCP/IP networks (here the user
perspective, showing two clients of a shared to-do list application)

Figure 4: Screenshot of the 3D tailoring interface (showing the tailoring perspective of the application depicted in figure 3)

Client 1 belongs to a manager, client 2 to a subordinate.
The actual data of the shared to-do list is stored on the
EVOLVE server (in the middle of figure 3) employing a
(invisible) server component. The clients are tailored to
meet the requirements of their respective owners. While the
subordinate may only see the contents of the list and mark
entries as “done”, the manager can actually add new entries
to the list and delete them. The distributed application is
built from a set of components (visible ones like the
buttons, the list and the editor; and invisible ones like the
data storage component on the server).
In a traditional system, the composition would be static
after development and deployment. The EVOLVE platform,
however, maintains – and permits the manipulation of – the
system’s component structure. During the use of the
system, a system administrator, outside consultant or even
an end user can switch to the tailoring mode (figure 4) in
which he can inspect and manipulate the entire distributed
application (if he or she has the right to do so).
Figure 4 depicts a 3D user interface for component-based
tailoring which accesses the flexibility provided by the
EVOLVE system. The two circles in the background

represent the two clients, together with the virtual screens
onto which appearance and position of the visible
components are projected. All components – visible and
invisible – are represented as boxes depicting the
compositional structure of the application. The circle in the
foreground represents the server that contains the invisible
component for storing the contents of the shared to-do list.
The tailor can move around the 3D component scene and
perform manipulations, e.g. concerning the positioning of
the visible components on the screen or the connections of
the components. He can remove component instances or
add new ones from a repository (not shown in figure 4).
The parameterization of component instances can also be
manipulated. In short, the tailor has full control over every
aspect of the application’s composition, whenever the
requirements of the supported group change.
In the shared to-do list example, the manager’s trust in the
subordinate might have increased enough to permit the
subordinate to directly delete items from the shared to-do
list – instead of only marking them as “done” for later
control and deletion by the manager. In this case, the tailor
would add a delete button component to the client of the

subordinate.
While the example of adding a button is admittedly a rather
simple tailoring operation, the EVOLVE platform permits
the application of re-composition (and re-parameterization)
operations to any part of a distributed software system.
Furthermore,
� tailoring operations can be performed during runtime. A

system administrator can add the delete button, while
the user is working with the shared to-do list. The
system does not have to be shut down and the state of
all other components is maintained.

� tailoring operations can be performed remotely. The
whole system can be tailored from any workstation in
the network. This feature supports models of
centralized and decentralized system management.

� the effect of tailoring operations can be shared among
many users. In the example, if other users share the
definition of the subordinate client, the effect of the
tailoring operations is propagated to all running
instances of that definition.

� the effect of tailoring operations can be restricted to
subgroups of users. This feature permits the
accommodation of individual differences. In the
example, there could, for instance, be a need to exclude
a user who would misuse the delete button.

� tailoring operations can be applied to any level of the
compositional hierarchy. A system administrator might
inspect and manipulate the system on a very fine-
grained level, while an end user might prefer a more
high level view.

Summarizing, the EVOLVE platform is responsible for
maintaining component structures during runtime and for
providing functionality for manipulating these structures.
The second central element of the approach is the
component model, i.e. the specification that tells the
programmer exactly what a component is. The next
subsection described what a component is in the context of
the EVOLVE platform.

EVOLVE components: FLEXIBEANS

The component model of the EVOLVE platform is the
FLEXIBEANS model, which is an extension of the
JAVABEANS model (JavaSoft 1997). JAVABEANS is the
component model of the JAVA programming language. The
component model specification tells the programmer
exactly what conventions a piece of code has to adhere to
for it to be a component. These conventions usually
concern:
1.) the way a component interacts with its environment, i.e.
other components. The JAVABEANS component model, for
instance, offers JAVA events as the only interaction
primitive. A JAVA event is actually a void method call from
one component instance to another component instance (or
– in the case of multicast events – sequentially to a set of
component instances). The void method call is
parameterized with a stateful object (the event object) and
permits the other component instance(s) to execute some
reaction and then return the method call to the calling

component instance.
2.) the way components can be manipulated and inspected
by IDEs. In the case of JAVABEANS, a component capable
of sending out events has to offer standardized methods for
registering and de-registering other components interested
in these events. When JAVABEANS instances are composed
or re-composed, the IDE calls the respective manipulation
method to connect (or disconnect) the two instances.
Because of the standardized naming patterns of the
methods, the IDE can learn everything it needs to know
about the composability of a component by simple
inspection.
3.) the way components are packaged for delivery and
deployment. Some JAVABEANS components rely on a
number of JAVA classes, bitmaps and other resources all of
which have to be present for the component to be
instantiated. These resources are packaged in JAR-files
(Java ARchive) together with a “manifest file” which tells
the IDE which classes are JAVABEANS and which are only
of auxiliary nature.
Apart from the fact that they do not explicitly support
distributed applications, JAVABEANS have – in the context
of our work – the additional disadvantage that they receive
events of the same type (e.g. button-click events) always on
the same port (read: event handling method). In order to
distinguish between two different event sources an adapter
object has to be introduced which explicitly contains code
to forward button-clock events to different handling
methods depending on the event source (button 1 or button
2). For the purpose of run-time tailorability, dynamically
generating and compiling code would be rather
cumbersome. Furthermore, while events proved to be
sufficient for the implementation of the search tool
example, sometimes a less “pushy” interaction style
between component instances appears to be more
appropriate (e.g. when one instance simply wants to publish
some information without forcing another instance to react
to this information immediately, as the JAVA event
interaction style prescribes). In order to remedy these
shortcomings we have developed the FLEXIBEANS
component model which extends the JAVABEANS
component model with the concepts of:
� named ports, permitting the differentiated event handling

on the compositional level mentioned above, without
having to dynamically produce and compile (adapter-)
code.

� shared objects, permitting a less strongly synchronized
style of interaction in the fashion of a “pull”-like data
flow (need- and not creation-driven exchange of data).

� remote interaction, permitting the composition of
distributed groupware applications based on JAVA RMI
(Remote Method Invocation). A button situated on one
machine can, for instance be directly connected to a
component on another machine.

The complete FLEXIBEANS specification can be found in
(Stiemerling 1998).
The EVOLVE platform and the FLEXIBEANS component
model serve as proof of concept for the idea of providing

adaptability / tailorability by maintaining the compositional
structure of an application after initial development.
However, the EVOLVE platform is only that – a platform. In
order to show the applicability of the approach, a number of
distributed applications were development on top of the
platform. The following section is devoted to one of these
applications – a groupware application (i.e. an application
supporting cooperative work. For an overview of
groupware see e.g. Ellis et al. 1991). Another application
concerns the document exchange between cooperating
companies in the steel industry (the ORGTECH project, see
Stiemerling et al. 1998).

An Example Application: MUD

The name “MUD” stands for MULTI USER DUNGEON.
Despite this name, the system is not a game, but denotes a
component set for constructing and evolving text-based,
virtual meeting rooms. Users can log into these rooms, see
who else is present at the moment and communicate based
on text messages. (Churchill and Bly 1999) describes the
use of a similar application to support remote cooperation
in a research center. The primary attractiveness of a MUD
lies in the fact that it is a communication tool with
characteristics somewhere between email and the telephone

08'�VHUYHU

talklist
TalkList

peopleportt
PeopleEvent

talkport
TalkEvent

talkpeople
TalkPeople

MUD server component
This server component is responsible for storing the list of active participants and
for distributing the text messages instantly to each party. It also sends out events
informing clients whenever the current list of participants has changed.
Furthermore, it permits the downloading of specific sequences of the conservation
history in order to help late-comers to enter the discussion.

talkport
TalkEvent

Main text window
This component can receive and display the text messages distributed by the
server component. Whenever the contents exceed the visible area, a scrollbar
appears which permits moving the window to the part of the conversation which is
currently of interest. However, new text is always added at the end.

list
TalkPeople

name
MyName

Text input
This component permits the user to input and send a text string to the server
component which distributes it to all other participants. If a name component (see
below) is attached to it, then the name of the user is added to text string: "Joe>".

list
TalkPeople

name
MyName

User Name
The user can type his or her name which is entered into the list of active
participants maintained by the server component. The user can change the name
during a session (e.g. in order to add things like "back in 5 minutes" or "out to
lunch"). The change becomes instantly visible in the people online component (see
below)

peoplelist
TalkPeople

peoplechange
PeopleEvent

People online
This component visualizes the list of active participants maintained by the server
component. Whenever a change in this list occurs, an event is received and the
visualization is updated accordingly.

list
TalkPeople

talkport
TalkEvent[

Repeater component
This component is intended to support late-comers to the MUD room. Pressing the
button repeats the last x lines of text stored by the server component. The repeater
component connects both to the server component and the main text window.

talkport
TalkEvent

The sound warner
This components can be parameterized with a string. Whenever this string appears
in a conversions (it can also be the name of another participant), the EVOLVE client
emits a ringing sound. This component is intended for users who can not constantly
monitor the conversation in the room, but need to be aware whenever certain key
words (like "lunch") are uttered.

talkport
TalkEvent

The window warner
This component provides essentially the same functionality as the sound warner.
However, instead of the ringing sound, a small window appears on top of the
windowing system.

Table 1: The components of the MUD component set

(Excerpt from an interview reported by Churchill and Bly
1999, p. 102): “As I see it, it fits between where you have
the telephone and electronic mail”). It does not require
constant attention like the telephone, but is still more
synchronous than email, because messages are shown
instantly to all collaborators in a room. (Churchill and Bly
1999) also reports on the use of the MUD application to
support keeping in contact with the research center when
working at home or abroad.
The implementation of the MUD as a set of FLEXIBEANS is
designed to demonstrate how a (groupware) application can
benefit from the adaptability provided by the EVOLVE
platform. In particular it is shown how diverse requirements
stemming from different uses of the tool can be met by

differently tailored versions.

The MUD component set
The initial set of FLEXIBEANS components comprises of
eight components which are depicted in table 1.

Different MUD compositions
The components shown in table 1 can be composed
yielding MUD applications for different uses. Figure 5
depicts a number of compositions for different users and
purposes.
The super user (top) has a rather complicated application
with a lot of functionality. He (or she) has added a number

08'�VHUYHU

talklist
TalkList

peopleportt
PeopleEvent

talkport
TalkEvent

talkpeople
TalkPeople

0RELOH�XVHU

6XSHU�XVHU

1RUPDO�XVHU

5HFHSWLRQLVW

(�VHUYHU92/9(

Figure 5: Different MUD compositions

of warner components to the application, in order to get
informed, whenever a certain word is uttered in the
conversation, when he is currently not watching the
EVOLVE client. The receptionist of the example
organization does not want to participate in the
conversation. However, for him (or her) it is quite useful to
have access to the list of people who are currently only.
Therefore, his client only contains a elongated people
online component (right). A normal user (bottom) might
want to see the people online and participate in the
conversation. Finally, a mobile user (left) might have
different requirements concerning the visual appearance
(size and position of visible components). All these
different user applications are composed from the same
component set shown in table 1.
Furthermore, there are a number of subtle ways in which
MUD compositions can differ to meet diverse
requirements. For instance, the name component could be
disconnected from the MUD server component in order for
the user not to appear in list of the people online
component. Or a warner component could be connected to
the repeater instead of the server in order to be able to
search in the conversion history for a certain text string.

Further evolution of the system
The compositional mechanisms are not only restricted to
the client of the MUD systems. One could imagine a suite
of server components which integrate the MUD system
with other telecommunication infrastructures. For instance,
it should be possible to add a component to the MUD
server, which acts as an SMS (Short Messaging System)
gateway, transmitting the whole conversation (or certain
key phases, similar to the warner components) to a mobile
phone. This could be useful in a helpdesk scenario in which
a system administrator is often away from his workstation.
Requests for help could be sent directly to the mobile
phone.
Summarizing, the MUD example demonstrates how the
concept of component-based adaptability can be applied to
the design of a primarily synchronous groupware system.
The initial set of components can be employed to compose
(and re-compose) different types of MUD applications.
Additionally, the system can be further evolved by adding
new components which provide functionality not initially
anticipated.

Summary, Conclusions and Future Work

We have demonstrated how one can design adaptable
software systems based on a structuring principle taken
from the genetic code of animals. This principle – the
hierarchical modularization of genetic information – is
believed to have paved the way for an era of enormous
evolutionary change in the Cambrian period. In order to
achieve the same degree of flexibility in complex software
systems (obviously on another time-scale), we have
proposed the notion of an integrated runtime and tailoring

environment. On top of this platform, arbitrary component-
based applications can be deployed and evolved. This
decision for the division in application-specific components
and an application-independent platform is supported by the
observation, that the regulatory genes (Hox genes)
controlling the hierarchical modularization in the genetic
code are similar across different animals (drosophila and
octopus).
We have presented our prototype implementation of such
an runtime and tailoring environment: the EVOLVE
platform. An example application – the MUD system –
demonstrates how the requirements of different exemplary
types of users (administrator/super user, mobile user,
receptionist and normal user) can be met by different
compositions of an initial component. Furthermore, we
have argued that the component-based adaptability
approach also supports extensions of an application with
new components in order to meet unanticipated
requirements on its functionality. The prototype and the
example application clearly show the feasibility of the
component-based tailorability approach. Furthermore, we
believe this work to be a nice example for how in particular
the structural aspects of software engineering can benefit
from the natural sciences.
For future work, we intend to review methods from
paleontology (e.g. methods for estimating rates of
evolutionary change) with respect for their usability in
software engineering. We are especially interested in
developing methods for giving software “the right” degree
and kind of flexibility.

Acknowledgements

Ralph Hinken implemented the EVOLVE prototype as part
of his Master thesis, Michael Hallenberger the 3D tailoring
interface. Furthermore, we want to thank the colleagues and
friends the department of computer science III for many
fruitful discussion.

References

Ackermann, D. and Ulich, E., “The Chances of
Individualization in Human-Computer Interaction and its
Consequences,” in Psychological Issues of Human
Computer Interaction in the Work Place, M. Frese, E.
Ulich, and W. Dzida, Eds.: Elsevier Science Publishers
B.V. (North-Holland), 1987, pp. 131-145.

Bellissard, L., Atallah, S. B., Boyer, F., and Riveill, M.,
“Distributed Application Configuration,” in: Proceedings of
16th International Conference on Distributed Computing
Systems., Hong-Kong, IEEE Computer Society, pp. 579-
585, 1996.

Churchill, E. F. and Bly, S., “Virtual Environments at
Work: ongoing user of MUDs in the Workplace,” in:
Proceedings of WACC '99 (Work Activities Coordination

and Collaboration), D. Georgakoloulos, W. Prinz, and A. L.
Wolf, Eds., San Francisco, ACM Press, pp. 99-108, 1999.

DeRemer, F. and Kron, H. H., “Programming-in-the-Large
Versus Programming-in-the-Small,” IEEE Transactions on
Software Engineering, vol. 2, 2, pp. 80-86, 1976.

Ecklund, E. F., Delcambre, L. M. L., and Freiling, M. J.,
“Change Cases: Use Cases that Identify Future
Requirements,” in: Proceedings of OOPSLA '96., CA,
USA, ACM Press, pp. 342-358, 1996.

Ellis, C. A., Gibbs, S. J., and Rein, G. L., “Groupware -
some Issues and experiences,” Communications of the
ACM, vol. 34, 1, pp. 38-58, 1991.

Erwin, D., Valentine, J., and Jablonski, D., “The Origin of
Animal Body Plans,” American Scientist, vol. 85, 2, 1997,
(available at:
http://www.amsci.org/amsci/articles/97articles/Erwin.html)
.

Henderson, A. and Kyng, M., “There's No Place Like
Home: Continuing Design in Use,” in Design At Work, J.
Greenbaum and M. Kyng, Eds. Hillsdale, New Jersey:
Lawrence Erlbaum Associates, Publishers, 1991, pp. 219-
240.

IBM, “Visual Age for Java,” , 1.0 ed, 1998.

Inverardi, P. and Wolf, A. L., “Formal Specification and
Analysis of Software Architectures Using the Chemical
Abstract Machine Model,” IEEE Transactions on Software
Engineering, vol. 21, 4, pp. 373-386, 1995.

JavaSoft, “JavaBeans 1.0 API Specification,” , Version
1.00-A ed. Mountain View, California: SUN Microsystems,
1997.

Kühme, T., Dieterich, H., Malinowski, U., and Schneider-
Hufschmidt, M., “Approaches to Adaptivity in User
Interface Technology: Survey and Taxonomy,” in:
Proceedings of IFIP '92, pp. 225-252, 1992.

Magee, J., Dulay, N., Eisenbach, S., and Kramer, J.,
“Specifying Distributed Software Architectures,” in:
Proceedings of 5th European Software Engineering
Conference., Barcelona, LNCS 989 (Springer-Verlag), pp.
137-153, 1995.

Microsoft, “Visual Basic,” , 4.0 ed, 1996.

Myers, B. A., “Taxonomies of Visual Programming and
Program Visualization,” Journal of Visual Languages and
Computing, vol. 1, pp. 97-123, 1990.

Parnas, D. L., “On the Criteria To Be Used in
Decomposing Systems into Modules,” Communications of
the ACM, vol. 15, 12, pp. 1053-1058, 1972.

Stiemerling, O., “FlexiBeans Specification V 2.0,”
Department of Computer Science, University of Bonn,
Bonn, Working Paper, 1998, (available at:
http://www.informatik.uni-bonn.de/~os/Publications/
Flexibeansv20.ps).

Stiemerling, O., “Component-Based Tailorability”, Ph. D.
Thesis, Department of Computer Science III Bonn:
University of Bonn, 2000 (upcoming).

Stiemerling, O., Rohde, M., and Wulf, V., “Integrated
Organization and Technology Development - The Case of
the OrgTech Project,” in: Proceedings of Concurrent
Engineering '98, S. Fukuda and P. L. Chawadhry, Eds.,
Tokyo, Japan, ISPE, pp. 181-187, 1998.

Szyperski, C., Component Software - Beyond Object-
Oriented Programming. Reading, Massachusetts: Addison-
Wesley, 1998.

Trigg, R. H., “Participatory Design meets the MOP:
Accountability in the design of tailorable computer
systems,” in: Proceedings of 15th IRIS, G. Bjerknes, T.
Bratteig, and K. Kautz, Eds., Oslo, 1992.

