
THE USE OF SUB-ROUT|NES |N PROGRAMMES

D. J. Wheeler

Cambridge & fflinois Universities

A sub-routine may perhaps best be des-

cribed as a self-contained part of a programme,

which is capable of being used in different

programmes. It is an entity of its own wlthln

a programme. There is no necessity to compose

a programme of a set of distinct sub-routines;

for the programme can be written as a complete

unit, with no divisions into smaller parts.

However it is usually advantageous to arrange

that a programme is comprise~ of a set of sub-

routines~ some of which have been made specially

for the particular progra~ne while others are

available from a 'library' of standard sub-routines.

The reasons for this will be discussed below.

Nhen a programme has been made from a set

of sub-routines the breakdown of the code is more

complete than it would otherwise be. This allows

the coder to concentrate on one section of a pro-

gramme at a time without the overall detailed

programme continually intruding. Thus the sub-

routines can be more easily coded and the

tested in isolation from the rest of the pro-

gramme. When the entire programme has to be

tested it is with the foreknowledge that the

incidence of mistakes in the sub-routines is

zero (or at least one order of magnitude below

that of the untested portions of the programme~)

If library sub-routines exist for the major

part of a code then the task of constructing the

remaining part of the programme is ~turally

very much less than if the code had to be written

from the very beginning. However, one will

rarely have available sub-routlnes to do exactly

what is required and thus a certain amount of

manipulation m~y be necessary before a given sub-

routine can be used. Even so,it is usually far

easier to use a sub-routine which will meet the

specifications with a small amount of manipula-

tion than to make one specially for the purpose.

It should be pointed out that the prepara-

tion of a library sub-routine requires a consider-

able amount of work. This is much greater than

the effort merely required to code the sub-routine

in its simplest possible form. It will usually

be necessary to code it in the library standard

form and this may detract from its efficiency

in time and space. It may be desirable to code

it in such a manner that the operation is

generalized to some extent. However, even after

it has been coded and tested there still re-

mains the considerable task of writing a des-

cription so that people not acquainted with the

interior coding can nevertheless use it easily.

This last task may be the most difficult.

• Besides the organization of the individual sub-

routines there remains the method of the general

organization of the library. How are the sub-

routines going to be stored? Are they going to

be stored on punched paper tape or are they going

to be available in the auxiliary store of the ma-

chine? Usually it will be found that it is not

possible to write the sub-routines such that they

may be put into arbitrary positions in the store-

although in certain machines this is now possible.

Usually some translation process will have to be

arranged so that an invarlant form of sub-routine

stored on some medium such as paper tape can be

translated to the form required in a particular

application. This translation is possible because

fixed rules can be set up for adjusting a sub-

routine so that it becomes COrrect in the set of

locations in which it is put and used.

Page 235

One next considers the methods by which sub-

routines can be used. There are a number of

°different ways of transferring control to sub-

routines and arranging that control is re-

turned to the appropriate point to which it

is required. One of the simpler methods was

that used for the closed sub-routines of the

EDSAC in which it was arranged that when the

sub-routine had performed its part of the

computation then control was returned to a

point in the main programme immediately after

the orders which had called it into use. This

has been described in detail by Goldstine.

This perhaps facilitates thinking of a sub-

routine as an 'order' of the machine although

it is usually of a more complicated kind than

that wired in the circuits of the machine.

A second more interesting type of sub-

routine is an interpretive routine. In this

type of routine it is arranged that a sequence

of operations is performed each time the sub-

routine is called into action, each operation

being determined by one parameter or 'order' in

a list of such 'orders'. This type of sub-

routine is particularly useful for coding cer-

tain special types of arithmetic for the ma-

chine,for example, floating point arithmetic

in which numbers are expressed as ~x l0 p .

Thus the sub-routine executes the 'orders' in

the list in a similar fashion to the way that

the machine obeys ordinary orders. However 3

the orders that it does are determined by the

parts of the sub-routine, and so can be made to

do any kind of operation or arithmetic.

One extension of an interpretive routine is

a checking routine which is so arranged that the

'orders'that are obeyed are identical with those

of the machine. Howsver~ the interpretive routine

retains control and so it is possible to print

out extra information about the course of the

programme. This extra information makes it

possible to follow the meanderings of the pro~-

gram in detail thus helping to locate the errors

of a programme. This is not a good method of

finding errors in programmes as it takes a long

time and the programmers knowledge of the pro-.

gramme is not utilized - as it should be - in

tracing the fault. However, it is a useful last

resort and can quite often give out information

about a code which would be difficult to find

in any other way.

Sub-routines seem to have two distinct uses

in programmes. The first and most obvious use is

for the evaluation of ffunctions;a simple example

being the evaluation of sine x given x. The

second use is for the organization of processes

such as the integration of a function given

f(x). This second type requires more considera-

tion to make it useful and general. For in-

stance how should f(x) be specified for the sub-

routine? One obvious and useful way is to allow

the integrating sub-routine access to an aux-

iliary sub-routine which is capable of evaluating

f(x).

The above remarks may be s~Jmm~rized by

saying sub-routines are very useful-although not

absolutely necessary-and that the prime objectives

to be born in mind when constructing them are

simplicity of use 3 correctness of codes and accuracy

of description. All complexities should-if possible

-be buried out of sight.

Page 236

