
How to preserve the bene�ts of Design Patterns

Ellen Agerbo Aino Cornils

Computer Science Department, University of Aarhus, Denmark.

e-mail: fagerbo j cornilsg@daimi.aau.dk

DRAFT: This paper has been accepted at OOPSLA '98.

Please do not cite this version.

Abstract

The rapid evolution of Design Patterns has hampered the
bene�ts gained from using Design Patterns. The increase in
the number of Design Patterns makes a common vocabulary
unmanageable, and the tracing problem obscures the doc-
umentation that should be enhanced by using Design Pat-
terns. We present an analysis of Design Patterns that will
strongly reduce the number of Fundamental Design Patterns
and show how strong language abstractions can solve the
tracing problem and thereby enhance the documentation.

1 Introduction

Design Patterns are presented as a means of encapsulating
the experience of programmers in a form that is easily com-
municated to other programmers in all domains regardless
of their expertise within computer science.

The bene�ts that they claim to provide are the following:

1. They encapsulate experience.

2. They provide a common vocabulary for computer sci-
entists across domain barriers.

3. They enhance the documentation of software designs.

The objective of this paper is to promote the point of
view that the formation of Design Patterns should be re-
strictive, and to suggest ways to evaluate existing Design
Patterns, leading to a reduction of the number of Design
Patterns.

In this thesis we propose a set of guidelines to follow
when evaluating a Design Pattern, and we present the re-
sults of these guidelines applied to the Design Patterns of
[Gamma et al. 95].

For the Design Patterns that are considered genuine De-
sign Patterns after this evaluation, we have investigated how
they could be de�ned as as \Library Design Patterns" in a
class library and reused by use of inheritance or delegation
| any such Design Pattern will in this paper be denoted
an LDP. One of the advantages of using such LDPs is that
one doesn't have to copy the structure of the Design Pattern
anew each time a Design Pattern is applied in a new context.
Thereby reducing the implementation overhead ; a problem
connected to the use of Design Patterns identi�ed by Jan
Bosch in [Bosch97]. Another advantage is that by using a
LDP it will be possible to trace that the Design Pattern is
used in an application, which consequently will promote the
documentation bene�t.

2 An Analysis of Design Patterns

The generally accepted de�nition of a Design Pattern is that
it is a description of a well tested solution to a recurring
problem within the �eld of software designs in Object Ori-
ented languages.

This de�nition clearly accentuates what the principal
idea behind Design Patterns is; namely to distribute the
knowledge of good design, such that designers of software
applications can bene�t from work previously done within
similar areas. However, the de�nition also leaves it up to
the individual designer to decide what constitutes a Design
Pattern since terms like \well tested" and \recurring" are
not objective terms that can be evaluated \true" or \false"
in an unambiguous way. The consequence of this is that
new Design Patterns appear in a seemingly endless stream;
each of the new Design Patterns being presented with the
best intents, since they represent some experience to be dis-
tributed to the entire society of framework designers. One
has but to look at the Patterns Home Page1 to be convinced
that there exists numerous patterns, and that the amount is
continuously increased by PLoP conferences and discussion
groups.

The obvious consequence is that the number of Design
Patterns will grow to a level, where it becomes impossible to
maintain an impression of which Design Patterns exist, let
alone to know what problems these Design Patterns actually
solve. This will in turn destroy the possibility of using the
Design Patterns as a common vocabulary, which otherwise
holds the potential of becoming one of the primary bene�ts
of using Design Patterns to document software systems. It
will also obscure the entire �eld of Design Patterns, so that
it becomes too hard to �nd the Design Pattern to help with
a given problem. This may dissuade designers from using
Design Patterns as a helping tool in the design phase. In
short, an overdose of Design Patterns will eliminate two of
the three bene�ts that Design Patterns o�er; they will make
it too laborious to �nd and use the encapsulated experience,
and they will make the common vocabulary too large to be
easily comprehended.

There are two possible solutions to this problem: One
is to restrict the submittance of new Design Patterns by
inventing restrictions that prospective Design Patterns must
abide to in order to be accepted. The problem with this
approach is that too much control in the innovative phase of
discovering new Design Patterns will invariably exclude new
Design Patterns unjustly, since it is next to impossible to

1http://hillside.net/patterns/patterns.html

�nd proper restrictions without knowing all potential Design
Patterns beforehand.

Another solution is to evaluate the existing Design Pat-
terns, and for each Design Pattern decide whether it quali�es
or not. The problem is again to �nd the guidelines by which
to decide whether or not the prospective Design Pattern is
accepted, but the advantage is that each Design Pattern
will be evaluated in its own right, which should minimise
the probability of rejecting a Design Pattern unjustly.

We will in this paper present an analysis in the form of a
set of criteria, that we have used for an evaluation of the De-
sign Patterns that are presented in [Gamma et al. 95]. Our
analysis does not go so far as to identify the true Design
Patterns and to throw away the rest; instead, it focuses on
assembling a core of Fundamental Design Patterns (FDPs)
which should capture good Object Oriented design on a suf-
�ciently high level so that it can be used in various kinds of
applications. The Design Patterns that are not judged to be
Fundamental are then either classi�ed di�erently or rejected
completely.

It is important to note that we do not believe our analysis
to be the analysis of Design Patterns. It has evolved from
our work with the Design Patterns from [Gamma et al. 95],
which means that the criteria are based on a rather narrow
set of Design Patterns. If the analysis was tested on a larger
number of Design Patterns, it might be revealed that the
criteria are not su�cient or that some of the criteria are too
restrictive in that they unjustly rule out some valid Design
Patterns. We do believe, however, that the criteria form
a sound starting point in a much needed discussion on the
quality of the Design Patterns.

In [Agerbo97] we have shown that by using the guidelines
of this analysis, we have evaluated the Design Patterns so
that out of the original 23 Design Patterns in [Gamma et al. 95]
only 12 Design Patterns qualify as Fundamental Design Pat-
terns. We give some examples of how the guidelines of the
analysis are applied on a few of the Design Patterns | for
the complete analysis we refer to [Agerbo97].

2.1 The Analysis

We present an analysis whose purpose it is to de�ne Fun-
damental Design Patterns. As mentioned above, we believe
it is better to have a conservative analysis, that will accept
too many Design Patterns rather than unfairly reject some
Design Patterns. Our analysis is therefore based on three
guidelines on when not to accept a prospective Design Pat-
tern as an FDP. It will be possible to make a stricter analysis
by adding further guidelines without changing the original
guidelines.

2.1.1 Design Patterns vs. language con-

structs

In [Gamma et al. 95] the authors state that one person's
Design Pattern can be another person's primitive building
block, because the point of view a�ects one's interpretation
of what is and what is not a Design Pattern. And the point
of view is in
uenced by the choice of programming language.

In [Gamma et al. 95, p. 4] it is said:
\The choice of programming language is important, be-

cause it in
uences one's point of view. Our patterns assume
Smalltalk/C++ level language features, and that choice
determines what can and cannot be implemented easily. If

we assumed procedural languages, we might have included
design patterns called \Inheritance", \Encapsulation", and
\Polymorphism". Similarly, some of our patterns are sup-
ported directly by less common object-oriented languages."

Thus, they believe that Design Patterns do not need to
be language independent.

We agree with [Gamma et al. 95] so far that the Design
Patterns extracted from various applications will always be
dictated by the programming language used in the appli-
cation; things that are easy to do will not be worth form-
ing into a Design Pattern. But where [Gamma et al. 95]
seem to believe that Design Patterns should emerge from
each programming language, we are of the conviction that
the Fundamental Design Patterns should not be covered by
any generally accepted language construct. This point of
view is rooted in our belief that a Fundamental Design Pat-
tern must be independent of any implementation language.
There should not be \Design Patterns for C++ program-
mers" or \Design Patterns for Delphi programmers", since
a such partition would have the following consequences:

� Programmers using one programming language will be
able to understand and exchange Design Patterns with
other programmers using the same programming lan-
guage, but not with programmers using some other
programming language. This will either create bar-
riers between programmers who have essentially the
same background, namely the object oriented line of
thought, or it will mean that the Design Patterns will
not be used to the full of their potential even within the
di�erent societies of programmers. In either case the
Design Patterns will have lost their ability to provide a
common vocabulary between object oriented designers
regardless of their background.

An example of this can be found in [Alpert et al. 98,
p. 3] where the authors justify the need for gather-
ing the Design Patterns from [Gamma et al. 95] in a
Smalltalk version with the following:

\The Gang of Four's Design Patterns presents design
issues and solutions from a C++ perspective. It illu-
strates patterns for the most part with C++ code and
considers issues germane to a C++ implementation.
Those issues are important for C++ developers, but
they also make the patterns more di�cult to under-
stand and apply for developers using other languages."

� The same Design Pattern can exist under di�erent
names in di�erent programming languages. It will be
hard to compare two Design Patterns coming from
di�erent groups of Design Patterns, since the back-
grounds in given programming languages will almost
certainly have an impact on the presentation of the
Design Pattern.

� If a programmer who has accustomed to work in some
programming language changes to another program-
ming language, he will have to learn a whole new set
of Design Patterns.

� A collection of language speci�c Design Patterns will
sooner or later evolve into cover-ups for shortcomings
of the programming language that will explain how
things can be done cleverly using some or other lan-
guage construct.

An example of this is found in [Coplien94], that con-
tains a collection of C++ idioms.

If we on the other hand concentrate on building a core of
Fundamental Design Patterns that are not covered by any
generally accepted language construct, we can use this core
to form the common vocabulary to be used among computer
scientists regardless of background.

However, a Design Pattern which is covered by a lan-
guage construct in one language might still be a design idea
worth preserving in languages which do not have this lan-
guage construct. Therefore, we believe that the Design Pat-
terns, which are not Fundamental because they are language
dependent must be kept as Language Dependant Design
Patterns (LDDPs). They should not be partitioned by the
languages they are useful in, but rather by which language
construct(s) they are covered by. This way a designer can
use the Fundamental Design Patterns (FDPs) plus the part
of the LDDPs that is necessary for the programming lan-
guage he uses for his implementations. In time, we imagine
that some of the LDDPs will be removed from the �eld of
Design Patterns when the covering language constructs are
adopted by the majority of the object oriented languages.

These re
ections lead to Guideline 1:

Design Patterns covered by language constructs are
not Fundamental Design Patterns.

2.1.2 Design Patterns are original ideas

The �elds in which the Design Patterns can be used are nu-
merous. It is an almost certain fact that the various possible
applications of some Design Pattern will not look the same;
for each application the roles of the Design Pattern have
been parameterised by roles from the application. There
will be restrictions from the applications that were not con-
sidered in the Design Pattern, and the Design Pattern will
be forced to adjust accordingly. It might be convenient if
these adjustments were recorded in some way, such that pro-
grammers who are applying some Design Pattern in a given
�eld could exploit the experiences from previous applications
within the same �eld. These experiences should in fact be
named Design Patterns in that they clearly �t into the def-
inition of being well-tested solutions to recurring problems,
and

{ they do encapsulate experience

{ they do enhance the documentation of frameworks

{ they do provide a common vocabulary within the given
�eld

The obvious problem is that this would cause an explo-
sion of \new" Design Patterns; the disadvantages of which
have been discussed in the previous section. These \new"
Design Patterns would bring little new of general interest,
and they would not be generally understandable for pro-
grammers regardless of their background. Since these De-
sign Patterns can be categorized as mere variations or appli-
cations of a Design Pattern, we have chosen to place them
as Related Design Patterns in Design Pattern families. For
each of these families, the original Design Pattern (which
can be either a Fundamental or a Language Dependent De-
sign Pattern) will �gure as the head of the family. When a
designer wants to make use of a Design Pattern, he can get
the main idea from the head of the family and investigate
the related Design Patterns for more speci�c solutions. That
these variations will not add to the number of Fundamental
Design Patterns will be ensured by Guideline 2:

Applications and variations of Design Patterns are
not Fundamental Design Patterns.

2.1.3 Design Patterns are design ideas

When building an application within object oriented pro-
gramming, there will be many problems to solve. The size
of these problems may naturally di�er, as may what ap-
pears to be hard problems, and what is easily solved. It is
therefore di�cult to set any limits to the size of problem
a Design Pattern can solve. However, since it must be as-
sumed that the programmers, who use the Design Patterns,
all are schooled in the object oriented line of thought, they
posses a common ground of knowledge, that will let them
know the answers to certain problems without too much
thought. In [Gamma et al. 95] the authors have an intro-
ductory section containing good advice as to how to apply
the object oriented concepts to build
exible, reusable soft-
ware. It is among other things here explained when to use
class inheritance as opposed to when to use composition.
These kinds of advice are things that should be common
knowledge to programmers in object oriented programming
and will therefore not be thought of as problems needing an
explicit solution. So even though these advice do represent
solutions to recurring problems within the �eld of object
orientation they are not cast out as new Design Patterns.

New Design Patterns must represent solutions to actual
problems in design that could be of interest to the society
of object orientation in general, regardless of one's previous
experience.

This leads to Guideline 3:

A Design Pattern may not be an inherent object
oriented way of thinking.

2.1.4 Design Patterns reconsidered

The product of an analysis will be the Design Patterns di-
vided into three categories: The Fundamental Design Pat-
terns, which are language-independent original ideas; the
Language Dependant Design Patterns, which are covered
by a language construct and the Related Design Patterns,
which are applications or variations of a Fundamental or
Language Dependant Design Pattern. For all three cate-
gories of the Design Patterns the actual implementations
will vary from one language to another, and it could there-
fore be useful to collect implementation hints in language
speci�c catalogues (as it is done in eg. [Alpert et al. 98]).
But it is important to keep the design ideas as far from ac-
tual languages as possible, such that all designers can gain
from them regardless of background..

2.2 Applying the analysis

We have applied the analysis on the Design Patterns in
[Gamma et al. 95]. The Design Patterns presented in this
collection are probably the best known patterns in the area,
which should enable the readers of this paper to focus on
the analysis and its results instead of on the functionalities
of the Design Patterns. Furthermore they are presented as
domain independent patterns, and even though they lay no
claims as to being an exhaustive collection of Design Pat-
terns in the �eld of object-oriented design, they are fairly
widely spread in their proposed uses, so we felt that they

would provide a sensible base. For the obvious reasons of
space, we will not present the evaluations of all 23 Design
Patterns in this paper, but instead we present an example of
the application of each guideline on a Design Pattern. For
the detailed analysis of all the Design Patterns we refer to
[Agerbo97].

2.2.1 Factory Method

The purpose of this Design Pattern is to create objects whose
exact classes are unknown until runtime. This is done in
[Gamma et al. 95] by instantiating the objects in virtual
methods that can be bound at runtime as shown in Fig-
ure 1.

product = FactoryMethod
.....

.....

FactoryMethod()

Operation()

Creator

o

FactoryMethod()

ConcreteCreatorA ConcreteCreatorB

FactoryMethod()

ProductBProductA

AbstractProduct

Figure 1: The Factory Method Design Pattern

In a language with virtual classes the goal of this Design
Pattern can be achieved quite di�erently. The concept of
virtual classes is explained in depth in [Madsen89], is im-
plemented in Beta ([Beta93]) and has been proposed as an
extension to Java ([Thorup97]). To show how the use of vir-
tual classes will solve the problem behind Factory Method,
we need an expansion of the OMT-based notation that has
been used in [Gamma et al. 95]. We have chosen to use the
notation in Figure 2 for a further binding of a virtual class.
VP is in the class P declared to `at least' have the type V,
and this type is then extended in a subclass of P to have the
type subV.

VP

V

SubV

VP

SubP

P

Figure 2: Further virtual bindings in subclasses

The similarity to the notation for inheritance is not coin-
cidental. As with a specialisation P of a superclass SuperP,

where it can be said that a P is `at least' a SuperP, the
further binding VP will `at least' be the class VP that it
extends.

Using this notation we can now show how to use virtual
classes instead of FactoryMethod to guarantee that the pro-
ductclass can be chosen by the subclasses of the creatorclass.
Instead of having a virtual creator-method to handle what
concrete class to instantiate at runtime, it is now possible
to attack the problem more directly by making the product-
class virtual. This makes it possible to bind the class to
be instantiated at runtime, instead of binding the creator -
method at runtime.

Creator

Operation()

product = new Product
...

...

Product

ConcreteCreatorA

Product

ProductA

AbstractProduct

Figure 3: Factory Method modelled using virtual classes

An advantage in using virtual class patterns is that it
is not necessary to rewrite a new FactoryMethod for each
concrete product class. Furthermore it is now possible to ex-
tend the interface of the AbstractProduct-class, which is not
possible using the original FactoryMethod Design Pattern.

It is clearly demonstrated that FactoryMethod is covered
by the language construct virtual classes, and according to
Guideline 1 it should therefore not be accepted as a Funda-
mental Design Pattern, but should instead be classi�ed as
a Language Dependant Design Pattern to be used in pro-
gramming languages without virtual classes.

2.2.2 Observer

The motivation behind this Design Pattern is to de�ne a
one-to-many dependency between objects such that when
one object changes state, all its dependents are noti�ed
and updated automatically. An object (a Subject) can have
many representations (Observers) and when one of these rep-
resentations are changed by the user, the object behind it
and all the other representations will be changed. The re-
presentations do not know about each other. This enables
a user to add or to delete new representations as he wishes.

We claim that this Design Pattern is in fact an applica-
tion of the Mediator Design Pattern. The Mediator Design
Pattern de�nes an object (aMediator) that encapsulates how
a set of objects (Colleagues) interact. The intent of the De-
sign Pattern is to promote loose coupling by keeping objects
from referring to each other explicitly, and it makes it pos-
sible to vary their interaction independently. The structure
is shown in Figure 5.

When the functionality of an Observer is desired, an
application of the Mediator Design Pattern can be imple-
mented instead by letting the ConcreteSubject play the role

return subjectState
observerState =

subject->GetState()

Observer

Update()

for all o in observers {
o.Update() }��������

Subject
observers

Attach(Observer)
Detach(Observer)
Notify()

ConcreteSubject

SetState()

subjectState

GetState()

subject
ConcreteObserver

Update()

observerState

Figure 4: The Observer Design Pattern

ConcreteMediator

Mediator Colleague

ConcreteColleague2ConcreteColleague1

mediator

Figure 5: The Mediator Design Pattern

of the ConcreteMediator and the ConcreteObservers play the
role of the ConcreteColleagues. Thus the ConcreteSubject
will be the mediator between the ConcreteObservers and the
communication it needs to handle will be the noti�cation
procedure. That Notify is to be called whenever the state
of the ConcreteSubject changes is an application speci�c fea-
ture, that is added in the \observer-part".

There is more information in an Observer than in a Me-
diator since the communication between the Subject and Ob-
servers is �xed, but this is why it is an application of Medi-
ator and not just a variant.

According to Guideline 2, the Observer Design Pattern
should therefore not be a Fundamental Design Pattern, but
a Related Design Pattern belonging to the family of Medi-
ator Design Patterns.

2.2.3 Strategy

This Strategy Design Pattern de�nes a family of algorithms,
encapsulates each one and makes them interchangeable. Strat-
egy lets the algorithm vary independently from clients that
use it. It is useful when many related classes di�er only in
behaviour, because it makes it possible to con�gure a class
with one of many behaviours. The Design Pattern can also
be applied when a class has many conditional statements
in an operation to avoid it becoming clumsy and confusing.
Each behaviour can be placed in its own class, thus build-
ing a simple hierarchy of behaviours. The structure of the
Strategy Design Pattern is shown in �gure 6.

When comparing the applicability of the Strategy De-
sign Pattern with the intent of the State Design Pattern
in [Gamma et al. 95, pp. 305], it will appear as if State
solves the same problem as Strategy, thus making Strategy
redundant. Both aim at encapsulating behaviour in objects,
but whereas State wants the behaviour to re
ect the state
of the context and therefore change at runtime, the Stra-
tegy Design Pattern leaves it up to the client to choose a

Context

ContextInterface()

strategy

AlgorithmInterface()

ConcreteStrategyA ConcreteStrategyB

AlgorithmInterface()

Strategy

AlgorithmInterface()

ConcreteStrategyC

AlgorithmInterface()

Figure 6: The Strategy Design Pattern

concrete strategy to work with. In the State Design Pat-
tern it should be possible to change directly from one state
to another when some condition is met, which means that
the di�erent concrete State classes have to be interdepen-
dent so that they can pass whatever data is necessary to
one another. In the Strategy Design Pattern, it is the client
that decides what ConcreteStrategy to apply, and the data
needed by the ConcreteStrategy will be provided by giving
the Context object as argument to the Strategy.

It is thus obvious that there is a fundamental di�erence
between the two Design Patterns, but it is not one that is
visible from the structures of the Design Patterns as pre-
sented in [Gamma et al. 95]; in fact the close connections
in the purposes of the two Design Patterns is mirrored in
almost identical structures of the Design Patterns.

Evaluating the Strategy Design Pattern we believe that
announcing this as a Design Pattern is stretching the con-
cept of Design Patterns too far. Having di�erent implemen-
tations of some method encapsulated in virtual methods,
and using dynamic dispatch for binding them at runtime
should represent a fundamental way of thinking when pro-
gramming in an object-oriented language.

We conclude that the Strategy idea should not be a De-
sign Pattern according to Guideline 3.

2.2.4 Results

For each of the Design Patterns in [Gamma et al. 95], we
have in [Agerbo97] discussed whether it is covered by a
known object oriented language construct (and thereby an
LDDP), an application of another Design Pattern (an RDP)
or an inherent way of thinking in object-oriented program-
ming. The results of this analysis are shown in the table in
Figure 7.

The seven Design Patterns marked as LDDPs are good
design ideas that are covered by generally known language
constructs. These Design Patterns are the ones that should
spur on the evolution of programming languages to encom-
pass stronger language constructs.

There are only two Design Patterns marked as RDPs, but
there will be many more once the analysis is applied to other
catalogues of Design Patterns. Some of the Design Patterns
that will fall into this category are obvious variants of Design
Patterns, such as \State Patterns" ([Dyson et al. 96]) and
\Variations on the Visitor Pattern" ([Nordberg96]) where
the authors propose several variations on the Design Pat-
terns from [Gamma et al. 95]. Other Design Patterns will
only after thorough reading prove to be variations on exist-
ing patterns. An example is the Design Pattern \Late Cre-
ation" ([B�aumer et al. 96]) which in fact is a variation on
the Abstract Factory Design Pattern. The Design Pattern
proposed in this paper lies very close to what is described in

Name Category Application of Guideline

Abstract Factory FDP
Builder FDP
Factory Method LDDP 1: Covered by Virtual classes
Prototype LDDP 1: Covered by Pattern variables
Singleton LDDP 1: Covered by Singular objects
Adapter � 3: Reuse of existing code.
Bridge FDP
Composite FDP
Decorator FDP
Facade LDDP 1: Covered by Nested Classes
Flyweight FDP
Proxy FDP
Chain of Responsibility FDP 1: Covered by Explicit Delegation
Command LDDP 1: Covered by Procedure classes
Interpreter RDP 2: Application of Composite
Iterator FDP
Mediator FDP
Memento FDP
Observer RDP 2: Application of Mediator
State FDP
Strategy � 3: Dynamic dispatch
Template method LDDP 1: Covered by Complete block structure
Visitor LDDP 1: Covered by Multiple dispatch

Figure 7: Analysis of Design Patterns from [Gamma et al. 95]

the Implementation section of [Gamma et al. 95] as De�ning
extensible factories. Finally there is some likelihood that
some of the designers of Patterns over the years will have
come up with almost identical ideas and solutions, but have
named the resulting Design Patterns according to their own
taste. This is already acknowledged in [Gamma et al. 95]
where each Design Pattern has a section with the name Also
Known As.

Concludingly, the Design Patterns left as good design
ideas seen from a general object oriented view are the twelve
marked as an FDP in the table in Figure 7. This leads us to
conclude that it is bene�cial to have a critical approach to
Design Patterns, because it minimises the amount of Fun-
damental Design Patterns and thereby makes the area of
Design Patterns easier to get on top of.

3 Solving the Tracing Problem by Certain

Language Features

One of the advantages gained by using Design Patterns is
that large software systems are better documented because
a large part of the explanation on how the system works lies
in which Design Patterns that have been used to design the
system.

But when the designers have used a large number of
Design Patterns in their applications and some application
classes play roles in more than one Design Pattern it be-
comes di�cult to trace, which Design Patterns have been
used. This problem is known as the Tracing Problem and
has been discussed in [Bosch98] and [Soukup95].

A proposal to solve this problem is to use \Library De-
sign Patterns" (in short LDPs). When using LDPs in the
application code, it will be possible to trace from which De-
sign Pattern the implementation ideas came.

It is generally recognised that Design Patterns provide
a common vocabulary that makes it possible for designers
from widely di�erent application areas to communicate with
each others. If designers were to make a habit of using
commonly known Design Patterns in their applications, it
would make it easier for outsiders to read and understand
the programs and thereby making long term maintenance
an easier task.

We believe that a way of promoting the habit of using
Design Patterns is to have the Design Patterns as LDPs in
a library where they are easily accessible.

Another advantage of having a Design Pattern as an LDP
is that it is not necessary to copy the design ideas anew each
time a Design Pattern is applied in a new context. However,
this will only work when the intent of the Design Pattern is
mirrored in the library version, and any application that uses
the LDP automatically adheres to the intent of the Design
Pattern. Seen from a modelling point of view, it is of course
just as good to copy the idea of the Design Patterns directly
from [Gamma et al. 95], but this solution places a bigger
demand on the designer of the application.

There are naturally also costs to pay when using LDPs.
When placing a Design Pattern in a library as an LDP, this
imposes a certain rigidness on any application in which the
LDP might be applied. The Design Pattern will be �xed,
in the sense that it will not be possible to adapt it in other
ways than those that were foreseen when making the LDP.

Another disadvantage is the use of names in the LDPs.
Having an abstract method declared in a class of the LDP
with the name anOperation will enforce that the applica-
tion using the LDP has to implement the method under the
name anOperationwhere the use of another name might have
been more informative. This is however a small price to pay
to have ready-to-use solutions available in a library, and a
common problem for all who use functions from libraries.

The most obvious way of using a library of Design Pat-
terns is by letting the classes in the application inherit from
the classes in the LDP. In languages without multiple in-
heritance this will cause problems whenever the classes in
the application already inherit from other classes | either
because they are part of existing hierarchies in the applica-
tion or because they play roles from more than one Design
Pattern. In the following subsection we show how the use
of composition can solve this problem, provided that certain
features are accessible in the programming language.

3.1 Simulating Multiple Inheritance by Com-

position

One of the advantages in using multiple inheritance com-
pared to composition is that with a class inheriting from
several other classes, where some of those have virtually de-
clared classes or methods, it is possible to re-bind these.

In Beta this advantage could also be achieved with com-
position by creating a singularly de�ned part object Addr:

Addr: @ Address(# ... extension ... #)

as an instance of a locally de�ned anonymous subclass of Ad-
dress. An example of this and the structure in our expanded
OMT-notation is shown below.

Address:
(#

Street:@ Text;
Town:@ Integer;
printLabel:< (# do inner; (*print Street, Town*) #)

#);

Person:
(#

Name:@ Text;
Addr:@ Address

(# printLabel:: (# do ... ; (*print Name*); #)
#)

#)

Address

Addr

Person

Since printLabel is de�ned as a virtual method in the class
Address, and Addr is a singular instance of a locally de�ned
subclass of Address it is possible to further bind printLabel
in Addr. This way, the method printLabel can be extended
to serve the Person class better.

Using this kind of composition, designers can add roles to
classes throughout the whole system development by nesting
part objects containing roles from the Library Design Pat-
terns into the application classes and still be able to gain
from the virtual classes and methods in the LDPs. Further-
more it will always be evident that a Design Pattern is used,
since the application-speci�c hierarchy will be built by in-
heritance whereas the roles played from the LDPs will be
played by nested objects. Using multiple inheritance this
distinction will not be as easily made.

3.2 Implementing the LDPs

In [Agerbo97] we have discussed how and to what extent the
Fundamental Design Patterns could be placed in a library of
Design Patterns. In this article we show an example of these
discussions to illustrate what we believe could be possible
and pro�table to keep in a library.

The classes in the applications using such a library are
sometimes already subclasses of other classes in the applica-
tion or play roles from one or more Design Patterns. There-
fore, in the descriptions of the LDPs we assume that such
a library is used in a language with multiple inheritance or
the possibility to simulate multiple inheritance, because the
use of LDPs will mean that the classes in the application
inherit from the classes in the LDP.

The following discussions are based on the descriptions of
the Design Patterns found in [Gamma et al. 95], and require
the book at hand for full understanding.

3.2.1 Flyweight

The application-dependent issues to consider when making
an LDP out of Flyweight are the following:

� What kind of object is a key?

� How does a key identify a
yweight-object?

� How is the state of an object split into extrinsic state
and intrinsic state?

� What operations should the
yweights support?

These considerations have led to a Flyweight-LDP as
shown in Figure 8.

By having the LDPs FlyweightFactory declaring keyType
as a virtual class and the procedure getFlyweight a virtual
procedure it makes it possible for the concrete application
to decide what key to use as well as to specify how that sort
of key should identify a
yweight object. It is enough for the
abstract FlyweightFactory to know that there is a key and a

yweight determined by the key to be able to maintain the
pool of shared
yweights under the invariant that there is
only one instance of each
yweight.

In the application of the LDP the
yweightType should
be further bound to the class of shared
yweights, MyCon-
creteFlyweight, | it is thus guaranteed that each
yweight
in the poolOfFlyweights has this type, which in turn guar-
antees that the IntrinsicState has been further extended in
accordance with the concrete application.

We have chosen to have the abstract class Flyweight de-
clare the classes ExtrinsicState and IntrinsicState since this
separation is a fundamental property of a
yweight object.
This will however mean that any application using the LDP

keyType

insert(keyType, flyweightType)

from

getFlyweight(keyType)::

flyweightType

poolOfFlyweights
getFlyweight(keyType):<

FlyweightFactory

Object

MyFlyweightFactory

specification of how
key determines flyweightoperation in

inner

application

flyweightTypekeyType

extended

specification of if flyweight(key) exists

Object Objectfrom

An Application

 inner

 return existing flyweight
else

insert(key,flyweight(key))
 poolOfFlyweights->

ExtrinsicState

2

3

IntrinsicState

extended

extended

5

ExtrinsicState

MyFlyweight

operation(ExtrinsicState):<

MyConcreteFlyweight

operation(ExtrinsicState)::

State allstate

IntrinsicState

from

MyUnsharedConcreteFlyweight

operation(ExtrinsicState)::

IntrinsicState Istate

elements

Flyweight-LDP

3 4

1

4

5

Flyweight

21

Figure 8: Flyweight-LDP

will have to use the terms ExtrinsicState and IntrinsicState in-
stead of more application-speci�c names. In the text editor
example motivating this Design Pattern the extrinsic state
could typically be the character's font, size and placement.
The use of the LDP would here imply that these attributes
should be nested into an extension of the virtual pattern
ExtrinsicState.

The advantage of having Flyweight as an LDP lies pri-
marily in the FlyweightFactory class, where the use of virtual
classes makes it possible to have an abstract implementation
of the poolOfFlyweights even though the keyType and
y-
weightType is only known in the concrete application. This
implementation of the poolOfFlyweights ensures that the in-
tent of the Design Pattern is met whenever this LDP is
applied in an application.

3.3 Discussion

In section 3.1 it is described how the LDPs are reused by
letting the classes in the application take on roles from the
Design Pattern by nesting instances of locally de�ned anony-
mous subclasses of the LDP. This means that the use of
LDPs would annotate where the Design Patterns were used
in the application. This automatic annotation is a very im-
portant contribution to the documentation of software sys-
tems.

A number of the language features in Beta prove them-
selves especially useful in connection to the LDPs by sup-
porting genericity and reuse of models. This is further elab-
orated on in [Agerbo97] where we show how the intent of a
Design Pattern could be encapsulated as an LDP for 10 out
of the 12 Fundamental Design Patterns, and that it in 6 out
of these 10 cases is due to virtual classes and nested classes.
That it in this way is possible to reuse enough of a De-
sign Pattern for it to be applied directly from an LDP while
keeping the intent of the Design Pattern intact reduces the
implementation overhead, a problem connected to the use of
Design Patterns identi�ed by Jan Bosch in [Bosch97].

The fact that it is possible to make a useful LDP out of a
Design Pattern proves that it is possible to make a reusable
implementation of it. And since the Design Patterns in
[Gamma et al. 95] formulate good design- or implementation-
ideas, the language features that support them must be con-
sidered
exible and useful in relation to reuse of design.

4 Related Work

Most e�orts concerning Design Patterns have so far been
put into discovering new Design Patterns and investigat-
ing their usefulness. To the best of our knowledge, little
work has been done in evaluating the existing Design Pat-
terns. The only other critical evaluation of Design Patterns
we have found is the article \Design Patterns vs. Lan-
guage Design" ([Gil et al. 97]) where Joseph Gil and David
H. Lorenz have o�ered a taxonomy of the Design Patterns
from [Gamma et al. 95] based on how far they are from be-
coming actual language features. They have partitioned the
Design Patterns as either clich�es, idioms or cadets, which
correspond to an application of Guideline 1 and 3 from our
analysis on the Design Patterns. This taxonomy was pre-
sented as a workshop paper at ECOOP'97, and it needs a
more thorough argumentation for its classi�cations, which

we have discussed in depth in [Agerbo97]. Their resulting
taxonomy is di�cult to compare to ours directly, since they
allow the same Design Pattern to appear in several cate-
gories, and their reasonings are somewhat fuzzy at places.
However, the fact that the two categorisations are not iden-
tical shows that it will be hard to obtain a consensus on any
one evaluation of Design Patterns; especially will it be hard
to agree on what Design Patterns are formalisations over
inherent object oriented ways of thinking | [Gil et al. 97]
claims that three of the Design Patterns fall into this cat-
egory, none of which we have categorised in the same way.
However, the fact that two almost identical set of Guide-
lines have evolved independently indicates that they can be
used as valid starting points for a dialogue on the quality of
Design Patterns.

The tracing problem has become a generally recognised
problem within the �eld of Design Patterns. G�orel Hedin has
proposed a technique for formalising Design Patterns which
allows the Design Pattern applications to be identi�ed in the
source code ([Hedin97]). The technique is based on attribute
grammars, and places a demand on the programmer that he
explicitly annotates his program with Design Pattern roles.
This has the bene�t that it will also enable automatic check-
ing, i.e. it will be possible to decide whether or not a Design
Pattern has been applied correctly. The largest di�erence
between this approach and ours is that our approach will
partly reduce the implementation overhead, whereas Hedin's
solution can work as a debugger for Design Patterns where
our solution can not guarantee that the Design Patterns are
applied correctly.

Jiri Soukop has also tried to solve the tracing problem.
In his article \Implementing Patterns" ([Soukup95]), he pro-
poses to build a library of Design Patterns consisting of so-
called pattern classes. A pattern class encapsulates all the
behaviour and logic of the Design Pattern and the classes
that form the Design Pattern in the application thus contain
no methods related to the Design Pattern. What is left in
the classes are only pointers and other data required for the
Design Pattern. The problem of this solution is that all the
structure of the Design Pattern is lost, since everything is
now contained as methods in the pattern class.

5 Conclusion

The objective of this article is to regain the bene�ts of using
Design Patterns:

1. They encapsulate experience.

2. They provide a common vocabulary for computer sci-
entists across domain barriers.

3. They enhance the documentation of software designs.

We believe that the �eld of Design Patterns should be
narrowed down to a minimum, to preserve the �rst two bene-
�ts of Design Patterns. By partitioning the Design Patterns
into Fundamental Design Patterns, Language Dependant
Design Patterns, and Related Design Patterns, we have a
core of the Design Patterns | the Fundamental Design Pat-
terns | which fully provides the bene�ts of Design Patterns.
12 of the 23 Design Patterns from [Gamma et al. 95] are
classi�ed as Fundamental Design Patterns following these
criteria. This leads us to conclude that it is bene�cial to have

a critical approach to Design Patterns, because it minimises
the amount of Fundamental Design Patterns and thereby
makes the area of Design Patterns easier to get on top of.

Using Design Patterns in software systems should make
it an easier task to document the systems. There is however
the problem, that the more Design Patterns that are applied,
the more di�cult it will be to recognise the structure of the
participating Design Patterns. This is referred to as the
tracing problem.

We have in this paper described how the use of LDPs can
preserve the Design Patterns in a library, and how the use of
these would guarantee automatic annotation in a program
that some object participates in an application of a Design
Pattern. Furthermore, we claim that the presence of nested
classes and virtual classes in the programming language will
reduce the implementation overhead, since these two lan-
guage features makes it possible to capture the intent of the
Design Pattern in the collaborations between the objects,
and to inherit the interdependencies in an application. This
is described in detail in [Agerbo97], where we have shown
that out of the 12 Fundamental Design Patterns, 10 can be
implemented as LDPs preserving the intent of the Design
Pattern.

Thus the use of LDPs will provide us with a means of
ensuring the third bene�t of Design Patterns, and it will to
some extent eliminate the implementation overhead if the
chosen implementation language possess the necessary lan-
guage abstractions.

References

[Agerbo97] Ellen Agerbo and Aino Cornils (1997): Theory
of Language Support for Design Patterns. Department of
Computer Science, Aarhus University.

[Alpert et al. 98] Sherman R. Alpert, Kyle Brown and
Bobby Woolf (1998): The Design Patterns Smalltalk
Companion. Addison-Wesley Publishing Company.

[Bosch97] Jan Bosch (1997): Design Patterns & Frame-
works: On the Issue of Language Support. Workshop
on Language Support for Design Patterns and Object-
Oriented Frameworks (LSDF), ECOOP '97.

[Bosch98] Jan Bosch (1998): Design Patterns as Language
Constructs. Journal of Object Oriented Programming,
May 98 pp. 18-32.

[B�aumer et al. 96] Dirk B�aumer and Dirk Riehle (1996):
Late Creation: A Creational Pattern. PLoP '96.

[Coplien94] J.O. Coplien (1994): Advanced C++: Program-
ming Styles and Idioms. Addison-Wesley, Reading, MA.

[Dyson et al. 96] Paul Dyson and Bruce Anderson (1996):
State Patterns. PLoP '96.

[Gamma et al. 95] Erich Gamma, Richard Helm, Ralph
Johnson, John Vlissides (1995): Elements of Reusable
Object-Oriented Software. Addison-Wesley Publishing
Company.

[Gil et al. 97] Joseph Gil and David H. Lorenz (1997): De-
sign Patterns vs. Language Design. Workshop on Lan-
guage Support for Design Patterns and Object-Oriented
Frameworks (LSDF), ECOOP '97.

[Hedin97] G�orel Hedin (1997): Language Support for Design
Patterns usign Attribute Extension. Workshop on Lan-
guage Support for Design Patterns and Object-Oriented
Frameworks (LSDF), ECOOP '97.

[Madsen89] O. L. Madsen, B. M�ller-Pedersen (1989): Vir-
tual classes: A powerful mechanism in object-oriented pro-
gramming. Proceeding of OOPSLA '89.

[Madsen92] O. L. Madsen, B. M�ller-Pedersen (1992): Part-
objects and their location. Proceeding of TOOLS '92 pp.
283-297.

[Beta93] O. L. Madsen, B. M�ller-Pedersen, K. Nygaard
(1993): Object-Oriented Programming in the Beta Pro-
gramming Language. Addison-Wesley Publishing Com-
pany.

[Nordberg96] Martin E. Nordberg III (1996): Variations on
the Visitor Pattern. PLoP '96.

[Soukup95] Jiri Soukup (1995): Implementing Patterns.
Pattern Languages of Program Design. Eds. Coplien and
Schmidt. Addison-Wesley 1995.

[Thorup97] K. K. Thorup (1997): Genericity in Java with
Virtual Types. Proceedings of ECOOP '97 pp. 444-469.
Springer-Verlag.

