Chapter 4: Building
Tests

If you want to do refactoring, the essential pre-condition is having
solid tests. Even if you are fortunate enough to have a tool that can
automate the refactorings, you still need tests. It'll be a long time
before all possible refactorings could be automated in a refactoring
tool.

I don’t see this as a disadvantage. I've found that writing good tests
greatly speeds up my programming, even if I’'m not doing refactoring.
This was a surprise for me and it is counter-intuitive for many pro-
grammers, so it's worth explaining why.

The Value of Self Testing Code

If you look at how most programmers spend their time, you’ll find
that writing code actually is quite a small fraction. Some time is spent
figuring out what ought to be going on, some time is spent designing,
but most time is spent debugging. I’'m sure every reader can remember
long hours of debugging, often long into the night. Every programmer
can tell a story of a bug that took a whole day (or more) to find. Fixing
the bug is usually pretty quick, but finding it is the nightmare. And
then when you do fix it, there’s always a chance that another one
appears, which you might not even notice till much later, and then you
spend ages finding that.

The event that started me on the road to self-testing code was a talk at
OOPSLA in 1992. Someone (I think it was Dave Thomas) said off-
handedly “classes should contain their own tests”. That struck me as a
good way to organize tests. | interpreted that as saying that each class
should have its own method (called test) that can be used to test itself.

\4

v ¥ BUILDING TESTS

At that time | was also into incremental development so | tried adding
test methods to classes as | completed each increment. The project |
was working at that time was quite small so we put out increments
every week or so. Running the tests was now fairly straightforward,
but although they were easy to run they were still pretty boring to do.
This was because every test produced output to the console which |
had to check. Now I'm a pretty lazy person, and am prepared to work
guite hard in order to avoid work. | realized that instead of me looking
at the screen to see if it printed out some information from the model, |
could get the computer to make that test. All | had to do was put the
output | expected into the test code, and do a comparison. Now I could
run each class’s test method and it would just print “OK” to the screen
if all was well. The class was now self-testing.

Make sure all tests are fully automatic and check their own results.

Now it was easy to run a test, indeed it was as easy as compiling. So |
started to run tests every time | compiled. Shortly | began to notice my
productivity had shot upward. | realized that | wasn’t spending so
much time debugging. If | added a bug that was caught by a previous
test, then it would show up as soon as | ran that test. Since the test
worked before that would then tell me that the bug was in the work |
had done since | last tested. Since | ran the tests frequently, that was
only a few minutes ago. | thus knew that the source of the bug was in
the code | just wrote. Since that code was fresh in my mind and a small
amount, the bug was easy to find. Bugs that would take an hour or
more to find now took a couple of minutes at most. Not just had | built
self-testing classes, but by running them frequently | had a powerful
bug detector.

As | noticed this | got more aggressive about doing the tests. Instead of
waiting for the end of increment, | would add the tests straight after
writing a bit of function. Every day | would add a couple of new fea-
tures and the tests to test them. These days | hardly ever spend more
than a few minutes debugging.

A suite of tests is a powerful bug detector that decapitates the time
it takes to find bugs.

Of course it is not so easy to convince others to follow this route. Writ-
ing the tests is a lot of extra code to write. Unless you have actually
experienced the way it speeds up your programming, it does not make
sense that it can do so. This is not helped by the fact that many people
have never learned to write tests, to think about tests. When tests are
manual they are gut-wrenchedly boring. But when they are automatic,
they can actually be quite fun to write.

In fact one of the most useful times to write tests is before you start
programming. When you need to add a feature, you begin by writing
the test. This isn’t as backwards as it sounds. By writing the test you
are asking yourself what needs to be done to add the function. Writing
the test also concentrates on the interface rather than the implementa-
tion (always a good thing). It also means you have a clear point at
which you are done coding — the test works.

This notion of frequent testing is an important part of Extreme Program-
ming. The name conjures up notions of programmers who are fast and
loose hackers. But extreme programmers are very dedicated testers.
They want to develop software as fast as possible, and they know that
tests help you to go as fast as you possibly can.

Don’t let the fear that tests can’t catch every bug stop you from
testing. If your tests only get half the bugs, they are still worth-
while, and you will usually do much better than that.

That’s enough of the polemic. While | think everyone would benefit by
writing self-testing code, it is not the point of this book. This book is
about refactoring, refactoring needs tests, so if you want to refactor
you have to write tests. This chapter will give you a start in doing this
for Java. This is not a testing book, so I'm not going to go into much
detail. But with testing I’ve found that a remarkably small amount can
have surprisingly big benefits.

As with everything else in this book, I'll describe the testing approach
using examples. When | develop code | write the tests as | go, but often
when I’'m working with people on refactoring we have a body of non-
self-testing code to work on. So first we have to make it self-testing
before we refactor.

\4

v ¥ BUILDING TESTS

The standard java idiom for testing is the testing main. The idea is that
every class should have a main function that tests that class. That’s a
reasonable convention (although not honored much) but can get awk-
ward. The problem is that such a convention makes it tricky to run lots
of tests easily. Another approach is to build separate test classes that
work in a framework to make testing easier.

The JUnit Testing Framework

The testing framework | use is JUnit, an open-source testing frame-
work developed by Erich Gamma and Kent Beck [JUnit]. The frame-
work is very simple, yet allows you to do all the key things you need

to do in order to do some testing. In this chapter I’'ll use this frame-

work to develop some tests for some io classes.

test.framework

«interface»

Test

TestSuite

TestCase

FileReaderTester

Figure 4.1: The composite structure of tests

To begin I'll create a FileReaderTester class to test the file reader. Any
class that contains tests must subclass the test case class from the test-
ing framework. The framework uses the composite pattern [Gang of
Four] that allows you to group tests into suites. These suites can con-
tain the raw test cases or other suites of test cases. This makes it easy to
build a range of large test suites and run the tests automatically.

class FileReaderTester extends TestCase {
public FileReaderTester (String name) {

super(name);

}

\4

v ¥ BUILDING TESTS

The new class has to have a constructor. After this | can start adding
some test code. My first job is to set up the test fixture. A test fixture is
essentially those objects which act as samples for testing. Since I'm
reading a file | need to set up a test file.

Bradman 99.94 52 80 10 6996 334 29
Pollock 60.97 23 41 4 2256 274 7
Headley 60.83 22 40 4 2256 270 10
Sutcliffe 60.73 54 84 9 4555 194 16

To further use the file | then prepare the fixture. The test case class pro-
vides two methods to manipulate the test fixture: setUp creates the
objects and tearDown removes them. Both are implemented as null
methods on test case. Most of the time you don’t need to do a tear
down (the garbage collector can handle it) but it is wise to use it here
to close the file.

class FileReaderTester...
protected void setUp() {
try {
_input = new FileReader("data.txt");
} catch (FileNotFoundException e) {
throw new RuntimeException ("unable to open test file");
}
}

protected void tearDown() {
try {
_input.close();
} catch (IOException e) {
throw new RuntimeException ("error on closing test file");
}
}

Now | have the test fixture in place | can start writing some tests. The
first test I'll do is to test the read method. To test this I'll read a few
characters and then check that the character | read next is the right one.
public void testRead() throws IOException {
char ch = '&';
for (int i=0; i < 4; i++)
ch = (char) _input.read();
assert('d' == ch);
}
The automatic test is the assert method. If the value inside the assert is
true, all is well. Otherwise we signal an error. I’'ll come to how the
framework does that in a moment. First I'll describe how we run the

test. The first step is to create a test suite. To do this you create a
method called suite.
public static Test suite() {
TestSuite suite= new TestSuite();
suite.addTest(new FileReaderTester("testRead"));
return suite;

}

This test suite contains just one test case object, an instance of
FileReaderTester. When | create a test case | give the constructor a
string argument, which is the name of the method I’'m going to test.
This will create one object that will test that one method. The test is
bound to the object by using Java’s reflection capability. You can take a
look at the downloaded source code to figure out how it does it. | just
treat it as magic.

To run the tests | use a separate TestRunner class. There are two ver-
sions of TestRunner: one uses a cool GUI, the other a simple character
interface. | can call the character interface version in the main.
class FileReaderTester
public static void main (String[] args) {
test.textui.TestRunner.run (suite());

}

The code creates the test runner and gives it the suite to test. When |
run it | see

Time: 0.110
0K (1 tests)

JUnit prints a period for each test that runs (so you can see progress). It
tells you how long the tests have run for. It then says “OK” if nothing
goes wrong and tells you how many tests ran. | could run a thousand
tests and if all goes well I'll see that OK. This simple feedback is essen-
tial to self-testing code. Without it you’ll never run the tests often
enough. With it you can run masses of tests, go off for lunch (or some
meeting) and see the results when you go back.

Run your tests frequently. Localized tests whenever you compile,
every test at least every day.

v ¥ BUILDING TESTS

In refactoring you only run a few tests that exercise the code you are
working on. You can only run a few because they must be fast, other-
wise they’ll slow you down and you’ll be tempted to not run them.
(Don’t give in to that temptation — retribution will follow.)

Essentially testing is all about this. Write a fixture, write some tests
(with asserts) and add them to a suite. | typically build a suite for each
tester class and then build larger suites for packages, and larger suites
for the whole system.

What happens if something goes wrong? I’'ll demonstrate by putting in
a deliberate bug.

public void testRead() throws IOException {
char ch = '&';
for (int i=0; i < 4; i++)
ch = (char) _input.read();
assert('2' == ch); //deliberate error

}
Now the result looks like this.

.F
Time: 0.220

I TFATLURES!!'!

Test Results:

Run: 1 Failures: 1 Errors: @

There was 1 failure

1) FileReaderTester.testRead
test.framework.AssertionFailedError

The framework alerts me to the failure and tells me which test failed.
The error message isn’t particularly helpful though. | can make the
error message better by using another form of assert.
public void testRead() throws IOException {
char ch = '&';
for (int i=0; 1 < 4; i++)
ch = (char) _input.read();
assertkquals('m',ch);
}
Most of the asserts you do are comparing two values to see if they are
equal. So the framework includes an assertEquals. Not just is this con-
venient (it uses equals() on objects and == on values — which | always
forget to do), it also allows a more meaningful error message.

.F

Time: 0.170

I TFAILURES!!!

Test Results:

Run: 1 Failures: 1 Errors: 0

There was 1 failure:

1) FileReaderTester.testRead "expected:"m"but was:"d""

As well as catching failures (assertions coming out false), the frame-
work also catches errors (unexpected exceptions). So if | write
public void testRead() throws IOException {

char ch = '&';

_input.close();

for (int i=0; 1 < 4; i++)

ch = (char) _input.read();// will throw exception
assertkEquals('m',ch);

I get
.E

Time: 0.110

I TFAILURES!!!

Test Results:

Run: 1 Failures: @ Errors: 1
There was 1 error:

1) FileReaderTester.testRead
java.io.IOException: Stream closed

It is useful to distinguish between failures and errors, since they tend
to turn up differently and the debugging process is different.

JUnit also includes a nice graphical user interface. The color shows
green if all tests pass and red if there are any failures. In some environ-
ments you can leave the GUI up all the time and the environment
automatically links in any changes to your code. If that’s the case this
is a very convenient way to run the tests.

v ¥ BUILDING TESTS

=4 Fun Test Suile

Entar e narne of the TestZase class:

| FlieReanarmaster suitel) Run
Fmograss
Runs 1 Erors 0 Fallures 4

Emors and Fallures:

Failure: FlleResderTestar 1esIRead expactad rrtbul was”

4| ml

| Finished: 0.50 seconis G

Figure 4.2: The Graphical User Interface of JUnit.

Unit and Functional Tests

This framework is used for unit tests, so | should mention the differ-
ence between unit tests and functional tests. These tests I'm talking
about are unit tests. | write them to improve my productivity as a pro-
grammer. If they make the QA department happier, that’s just a side
effect. They are also very localized. Each test class works within a sin-
gle package. It tests the interfaces to other packages, but beyond that it
assumes the rest just works.

Functional tests are a different animal. They are written to ensure the
software as a whole works. They provide quality assurance to the cus-
tomer, and don’t care about programmer productivity. They should be
developed by a different team who delight in finding bugs. They will
use heavy-weight tools and techniques to help them do this.

For refactoring purposes, it is the unit tests - the programmer’s friend -
that | count on.

Adding More Tests

Now we should continue adding more tests. The style | follow is to
look at all the things the class should do, and test each one of them,
looking for any conditions that might cause the class to fail. This is not
the same as “test every public method” that some advocate. Testing
should be risk driven; remember you are trying to find bugs, now or in
the future. So | don’t test accessors that just read and write a field.
Since they are so simple, I’'m not likely to find a bug there.

At the moment I’'m looking at the read method. What else should it
do? Well one thing it says is that it returns -1 at the end of the file (not
a very nice protocol in my view, but | guess that makes it more natural
for C programmers). So let’s test it. My text editor tells me there’s 141
characters in the file, so here’s the test.
public void testReadAtEnd() throws IOException {
int ch = -1234;
for (int i = 0; i < 141; i++)
ch = _input.read();

assertkquals(-1, ch);
}

To get the test to run, | have to add it to the suite.

public static Test suite() {
TestSuite suite= new TestSuite();
suite.addTest(new FileReaderTester("testRead"));
suite.addTest(new FileReaderTester("testReadAtEnd"))
return suite;

}

When this suite is run it tells each of its component tests (the two test
cases) to run. Each test case executes setUp, then the body of the test
code in the testing method, and finally tearDown. It is important to
run setUp and tearDown each time so that the tests are isolated from
each other. That means we can run them in any order and it doesn’t
matter.

That’s good so far. A key trick with tests is to look for boundary condi-
tions. For the read the boundaries would be the first character, the last
character, and the character after the last character

public void testReadBoundaries()throwsIOException {
assertEquals("read first char",'B', _input.read());

¥ BUILDING TESTS

int ch;
for (int i = 1;1 <140; i++)
ch = _input.read();
assertEquals("read last char",'6',_input.read());
assertEquals("read at end",-1,_input.read());

}

Notice how you can add a message to the assert which will be printed
if the test fails.

Think of the boundary conditions where things that might go
wrong and concentrate your tests there

Another part of looking for boundaries is looking for what special con-
ditions could cause the test to fail. For files, empty files are always a
good choice.

public void testEmptyRead() throws IOException {
File empty = new File ("empty.txt");
FileOutputStream out = new FileOutputStream(empty);
out.close();
FileReader in = newFileReader (empty);
assertEquals (-1, in.read());

}

In this case I'm creating a bit of extra fixture just for this test. If | need
an empty file for later | can move it into regular fixture by moving the
code to setup.

protected void setUp(){
try {
_input = new FileReader("data.txt");
_empty = newEmptyFile();
} catch(IOException e){
throw new RuntimeException(e.toString());
}
}

private FileReader newEmptyFile() throws IOException {
File empty = new File ("empty.txt");
FiTeOutputStream out = new FileOutputStream(empty);
out.close();
return newFileReader(empty)

}

public void testEmptyRead() throws IOException {
assertkquals (-1, _empty.read());
}

So what happens if you read after the end of the file? Again -1 should
be returned, and I'll just augment one of the other tests to probe that.

public void testReadBoundaries()throwsIOException {
assertEquals("read first char",'B', _input.read());
int ch;
for (int i = 1;i <140; i++)

ch = _input.read();

assertEquals("read Tast char",'6',_input.read());
assertEquals("read at end",-1,_input.read());
assertEquals ("readpast end", -1, _input.read())

}

When you are doing tests, don’t forget to check that expected errors
occur properly. If you try to read a stream after it is closed, you should
get an IOException. This too should be tested.

public void testReadAfterClose() throwsIOException{
_input.close();
try {
_input.read();
assert(false);// we should not get here
} catch (IOException io0) {}
}

Any other exception than the IOException will produce an error in the
normal way.

Don’t forget to test that exceptions are raised when things should
go wrong

Fleshing out the tests continues along these lines. It takes a while to go
through the interface to some classes to do this, but in the process you
get to really understand the interface of the class. In particular it helps
to think about error conditions and boundary conditions. That'’s
another advantage for writing tests as you write code, or even before
you write the production code.

When do you stop? I’'m sure you have heard many times that you can-
not prove a program has no bugs by testing. That’s true, but does not
affect the ability of testing to speed up programming. I’ve seen various
proposals for rules to ensure you have tested every combination of
everything. It’s worth taking a look at these, but don’t let them get to
you. There is a point of diminishing returns on testing, and there is a

v ¥ BUILDING TESTS

danger that by trying to write too many tests, you get discouraged and
end up not writing any. You should concentrate on where the risk is.
Look at the code and see where it gets complex, look at the function
and consider the likely areas of error. Your tests will not find every
bug, but as you refactor you will understand the program better and
thus find more bugs. Although | always start refactoring with a test
suite, | invariably add to it as | go along.

One of the tricky things about objects is that all the inheritance and
polymorphism can make testing harder, as there are all these combina-
tions to test. If you have three abstract classes with that collaborate
where each has three subclasses, you have nine alternatives but
twenty-seven combinations. | don’t always try to test all the combina-
tions possible, but | do try and test each alternative. It boils down to
the risk in the combinations. If the alternatives are reasonably inde-
pendent of each other, I'm not likely to try each combination. There’s
always a risk that I’'ll miss something, but it is better to spend a reason-
able time to catch most bugs than to spend ages trying to get them all.

A difference between test code and production code is that it is okay to
copy and edit test code. In fact when dealing with combinations and
alternatives | often do that. First take regular pay event, now with
seniority and disabled before the end of the year, now without senior-
ity and disabled before the end of the year, and so on. With simple
alternatives like that on top of a reasonable fixture | can generate tests
very quickly.

I hope that’s given you a feel for writing tests. There is a lot more |
could say on this topic, but that would obscure the key message. Build
up a good bug detector and run it frequently. It is a wonderful tool for
any development, and an essential pre-condition for refactoring.

