
307

Chapter 13: Refactoring, 
Reuse & Reality 

by Bill Opdyke

Lucent Technologies/ Bell Labs

(wopdyke@lucent.com;
william.opdyke@bell-labs.com)

Copyright 1998, Lucent Technologies.

Introduction
Martin Fowler and I first met in Vancouver during OOPSLA '92. A few
months earlier, I had completed my doctoral thesis [1] at the University
of Illinois on refactoring object-oriented frameworks. While I was considering
doing follow-on research into refactoring, I was also exploring other options
such as medical informatics. Martin was working in a medical informatics
application at the time, which is what brought us together to chat over break-
fast in Vancouver. As Martin related earlier in this book, we spent a few min-
utes discussing my refactoring research. He had limited interest in the topic at
the time but, as you are now aware, his interest in the topic has grown. 

As Martin has noted earlier, this book isn't the first written work on
refactoring, but (I hope) it will expose a broadening audience to the
concepts and benefits of refactoring. While my doctoral thesis was the
first major written work on the topic, most readers interested in
exploring the early foundational work on refactoring probably should
look first at several papers [2, 3, 4, 5] and conference tutorials [6, 7]. For
those with an interest in both design patterns and refactoring, the
paper “Lifecycle and Refactoring Patterns That Support Evolution and
Reuse” [5], which Brian Foote and I presented at PLoP '94 and which
appears in the first volume of Addison-Wesley's “Pattern Languages



308 REFACTORING, REUSE & REALITY

of Program Design” series, is a good place to start. My refactoring
research was largely built upon work by Brian and Ralph Johnson
regarding object-oriented application frameworks and designing reus-
able classes [8]. Subsequent refactoring research by John Brant, Don
Roberts and Ralph Johnson at the University of Illinois has focused on
refactoring Smalltalk programs [9, 18]. Their web site (http://st-
www.cs.uiuc.edu) includes some of their most recent work. Interest in
refactoring has grown within the object-oriented research community;
several related papers were presented at the OOPSLA '96 conference
in a session entitled “Refactoring and Reuse” [15]. 

When Martin offered me the opportunity to author a chapter in this
book, several ideas came to mind. I could describe the early refactoring
research, where Ralph Johnson and I came together from very differ-
ent technical backgrounds to focus on support for change in object ori-
ented software. I could discuss how to provide automated support for
refactoring, an area of my research quite different from the focus of
this book. I could share some of the lessons I have learned about how
refactoring relates to the day-to-day concerns of software profession-
als, especially those who work on large projects in industry. Many of
the insights I gained during my refactoring research have been useful
in a wide range of areas - in assessing software technologies and for-
mulating product evolution strategies, in developing prototypes and
products in the telecommunications industry, and in training and con-
sulting with product development groups. 

I decided to focus briefly on many of these issues. As the title of this
chapter implies, many of the insights regarding refactoring apply
more generally to issues like software reuse, product evolution and
platform selection. While parts of this chapter will briefly touch upon
some of the more interesting theoretical aspects of refactoring, the pri-
mary focus is on practical, “real world” concerns and how they can be
addressed. 

A Reality Check

I worked at Bell Labs for several years before I decided to pursue my
doctoral studies. Most of that time was spent working in a part of the
company that developed electronic switching systems. Such products



309

have very tight constraints both with respect to reliability and the
speed with which they handle phone calls. Thousands of staff-years
have been invested in developing and evolving such systems. Product
lifetimes have spanned decades. Most of the cost of developing these
systems comes not in developing the initial release, but in changing
and adapting them over time. If ways could be found to make such
changes easier and less costly, it could be a big win for the company. 

Since Bell Labs was funding my doctoral studies, I wanted a research
area that was not only technically interesting but also related to a prac-
tical business need. In the late 1980s, object-oriented technology was
just beginning to emerge from the research labs. When Ralph Johnson
proposed a research topic that focused both on object-oriented tech-
nology and on supporting the process of change and software evolu-
tion, I grabbed it! 

I've been told that when people finish their PhDs, they are rarely neu-
tral about their thesis topic. Some are sick of the topic, and quickly
move on to something else. Others remain enthusiastic about their
topic. I was in the latter camp. 

When I returned to Bell Labs after finishing my degree, a strange thing
happened. The people around me were not nearly as excited about
refactoring as I was. 

I can vividly recall presenting a talk in early 1993 at a technology
exchange forum for staff at AT&T Bell Labs and NCR (we were all part
of the same company at the time). I was given 45 minutes to speak on
refactoring. At first, the talk seemed to go well. My enthusiasm for the
topic came across. But, at the end of the talk, there were very few ques-
tions. One of the attendees came up afterward to learn more - he was
beginning his graduate work and was fishing around for a research
topic. But, I had hoped to see some members of development projects
show eagerness in applying refactoring to their jobs. If they were
eager, they didn't express it at the time. 

People just didn't seem to “get it”. 

Ralph Johnson taught me an important lesson about doing research: if
someone (a reviewer of a paper, or attendee at a talk) comments “I
don't understand” or just doesn't “get it”, it's our fault not theirs. It is



310 REFACTORING, REUSE & REALITY

our responsibility to work hard to more clearly develop and communi-
cate our ideas. 

Over the next couple years, I had numerous opportunities to talk
about refactoring at AT&T/Bell Labs internal forums and at outside
conferences and workshops. As I talked more with developers “in the
trenches”, I started to understand why my earlier messages didn't
come across clearly. The disconnect was partly caused by the newness
of object-oriented technology; those who had worked with it had
rarely progressed beyond the initial release and hence had not yet
faced the tough evolution problems where refactoring can help. This
was the typical “researcher's dilemma” - the state of the art was
beyond the state of common practice. However, there was another,
troubling cause for the disconnect: there were several “common sense”
reasons why developers, even if they bought into the benefits of refac-
toring, were reluctant to refactor their programs. These concerns
needed to be addressed before refactoring could be embraced by the
development community. 

Why are Developers Reluctant to Refactor Their 
Programs?

Suppose you are a software developer. If your project is a “fresh start”
(with no backward compatibility concerns) AND if you understand
the problem your system is intended to solve AND if your funder is
willing to pay until you are satisfied with the results - consider yourself
very fortunate! While such a scenario may be ideal for applying object-
oriented techniques, for most of us such a scenario is only a dream. 

More often, you are asked to extend an existing piece of software. You
have a less-than-complete understanding of what you are doing. You
are under schedule pressure to produce. What can you do? 

• You could re-write the program. You could leverage your design
experience, and correct the ills of the past - and be creative and
have fun! However, who will foot the bill? How can you be sure
that the new system does everything the old system used to do? 

• You could copy and modify parts of the existing system to extend
its capabilities. This may seem expedient, and may even be viewed



311

as a way to demonstrate reuse - without understanding what you
are reusing! However, over time, errors propagate, programs get
bloated, program design gets corrupted, and the incremental cost
of change escalates. 

Refactoring is a middle ground between these two extremes. It is a
way to restructure software to make design insights more explicit, to
develop frameworks and extract reusable components, to clarify the
software architecture, and prepare to make additions easier. Refactor-
ing can help you leverage your past investment, reduce duplication
and streamline a program. 

Suppose you (as a developer) buy into these advantages. You agree
with Fred Brooks that dealing with change is one of the “essential
complexities” of developing software [10]. You agree that, in the
abstract, refactoring could provide the stated advantages. 

Why might you still not refactor your programs? Here are four possible
reasons: 

• You might not understand how to refactor. 
• If the benefits are long-term, why exert the effort now? In the long

term, you might not be with the project to reap the benefits! 
• Refactoring code is an overhead activity; you're paid to write new

features. 
• Refactoring might break the existing program. 

These are all valid concerns. I have heard them expressed by staff at
telecommunications and (more generally) at high technology compa-
nies. Some of these are technical concerns; others are management
concerns. All must be addressed before developers will consider refac-
toring their software. 

Let's deal with each of these issues in turn. 

Understanding How & Where to Refactor

How can you learn how to refactor? What are the tools and techniques,
how can they be combined to accomplish something useful, and when
should we apply them? 



312 REFACTORING, REUSE & REALITY

This book defines several dozen refactorings that Martin found useful
in his work, with examples of how they can be applied to support sig-
nificant changes to programs. 

In the Software Refactory project at the University of Illinois, we chose
a more minimalist approach. We defined a smaller set of refactorings
(in [1] and [5]), and showed how they could be applied. We based our
collection of refactorings on own programming experiences, by evalu-
ating the structural evolution of several object-oriented frameworks
(mostly in C++), and by talking with and reading the retrospectives of
several experienced Smalltalk developers. Most of our refactorings are
low-level, e.g., creating or deleting a class, variable or function; chang-
ing attributes of variables and functions such as their access permis-
sions (e.g. public or protected) and function arguments, or moving
variables and functions between classes. A smaller set of high-level
refactorings perform operations like creating an abstract superclass,
simplifying a class by subclassing and simplifying conditionals, or
splitting off part of an existing class to create a new, reusable compo-
nent class (often converting between inheritance and delegation/
aggregation). The more complex refactorings are defined in terms of
the low-level refactorings. Our approach was motivated by concern
for automated support and safely, which I will discuss later. 

Given an existing program, what refactorings should you apply? That
depends, of course, on your goals. One common reason, which is the
focus of this book, is to restructure a program to make it easier to add
(near-term) a new feature. We'll talk more about this in the next sec-
tion. There are, however, other reasons why you might apply refactor-
ings. 

Experienced object-oriented programmers, and those who have been
trained in design patterns and (more generally) in good design tech-
niques, have learned that there are several desirable structural quali-
ties and characteristics of programs that have been shown to support
extensibility and reuse. Foote and Johnson have written on this [8], as
have Rochat [11], Lieberherr and Holland [12] and others. Object-ori-
ented design techniques such as CRC [14] focus on defining classes
and their protocols; while their focus is upon up-front design, there are
ways to evaluate existing programs against such guidelines. 



313

An automated tool can identify structural weaknesses in a program,
such as functions that have an excessively large number of arguments
or are excessively long. These are candidates for refactoring. Similarly,
an automated tool can identify structural similarities that may indicate
redundancies. For example, if two functions are nearly identical (that
often happens when a copy-and-modify process was applied to the
first function to produce the second), such similarities can be detected
and refactorings suggested that can move common code to one place.
If two variables in different parts of a program have the same name,
they can sometimes be replaced by a single variable that is inherited in
both places. These a few very simple examples - there are many other,
more complex cases that can be detected (and corrected) by an auto-
mated tool. These structural abnormalities or structural similarities
don't always mean that you'd want to apply a refactoring, but often
they do. 

More recently, much of the work on design patterns has focused on
good programming style, and on useful patterns of interactions among
parts of a program that can mapped be into structural characteristics
and to refactoring. For example, the applicability section of the Tem-
plate Method pattern [13] makes reference to our abstract superclass
refactoring described in [3]. 

In [1] I list some of the heuristics that can identify candidates for refac-
toring in a C++ program. More recently, John Brant and Don Roberts
have created a tool that applies an extensive set of heuristics to auto-
matically analyze Smalltalk programs and suggest what refactorings
might improve the program design and where to apply them [9, 18]. 

Applying such a tool to analyze your program is somewhat analogous
to applying “lint” to a C or C++ program. The tool isn't smart enough
to understand the meaning of the program. Only some of the sugges-
tions it makes, based on structural program analysis, may be changes
you really want to make. As a programmer, you make the call. You
decide which recommendations to actually apply to your program.
Those changes should improve the structure of your program and, in
general, better support changes down the road. 

In summary, before programmers can convince themselves that they
ought to refactor their code, they need to understand how and where
to refactor. There is no substitute for experience. We leveraged the



314 REFACTORING, REUSE & REALITY

insights of experienced object-oriented developers in our research,
resulting in a set of useful refactorings and insights as to where they
ought to be applied. Automated tools can analyze the structure of a
program and suggest refactorings that might improve that structure.
As with most disciplines, tools and techniques can help, but only if you
use them. As programmers refactor their code, their understanding
grows. 

Refactoring to Achieve Near-Term Benefits

It is relatively easy to describe the mid-to-long range benefits of refac-
toring. However, many organizations are increasingly judged (by the
investment community and by others) on their near-term perfor-
mance. Can refactoring make a difference in the near term? 

Refactoring has been successfully applied for over ten years by experi-
enced object-oriented developers. Many of these programmers “cut
their teeth” in a Smalltalk culture that valued clarity and simplicity of
code, and embraced reuse. In such a culture, programmers would
invest time to refactor because it was “the right thing to do”. The
Smalltalk language and its implementations made refactoring possible
in ways that hadn't been true for most prior languages and software
development environments. Much of the early Smalltalk program-
ming was done in research groups such as Xerox PARC, or in small
programming teams at leading-edge companies and consulting firms.
The values of these groups were somewhat different from the values
of many industrial software groups. 

Martin Fowler and I are both aware that, for refactoring to be
embraced by the more mainstream software development community,
at least some of its benefits must be near-term. Martin, in the extended
examples provided in this book, describes how refactoring is applied
to support near-term extensions to a program. 

In [2, 3, 4, 5, 6, 7] our research team describes several examples of how
refactorings can be interleaved with extensions to a program, in a way
that achieves both near-term and longer-term benefits. Those exam-
ples are somewhat less powerful than Martin's, but for many readers
they may be easier to follow. 



315

One of our examples is the Choices file system framework. Initially,
the framework implemented the BSD UNIX file system format. Later,
it was extended to support System V UNIX, MS/DOS, persistent and
distributed file systems. System V file systems bear many similarities
to BSD UNIX file systems. The approach taken by the framework
developer was first to clone parts of BSD UNIX implementation, then
modify the clone to support System V. The resultant implementation
worked, but there was lots of duplicate code hanging around. After
adding the new code, the framework developer refactored the code,
creating abstract superclasses to contain the behavior common to the
two UNIX file system implementations. Common variables and func-
tions were moved to superclasses. In cases where corresponding func-
tions were nearly but not entirely identical for the two file system
implementations, new functions were defined in each subclass to con-
tain the differences, and in the original functions those code segments
were replaced with calls to the new functions. Code was incrementally
made more similar in the two subclasses. When the functions were
identical, they were moved to a common superclass. 

These refactorings provide several near-term and mid-term benefits.
Near-term, during testing, errors found in the common code base
needed to only be modified in one place. The overall code size was
smaller. The behavior specific to a particular file system format was
cleanly separated from the code common to the two file system for-
mats, making it easier to track down and fix behaviors specific to that
file system format. Mid-term, the abstractions that resulted from refac-
toring were often useful in defining subsequent file systems. Granted,
the behavior common to the two existing file system formats might not
be entirely common for a third format, but the existing base of com-
mon code was a valuable starting point, and subsequent refactorings
could be applied to clarify what was really common. The framework
development team found that over time, it took less effort to incremen-
tally add support for a new file system format, even though the newer
formats were more complex developments was done by less experi-
enced staff. 

I could site other examples where near-term and longer-term benefits
are realized using refactoring, but Martin has already done this. Rather
than add to his list, let me draw an analogy to something that is near
and dear to many of us: our physical health. 



316 REFACTORING, REUSE & REALITY

In many ways, refactoring is like exercise and eating a proper diet.
Many of us know that we ought to exercise more and eat a more bal-
anced diet. Some of us live in cultures that highly encourage this.
Some of us can get by, for a while, without doing this, perhaps even
without visible effects. We can always make excuses for not doing this.
But, we are only fooling ourselves if we continue to ignore it. 

Some of us are motivated by near term benefits of exercise and eating a
proper diet, such as high(er) energy levels, greater flexibility, higher
self-esteem and other benefits. Nearly all of us know that these near
term benefits are very real. Many - but not all - of us make at least spo-
radic efforts in these areas. Others, however, aren't sufficiently moti-
vated to “do something” until they reach a crisis point. 

Yes, there are cautions that need to be applied - people should consult
with an expert before embarking on a program. In the case of exercise
and dieting, they should consult with their physician. In the case of
refactoring, they should seek out resources such as this book and the
papers cited above; staff experienced in refactoring should be able to
provide more focused assistance. 

Several people I've met are role models with respect to fitness and/or
refactoring. I admire their energy and their productivity. Other, nega-
tive “role models” show the visible signs of neglect. Their future - and
the future of the software systems they produce - may not be nearly so
rosy. 

In summary, refactoring can achieve near term benefits, as well as
making the software easier to modify and maintain down the road.
Refactoring is a means rather than an end. It is part of a broader con-
text of how programmers or programming teams develop and main-
tain their software [5]. 

Reducing the Overhead of Refactoring

“Refactoring is an overhead activity - I'm paid to write new, revenue
generating features.” 

My response, in summary is this: 

• Tools/technologies are now available to allow refactoring to be
done quickly and relatively painlessly. 



317

• Experiences reported by some object-oriented programmers sug-
gest that the overhead of refactoring is more than compensated by
reduced efforts and intervals in other phases of program develop-
ment. 

• While refactoring may seem a bit awkward and an overhead at
first, as it becomes part of a software development regimen, it
stops feeling like overhead and starts feeling like an essential. 

As noted above, perhaps the most mature tool for doing automated
refactoring has been developed (for Smalltalk) by the Software Refac-
tory team at the University of Illinois, and is freely available at their
web site. While refactoring tools for other languages are not so readily
available, many of the techniques described in our papers and in this
book can be applied in relatively straightforward manner using a text
editor (and, better yet, a browser). Software development environ-
ments and browsers have progressed substantially in recent years. We
hope to see a growing set of refactoring tools available in the future. 

Kent Beck and Ward Cunningham, both experienced Smalltalk pro-
grammers, have reported at OOPSLA conferences and other forums
that refactoring has enabled them to develop software rapidly in
domains such as bond trading. I have also heard similar testimonials
from C++ and CLOS developers. In this book, Martin describes the
benefits of refactoring with respect to Java programs. We expect to
hear more testimonials from those who read this book and apply these
principles. 

Our experience suggests that, as refactoring becomes part of your rou-
tine, it stops feeling like overhead. Admittedly, that is easy to state but
hard to substantiate. To the skeptics among you, my advice is: just do
it, then decide for yourself. Give it time, though. 

Refactoring Safely

Safety is a concern - especially for organizations developing and
evolving large systems. In many applications, there are compelling
financial, legal and ethical considerations for providing continuous,
reliable and error-free service. Many organizations provide extensive



318 REFACTORING, REUSE & REALITY

training and attempt to apply disciplined development processes in
order to help ensure the safety of their products. 

For many programmers, though, safety often seems to be less of a con-
cern. It's more than a little ironic that many of us preach “safety first”
to our children, nieces and nephews, while in our roles as program-
mers we scream for freedom - a hybrid of the wild west gunslinger
and teenage driver. Give us freedom, give us the resources, and watch
us fly. After all, do we really want our organization to miss out on the
fruits of our creativity, merely for the sake of repeatability and confor-
mity? 

In this section, we discuss approaches for refactoring safely. I'll focus
on an approach that, compared with what Martin Fowler has
described earlier in this book, is somewhat more structured/ rigorous
but which can eliminate many of errors that might be introduced in
refactoring. 

Safety is a difficult concept to pin down. Intuitively, a safe refactoring
is one that doesn't break a program. Since a refactoring is intended to
restructure a program without changing its behavior, a program
should perform the same after a refactoring as before. 

How does one safely refactor? There are several options: 

• Trust your coding abilities. 
• Trust that your compiler will catch errors that you miss. 
• Trust that your test suite will catch errors that you and your com-

piler missed. 
• Trust that code review(s) will catch errors that you, your compiler

and your test suite missed.

Martin focuses on the first three options in his refactoring. Mid-to-
large-size organizations often supplement these with code reviews. 

While compilers, test suites, code reviews and disciplined coding
styles are all valuable, there are limits to all of these approaches: 

• Programmers are fallible - even you. (I know I am!) 
• There are subtle (and some not-so-subtle) errors that compilers

can't catch - especially scoping errors related to inheritance [1]. 



319

• Perry and Kaiser [16] and others have shown that, while it is (or at
least, used to be) common wisdom that the testing task is made
simpler when inheritance is used as an implementation technique,
in reality an extensive set of tests is often needed to cover all the
cases where operations that used to be requested on an instance of
class are now requested on instances of its subclass(es). Unless
your test designer is omniscient (or pays great attention to detail)
there are likely to be cases your test suite won't cover. Testing all
possible execution paths in a program is in general a computation-
ally undecidable problem. In other words, in general you can't be
guaranteed to have caught all of the cases with your test suite! 

• Code reviewers, like programmers, are fallible. Furthermore,
reviewers may be too busy with their main job to thoroughly
review someone else's code.

Another approach, which I took in my research, was to define and pro-
totype a refactoring tool to check if a refactoring can be safely applied
to a program and, if it is, refactor the program. This avoids many of the
bugs that may be introduced by “human error”. 

Part of my refactoring tool was a “program analyzer” which is a pro-
gram that analyzes the structure of a another program (in this case, a
C++ program to which a refactoring might be applied). That tool could
“answer” a series of questions regarding scoping, typing and program
semantics (i.e. the “meaning”/ intended operations of a program).
Scoping issues related to inheritance make this analysis more complex
than with many non-OO programs, but for C++, language features
such as static typing makes the analysis easier than for, say, Smalltalk. 

Consider, for example, the refactoring to delete a variable from a pro-
gram. A tool can determine what other parts of a program (if any) ref-
erence the variable. If there are any references, then removing the
variable would leave dangling references - thus this refactoring would
not generally be safe. When a user asks the tool to refactor their pro-
gram, it would flag this as an error. The user might then decide that
the refactoring was a bad idea after all, or the user may decide to
change the parts of the program that refer to that variable, then apply
the refactoring to remove the variable. There are many other checks,
most as simple as this, some more complex. 



320 REFACTORING, REUSE & REALITY

In my research, I defined safety in terms of program properties
(related to scoping, typing, etc.) that need to continue to hold after
applying a refactoring. Many of these program properties are similar
to integrity constraints that must be maintained when database sche-
mas change [17]. Each refactoring has associated with it a set of neces-
sary preconditions which (if true) would ensure that the program
properties are preserved. Only if the tool could determine that every-
thing is “safe” would the tool perform the refactoring. 

Fortunately, determining whether a refactoring is safe is often trivial,
especially for the low-level refactorings which comprise most of our
refactorings. To ensure that the higher-level, more complicated were
safe, we defined them in terms of the low-level refactorings. For exam-
ple, the refactoring to create an abstract superclass is defined in terms
of “steps” which are simpler refactorings such as creating and moving
variables and methods. By showing that each step of a more compli-
cated refactoring is safe, we can know that (by construction) that that
refactoring is safe. 

There are some (relatively rare) cases where a refactoring that might
actually be safe to apply to a program, but where a tool can't be sure -
in which case the tool takes the safe route and disallows the refactor-
ing. 

For instance, consider again the case where you want to remove a vari-
able from a program, but there is a reference to it from somewhere else
in the program. Perhaps that reference is contained in a code segment
that will never actually be executed - ever. For example, the reference
many appear inside a conditional (e.g. if/then loop) which will never
test true. If you could be sure that the conditional would never test
true - ever - the you could remove the conditional test, including the
code referring to the variable/ function that you want to delete, and
then you could safely remove the variable/ function. In general it isn't
possible to know for certain whether that condition will always be
false. (Suppose you inherited code that was developed by someone
else - how confident would you be in deleting this code?) 

In this case, a refactoring tool could flag the reference and alert the
user. The user might decide to leave the code alone. Or, if/ when they
were sure that the referencing code would never be executed, they
could remove that code and then apply the refactoring. The tool makes



321

the user aware of the implications of what of the reference, rather than
blindly applying the change. 

Wheh! This may sound like complicated stuff - OK for a doctoral thesis
(whose primary audience, the thesis committee, want to see some
attention to theoretical issues) but is it practical for “real” refactoring? 

All of this safety checking can be implemented “under the hood” of a
refactoring tool. The programmer who wants to refactor their program
merely needs to ask the tool to check the code and, if safe, perform the
refactoring. While my tool was a research prototype, John Brant and
Don Roberts have implemented a far more robust and featured tool as
part of their (follow on) research into refactoring Smalltalk programs
[9]. 

In summary, there are many levels of safety that can be applied to
refactoring. Some are easy to apply but don't guarantee a high level of
safety. Using a refactoring tool can provide many benefits - there are
many simple but tedious checks that it can make, flagging in advance
problems that if left unchecked would cause the program to break as a
result of refactoring. 

While applying a tool such as this avoids introducing many of the
errors that you otherwise hope will be flagged during compilation,
testing and code review, these other techniques are still of value, par-
ticularly when developing or evolving real-time systems. Often, pro-
grams don't execute in isolation - they are parts of a larger system.
Some refactorings not only clean up the code but can make a program
run more quickly. Speeding up one program might result in perfor-
mance bottlenecks elsewhere. This is similar to the effects of upgrad-
ing microprocessors that speed up parts of a system, and require
similar approaches to tune and test overall system performance. Con-
versely, some refactorings may slow down the overall performance a
bit, but in general such performance impacts are minimal. 

These approaches are intended to guarantee that refactoring does not
introduce new errors into a program. These approaches don't detect
and fix bugs that were in the program before it was refactored. How-
ever, refactoring may make it easier to spot such bugs and subse-
quently correct them. 



322 REFACTORING, REUSE & REALITY

A Reality Check (Revisited)

• Making refactoring real requires addressing the “real world” con-
cerns of software professionals. Four commonly expressed con-
cerns are: 

• They might not understand how to refactor. 
• If the benefits are long-term, why exert the effort now? In the long

term, you might not be with the project to reap the benefits! 
• Refactoring code is an overhead activity; they are paid to write new

features. 
• Refactoring might break the existing program. 

In this chapter, I have briefly addressed each of these concerns, pro-
viding pointers for those who want to delve further into these topics. 

There are other issues that are of concern to some projects: 

• What if the code to be refactored is collectively “owned” by several
people? In some cases, many of the traditional change manage-
ment mechanisms are relevant. In other cases, if the software has
been well designed and refactored, sub-systems will be sufficiently
de-coupled that many refactorings will only affect a small subset of
the code base. 

• What if there are multiple versions/ code lines from a code base?
In some cases, refactorings may be relevant for all of the versions,
in which case all need to be checked for safety before applying the
refactoring. In other cases, the refactorings may only be relevant
for some versions, which simplifies the process of checking and
refactoring the code. Managing changes to multiple versions often
requires applying many of the traditional version management
techniques. Refactoring can be useful in merging variants/ ver-
sions into an updated code base, which may simplify version man-
agement downstream. 

For other discussions regarding the value and practical utility of refac-
toring, please see [6, 7]. 

In summary, convincing software professionals of the practical value
of refactoring is quite different from convincing a doctoral committee
that refactoring research is worthy of a Ph.D. It took me some time,



323

after completing my graduate studies, to fully appreciate these differ-
ences. 

Hopefully, by this point in the book, you are planning to apply refac-
toring techniques in you work and/or will be encouraging others in
your organization to do so. If you are still undecided, you may want to
refer to the references I have provided or possibly contact Martin,
myself or others who are experienced in refactoring. 

Implications Regarding Software Reuse

The “real world” concerns addressed above don't only apply to refac-
toring - they apply more broadly to software evolution and reuse. 

For much of the past several years, I have focused on issues related to
software reuse, platforms, frameworks, patterns and the evolution of
legacy systems - often involving software that was not “object ori-
ented”. In addition to working with projects within Lucent/ Bell Labs,
I have also participated in forums with staff at other organizations
who have been grappling with similar issues [19, 20, 21, 22]. 

The “real world” concerns regarding a reuse program are very similar
to those related to refactoring: 

• Technical staff may not understand what to reuse and how to
reuse it. 

• Technical staff may not be motivated to apply a reuse approach
unless short term benefits can be achieved. 

• Overhead, learning curve and discovery cost issues must be
addressed for a reuse approach to be successfully adopted. 

• Adopting a reuse approach should not be disruptive to a project;
there may be strong pressures to leverage existing “assets”/ imple-
mentation albeit with legacy constraints. New implementations
should interwork/ be backward compatible with existing systems. 

In [23] Geoffrey Moore describes the technology adoption process in
terms of a bell-shaped curve where the front tail includes “innovators”
and “early adopters”, the large middle hump includes “early major-
ity” and “late majority”, and the trailing tail including “laggards”. For



324 REFACTORING, REUSE & REALITY

an idea and product to succeed, it must ultimately be adopted by the
early and late majorities. Put another way, many ideas that appeal to
the innovators and early adopters ultimately fail because they never
make it across the chasm to the early and late majorities. The discon-
nect mainly lies in the differing motivators of these customer groups.
Innovators and early adopters are attracted by new technologies,
visions of paradigms shifts and breakthroughs, whereas the early and
late majorities are primarily concerned with maturity, cost, support,
and in seeing if the new idea or product has already been successfully
applied by others with needs similar to theirs. 

As I noted earlier, software development professionals are impressed/
convinced in very different ways than software researchers. Software
researchers are most often what Moore refers to as innovators, while
software developers and especially software managers are often part
of the early and late majorities. Recognizing these differences is impor-
tant in reaching each of these groups. With software reuse, as with
refactoring, it is important to reach software development profession-
als on their terms. 

Within Bell Labs/ Lucent I found that encouraging the application of
reuse and platforms required reaching a variety of stake holders: for-
mulating strategy with executives, organizing leadership team meet-
ings among middle managers, consulting with development projects,
and publicizing the benefits of these technologies to broad R&D audi-
ences through seminars and publications. Throughout, it was impor-
tant to train staff in the principles, address near term benefits, provide
ways to reduce the overhead and address how these techniques could
be introduced safely - insights that I had gained from my refactoring
research. 

A Final Note

Thanks for taking the time to read this chapter. I've tried to address
many of the concerns that you might have about refactoring, and tried
to show many of the “real world” concerns regarding refactoring
apply more broadly to software evolution and reuse. I hope that you
came away enthusiastic about applying these ideas in your work. 



325

At first glance, it might appear that refactoring began in academic
research labs. In reality, it began in the software development
trenches, where object-oriented programmers (then using Smalltalk)
encountered situations where techniques were needed to better sup-
port the process of framework development - or, more generally, to
support the process of change. This spawned research which has
matured to the point where we feel that it is “ready for prime time” -
where a broader set of software professionals will experience the bene-
fits of refactoring. 

Best wishes as you move forward in your software development tasks! 

References:

[1] William F. Opdyke, "Refactoring Object-Oriented Frameworks".
PhD Thesis, University of Illinois at Urbana-Champaign. Also avail-
able as Technical Report UIUCDCS-R-92-1759, Department of Com-
puter Science, University of Illinois at Urbana-Champaign. 

[2] William F. Opdyke and Ralph E. Johnson, "Refactoring: An Aid in
Designing Application Frameworks and Evolving Object-Oriented
Systems". In "Proceedings of SOOPPA '90: Symposium on Object-Ori-
ented Programming Emphasizing Practical Applications". September
1990. 

[3] William F. Opdyke and Ralph E. Johnson, "Creating Abstract
Superclasses by Refactoring". In "Proceedings of CSC '93: The ACM
1993 Computer Science Conference". February 1993. 

[4] Ralph E. Johnson and William F. Opdyke, "Refactoring and Aggre-
gation". In "Proceedings of ISOTAS '93: International Symposium on
Object Technologies for Advanced Software". November 1993. 

[5] Brian Foote and William F. Opdyke, "Lifecycle and Refactoring Pat-
terns That Support Evolution and Reuse". Presented at PLoP 94;
included in "Pattern Languages of Program Design" (J. Coplien and D.
Schmidt, eds.), Addison-Wesley, 1995, pp 239-257.

[6] William Opdyke and Don Roberts, "Refactoring". Tutorial pre-
sented at OOPSLA '95: 10th Annual Conference on Object Oriented



326 REFACTORING, REUSE & REALITY

Program Systems, Languages and Applications, Austin, Texas, Octo-
ber, 1995.

[7] William Opdyke and Don Roberts, "Refactoring Object-Oriented
Software to Support Evolution and Reuse". Tutorial presented at OOP-
SLA '96: 11th Annual Conference on Object Oriented Program Sys-
tems, Languages and Applications, San Jose, California, October, 1996.

[8] Ralph E. Johnson and Brian Foote, "Designing Reusable Classes". In
"Journal of Object-Oriented Programming 1:2", 1988, pp 22-35. 

[9] Don Roberts, John Brant, Ralph Johnson and William Opdyke, "An
Automated Refactoring Tool." In Proceedings of ICAST '96: 12th Inter-
national Conference on Advanced Science and Technology". Chicago,
Illinois. April, 1996. 

[10] Fred Brooks, "No Silver Bullet: Essence and Accidents of Software
Engineering". Information Processing 1986 - Proceedings of the IFIP
Tenth World Computing Conference (H.-L. Kugler, ed.), Elsevier.

[11] Roxanna Rochat, "In Search of Good Smalltalk Programming
Style". Technical report CR-86-19, Tektronix, 1986.

[12] Karl J. Lieberherr and Ian M. Holland, "Assuring Good Style For
Object-Oriented Programs". In IEEE Software, pp 38-48, September,
1989.

[13] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,
"Design Patterns: Elements of Reusable Object-Oriented Software".
Addison-Wesley, 1985. 

[14] Rebecca Wirfs-Brock, Brian Wilkerson and Luaren Wiener,
"Design Object-Oriented Software". Prentice-Hall. 1990. 

[15] Proceedings of OOPSLA '96: Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications, San Jose, California.
October, 1996. 

[16] Dewayne E. Perry and Gail E. Kaiser, "Adequate Testing and
Object-Oriented Programming". In "Journal of Object-Oriented Pro-
gramming", January-February, 1990. 

[17] Jay Banerjee and Won Kim, "Semantics and Implementation of
Schema Evolution in Object-Oriented Databases". In "Proceedings of
the ACM SIGMOD Conference", 1987. 



327

[18] Don Roberts, John Brant and Ralph E. Johnson, "A Refactoring
Tool For Smalltalk". TAPOS 3(4); pp. 39-42. 1997. 

[19] Report on WISR '97: Eighth Annual Workshop on Software Reuse,
Columbus, Ohio, March 1997. In the September, 1997 issue of ACM
Software Engineering Notes.

[20] Kent Beck, Grady Booch, Jim Coplien, Ralph Johnson and Bill
Opdyke, "Beyond the Hype: Do Patterns and Frameworks Reduce Dis-
covery Costs?". Panel session at OOPSLA '97: 12th Annual Conference
on Object Oriented Program Systems, Languages and Applications,
Atlanta, Georgia, October, 1997. Position statements appear in the
OOPSLA '97 proceedings.

[21] David Kane, William Opdyke and David Dikel, "Managing
Change to Reusable Software". Presented at PLoP 97: 4th Annual Con-
ference on the Pattern Languages of Programs, Monticello, Illinois,
September, 1997. 

[22] Maggie Davis, Martin L. Griss, Luke Hohmann, Ian Hopper,
Rebecca Joos and William F. Opdyke, "Software Reuse: Nemesis or
Nirvana?". Panel session at OOPSLA '98: 13th Annual Conference on
Object Oriented Program Systems, Languages and Applications, Van-
couver, BC, Canada, October, 1998. Position statements to appear in
the OOPSLA '98 proceedings.

[23] Geoffrey A. Moore, "Cross the Chasm: Marketing and Selling
Technology Products to Mainstream Customers". HaperBusiness,
1991.



328 REFACTORING, REUSE & REALITY


