Catalog of Refactorings

This catalog contains all the refactorings that I have collected and written down so far. It is not, by any means, a comprehensive catalog of possible refactorings. My hope is that over time other people will contribute to this knowledge with other books and documents. This catalog is thus a starting point. It contains many refactorings that I hope you will find useful, and sets out a first version of a standard template for describing refactorings.

Each refactoring has the following parts

· I begin with a name. A name is important so that we can build a vocabulary of refactorings. This is the name I use elsewhere within this book.

· I follow the name with a short summary of the situation where you need the refactoring and a summary of what the refactoring does. This is there to help you find a refactoring more quickly.

· The motivation describes why the refactoring should be done, and also describes circumstances when it shouldn’t be done.

· The mechanics are a step by step description of how to carry out the refactoring. I have determined the mechanics so I can carry out the refactoring with each step being as small as possible. In this I’ve stressed the safe way of doing the refactoring, which is to take very small steps, testing after every one. If you are feeling confident you can take a slightly larger step, but if you run into a bug you should back that step out and take the smaller steps. These mechanics come from my own notes to remember how to do the refactoring when I haven’t done it for a while.

· The examples are of the laughably simple textbook kind. My aim with the example is to help explain the basic refactoring with minimal distractions, so I hope you’ll forgive the simplicity. I’m sure you’ll be able to apply them to your rather more complex situations. Some refactorings don’t lend themselves to examples, so I haven’t provided an example in every case.

I have listed the refactorings in alphabetical order, so at least if you know the name you can find them.

Finding References

Many of the refactoring steps below call for you to find all references to a method, or a field, or a class. When you do this, enlist the computer to help you. By using the computer you reduce your chances of missing a reference, and can usually do it much more quickly than you would if you just eyeball the code.

Most languages treat computer programs as text files. Your best help here is a suitable text search. Many programming environments allow you to text search a single file or a group of files. The access control of the feature you are looking for will tell you what range of files you need to look for, (in an untyped language err on the cautious side).

Don’t just search and replace blindly, inspect each reference to ensure it really refers to the thing you are replacing. You can get clever with your search pattern, but I always check mentally to ensure I am making the right replacement. When you can use the same method name on different classes, or on methods of a different signature on the same class there are too many chances you will get it wrong.

In a strongly typed language you can let the compiler help you do the hunting. You can often remove the old feature and let the compiler find the dangling references. The good thing about this is that the compiler will catch every dangling reference. However there are problems with this technique. Firstly the compiler will get confused when a feature is declared more than once in an inheritance hierarchy. This is particularly true when you are looking at a method that is overrridden several times. If you are working in a hierarchy use the text search to see if any other class declares the method you are manipulating. The second problem is that the compiler may well be too slow to make this effective. If so use a text search first, at least the compiler double-checks your work. This only works when you intend to remove the feature. Often you want to look at all the uses to decide what to do next. In these cases you have to use the text search alternative.

Smalltalk does not use text files to hold its code, instead it uses an in-memory database. You can take any method and ask for a list of its senders (which methods invoke the method) and implementers (which classes declare and implement the method). Get used to using those and you will find them often superior to the unavailable text search. You do have to be careful about methods declared on more than one class. A similar item will get you all references to an instance variable.

Add Invariant

The class has an unstated assumption of an invariant

Create a method that checks the invariant. Call it as an assertion after any modifier

Motivation

Invariants (or constraint rules) are conditions about an object that should always be true. An order processing system might have a rule that says that priority orders can only be made by important customers in good credit standing. Such a rule, often referred to as a Business Rule, captures some important knowledge about the domain, and should be represented clearly in the appropriate classes. Often such rules are scattered about the system, typically on various modification actions. You might find some checks present during construction of an order, some during marking the order as priority, some on reassignment of an order between customers.

You can make things more explicit by writing a method that specifically checks for the invariant. A boolean method isValid() can contain the code to make the checks and be called from every point that does some checking. In particular you want to move rule checking code away from interface classes into domain classes in these sorts of cases, in order to remove duplication of checks.

You may well need more than one kind of validity check, and you may find things are better if you allow a certain degree of invalidity in your objects. You may have a series of rules about taking orders, but an order entry person may wish to put some information into the system at one time with the intention of doing more work later. In this case you may want more than two levels of validity, with some operations requiring the stronger level.

Mechanics

· Create an isValid() method that does all the constraint checks on the class

· Find all situations where a modifier checks some part of the constraint rule. Replace this check with a call to isValid().

· Find all situations where an interface class checks some part of a domain class’s constraint rules, and replace by calls to isValid().

· In any situtation where isValid() fails, the class should not be left in an invalid state. The calling method that makes the modification to the class should be responsible for cleaning up the domain class to return it to a legal state, or throw an appropriate checked exception.

· Compile and test after each move of checking code. Make sure the tests probe for a failure at each use of the constraint checks.

· Examine other modifiers and ensure they also check the invariant.

Example

Here is some code that makes creates a transfer object to transfer between accounts

int transferAmount = 450;

if ((cust1.getBalance() > transferAmount) &&

!cust1.isStopped() && !cust2.isStopped())

transfer = new Transfer(cust1, cust2, transferAmount);

The client code is checking that the conditions on the transfer are legal before doing the transfer. The transfer should be responsible for this kind of check

class transfer…

public Transfer (CustomerAccount from, CustomerAccount to, int amount)

throws InvalidTransferException {

_from = from;

_to = to;

_amount = amount;

throw new InvalidTransferException();

}

public boolean isValid() {

return ((_from.getBalance() > _amount) &&

!_from.isStopped() &&

!_to.isStopped());

}

private CustomerAccount _from;

private CustomerAccount _to;

private int _amount;

The client now creates transfers and checks for a problem

try {

transferAmount = 450;

transfer = new Transfer(cust1, cust2, transferAmount);

} catch (InvalidTransferException e) {

//handle error

}

This style of checking is the a postieri (after the fact) style. Do the work, then see if it worked. The other way is a priori check, look to see if things will be valid and if so go ahead. Here the caller is expected to do something like

int transferAmount = 450;

if (Transfer.wouldBeValid(cust1, cust2, transferAmount))

transfer = new Transfer (cust1, cust2, transferAmount);

To do this the transfer class needs to provide a helper routine, to test for validity.

public static boolean wouldBeValid

(CustomerAccount from, CustomerAccount to, int amount) {

return (new Transfer(from, to, amount, true).isValid());

}

private Transfer
(CustomerAccount from, CustomerAccount to,

int amount, boolean specialAccess) {

_from = from;

_to = to;

_amount = amount;

}

The transfer class must provide a helper routine so the caller can do an a priori check.

public static boolean wouldBeValid (CustomerAccount from, CustomerAccount to,

int amount) {

return (new Transfer(from, to, amount, true).isValid());

}

private Transfer (CustomerAccount from, CustomerAccount to,

int amount, boolean specialAccess) {

_from = from;

_to = to;

_amount = amount;

}

The implementation here is a little curious. The best way to do the check with minimum redundancy is to create the transfer and ask it if it is valid. But you shouldn’t allow clients to create invalid transfers. One way around this is to set up a basic private constructor with a dummy argument that is there only for the method dispatching. This dummy argument isn’t ever referenced by the constructor’s body, so it can take any value,; but it’s presence forces the private constructor to be called rather than the public one. The validity checker can use this method, as can the public constructor.

public Transfer (CustomerAccount from, CustomerAccount to, int amount) {

this (from, to, amount, true);

new Assertion (isValid());

}

The check in the public constructor is now an assertion rather than a checked exception. This reflects that calling for check is the now the client’s job.

The wouldBeValid function could not call the public constructor and catch the exception. This is because assertions would be removed in production code and thus should not be used for condition checking.

I prefer the a priori style if it is at all possible. It makes for a cleaner interface and less reliance on exceptions. I like exceptions to signal something has gone wrong which could not have been predicted in advance.

Change Method Signature

A method could be renamed to make its intention clearer

Change the signature of the method

Motivation

An important part of the code style I am advocating here is small methods to factor complex processes. This can lead you on a merry dance to find out what all the little methods do. The key to avoiding this merry dance is the naming of the methods. Methods should be named in a way that communicates their intention. A good way to do this is to think what the comment for the method would be, and to turn that comment into the method’s name.

Life being what it is, you won’t get your names right first time. In this situation you may well be tempted to leave it – after all its only a name. That is the work of the evil demon “Obfusticatis”, don’t listen to him. If you see a badly named method it is imperative that you change it. Remember your code is for a human first, and a computer second. Humans need good names. Take note when you spend ages trying to do something that would have been easier if a couple of methods were better named. Good naming is a skill that requires practice, improving this skill is the key to being a truly skillful programmer.

The same applies to other aspects of the signature. If reordering the parameters makes matters clearer, then do it.

Mechanics

· Check to see if this method signature is implemented by a superclass or subclass. If so carry out these steps for each implementation.

· Declare a new method with the new signature. Copy the old body of code over the new signature and make any alterations to fit.

· Compile

· Change the body of the old signature method so that it calls the new one.

· If you only have a few references you can reasonably skip this step.

· Compile and test.

· Find all references to the old method signature and change them to refer to the new one. Compile and test after each change

· In a strongly typed language you can do this by compiling. Otherwise use a text search to the old references

· Remove the old method

· If the old method is part of the interface and you cannot remove it, you may leave it in place and mark it as deprecated.

· Compile and test.

Refactory has this refactoring available as an option. Since Smalltalk is untyped, it change that signature for every class that implements it.

Consolidate Conditional Expression

You have a sequence of conditional tests looking with the same outcome

Combine them into a single conditional epression, and extract it

Motivation

The state of the code for this is along the lines of the following.

Money pay {

If (dead()) return Money.dollars(0);

If (sick()) return Money.dollars(0);

If (retired()) return Money.dollars(0);

Return doPay();

}

Here we see a sequence of conditional checks that all result in the same thing. With sequential code like this they are the equivalent of an or statement.

If (dead() || sick() || retired()) return Money.dollars(0)

return normalPayAmount()

When I do this I nearly always then take the conditions and extract them into a new method.

Money pay() {

If (payable()) return normalPayAmount()

else return Money.dollars(0)

}

private boolean payable() {

return (dead() || sick() || retired());

}

Consolidating the conditional code is important for two reasons. Firstly it makes the check clearer by showing that you are really making a single check that or’ing the other checks together. The sequence has the same effect but it communicates carrying out a sequence of separate checks that just happen to be done together. The second reason for this refactoring is the most compelling: it sets you up to do the extraction. Extracting a condition is one of the most useful things you can do to clarify your code, for it replaces the a statement of what you are doing with why you are doing it.

Those reasons in favour of consolidating conditionals also point to when you shouldn’t do it. If you think the checks are really independent, and shouldn’t be thought of as a single check; then don’t do the refactoring. Your code already communicates your intention.

Mechanics

· Replace the string of conditionals with a single conditional statement using logical operators

· Compile and test

· Extract the condition into its own method

Example

The illustration in the motivation showed ors, but you can do the same with ands. Here the set up is something like

if (onVacation())

if (lengthOfService() > 10)

return 1;

return 0.5;

This would be changed to

if (onVacation() && lengthOfService() > 10) return 1;

else return 0.5;

You may well find you get a combination of these that yield an expression with ands ors and nots.

If the routine you are looking at only tests the condition and returns a value; then you can turn the routine into a single return statement using the tertiary operator. So

if (onVacation() && lengthOfService() > 10) return 1;

else return 0.5;

becomes

return (onVacation() && lengthOfService() > 10) ? 1 : 0.5;

As before once the the condition gets at all complicated, you should extract it.

Consolidate duplicate conditional fragments

The same fragment of code is in all branches of a conditional expression

Move it outside of the expression

Motivation

This is a very simple refactoring. You have code of the form

If (condition) {

doSomething();

Statement1();

}

else {

doSomethingElse();

Statement1();

}

This can be refactored to put the bit that does not vary outside the conditional

If (condition) {

doSomething();

}

else {

doSomethingElse();

}

statement1();

You should do this because otherwise a reader gets confused as to what varies within the condition, and what is actually the same.

Mechanics

· Identify code that gets executed the same regardless of the condition

· If the common code is at the beginning, then move it to before the conditional

· If it is at the end, move it to after

· If it is in the middle look to see if the code before or after it changes anything. If so you can move the common code forwards or backwards to the ends you can then move it as above

· If there is more than a single statement then you should extract that code into a method.

Create Extension

A server class you are using needs several additional methods, but you can’t modify the class.

Create a new class which contains these extra methods. Make this extension class a subclass or a wrapper of the original

Motivation

Sadly authors of classes are not omniscient, and they fail to provide useful methods for you. If you can modify the source, often the best thing is to add that method. However you often cannot modify the source. If there are one or two methods you need, then you can create a foreign method. Once you get beyond a couple of these, however, they get out of hand. So you need to group the methods together in a sensible place for them. An extension is a good way to do this.

An extension is a separate class, but is a subtype of the class that it is extending. That means it supports all the things the original can do, but also adds the extra features. Instead of using the original class, you create an extension instead and use it.

By doing this you keep to the principle that methods and data should be packaged into well formed units. If you keep putting code in other classes that should lie in the extension, you end up complicating the other classes, and making it harder to reuse these methods.

Mechanics

The most obvious way to do this is to make the extension a subclass of the original.

Class mfDate extends Date {

public nextDay() …

public dayOfYear()…

You can also do this by making the extension a wrapper of the original.

class mfDate {

private Date _original;

With the wrapper approach you need to write simple delegating methods for all the methods on the original. These are easy to do, but tedious. The subclass doesn’t need these. However if you already have the object created, the subclass forces you to create a separate object, while the wrapper just uses the existing object.

In either case you need methods to convert between the original and the extension, so that clients can easily use one or the other. With subclassing you need to provide a constructor for each of the original’s constructors. You can usually just delegate to the superclass. With the wrapper you need to create the original and place it in an instance variable.

· Create an extension class either as a subclass or wrapper of the original

· Add converting constructors tk pattern name to the extension

· Add new features to the extension

· Replace the original with the extension where needed

· Move any foreign methods defined for this class onto the extension.

A particular problem with using wrappers is how to deal with methods that take an original as an argument: such as

public boolean equals (Date arg)

Since you can’t alter the original you will only be able to do equals in one direction.

aWrapper.equals(aDate)

// can be made to work

aWrapper.equals(anotherWrapper)
// can be made to work

aDate.equals(aWrapper)

// will not work

The same problem is not an issue with subclassing, providing you don’t override the operation. If you do override you’ll get yourself completely confused with the method lookup. I don’t find I do override methods with extensions, however, I usually just add methods.

Example

I had to do this kind of thing quite a bit with Java 1.0.1 and the Date class. The Calendar class in 1.1 gave me a lot of the behavior I wanted, but before it arrived it gave me quite a few opportunities to use extension. So I’ll use it as an example here.

The first case to show is using subclassing. The first step is to create the new date as a subclass of the original.

class MfDateSub extends Date

Next is dealing with changing between dates and the extension. The original constructors of the original need to be repeated with simple delegation.

 public MfDateSub (String dateString) {

super (dateString);

 };

You should provide a constructor that takes an original as an argument.

public MfDateSub (Date arg) {

super (arg.getTime());

 }

You can now add new features to the extension and move any foreign methods over to the extension.

With the wrapping approach, you need to set up these conversion methods differently. The original constructors are implemented with simple delegation

 public MfDateWrap (String dateString) {

_original = new Date(dateString);

 };

The constructor with the original as argument now just sets the instance variable

public MfDateWrap (Date arg) {

_original = arg;

 }

And then there’s the tedious task of delegating all the methods of the original class: I’ll only show a couple.

public int getYear() {

return _original.getYear();

}

public boolean equals (MfDateWrap arg) {

return (toDate().equals(arg.toDate()));

}

Create Foreign Method

A server class you are using needs an additional method, but you can’t modify the class.

Create a method in the client class with an instance of the server class as its first argument

Motivation

It happens often enough: you are using this really nice class that gives you all these great services. Then there is this one service it doesn’t give you that it should. You curse it saying “why don’t you do that”. If you can change the source, you can then add it in. If you don’t however, you have to code around it in the client.

If you only use it once in the client class then its no big deal, and probably wasn’t really needed on the original class anyway. If you use it several times however, then you have to repeat this coding around. Since repetition is the root of all software evil, this repetitive code should be factored into a single method. When you do this you can clearly signal that this method is really a method that should be on the original by making it a foreign method.

If you find yourself creating many foreign methods on a server class, or you find many of your classes need the same foreign method then you should Create an Extension instead.

Don’t forget that Foreign Methods are a work-around. If you can, try to get the methods moved to their proper home. If it is code ownership that is the issue, send the foreign method to the server class’s owner and ask them to implement the method for you.

Mechanics

· Create a method in the client class that does what you need

· The method should not access any of the features of the client class. If it needs some value send it in as a parameter.

· Make an instance of the server class the first parameter

· Comment the method as “foreign method - should be in server”

· This way you can use a text search to find foreign methods later if you get the chance to move the method

Example

We have some code that needs to roll over a billing period. The original code looks like this

Date newStart = new Date (previousEnd.getYear(),

previousEnd.getMonth(), previousEnd.getDate() + 1);

I can extract the code on the right hand side of the assignment into a method, this method will be a foreign method for date.

Date newStart = nextDay(previousEnd);

private static Date nextDay(Date arg) {

// foreign method, should be on date

return new Date (arg.getYear(),arg.getMonth(), arg.getDate() + 1);

}

Decompose a Conditional Expression

You have a complicated conditional (if-then-else) statement

Extract methods from the condition, then part, and else parts.

Motivation

One of the most common areas of complexity in a program lies in complex conditional logic. As you write code to test conditions, and to do various things depending on various conditions, you quickly end up with a pretty long method. Length of a method is in itself a factor that makes it harder to read, but conditions increase the difficulty. The problem usually lies in the fact that the code, both in the condition checks and in the actions, tells you what happens but can easily obscure the why.

As with any large block of code, you can make your intention clearer by decomposing it, replacing chunks of code with a method call that is named after the intention of that block of code. With conditions you can get a further benefit by doing this for the conditional part and each of the alternatives. This way you highlight the condition and make it clearly what you are branching on, and why you are doing the branching.

Mechanics

· Extract the condition into its own method

· Extract the ‘then part’ and the ‘else part’ into their own methods

If I find a nested conditional I will usually first look to see if I should Replace the Nested Conditional with Guard Clauses. If that does not make sense I will decompose each of the conditionals.

Example

Suppose you are calculating the charge for something that has a separate rate for winter and for summer

if (date.before (SUMMER_START) || date.after(SUMMER_END))

charge = quantity * _winterRate + _winterServiceCharge;

else charge = quantity * _summerRate;

Extract the conditional and each leg into

if (inWinter(date))

charge = winterCharge(quantity);

else charge = summerCharge (quantity);

private boolean inWinter(Date date) {

return date.before (SUMMER_START) || date.after(SUMMER_END);

}

private double summerCharge(int quantity) {

return quantity * _summerRate;

}

private double winterCharge(int quantity) {

return quantity * _winterRate + _winterServiceCharge;

}

Here I’ve shown the result of the complete refactoring for clarity. In practice, however, I would do each extraction separately, compiling and testing after each one.

Many people don’t extract the condition parts in situations like this. The conditions are often quite short, so it hardly seems worth it. But although the condition is often short, there is often a big gap between the intention of the code and its procedure. Even in this little case reading (inWinter(date)) conveys more clearly to me than the original code. With the original I have to look at the code and figure out what it is doing. It’s not difficult to do that here, but even so the extracted method reads more like a comment.

The utility example (tbd link: Refactoring SummerFraction) shows a more complex case of extracting a conditional.

Decompose a Method

You have a long, complex method that is difficult to understand.

Extract methods from logical blocks of code.

Motivation

The longer a procedure is, the more difficult it is to understand. Yet there is overhead in switching between procedures. Each time you see a sub procedure call you have to switch context to look and see what the sub-procedure does. As you do this you have to scroll your editor and you lose the place in the original procedure. Also in many languages calling a procedure has an overhead because the new record is needed on the stack.

This has influenced the heuristic for how long you make a subroutine. In my fortran days the heuristic was one page of print out, since we tended to look at code on paper. In my Unix days they were one screenful in the emacs buffer.

Object-oriented code changes the heuristics in a number of ways. Object-oriented languages minimize the overhead of method calls to negligible proportions, indeed you many compilers eliminate many of them completely with inlineing. Methods in object languages are thus much shorter, Smalltalk often averages at 3 lines of code for a method, C++ at around ten.

The problems of context switching for the reader are mitigated by two factors. Firstly modern development environments have browsers where it is easy to open two browsers on the same class at once. This way you can usually fit two methods on the screen at once. Secondly by working to think of good names for methods, you can often remove the need to look at the other method at all. Good naming is a skill, a really important skill that is worth persevering to acquire.

The net effect of this is that you should be much more aggressive about decomposing methods. A heuristic I follow is whenever I feel the need to comment something, I instead write an Intention Revealing Method [Beck]. Such a method contains the code that was commented, but is named after what the intention of the code is, rather than how it does it. I may do this on a group of lines, or on as small as a single line of code. I will do this even if the method call is no shorter than the code it replaces, providing the method explains the purpose of the code.

Mechanics

· Scan a method for chunks of code that seem to make logical units

· Look for any lines of code offset by spaces and commented at the top. The comment tells you what the name of the extracted method should be.

· Decompose Conditional Expressions

· Look for any bit of code that is commented, even single or partial lines. Replace the code with an Intention Revealing Method using the comment to get the name

· Look for loops and extract the loop and the code within the loop into a method

· Extract a method from each chunk

The principal obstacle to decomposing a method is the presence of temporary variables. If you have many temps declared, you end up have to do a lot of parameter passing in the extracted methods. If these are getting in your way try to replace as many of them as you can with queries. That way when you extract methods, they can just use the query.

If the temps are too pervasive and are updated a lot, then you may find you cannot extract the method. Then you need to replace the method with a method object.

Example

tbd ref to other chapter
Duplicate Data From Presentation to Domain

You have domain data embedded in a gui control

Copy the data to a domain object. Set up a mechanism to synchronize the two pieces of data.

Motivation

A well layered system will separate the code that handles the user interface from code that handles the business logic. It does this for several reasons: you may want several interfaces for similar business logic, the user-interface gets too complicated if it does both, or you may have different developers handling these different pieces.

Although the behavior can be separated easily, the data often cannot. Data needs to be embedded in gui controls which has the same meaning as data that lives in the domain model. UI frameworks, from MVC onwards, that are used to a multi-tiered system provide mechanisms to allow you to provide this data and keep everything in sync.

If you come across that has been developed within a two tier approach, where business logic is embedded into the UI, you will need to separate out this behaior. Much of this is about splitting and moving methods. For the data however, you cannot just move the data, you have to duplicate it and provide the synchronization mechanism.

Mechanics

· Provide accessors for the domain data within the gui class and encasulate the gui data with these accessors.

· Compile and test

· Modify the event handling of the gui class so that it calls the new accessor

· This should ensure that any update to a gui control calls it’s own setting method with its new value. This double update checks the calling mechanism before the data is duplicated to the domain.

· Make sure the event handling mechanism is triggerred by the test code

· Compile and test

· Define the data and accessor methods in the domain class

· Make sure the setting method on the domain triggers the notify mechanism in the observer pattern.

· Use the same data type in the domain as was on the presentation (usually a string). Convert the data type in a later refactoring.

· Redirect the accessors to write to the domain field.

· Make the presentation class an observer on the domain class

· Modify the observer’s update method to copy the data from the domain field to the gui control.

· Compile and test

Example

tbd ref other chapter
Encapsulate Downcast

A method returns an object that needs to be downcasted by its callers

Move to downcast to within the method

Motivation

Downcasting is one of the most annoying things you have to do with strongly typed OO languges. It is annoying because it feels unnecessary, you are telling the compiler something it ought to be able to figure out itself. But since the figuring out is often rather complicated, you often have to do it yourself. This is particularly prevalent in Java, where the lack of templates means that you have to downcast whenever you take an object out of a collection.

Downcasting may be a necessary evil, but you should do this as little as possible. So if ever you return a value from a method, and you know the type of what is returned is more specialized than what the method signature says, you are putting unnecessary work on your clients. Rather than forcing them to do the downcasting, you should always provide them with the most specific type you can.

Often you find this with methods that return a collection. Instead look to see what people are using the colletction for, and provide the method for that.

Mechanics

· Look for cases where you have to downcast the result from calling a method

· These cases often appear with methods that return a collection or iterator.

· Move the downcast into the method

· With methods that return collections, see what clients do with the collection, and provide methods to do that.

Example

The simple case of this is obivious. You have a method called lastReading which returns the last reading from a vector.

Object lastReading() {

return readings.lastElement();

}

You should replace this with

Reading lastReading() {

return (Reading) readings.lastElement();

}

A good lead in to doing this is where you have collection classes. Say this collection of readings is on a Site class and you see code like this.

Reading lastReading = (Reading) theSite.readings().lastElement()

You can avoid the downcast, and hide which collection is being used, by

Reading lastReading = theSite.lastReading();

Class Site {

Reading lastReading() {

Return (Reading) readings().lastElement();

}

Altering a method to return a subclass does alter the signature of the method, but will not break existing code since the compiler knows it can substitute a subclass for the superclass. Of course you should ensure that the subclass does not do anything that breaks the superclass’s contract.

Extract a Class

You have a class that is doing the work of two classes

Create a new class and extract the relevant functionality from the old class into the new one.

Motivation

You’ve probably heard that a class should be a ‘crisp abstraction’, handle a few clear responsibiltiies, or some similar guideline. In practice classes grow. You add some operations here, a bit of data there. You add a responsibility to a class feeling that it’s not worth a separate class, but as that responsibilty grows and breeds the class gets too complicated.

Such a class is one with many methods and quite a lot of data. A class that is too big to understand easily. You need to consider where it can be split, and split it. A good sign is if a subset of the data and a subset of the methods seems to go together. Or if a subset of the data usually changes together, or is particularly dependent on each other.

One sign that often crops up later in development is the way the class is subtyped.. You may find that subtyping affects only a few features, or that some features need to be subtyped one way, and other features are subtyped a different way

Mechanics

· Decide how to split the responsibilities of the class

· Create a new class to express the split off responsibilities

· If the the responsibilities of the old class no longer match its name, rename the old class

· Make a link from the old to the new class

· You may need a two way link. But don’t make the back link until you find you need it.

· Move the data you wish to split from the old to the new class

· If you aren’t intending to move any fields, then you can make the new object a flyweight.

· Move the methods over from old to new, starting with lower level methods (that are called rather than calling) and building up to the higher level.

· Review and reduce the interfaces of each class.

· If you did have a two-way link, examine to see if it can be made one way.

Extract a Method

You have a code fragment that can be grouped together

Create a new method. Make the fragment the body of the method. Replace the fragment with a call to the newly extracted method.

Motivation

This is one of the most common refactorings I do. I look at a method that is too long, or look at some code that needs a comment to understand its purpose (see Decompose a Method). I then turn that fragment of code into its own method.

I prefer short, well named methods for several reasons. Firstly it increases the chances that other methods can use a method when the method is fine grained. Secondly it allows the higher level methods to read more like a series of comments. Overriding is also easier when the methods are fine grained.

It does take a little getting used to if you are used to seeing larger methods. And small methods only really work when you have good names, so you need to pay attention to naming. In the end the key to when to do this is the semantic distance between the method name and the method body. If extracting improves clarity, do it. Even if the name is longer than the code you have extracted.

Mechanics

· Create a new method, name it after the intention of the method (name it by what it does, not how it does it)

· If the code you are looking to extract is very simple, such as a single message or function call, then you should still extract it if the new method’s name will reveal the intention of the code in a better way. If you can’t come up with a more meaningful name, then don’t extract the code.

· Copy the extracted code from the source method into the new target method.

· Scan the extracted code for references to any variables which are local in scope to the source method. These are local variables and parameters to the method

· See if any temporary variables are only used within this extracted code. If so declare them in the target method as temporary variables.

· Look to see if any of these local scope variables are modified by the extracted code. If one of them is modified see if you can treat the extracted code as a query and assign the result to the variable concerned. If this is awkward, or if there is more than one such variable, then you can’t extract the method as it stands. You may need to do split the temporary variable or copy parameters and try again. You can eliminate temporary variables by replacing a temp with a query. (See the discussion in examples.)

· Those local scope variables which are read from in the extracted code must be passed into the target method as parameters.

· When you have dealt with all the locally scoped variables, compile.

· In most C++ or Java environments you will need to recompile the class. In Smalltalk, and more sophisticated environments you can just accept to recompile the method.

· Replace the extracted code in the source method with a call to the target method.

· If you have moved any temporary variables over to the target method, look to see if they were declared outside of the extracted code. If so you can now remove the declaration.

· Compile and test.

Refactory Feature

Examples

You’ll find examples of this all over the book. The simple cut and past cases are easy to do. All the complication in this refactoring comes from those pesky locally scoped variables: temps and parameters.

The easiest case is when you only need to read the temp

temp = expression;

…

extracted code

foo = temp.method();

extracted code

Turns into

temp = expression;
newMethod(temp);

void newMethod (type temp) {

extracted code

foo = temp.method();

extracted code

}

Although if you can, it is better to replace the temp by a query.

newMethod();

void newMethod() {

extracted code

foo = newQuery().method();

extracted code

}

tempType newQuery() {

return expression
}

If it is only code in the extracted method that uses the temp, then you should move the temp entirely within the extracted method.

newMethod();

void newMethod() {

extracted code

tempType temp = expression

foo = temp.method();

extracted code

}

So that’s pretty straightforward. So let me rephrase the problem : it’s those pesky temps that you change.

Then the issue turns around the nature of the change. If you change the temp by invoking a modifier on the temp then that’s fine. The fact that the object is referenced outside of the method will just mean that it is changed there after the method. This implies that the method is a modifier and thus should not return a value. If it does, then you should separate the query from the modifier later on.

So to be more precise: it’s those pesky value objects that you reassign. Cases like

tempType temp;

…

extracted code

temp = expression;
extracted code

…

foo = temp.method();

Or

tempType temp;

…

temp = expression;

foo = temp.method()

…

extracted code

temp = newExpression;
extracted code

Or

temp = expression;

…

extracted code

temp = temp + newExpression;
extracted code

…

foo = temp.method()

The first issue is how many temps you reassign. If you change only one variable then you can use it as the method’s return value, I’ll go into those cases in a moment. Before that I’ll answer the inevitable question “what if there are more than one temp being reassigned”. In that second case I would not do the extraction. Instead I’d look for another extraction, or do something to get the number of reassigned temps down to one.

You’ll also have noticed that I’m no longer talking about locally scoped variables, I’m only talking about temps. What happened to parameters? Well I don’t reassign to passed in parameters as a matter of style, for I find that gets too confusing. In the principle OO languages (Smalltalk, C++, and Java) assignments to parameters inside a method are local to that method. In the calling method, the parameter retains its original value.

If I see any parameters assigned to, I copy the parameter into a temp. So then this issue is about temps. Of course if your programming language allows you to reassign parameters then you can use the parameters to deal with multiple assigned temps. (Although I’ve not missed the ability to do this.)

So onto the cases I outlined above. The first case is where you initialize the temp.

tempType temp;

…

extracted code

temp = expression;
extracted code

…

foo = temp.method();

In this case I can return the temp as the result of the extracted method.

tempType temp;

temp = newMethod();

foo = temp.method();

tempType newMethod() {

tempType result;

extracted code

result = expression;

extracted code

return result;

}

This works best when you don’t have any code after the assignment to the result, then you can just return it.

tempType newMethod() {

extracted code

return expression;
}

This approach is most satisfying when the extracted method’s purpose is about calculating the value of the temp. If the method does more than that, it questions whether this is the right block of code to extract. Even if it makes sense for the moment, there is more refactoring to do later.

A variation on this case is where the temp is initialized but not used before the extracted method. In that case you can remove the first (unused) initialization.

Another case is where the temp is initialized and used before you the extracted method reassigns the value.

tempType temp;

…

temp = expression;

foo = temp.method()

…

extracted code

temp = newExpression;
extracted code

In this case you should split the temp, once you’ve done that you’ll find yourself with a simpler case.

The exception to splitting the temp is when you add to the temp

temp = expression;

…

extracted code

temp = temp + newExpression;
extracted code

…

foo = temp.method()

Since here you are still using the temp for the same purpose, you should not split it. Instead you should pass the old value in and return the new.

temp = expression;

temp = newMethod(temp);

…

foo = temp.method();

tempType newMethod (tempType temp) {

tempType result;

extracted code

x = temp.query()

result = temp + newExpression;

extracted code

return result;

}

If you don’t read the temp in the extracted method, you don’t need to pass it in. Instead you can just return the change value

temp = expression;

temp = temp + newMethod();

…

foo = temp.method();

tempType newMethod (tempType temp) {

tempType result;

extracted code

result = newExpression;

extracted code

return result;

}

Form Template Method

You have two methods in subclasses that carry out similar steps in the same order, yet the steps are different

Give each step the same signature, so that the original methods become the same. Then you can pull them up.

Motivation

Inheritance is a powerful tool for eliminating duplicate behavior. Whenever we see two similar method in a subclass, we want to bring them together in a superclass. But what if they are not exactly the same? What do we do then. We still need to eliminate the duplication we can, but still keeping the essential differences.

A common case is where we see two methods that seem to carry out broadly similar steps in the same sequence, but the steps are not the same. In this case we can move the sequence to the superclass, while allowing polymorphism to play its role in ensuring the different steps do their thing differently.

Mechanics

· Decompose the methods so that all the extracted methods are either identical or completely different.

· Pull up (p 30) all the identical methods to the superclass.

· For the different methods change their signatures so the signatures for all the methods at each step are the same.

· Compile and test after each signature change.

· This will make the original methods the same, in that they all issue the same set of method calls, but the subclasses handle the calls differently.

· Define the signatures as abstract methods on the superclass

· You can now pull up the original methods.

Example

The utility example (Chapter 3) shows an extended example of this kind of refactoring.

Generalize Field

Two subclasses have the same field

Move the field to the superclass

Motivation

If subclasses are developed independently, or combined through refactoring, you often find that they duplicate features. In particular certain fields can be duplicates. Such fields sometimes have similar names, but not always. The only way to determine what is going on is to look at the fields and see how they are used by other methods. If they are being used in a similar way, then you can generalize them.

Doing this reduces duplication in two ways. Not just does it remove the duplicate data declaration, it also allows you to move behavior that uses the field from the subclasses to the superclass.

Mechanics

· Inspect all uses of the candidate fields to ensure they are used in the same way

· Use references in Smalltalk, or a text search to find each use of the field.

· If the fields do not have the same name, rename the fields so that they have the name you want to use for the superclass field

· Compile and Test

· Create a new field in the superclass

· If the fields are private, you will need to make the superclass field protected so that the subclasses can refer to it

· Delete the subclass fields

· Compile and Test

· Consider self-encapsulating the new field

Hide Method

A Method is not used by any other class

Make the Method private

Motivation

Refactoring often causes you to change decisions about the visibility of methods. It is easy to spot cases when you need to make a method more visible: another class needs it and you thus relax the visibility. It is somewhat more difficult to tell when a method is too visible. Ideally a tool should check all methods to see if they can be hidden. Failing that you should make this check at regular intervals.

A particularly common case of this is hiding Getting and Setting methods as you work up a higher level interface. This is most common when you are starting with a class that is little more than an encapsulated data holder. As it gets more behavior built into it, you may well find that many of the Getting and Setting Methods are no longer needed publicly, in which case they can be hidden. If you make a Getting or Setting Method private, and you are using Direct Variable Access, then you can remove the method.

Mechanics

· Check regularly for opportunities to make a method more private

· Use a lint style tool, do manual checks every so often, check when you remove a call to a method in another class

· Particularly look for cases like this with setting methods.

Inline Method

A method’s body is just as clear as its name

Put the method’s body into the body of its callers and remove the method

Motivation

A theme of this book is to use short methods which are named to show their intention, as these methods lead to clearer and easier to read code. But sometimes you do come across a method where the body is as clear as the name. Or you refactor the body of the code into something that is just as clear as the name. When this happens, you should then get rid of the method. Indirection can be helpful, but needless indirection is just irritating.

Mechanics

· Check the method is not polymorphic

· Don’t inline if subclasses override, for they cannot override a method that isn’t there.

· Find all calls to the method

· Replace each one with the method body

· Remove the method definition

Move Field

You need to move a field from one class to another

Create a new field in the target class, change all references to the existing field, and delete the existing field

Motivation

Moving state and behavior between classes is the very essence of refactoring. As the system develops you find the need for new classes and the need to shuffle responsibilities around. A design decision that was reasonable and correct one week can become incorrect in another. That is not a problem, the only problem is not to do something about it.

I consider moving a field if I see more methods on another class using the field than the class itself. This usage may be indirect, through Getting and Setting Methods. I may choose to move the methods, this is a decision based on interface. But if the methods seem sensible where they are I move the field.

Another cause for field moving is when I’m extracting an object from another. Then the fields go first, followed by the methods.

Mechanics

· If the field is public, encapsulate it.

· If you are likely to be moving the methods that access it frequently, or there are a lot of methods that access the field, you may find it useful to self-encapsulate it

· Compile and test

· Create a field in the target class

· Add Getting and Setting Methods for the target field

· Compile the target class

· Determine how to reference the correct target object from the source

· There may be an existing field or method that will give you the target. If not see if you can easily crate a method that will do so. Failing that you will need to create a new field in the source that can store the target. This may be a permanent change, but you can also do it temporarily until you have refactored enough to remove it.

· Remove the field on the source class

· In Smalltalk you should use the browser to find the references first, then change them, then remove the instance variable.

· Replace all references to the source field with references to the appropriate method on the target.

· For accesses to the variable, replace with a call to the target object’s getting method, for assignments replace it with a call to the setting method.

· Unless the field in private, look in all the subclasses of the source for references.

· Compile and test.

Example

Here is part of an account class.

class Account…

private AccountType _type;

private double _interestRate;

double interestForAmount_days (double amount, int days) {

return _interestRate * amount * days / 365;

}

I want to move the interest rate field to the account type. There are several methods that reference, of which interestForAmount_days is one example. If there are a lot of methods that use the interest rate field I might start by self-encapsulating the field.

class Account…

private AccountType _type;

private double _interestRate;

double interestForAmount_days (double amount, int days) {

return getInterestRate() * amount * days / 365;

}

private void setInterestRate (double arg) {

_interestRate = arg;

}

private double getInterestRate () {

return _interestRate;

}

In either case I next create the field and accessors in the account type

class AccountType…

private double _interestRate;

void setInterestRate (double arg) {

_interestRate = arg;

}

double getInterestRate () {

return _interestRate;

}

I can compile the new class at this point.

Now I redirect the methods from the Account class to use the account type, and remove the interest rate field in the account. I must remove the field to be sure that the redirection is actually happening. Also this way the compiler will help us spot any method I failed to redirect.

private double _interestRate;

double interestForAmount_days (double amount, int days) {

return _type.getInterestRate() * amount * days / 365;

}

If I had used the self-encapsualtion, this redirection only needs to be done to the accessors.

double interestForAmount_days (double amount, int days) {

return getInterestRate() * amount * days / 365;

}

private void setInterestRate (double arg) {

_type.setInterestRate(arg);

}

private double getInterestRate () {

return _type.getInterestRate();

}

Move Method

You need to move a method from one class to another

Create a new method in the target class, change all references to the existing method, and delete the existing method

Motivation

Moving methods is the bread and butter of refactoring. I do this because when classes have too much behavior or when classes are collaborating too much and are too highly coupled. By moving methods around I can make the classes simpler and they end up being a more crisp implementation of a set of responsibilities.

I usually look through the methods on a class, looking for a method that seems to reference another object more than the object it lives on. A good time to do this is after I have moved some fields. Once I see a likely method to move, I take a look at the methods that call it, the methods it calls, and any redefining methods in the hierarchy. I assess whether to go ahead based on which object the method seems to be interacting with more.

Its not always an easy decision to make. If I am not sure whether to move a method I go on and look at other methods. Often moving other methods makes the decision easier. Sometimes the decision still is hard to make. Actually that is not too much of a big deal. If it is difficult to decide then it probably does not matter that much. Then I choose according to instinct, after all I can always change it again later.

Mechanics

· Examine all the features that the source method uses that are defined on the source class. Consider whether they should be moved too.

· In Smalltalk, use the messages menu item to show the methods used.

· If a feature is only used by the method you are about to move, then you might as well move it too. If the feature is used by other methods consider moving them as well. Sometimes it is easier to move a clutch of methods than to move them one at a time.

· Check the sub and superclasses of the source class for other declarations of the method.

· Declare the method in the target class

· Copy the code from the source method to the target. Adjust the method to make it work in its new home.

· If the method uses its source, then you need to determine how to reference the source object from the target method. If there is no mechanism in the target class, then pass the source object reference to the new method as a parameter.

· If the method includes exception handlers, decide which class should logically handle the exception. If the source class should really be responsible then leave the handlers behind.

· Compile the target class

· Determine how to references the correct target object from the source

· There may be an existing field or method that will give you the target. If not see if you can easily create a method that will do so. Failing that you will need to create a new field in the source that can store the target. This may be a permanent change, but you can also do it temporarily until you have refactored enough to remove it.

· Turn the source method into a delegating method.

· Compile and test.

· Decide whether to remove the source method, or retain it as a Delegating Method.

· Turning the source into a delegating method is easier if you have many references.

· If you remove it, replace all the references with references to the target method.

· In Smalltalk you should use the browser to find senders first, then change them, then remove the method.

· You can compile and test after changing each reference, although it is usually easier to do them all with one search and replace.

· Compile and test.

Example

Again I’ll use an account class to illustrate this refactoring.

class Account…

double overdraftCharge() {

if (_type.isPremium()) {

double result = 10;

if (_daysOverdrawn > 7) result += (_daysOverdrawn - 7) * 0.85;

return result;

}

else return _daysOverdrawn * 1.75;

}

double bankCharge() {

double result = 4.5;

if (_daysOverdrawn > 0) result += overdraftCharge();

return result;

}

private AccountType _type;

private int _daysOverdrawn;

Let’s imagine that there are going to be several new account types, each of which has their own rule for calculating the overdraft charge. So I want to move the overdraft charge method over to the account type.

The first step is to look at the features that the overdraftCharge method uses, and consider whether it is worth moving a batch of methods together. In this case I need the _daysOverdrawn field to remain on the account class.

Next I copy the method body over to the account type and get it to fit.

class AccountType…

double overdraftCharge(int daysOverdrawn) {

if (isPremium()) {

double result = 10;

if (daysOverdrawn > 7) result += (daysOverdrawn - 7) * 0.85;

return result;

}

else return daysOverdrawn * 1.75;

}

In this case fitting meant removing the _type from uses of features of the account type, and doing something about the features of account that I still need. When we need to use a feature of the source class we can do one of four things

1) Move this feature to the target class as well

2) Create or use a reference from the target class to the source

3) Pass the source object as a parameter to the method

4) If the feature is a variable, pass it in as a parameter.

Since this feature is a single field I can just pass it in as a variable. With methods we can’t do that and we need to pass in the source object, like this.

class AccountType…

double overdraftCharge(Account account) {

if (isPremium()) {

double result = 10;

if (account.getDaysOverdrawn() > 7)

result += (account.getDaysOverdrawn() - 7) * 0.85;

return result;

}

else return account.getDaysOverdrawn() * 1.75;

}

You can also pass in the source object if you need several features of the class, although if you use to many it implies some further refactoring is needed (typically you need to decompose and move some pieces back).

One the method fits, and compiles in the target class, you can replace the source method body with a simple delegation.

class Account…

double overdraftCharge() {

return _type.overdraftCharge(_daysOverdrawn);

}

At this point you can compile and test.

You can leave things like this, or you can remove the method in the source class. To remove the method you need to find all callers of the method and redirect them to call the method in account type.

class Account…

double bankCharge() {

double result = 4.5;

if (_daysOverdrawn > 0) result += _type.overdraftCharge(_daysOverdrawn);

return result;

}

Once you have replaced all of them you can remove the method declaration in account. You can compile and test after each removal, or do them in a batch. Remember to look for other classes that use this method if it isn’t private. In a strongly typed language the compilation after removing the source declaration will find anything you missed.

Paramaterize Methods

Several methods do similar things, but with different values contained in the method body

Create one method that uses a parameter for the different values

Motivation

You may see a couple of methods that do similar things, but vary depending on a few values. In this case you can simplify matters by replacing the separate methods with a single method which handles the variations by parameters. Such a change removes duplicate code, and increases flexibility since you can deal with other variations by adding parameters.

Mechanics

· Create a parameterized method that can be substitued for each repetitive method

· Compile

· Replace one old method with a call to the new method

· Compile and test

· Repeat for all the methods, testing after each one.

You may find that you cannot do this for the whole method, but you could for a fragment of a method. In this case first extract the fragment into a method, then parameterize that method.

Example

The simplest case of this is methods along the following lines.

Class Employee {

Void tenPercentRaise () {

salary *= 0.1;

}

Void fivePercentRaise () {

salary *= 0.05;

}

which can be replaced with

void raise (double raiseAmount) {

salary *= raiseAmount;

}

Of course that is so simple that anyone would spot it.

A less obvious case is

protected Dollars baseCharge() {

double result = Math.min(lastUsage(),100) * 0.03;

if (lastUsage() > 100) {

result += (Math.min (lastUsage(),200) - 100) * 0.05;

};

if (lastUsage() > 200) {

result += (lastUsage() - 200) * 0.07;

};

return new Dollars (result);

}

which can be replaced by (tbd ref to Utility)

protected Dollars baseCharge() {

double result = usageInRange(0, 100) * 0.03;

result += usageInRange (100,200) * 0.05;

result += usageInRange (200, Integer.MAX_VALUE) * 0.07;

return new Dollars (result);

}

protected int usageInRange(int start, int end) {

if (lastUsage() > start) return Math.min(lastUsage(),end) - start;

else return 0;

}

The trick is to spot code that is repetitive based on a few values that can be passed in as parameters.

Preserve Whole Object

You are getting several values from an object and passing these values to a method call

Send the whole object instead

I often see code that looks like this

temp1 = anObject.getValue1();

temp2 = anObject.getValue2();

temp3 = anObject.getValue3();

calledObject.aMethod(temp1, temp2, temp3);

You are busy pulling values out of one object to pass these values to another object. Usually it is better to do

calledObject.aMethod(anObject);

The code is easier to see and the called object can get whatever it needs. If later on it needs to get something else it can do that itself, instead of involving the middle man.

There is a downside. In the first case the called object does not need to know about anObject, only about the values. Preserving the Whole Object thus causes a dependency between the called object and anObject. If this is going to mess up your dependency structure then don’t use this refactoring.

Another reason I have heard for not using this refactoring is when the calling object only needs one value from anObject, better to pass in the value than the whole object. I don’t subscribe to that view. One value and one object amount to the same thing when you pass them in, at least for clarity’s sake (there may be a performance cost with pass by value parameters). The driving force is the dependency issue.

If aMethod uses all these values from anObject, that is a signal that aMethod should really be defined on anObject. So when you are considering this refactoring, consider moving the method instead.

You may not already have the whole object defined: in this case you need to replace the data clump with an object.

An important use of this refactoring is when anObject is the calling object. So instead of

calledObject.aMethod(field1, field2, field3)

consider using

calledObject.aMethod(this)

providing you have the appropriate Getting Methods.

Mechanics

· Create a new parameter for the whole object

· Add the whole object to the parameter list

· Compile and test

· Determine which parameters should be obtained from the whole object

· Take one parameter and replace references to it within the method body by invoking an appropriate method on the whole object parameter

· Delete the parameter.

· Compile and Test

· Repeat for each parameter that can be got from the whole object

· Remove the code in the calling method that obtains the deleted parameters.

· Unless, of course, the code is using object somewhere else.

· Compile and Test

Example

Consider a room object that records the high and low of its daily temparature during the day. It needs to compare this range with a range in a predefined heating plan.

class Room…

boolean withinPlan(HeatingPlan plan) {

int low = daysRange().getLow();

int high = daysRange().getHigh();

return plan.withinRange(low, high);

}

class HeatingPlan…

boolean withinRange (int low, int high) {

return (low >= _range.getLow() && high <= _range.getHigh());

}

private TempRange _range;

Rather than unpack the range information when I pass it, I can pass the whole range. In this simple case I could do this as one step, but when there are more involved you can do it in smaller steps. First you can just add the whole object to the parameter list.

class HeatingPlan …

boolean withinRange (TempRange roomRange, int low, int high) {

return (low >= _range.getLow() && high <= _range.getHigh());

}

class Room …

boolean withinPlan(HeatingPlan plan) {

int low = daysRange().getLow();

int high = daysRange().getHigh();

return plan.withinRange(daysRange(), low, high);

}

Then use one the whole object instead of one of the parameters.

class HeatingPlan …

boolean withinRange (TempRange roomRange, int high) {

return (roomRange.getLow() >= _range.getLow() && high <= _range.getHigh());

}

class Room…

boolean withinPlan(HeatingPlan plan) {

int high = daysRange().getHigh();

return plan.withinRange(daysRange(), high);

}

And continue until you’ve changed all you need.

class HeatingPlan …

boolean withinRange (TempRange roomRange) {

return (roomRange.getLow() >= _range.getLow() && roomRange.getHigh() <= _range.getHigh());

}

class Room …

boolean withinPlan(HeatingPlan plan) {

return plan.withinRange(daysRange());

}

Using whole objects like this soon leads you to realize that you can usefully move behavior into the whole object to make it easier to work with.

class HeatingPlan …

boolean withinRange (TempRange roomRange) {

return (_range.includes(roomRange));

}

class TempRange …

boolean includes (TempRange arg) {

return arg.getLow() >= this.getLow() && arg.getHigh() <= this.getHigh();

}

Pull Up Method

You have methods with identical results on a subclass

Move them to the superclass

Motivation

Eliminating duplicate behavior is important. Although two duplicate methods work fine as they are, they are nothing more than a breeding ground for bugs in the future. Whenever there is duplication you face the risk that an alteration to one, will not be made to the other. And usually it is difficult to find where the duplicates are.

The easiest case of using this refactoring is when the methods have the same body, implying there’s been a cut and paste. Of course it’s not always as obvious as that. You could just do the refactoring and see if the tests croak, but that puts a lot of reliance on your tests. I usually find it valuable to look for the differences, often they show up behavior that I forgot to test for.

Often this step comes after other steps. You see two methods in different classes that can be paramaterized in such a way that they end up as essentially the same method. In that case the smallest step is to parameterize each method separately, and then generalize them. Do it in one go if you feel confident enough.

A special case of this is where you have a subclass method that overrides a superclass method, yet does the same thing.

The most awkward element of this refactoring is that the body of the methods may well refer to features that are only on the subclass, not on the superclass. If the feature is a method you can either generalize the other method, or create an abstract method in the superclass. You may need to change a method’s signature or create a delegating method to get this to work.

If you have two methods that are similar but not the same, see you may be able to Form a Template Method.

Mechanics

· Inspect the methods to ensure they do the same thing

· If the methods have different signatures, then change the signatures to the one you want to use in the superclass

· Create a new method in the superclass, copy one of the methods’ body to it, adjust and compile

· If you are in a strongly typed language and the method calls another method that is present on both superclasses but not the superclass, then declare an abstract method on the superclass.

· Delete one subclass method

· Compile and test.

· Keep deleting subclass methods and testing until only the superclass method remains.

Example

Consider a customer with two subclasses: regular customer and preferred customer.

[image: image1.wmf]addBill (date: Date, amount: double)

lastBillDate

Customer

createBill (Date)

chargeFor(start: Date, end: Date)

Regular Customer

createBill (Date)

chargeFor(start: Date, end: Date)

Preferred Customer

The createBill method is identical for each class

void createBill (date Date) {

double chargeAmount = charge (lastBillDate, date);

addBill (date, charge);

}

I can’t just move the method up into the superclass, however, since chargeFor is different on each subclass. First I have to declare it on the superclass as abstract

class Customer…

abstract double chargeFor(date start, date end)

Then I can copy createBill from one of the subclasses. I compile with that in place, and then remove the createBill method from one of the subclasses, compile and test, remove it from the other, compile and test.

[image: image2.wmf]addBill (date: Date, amount: double)

createBill (Date)

chargeFor(start: Date, end: Date)

lastBillDate

Customer

chargeFor(start: Date, end: Date)

Regular Customer

chargeFor(start: Date, end: Date)

Preferred Customer

Reduce Parameter List

You have a method with many parameters

Reduce the amount of parameters to those you need as starting points to get to data

Motivation

In my early programming days I was always taught to pass everything a routine needed in with the parameter. This was understandable because the alternative was global data, and global data is trouble. Objects change this situation because if you don’t have something you need, you can always ask another object to get it for you. Thus with objects you don’t pass in everything the method needs, instead you pass enough so that the method can get to everything it needs. A lot of what a method needs is available on method’s host class. Thus in object-oriented programs parameter lists tend to be much smaller than on traditional programs.

This is good because long parameter lists are hard to understand, they get inconsistent and difficult to use, and because you are forever changing them as you need more data. Most changes are removed by passing objects because you are much more likely to just need to make a couple of requests to get at a new piece of data.

Mechanics

Other refactorings discuss ways of doing this. Use Replace Parameter with Method when you can get the data in one parameter by making a request of an object you already know about. This object might be a field or it might be another parameter. Use Preserve Whole Object to take a bunch of data gleaned from an object and replace it with the object itself. If you have several data items with no logical object, then consider Replace Data Clump with Object.

Remove Assignments to Parameters

The code assigns to a parameter

Use a temporary variable instead.

Motivation

First let me make sure we are clear on the phrase ‘assigns to a parameter’. This means that if you pass in some object in the parameter named foo, assigning to the parameter means to change foo to refer to a different object. I have no problems with doing something to the object that got passed in — I do that all the time. I just object with changing foo to refer to another object entirely.

void aMethod(Object foo) {

foo.modifyInSomeWay();
// that’s OK

foo = anotherObject;
// trouble and despair will follow you

The reason I don’t like this comes down to lack of clarity, and also the confusion between pass by value and pass by reference. Java uses pass by value exclusively (see note below) and this discussion is based on that usage (Smalltalk is also pass by value).

With pass by value any change to the parameter is not reflected in the calling routine. Those who have used pass by reference will probably find this confusing. The other area of confusion is within the body of the code itself. It is much clearer if you only use the parameter to represent what has been passed in, as that is a consistent usage.

Mechanics

· Create a temporary variable for the parameter

· Replace all references to the parameter, made after the assignment, to the temporary variable

· Change the assignment to change the temporary variable.

· Compile and test

· If the semantics are call by reference, look in the calling method to see if the parameter is used again afterwards, also see how many call by reference parameters are assigned to and used afterwards in this method. Try to pass a single value back as the return value. If there is more than one see if you can turn the data clump into an object, or create separate methods.

Example

We’ll start with the following simple routine.

int discount (int inputVal, int quantity, int yearToDate) {

if (inputVal > 50) inputVal -= 2;

if (quantity > 100) inputVal -= 1;

if (yearToDate > 10000) inputVal -= 4;

return inputVal;

}

Replacing with a temp leads to

int discount (int inputVal, int quantity, int yearToDate) {

int result = inputVal;

if (inputVal > 50) result -= 2;

if (quantity > 100) result -= 1;

if (yearToDate > 10000) result -= 4;

return result;

}

You can enforce this convention with the final keyword.

int discount (final int inputVal, final int quantity, final int yearToDate) {

int result = inputVal;

if (inputVal > 50) result -= 2;

if (quantity > 100) result -= 1;

if (yearToDate > 10000) result -= 4;

return result;

}

I’ll admit I don’t use final much, as I don’t find it helps much with clarity for short methods. I would use it with a long method, to help me see if anything was changing the parameter.

Note: Pass by Value in Java
This issue is often a source of confusion in Java. Strictly Java uses pass by value in all places. Thus the program

class Param {

public static void main(String[] args) {

int x = 5;

triple(x);

System.out.println ("x after foo: " + x);

}

private static void triple(int arg) {

arg = arg * 3;

System.out.println ("arg in foo: " + arg);

}

}

Produces this output

arg in triple: 15

x after triple: 5

The confusion exists with objects. Say we use a date, then this program

class Param {

public static void main(String[] args) {

Date d1 = new Date ("1 Apr 98");

nextDateUpdate(d1);

System.out.println ("d1 after nextDay: " + d1);

Date d2 = new Date ("1 Apr 98");

nextDateReplace(d2);

System.out.println ("d2 after nextDay: " + d2);

}

private static void nextDateUpdate (Date arg) {

arg.setDate(arg.getDate() + 1);

System.out.println ("arg in nextDay: " + arg);

}

private static void nextDateReplace (Date arg) {

arg = new Date (arg.getYear(), arg.getMonth(), arg.getDate() + 1);

System.out.println ("arg in nextDay: " + arg);

}

}

Produces this output

arg in nextDay: Thu Apr 02 00:00:00 EST 1998

d1 after nextDay: Thu Apr 02 00:00:00 EST 1998

arg in nextDay: Thu Apr 02 00:00:00 EST 1998

d2 after nextDay: Wed Apr 01 00:00:00 EST 1998

Essentially it is the object reference that is passed by value, allowing you to modify the object, but not taking into account the reassigning of the parameter.

Java 1.1 allows you to mark a parameter as final, this prevents assignment to the variable. It does still allow you to modify the object that variable refers to.

Note: Using Pass by Reference

Many languages allow pass by reference. In this case any assignment in the funciton body is reflected in the calling program. Often languages use special keywords, such as VAR in Pascal, to signal this. C uses pass by value only, but programmer frequenty get pass by reference semantics by passing in pointers (which you cannot do with Java).

Objects help you to reduce parameter lists, they also help you to reduce what you need to return. Here’s some of my advice on parameter passing when pass by reference is allowed

· Signal clearly those parameters that are carrying output back to the caller

· Try to use a single return value rather than parameters

· Use exceptions to report errors, rather than returning an error code

· Return codes singalling errors are a common C idiom, but the exception handling in modern languages is a much better mechanism.

· Replace data clumps with objects and preserver whole objects to reduce the number of values that need to be returned.

· Consider splitting the method into different methods for each value you are returning.

Remove Control Flag

You have a control flag that is acting as a control flag for a series of boolean expression.

Use a break or return instead

Motivation

When you have a series of conditional expressions, you often see a control flag used to determine when to stop looking.

set done to false

while not done

if (condition)

do something

set done to true

next step of loop

Such control flags are more trouble than they are worth. They come from the rules of structured programming that call for routines with one entry and one exit point. I agree with (and modern languages enforce) one entry point, but the one exit point rule leads you to very convoluted conditionals with these awkward flags in the code. This is why modern languages often have the break and continue statements to get out of a complex conditional. It is often surprising what you can do when you get rid of a control flag, the real purpose of the conditional becomes so much more clear.

Mechanics

The obvious way to deal with this is using the break or continue statements present in Java.

· Find the value of the control flag that get’s you out of the logic statement

· Replace assignments of the break out value with a break or continue statement

· Break is used to end processing in that code fragment, continue is used to take another trip round a loop.

· Compile and test after each replacement

Another possibility, usable in languages without break and continue

· Extract the logic into a method

· Find the value of the control flag that get’s you out of the logic statement

· Replace assignments of the break out value with a return

· Compile and test after each replacement

Indeed even in languages with a break or continue, I quite like the use of a extraction and the use of return. Often if you have that kind of code, you need to extract that piece anyway.

Keep an eye on whether the control flag also indicates some result information. If so you still need it if you use the break, or you can return the value if you have extracted a method.

Example

The following function checks to see if a list of people contains a couple of hard coded suspicious characters.

void checkSecurity(String[] people) {

boolean found = false;

for (int i = 0; i < people.length; i++) {

if (! found) {

if (people[i].equals ("Don")){

sendAlert();

found = true;

}

if (people[i].equals ("John")){

sendAlert();

found = true;

}

}

}

}

In a case like this it is easy to see the control flag, it’s the piece that sets the found variable to true. I can introduce the breaks one at a time

void checkSecurity(String[] people) {

boolean found = false;

for (int i = 0; i < people.length; i++) {

if (! found) {

if (people[i].equals ("Don")){

sendAlert();

break;

}

if (people[i].equals ("John")){

sendAlert();

found = true;

}

}

}

}

Until I have them all.

void checkSecurity(String[] people) {

boolean found = false;

for (int i = 0; i < people.length; i++) {

if (! found) {

if (people[i].equals ("Don")){

sendAlert();

break;

}

if (people[i].equals ("John")){

sendAlert();

break;

}

}

}

}

Then I can remove all references to the control flag

void checkSecurity(String[] people) {

for (int i = 0; i < people.length; i++) {

if (people[i].equals ("Don")){

sendAlert();

break;

}

if (people[i].equals ("John")){

sendAlert();

break;

}

}

}

Sometimes logic like this also uses a result.

void checkSecurity(String[] people) {

String found = "";

for (int i = 0; i < people.length; i++) {

if (found.equals("")) {

if (people[i].equals ("Don")){

sendAlert();

found = "Don";

}

if (people[i].equals ("John")){

sendAlert();

found = "John";

}

}

}

someLaterCode(found);

}

Here found is doing two things, it is both indicating a result and acting as a control flag. When I see this I like to extract the code that is determining found into its own method.

void checkSecurity(String[] people) {

String found = foundMiscreant(people);

someLaterCode(found);

}

String foundMiscreant(String[] people){

String found = "";

for (int i = 0; i < people.length; i++) {

if (found.equals("")) {

if (people[i].equals ("Don")){

sendAlert();

found = "Don";

}

if (people[i].equals ("John")){

sendAlert();

found = "John";

}

}

}

return found;

}

Then I can replace the control flag with a return.

String foundMiscreant(String[] people){

String found = "";

for (int i = 0; i < people.length; i++) {

if (found.equals("")) {

if (people[i].equals ("Don")){

sendAlert();

return "Don";

}

if (people[i].equals ("John")){

sendAlert();

found = "John";

}

}

}

return found;

}

Until I have removed the control flag.

String foundMiscreant(String[] people){

for (int i = 0; i < people.length; i++) {

if (people[i].equals ("Don")){

sendAlert();

return "Don";

}

if (people[i].equals ("John")){

sendAlert();

return "John";

}

}

return "";

}

Of course this has the problem of a function with side-effects. So I want to separate the query from the modifier. You’ll find this example continued there….

Remove Setting Method

A field should be set at creation time and never altered

Remove any Getting Method for that field

Motivation

Providing a Setting Method indicates that that field may be changed. If you don’t want that field to change once the object is created then don’t provide a setting method. That way not just is your intention clearer, you will also often remove the very possibility of it happening.

This situation often occurs with people who blindly use Indirect Variable Access. Such people then use Setting Methods even in a constructor. I guess there is an argument for consistency, but not compared to the confusion that that the Setting Method will cause later on.

Mechanics

· Check that the setting method is only called in the constructor, or in a method called by the constructor.

· Modify the constructor to access the variables directly.

· You cannot do this if you are a subclass setting a superclass’s private fields. In this case you should try to provide a protected superclass method (ideally a constructor) to set these values.

Example

A simple example of this is

class Account {

private String _id;

Account (String id) {

setId(id);

}

void setId (String arg) {

_id = arg;

}

Which can be replaced with

class Account {

private String _id;

Account (String id) {

_id = id;

}

The problems come in some variations. First there is the case where you are doing some computation on the argument.

class Account {

private String _id;

Account (String id) {

setId(id);

}

void setId (String arg) {

_id = "ZZ" + arg;

}

If the change is simple (as here) and there is only one constructor, then you could do it in the constructor. But if it is complex or you need to call it from separate methods, then you really do need to provide a method. In that case you need to name the method to make it’s intention clear.

class Account {

private String _id;

Account (String id) {

initializeId(id);

}

void initializeId (String arg) {

_id = "ZZ" + arg;

}

If you are worried about the method being called at a later time, you can provide some further control values to enforce the non-update rule.

class Account {

private boolean _isCreated = false;

Account (String id) {

initializeId(id);

_isCreated = true;

}

void initializeId (String arg) {

if (_isCreated) throw new RuntimeException("Account ID cannot be changed");

_id = "ZZ" + arg;

}

Of course this does not stop a malicious programmer first changing _isCreated to false before changing the id. I am guarding against human error. By making it difficult to make a mistake, you reduce the chances of making one.

The other awkward case lies with subclasses initializing private superclass variables.

class InterestAccount extends Account…

private double _interestRate;

InterestAccount (String id, double rate) {

setId(id);

_interestRate = rate;

}

The problem is that you cannot access the id directly to set it. The best solution is to use a superclass constructor.

class InterestAccount …

InterestAccount (String id, double rate) {

super(id);

_interestRate = rate;

}

If that is not possible, then a well named method is the best thing to do.

class InterestAccount …

InterestAccount (String id, double rate) {

initializeId(id);

_interestRate = rate;

}

Replace Case Statement with Inheritance

You have a case statement that switches on a type code

Move each leg of the case statement to a subclass

Motivation

One of the most obvious symptoms of object-oriented code is its lack of case statements, especially those that depend on some kind of enumerated type code. Such statements look like this

switch (enum)

case value1:

doSomething1;

case value2:

doSomething2;

case value3:

doSomething2;

or this

if (var == value1) doSomething1;

else if (var == value2) doSomething2;

else if (var == value3) doSomething2;

You can replace these statements by subclasses and polymorphism. Such a replacement gives you many advantages. The biggest gain occurs when this same case statement appears in many places in the program. If you want to add a new case you have to find and update all the case statements. But with subclasses you just create a new subclass and provide the appropriate methods. Clients of the class don’t need to know about the subclasses, which reduces the dependencies in your system, making it easier to update.

Mechanics

The first step here is to create the necessary inheritance structure. If you have several case statements switching on the same type code you only need to create on inheritance structure for that type code. To do this you have two options: straight subclassing or using the state pattern. The vanilla subclassing is the simplest and so you should use it if you can. If you update the type code after the object is created, however, you cannot use subclassing and have to use the state pattern instead. You also need to use the state pattern if you are already subclassing this class for some other reason.

I’ve described these refactorings under replace type code with subclasses (page 58) and replace type code with state pattern (page 56).

With that done you have the appropriate inheritance hierarchy set up. You can now attack the case statement.

· If the case statement is one part of a larger method then take the case statement part and extract it into a method
· Move the case statement method into the class that is being subclassed.

· Pick one of the subclasses. Create a subclass method that overrides the case statement method. Copy the body of that leg of the case statement into the subclass method, and adjust it to fit.

· You may need to make some private members of the superclass protected in order to do this.

· Compile and test

· You may find it useful to test. Then if all is fine introduce a deliberate error into the subclass method, retest and check that the test blows up. This checks that the subclass code executed properly.

· Remove that leg of the case statement, compile and test.

· Repeat with each leg of the case statement until all legs are turned into subclass methods.

· Make the superclass method abstract

Example

I’ll use the tedious and simplistic employee pay example. I’m using the classes after the use of the state pattern.

class Employee…

int payAmount() {

switch (getType()) {

case EmployeeType.ENGINEER:

return _monthlySalary;

case EmployeeType.SALESMAN:

return _monthlySalary + _commission;

case EmployeeType.MANAGER:

return _monthlySalary + _bonus;

default:

throw new RuntimeException("Incorrect Employee");

}

}

int getType() {

return _type.getTypeCode();

}

private EmployeeType _type;

abstract class EmployeeType…

abstract int getTypeCode();

class Engineer…

int getTypeCode() {

return Employee.ENGINEER;

}

… and other subclasses

The case statement is already nicely extracted, so there is nothing to do there. I do need to move it into the employee type, as that is the class that is being subclassed.

int payAmount(Employee emp) {

switch (getTypeCode()) {

case ENGINEER:

return emp.getMonthlySalary();

case SALESMAN:

return emp.getMonthlySalary() + emp.getCommission();

case MANAGER:

return emp.getMonthlySalary() + emp.getBonus();

default:

throw new RuntimeException("Incorrect Employee");

}

}

Since I need data from the employee, I need to pass in the employee as an argument. Some of this data might be moved to the employee type object, but that is an issue for another refactoring.

When this compiles I change the payAmount method in employee to delegate to the new class.

int payAmount() {

return _type.payAmount(this);

}

Now I can go to work on the case statement. It’s rather like the way small boys kill insects – I remove one leg at a time. First I copy the engineer leg of the case statement onto the engineer class.

class Engineer…

int payAmount(Employee emp) {

return emp.getMonthlySalary();

}

This new method will override the whole case statement for engineers. If you want to be sure of that you can put in a trap in the case statement.

int payAmount(Employee emp) {

switch (getTypeCode()) {

case ENGINEER:

throw new RuntimeException ("Should be being overridden");

case SALESMAN:

return emp.getMonthlySalary() + emp.getCommission();

case MANAGER:

return emp.getMonthlySalary() + emp.getBonus();

default:

throw new RuntimeException("Incorrect Employee");

}

}

Carry on until all the legs are removed.

class Salesman…

int payAmount(Employee emp) {

return emp.getMonthlySalary() + emp.getCommission();

}

class Manager…

int payAmount(Employee emp) {

return emp.getMonthlySalary() + emp.getBonus();

}

And then declare the superclass method as abstract.

abstract int payAmount(Employee emp);

Replace Constructor with Factory Method

You want to create one of various subclasses depending on a parameter

Replace the constructor with a factory method

Motivation

The most obvious motivation for this comes with replacing a type code with subclassing. You have an object that is often created with a type code, but now needs subclasses. The exact subclass is determined based on the type code. Unfortunately constructors in Java (and C++) can only return an instance of the object that is asked for. (In Smalltalk you can return anything.) So you need to replace the constructor with a factory method [Gang of Four].

Mechanics

· Create a factory method. Name it newClassName. Make it’s body a call to the current constructor.

· Replace all calls to the constructor with calls to the factory method

· Compile and test after each replacement.

· Declare the constructor as private

· Compile

Example

I’ll quickly use the wearisome and labored employee example. Currently we have the following employee

class Employee {

private int _type;

static final int ENGINEER = 0;

static final int SALESMAN = 1;

static final int MANAGER = 2;

Employee (int type) {

_type = type;

}

I want to make subclasses of employee corresponding to the type codes. So I need to create a factory method.

Employee newEmployee(int type) {

return new Employee(type);

}

I then change all callers of the constructor to use this new method, and make the constructor private.

private Employee (int type) {

_type = type;

}

I can then play around with the factory method to our heart’s delight. See replace type code with subclasses (page 58) for examples.

Replace Data Clump with an Object

You have several values that hand around together

Turn them into an object

Motivation

The essence of objects is grouping together related data and the behavior that goes with that group of data. A good way to find objects in an existing program is to look for clumps of data which often occur together. They show up most often in parameter lists, where you see the same items again and again. They also show up as fields where again you see them again and again.

It is worthwhile to turn them into objects just to group the data together. This is useful because it reduces the size of the parameter lists, and long parameter lists are hard to understand. The defined accessors on the new object also make the code more consistent – which again makes it easier to understand and modify.

You get a deeper benefit, however, because once you have clumped together the data, you will soon see behavior that you can also move into the new class. By moving behavior in this way you can remove a lot of duplicated code.

Mechanics

· Define a class for the clump of data. For each data item in the clump add a field and the relevant accessors

· Compile

· Pick a place where the clump is used.

· The clump need not use all the data items. There is no loss in using the new object when you only use a subset of the information in it

· Often it is best to start with the fields in one class, and work on method parameters later.

· Add the new object to the clump.

· Either add it to the parameter list, or add a field for the clump into the class.

· For each data item in the clump remove the data item and replace references to that data item with references to the new object’s accessor

· See Preserve Whole Object for more information.

· Compile and test after each data object is moved.

· Pick another place where the clump is used and replace that.

· Look for any behavior that uses several items from the clump. Consider moving that behavior to the clump.

· This may be a whole method, or part of a method. If it is part of a method, extract that part first and then move the new method over.

Example

Here’s an example of one of the most common data clumps I come across.

class HeatingPlan {

boolean withinRange (int temp) {

return temp >= _low && temp <= _high;

}

boolean withinRange (int low, int high) {

return low >= _low && high <= _high;

}

HeatingPlan (int low, int high) {

_low = low;

_high = high;

}

private int _high;

private int _low;

}

I don’t know how many times I come across pairs of values that show a range: start and end dates, upper and lower numbers. I can understand why this happens, after all I did it all the time myself. But since I saw the Range pattern [Fowler, AP] I always try to use ranges instead. My first step would be to declare a simple data holder for the range.

class IntRange {

IntRange (int low, int high) {

_low = low;

_high = high;

}

int getLow() {

return _low;

}

int getHigh() {

return _high;

}

private int _low, _high;

}

I then introduce the new object into the heating plan

class HeatingPlan {

boolean withinRange (int temp) {

return temp >= _low && temp <= _high;

}

boolean withinRange (int low, int high) {

return low >= _low && high <= _high;

}

HeatingPlan (int low, int high) {

_low = low;

_high = high;

}

private int _high;

private int _low;

private IntRange _range;

}

I then replace one of the data items in the clump with the new object.

class HeatingPlan {

boolean withinRange (int temp) {

return temp >= _range.getLow() && temp <= _high;

}

boolean withinRange (int low, int high) {

return low >= _range.getLow() && high <= _high;

}

HeatingPlan (int low, int high) {

_range = new IntRange (low, high);

_high = high;

}

private int _high;

private IntRange _range;

}

I compile and test after I replace each data item, at least initially. Once I get used to things I speed up, but if ever I hit a bug I back up and do them one at a time. I continue until I’ve done them all.

class HeatingPlan {

boolean withinRange (int temp) {

return temp >= _range.getLow() && temp <= _range.getHigh();

}

boolean withinRange (int low, int high) {

return low >= _range.getLow() && high <= _range.getHigh();

}

HeatingPlan (int low, int high) {

_range = new IntRange (low, high);

}

private IntRange _range;

}

Then I’ll do the same for each method that uses the clump.

class HeatingPlan {

boolean withinRange (int temp) {

return temp >= _range.getLow() && temp <= _range.getHigh();

}

boolean withinRange (IntRange roomRange) {

return roomRange.getLow() >= _range.getLow() && roomRange.getHigh() <= _range.getHigh();

}

HeatingPlan (int low, int high) {

_range = new IntRange (low, high);

}

private IntRange _range;

}

As I see common behaviors on the new range object, I can see things that could be moved to range.

class HeatingPlan …

boolean withinRange (int temp) {

return _range.includes(temp);

}

boolean withinRange (IntRange roomRange) {

return _range.includes(roomRange);

}

class IntRange…

boolean includes (IntRange arg) {

return arg.getLow() >= this.getLow() && arg.getHigh() <= this.getHigh();

}

boolean includes (int arg) {

return arg >= this.getLow() && arg <= this.getHigh();

}

Replace Inheritance with Delegation

You have implemented a class with inheritance, and now regret it

Create a field for the superclass, adjust methods to delegate to the superclass, remove the subclassing

Motivation

Inheritance is a wonderful thing, but sometimes it isn’t what you want. Often you start inheriting from a class, but then find that many of the superclass operations aren’t really true of the subclass. In this case you have an interface that’s not a true reflection of what the class does. Or you may find that you are inheriting a whole load of data which is not appropriate for the subclass. Or you may find that there are protected superclass methods that don’t make much sense with the subclass.

You can live with it and just use convention to say that although it is a subclass, it’s only using part of the superclass function. But that results the code saying one thing and your intention being something else, the essential confusion that you should remove.

By using delegation instead, you make it clear that you are making only partial use of the delegated class. You control what aspects of the interface to take, and what to ignore. The cost is extra delegating methods that are boring to write, but are too simple to go wrong.

Mechanics

· Create a field in the subclass that refers to an instance of the superclass. Initialize it to this.

· For each method defined in the subclass, change it to use the delegate field. Compile and test after changing each method.

· For each superclass method used by a client, add a simple delegating method. Compile and test after each one.

· If any of the superclass methods are final, you cannot override them until you break the subclass link. Leave them till last and do them all together.

· Remove the subclass declaration and replace the delegate assignment with an assignment to a new object.

Example

One of the classic examples of inappropriate inheritance is making a stack a subclass of vector. Of course java does this in its utilities (naughty boys!) but in this case I’ll use a simplified form of stack.

class MyStack extends Vector {

 public void push(Object element) {

 insertElementAt(element,0);

 }

 public Object pop() {

 Object result = firstElement();

 removeElementAt(0);

 return result;

 }

}

Looking at the users of the class I realize that clients only do four things with stack: push, pop, size, and isEmpty. The latter two are inherited from Vector.

I begin the delegation by creating a field for the delegated vector. I link this to myself, so that I can mix delegation and inheritance.

private Vector _vector = this;

Now I start replacing methods to get them to use the delegation. I begin with push.

public void push(Object element) {

 _vector.insertElementAt(element,0);

 }

I can compile and test here, everything will still work. Now pop.

public Object pop() {

 Object result = _vector.firstElement();

 _vector.removeElementAt(0);

 return result;

 }

Once I’ve done the subclass methods, I now need to add delegating methods for those superclass methods that are used by clients.

public int size() {

 return _vector.size();

 }

 public boolean isEmpty() {

 return _vector.isEmpty();

 }

I’d like to test them at this point. Sadly I can’t because these methods are declared as final in Vector and can’t be overridden. So I have to replace them all at once and then remove the extends clause to break the subclassing. When I do this I change the delgator field to a new vector.

class MyStack extends Vector

private Vector _vector = new Vector();

Now I can compile and test. If I forgot to add a delegating method, the compilation will tell me.

Replace Magic Number with Constant

You have a quoted number with a particular meaning

Create a constant, name it after the meaning, and replace the number with it.

Motivation

Magic numbers are one of oldest ills in computing. They are numbers with special values, that are usually not obvious. They are really nasty when you need to reference the same logical number in more than one place. If the numbers might ever change, then making the change is a nightmare. Even if you don’t make a change, you have the difficulty of figuring out what to do.

Many languages allow you to declare a constant. There is no cost in performance and a great improvement in readability.

Mechanics

· Declare a constant and set it to the value of the magic number.

· Find all occurances of the magic number

· See if it matches the usage of the constant, if so change it to use the constant

· Compile

· When all are changed compile and test, at this point all should work as nothing has been changed.

· To check you have made the correct substitution, change the value of the constant to some other value, compile and test. If all works the constant is correctly used.

· You won’t be able to carry out this test if you are calling some other code that requires the value of the constant to be a particular value.

· If the test fails recheck all uses of the constant, and all uses of the magic number that were not substutiuted for the constant. Each time you change the usage change the declared value of the constant and rerun until you have made all the changes.

Replace Method with Method Object

Motivation

In this book I’ve stressed the beauty of small methods. By extracting pieces out of a large method you make things much more comprehensible.

The difficulty in decomposing a method lies in local variables. If they are too rampant it can be difficult to do the decomposition. Replacing temps with queries helps to reduce this burden, but occasionally you may find you cannot break down a method that needs breaking. In this case you reach deep into the tool bag and get out your method object [Beck].

Mechanics

(Stolen shamelessly from [Beck])

· Create a new class, name it after the method

· Give the new class a field for object that hosted the original method (the source object), and a field for each temporary variable and each parameter in the method.

· Give the new class a constructor that takes the source object and each parameter

· Give the new class a method named “compute”

· Copy the body of the original method into compute. Use the source object field for any invocations of methods on the original object.

· Compile

· Replace the old method with one that creates the new object and calls compute.

Now comes the fun part. Since all the local variables are now fields, you can freely decompose the method without having to pass any parameters.

Example

A proper example of this requires a long chapter, so I’ll show this refactoring for a method that doesn’t need it. (Don’t ask what the logic of this method is, I made it up as I went along.)

Class Account

int gamma (int inputVal, int quantity, int yearToDate) {

int importantValue1 = (inputVal * quantity) + 50;

int importantValue2 = (inputVal * yearToDate) + 100;

if ((yearToDate - importantValue1) > 100)

importantValue2 -= 20;

int importantValue3 = importantValue2 * 7;

// and so on.

return importantValue3 - 2 * importantValue1;

}

To turn this into a method object, I begin by declaring a new class. I provide a field for the original object, for each parameter, and for each temporary variable in the method.

class Gamma …

private Account _account;

private int inputVal;

private int quantity;

private int yearToDate;

private int importantValue1;

private int importantValue2;

private int importantValue3;

I add a constructor

Gamma (Account source, int inputValArg, int quantityArg, int yearToDateArg) {

_account = source;

inputVal = inputValArg;

quantity = quantityArg;

yearToDate = yearToDateArg;

}

Now I can move the original method over. I need to modify any calls of features of account to use the _account field

int compute () {

importantValue1 = (inputVal * quantity) + _account.delta();

importantValue2 = (inputVal * yearToDate) + 100;

if ((yearToDate - importantValue1) > 100)

importantValue2 -= 20;

int importantValue3 = importantValue2 * 7;

// and so on.

return importantValue3 - 2 * importantValue1;

}

I then modify the old method to delegate to the method object.

int gamma (int inputVal, int quantity, int yearToDate) {

Gamma method = new Gamma (this, inputVal, quantity, yearToDate);

return method.compute();

}

That’s the essential refactoring. The benefit is that I can now easily do decompositions of the compute method, without ever worrying about argument passing.

int compute () {

importantValue1 = (inputVal * quantity) + _account.delta();

importantValue2 = (inputVal * yearToDate) + 100;

importantThing();

int importantValue3 = importantValue2 * 7;

// and so on.

return importantValue3 - 2 * importantValue1;

}

void importantThing() {

if ((yearToDate - importantValue1) > 100)

importantValue2 -= 20;

}

Replace Nested Conditional with Guard Clauses

A method has conditional behavior that does not make clear what the normal path of execution is

Use Guard Clauses for all the special cases

Motivation

I often find that conditional expressions come in two forms. The first form is a check whether either course is part of the normal behavior, the second case is where one answer from the conditional indicates normal behavior and the other indicates an usual error condition.

Imagine a run of a payroll system where the rule is that you cannot pay employees that are dead, sick, or retired. Furthermore earlier processing should have removed all such employees from those you are considering, but you are aware that an occasional incorrect employee slips in. So you still have to go through the checks.

If you write the code like this

Money payAmount() {

Money result;

If (dead()) result = deadAmount()

else {

If (sick()) result = sickAmount()

else {

If (retired()) result = retiredAmount()

else result = normalPayAmount()

};

}

return result;

};

Then the checking is masking the normal course of action behind the checking. So instead it is clearer to use Guard Clauses [Beck].

Money payAmount() {

If (dead()) return deadAmount();

If (sick()) return sickAmount();

If (retired()) return retiredAmount();

Return doPay();

}

The important point about this example is the phrase “earlier processing should have removed all such employees”. If this was the routine that was primarily responsible for the checking then I would be less inclined to do this refactoring. The key point about this refactoring is one of emphasis. If you are using and if-then-else construct you are giving equal weight to the if leg and the else leg. This communicates to the reader that they are equally likely and important. Instead the guard clause says “this is rare, and if it happens just get out”.

I often find I use this refactoring when I’m working with a programmer who has been taught to have only one entry and one exit point from a method. One entry point is enforced by modern languages, and one exit point is really not a useful rule. Clarity is the key principle: if it is clearer with one exit point then use one exit point, otherwise don’t.

Mechanics

· For each check put the guard clause in.

· The guard clause will either return, or throw an exception.

· Compile and test after each check is replaced with a guard clause.

· If all the guard clauses yield the same result then Consolidate the Conditional Expressions.

Replace Parameter with Method

An object computes a value then passes it as a parameter for a method. The receiver could also carry out this calculation.

Define a method to get the parameter object and replace references to the parameter with the new method

Motivation

If a method can get a value that is passed in as parameter by another means, then it should. Long parameter lists are difficult to understand, and we should reduce them as much as possible.

One way of doing this is to look to see if the receiving method could make the same calculation. If you are calling a method on the same object, and the calculation for the parameter does not reference any of the parameters of the calling method, then you should be able to remove the parameter by turning the calculation into its own method. This is also true if you are calling a method on an object that has a reference to the calling object.

You can’t do this if the calcuation of the parameter relies on a parameter of the calling method, since that parameter may change with each call. (Unless, of course, that parameter can be replaced with a method.) You also can’t do it if the receiver does not have a reference to the sender, and you don’t want to give it one.

In some cases the parameter may be there for a future parameterizsation of the method. In this case I would still get rid of it. Deal with the parameterization when you need it, you may well find out that you don’t have the right parameter anyway. I would only make an exception to this rule when the resulting interface change would have painful consequences around the whole program, such as a long build or changing a lot of embedded code. If this worries you look into how painful such a change would really be. You should also look to see if you can reduce the dependencies that cause the change to be so painful. Stable interfaces are good, but freezing a poor interface is a problem.

Mechanics

· Extract the calculation of the parameter into a method

· Replace references to the parameter in method bodies with references to the method.

· Compile and test after each replacement

· Remove the parameter from method calls and declarations

· Compile and test.

Example

We’ll start with yet another unlikely variation on discounting orders

public double getPrice() {

int basePrice = _quantity * _itemPrice;

int discountLevel;

if (_quantity > 100) discountLevel = 2;

else discountLevel = 1;

double finalPrice = discountedPrice (basePrice, discountLevel);

return finalPrice;

}

private double discountedPrice (int basePrice, int discountLevel) {

if (discountLevel == 2) return basePrice * 0.1;

else return basePrice * 0.05;

}

I can begin by extracting the calculation of the discount level.

public double getPrice() {

int basePrice = _quantity * _itemPrice;

int discountLevel = getDiscountLevel();

double finalPrice = discountedPrice (basePrice, discountLevel);

return finalPrice;

}

private int getDiscountLevel() {

if (_quantity > 100) return 2;

else return 1;

}

Then replace references to the parameter in discountedPrice.

private double discountedPrice (int basePrice, int discountLevel) {

if (getDiscountLevel() == 2) return basePrice * 0.1;

else return basePrice * 0.05;

}

Then I can get rid of the parameter.

public double getPrice() {

int basePrice = _quantity * _itemPrice;

int discountLevel = getDiscountLevel();

double finalPrice = discountedPrice (basePrice);

return finalPrice;

}

private double discountedPrice (int basePrice) {

if (getDiscountLevel() == 2) return basePrice * 0.1;

else return basePrice * 0.05;

}

Of course I can now get rid of the temp, not to mention the other parameter and it’s temp. Then I am left with.

public double getPrice() {

return discountedPrice ();

}

private double discountedPrice () {

if (getDiscountLevel() == 2) return getBasePrice() * 0.1;

else return getBasePrice() * 0.05;

}

private double getBasePrice() {

return _quantity * _itemPrice;

}

So I might as well inline discountedPrice

private double getPrice () {

if (getDiscountLevel() == 2) return getBasePrice() * 0.1;

else return getBasePrice() * 0.05;

}

Replace Program With Class

You have a program in a traditional programming environment. How do you begin to make this object oriented?

Make a class for the program.

Motivation

In the ideal world of software engineering textbooks, we always start from a blank sheet of paper. In the real world, of course, there are legacy systems. They get involved in various ways, the way I’m thinking about here is when we are replacing some part of a legacy system. In this case we may want to take parts of the legacy system, such as particular algorithms, and duplicate them in a new system.

Can refactoring help us with this task? So far the evidence is limited. Certainly you can take a procedural algorithm, recode it in an OO language in a simple minded way, and then refactor it into good shape. The question is whether this is quicker than starting from scratch. The biggest limitation is when the legacy algorithm uses a lot of global data that needs to be simulated somehow in the object world. Often the hardest part of this effort is just getting the simple recoded version to work – debugging these things is tough.

Mechanics

· Make a class for the program that you want to move. Make each procedure a method of that class

· Make global variables fields of that class

· Replace records with classes

· Treat the class as a singleton

· That way it is easier to reinitialize the class during testing.

Replace Record With Data Class

You have a record structure in a traditional programming environment. How do you begin to make this object oriented?

Make a dumb data object for the record.

Motivation

Record structures a are common feature of programming environments. There are various reasons you may want to bring them into an object-oriented program. You could be copying a legacy program as in replace program with class (page 53), you could be communicating a stuctured record with a traditional progamming api, or a data base record. In these cases it is useful to create an interfacing class to deal with this external element. It is simplest to make the class look just like the external record. You then move other fields and methods into the class later.

Mechanics

· Create a class to represent the record

· Give the class a private field with a getting method and a setting method for each data item.

You now have a dumb data object, it has no behavior yet, but further refactoring will explore that issue.

Replace Temp with Query

You are using a temporary variable to hold the result of an expression.

Extract the expression into a method. Replace all references to the temp with a reference to the new method.

Motivation

The problem with temps is that they are temporary and local. Since they can only be seen in the context of the method they are used, they tend to encourage longer methods, since that's the only place you can reach the temp. By replacing the temp with a query any method in the class can get at that information. That helps a lot in coming up with cleaner code in the class.

This is often a vital step in decomposing a method (page 12). Local variables make it difficult to decompose, so replace as many as you can with temps.

The kind of temps you can clean up this way are those that are only assigned to once, and where the expression that generates the assignment is free of side effects.

Mechanics

· Look for a temporary variable that is set once with an assignment.

· If a temp is not set once consider Splitting the Temporarys Variable.

· Extract the right hand side of the assignment into a method.

· Initially mark the method as private. You may find more use for it later, but you can relax the protection easily later.

· Ensure the extracted method is free of side effects. If not you should separate the query from the modifier (page 62).

· Compile and test

· Find all references to the temp and replace them with a call to the new method.

· Compile and test after each change.

· Remove the declaration and the assignment of the temp.

· Compile and test.

Temps are often used to store summary information in loops. The whole loop can be extracted into a method, in Java or C++ this removes several lines of noisy code. Sometimes a loop may be used to sum up mulitple values. In this duplicate the loop for each temp so that you can replace each temp with a query. The loop should be very simple, so there is little danger in duplicating the code. You may be concerned about performance with this case. Don't be concerned with performance when refactoring. If you find the loop to be a performance problem when you profile, then do something to fix it. You may end up with something one loop summing multiple values. So be it, you trade design clarity for performance. That is a good trade-off if (and only if) it solves a genuine performance problem.

Example

You have a simple method.

double getPrice() {

int basePrice = _quantity * _itemPrice;

double discountFactor;

if (basePrice > 1000) discountFactor = 0.95;

else discountFactor = 0.98;

return basePrice * discountFactor;

}

I’d be inclined to remove both temps. First I’d extract one of them

double getPrice() {

int basePrice = basePrice();

double discountFactor;

if (basePrice > 1000) discountFactor = 0.95;

else discountFactor = 0.98;

return basePrice * discountFactor;

}

private int basePrice() {

return _quantity * _itemPrice;

}

Then replace the first reference to the temp.

double getPrice() {

int basePrice = basePrice();

double discountFactor;

if (basePrice() > 1000) discountFactor = 0.95;

else discountFactor = 0.98;

return basePrice * discountFactor;

}

And the next. As it’s the last I’d also remove the temp declaration.

double getPrice() {

double discountFactor;

if (basePrice() > 1000) discountFactor = 0.95;

else discountFactor = 0.98;

return basePrice() * discountFactor;

}

With that gone I can extract discountFactor in a similar way.

double getPrice() {

double discountFactor = discountFactor();

return basePrice() * discountFactor;

}

private double discountFactor() {

if (basePrice() > 1000) return 0.95;

else return 0.98;

}

See how it would have been difficult to extract discountFactor if I had not repalced basePrice with a query. The getPrice method ends up like.

double getPrice() {

return basePrice() * discountFactor();

}

Replace Type Code with State/Strategy

You have a type code which affects the behavior of a class. The class is already subclassed or the type code is mutable.

Replace it with a state object.

Motivation

This is similar to replacing a type code with subclassing, but can be used if the type code changes during the life of the object, or if some other reason prevents subclassing. It uses either the state or strategy pattern [Gang of Four].

State and strategy are very similar, so the refactoring is the same whichever you use, and it doesn’t really matter. Choose the pattern based on what fits the specific circumstances better. If you are moving for a single algorithm, then strategy is the better term. If you are going to move state specific data and you think of the object as changing state use the state pattern.

Mechanics

· Self encapsulate the type code.

· Create a new class, name it after the purpose of the type code. This is the state object.

· Create a field in the old class for the new state object.

· Add subclasses of the state object, one for each type code.

· It is easier to do them all at once, rather than one at a time.

· Create an abstract query in the state object to return the type code. Create overriding queries of each state object subclass to return the correct type code.

· Compile

· Adjust the type code query on the original class to delegate to the state object.

· Adjust the type code setting methods on the original class to assign an instance of the appropriate state object subclass.

· Compile and test.

Example

I’ll use the tiresome and brainless employee example.

class Employee {

private int _type;

static final int ENGINEER = 0;

static final int SALESMAN = 1;

static final int MANAGER = 2;

Employee (int type) {

_type = type;

}

int payAmount() {

switch (_type) {

case ENGINEER:

return _monthlySalary;

case SALESMAN:

return _monthlySalary + _commission;

case MANAGER:

return _monthlySalary + _bonus;

default:

throw new RuntimeException("Incorrect Employee");

}

}

I assume this is an exciting and go-ahead company that allows promotion of managers to engineers. Thus the type code is mutable and I can’t use subclassing. My first step, as ever, is to self-encapsulate the type code.

Employee (int type) {

setType (type);

}

int getType() {

return _type;

}

void setType(int arg) {

_type = arg;

}

int payAmount() {

switch (getType()) {

case ENGINEER:

return _monthlySalary;

case SALESMAN:

return _monthlySalary + _commission;

case MANAGER:

return _monthlySalary + _bonus;

default:

throw new RuntimeException("Incorrect Employee");

}

}

Now I declare the state class. I declare this as an abstract class and provide an abstract method for returning the type code.

abstract class EmployeeType {

abstract int getTypeCode();

}

I’ll now create the subclasses.

class Engineer extends EmployeeType {

int getTypeCode () {

return Employee.ENGINEER;

}

}

class Manager extends EmployeeType {

int getTypeCode () {

return Employee.MANAGER;

}

}

class Salesman extends EmployeeType {

int getTypeCode () {

return Employee.SALESMAN;

}

}

I compile so far, and it is all so trivial that, even for me, it compiles easily. Now I actually hook the subclasses into the employee by modifying the accessors for the type code.

class Employee…

private EmployeeType _type;

int getType() {

return _type.getTypeCode();

}

void setType(int arg) {

switch (arg) {

case ENGINEER:

_type = new Engineer();

break;

case SALESMAN:

_type = new Salesman();

break;

case MANAGER:

_type = new Manager();

break;

default:

throw new IllegalArgumentException("Incorrect Employee Code");

}

}

Of course this means we now have a switch statement here. But once we are done refactoring it will be the only one anywhere in the code, and it will only be executed when the type is changed. All the other case statements can now be replaced with inheritance (page 40).

Still I like to finish the job by moving all knowledge of the type codes and subclasses over to the new class. First I copy the type code definitions into the employee type, create a factory method for employee types, and adjust the setting method on employee

class Employee…

void setType(int arg) {

_type = EmployeeType.newType(arg);

}

class EmployeeType…

static EmployeeType newType(int code) {

switch (code) {

case ENGINEER:

return new Engineer();

case SALESMAN:

return new Salesman();

case MANAGER:

return new Manager();

default:

throw new IllegalArgumentException("Incorrect Employee Code");

}

}

static final int ENGINEER = 0;

static final int SALESMAN = 1;

static final int MANAGER = 2;

Then I remove the type code definitions from the employee and replace them with references to the employee type.

class Employee…

int payAmount() {

switch (getType()) {

case EmployeeType.ENGINEER:

return _monthlySalary;

case EmployeeType.SALESMAN:

return _monthlySalary + _commission;

case EmployeeType.MANAGER:

return _monthlySalary + _bonus;

default:

throw new RuntimeException("Incorrect Employee");

}

}

Replace Type Code with Subclasses

You have a type code which affects the behavior of a class

Replace the type code with subclasses

Motivation

This refactoring is a necessary first step in replacing a case statement with inheritance. So see the motivation discussion there.

Mechanics

· Self encapsulate the type code.

· If the type code is passed into the constructor, you will need to replace the constructor with a factory method..

· For each value of the type code create a subclass. Override the getting method of the type code in the subclass to return the relevant value.

· This value will be hard coded into the return (e.g. “return 1). This looks messy but it is a temporary measure until all case statements have been replaced.

· Compile and test after replacing each type code value with a subclass.

· Remove the type code field from the superclass. Declare the accessors for the type code as abstract.

· Compile and test

Example

I will use the boring and unrealistic employee payment example.

class Employee {

private int _type;

static final int ENGINEER = 0;

static final int SALESMAN = 1;

static final int MANAGER = 2;

Employee (int type) {

_type = type;

}

int payAmount() {

switch (_type) {

case ENGINEER:

return _monthlySalary;

case SALESMAN:

return _monthlySalary + _commission;

case MANAGER:

return _monthlySalary + _bonus;

default:

throw new RuntimeException("Incorrect Employee");

}

}

The first step is to self encapsulate the type code.

int getType() {

return _type;

}

int payAmount() {

switch (getType()) {

case ENGINEER:

return _monthlySalary;

case SALESMAN:

return _monthlySalary + _commission;

case MANAGER:

return _monthlySalary + _bonus;

default:

throw new RuntimeException("Incorrect Employee");

}

}

Since the employee’s constructor uses a type code as a parameter, I need to replace it with a factory method.

Employee newEmployee(int type) {

return new Employee(type);

}

private Employee (int type) {

_type = type;

}

I can now start with the engineer as a subclass. First I create the subclass and the overriding method for the type code.

class Engineer extends Employee {

int getType() {

return Employee.ENGINEER;

}

}

I also need to alter the factory method to create the appropriate object.

class Employee

static Employee newEmployee(int type) {

if (type == ENGINEER) return new Engineer();

else return new Employee(type);

}

I continue, one by one, until all the codes are replaced by subclasses. At this point I can get rid of the type code field on employee and make getType an abstract method. At this point the factory method looks like this.

abstract int getType();

static Employee newEmployee(int type) {

switch (type) {

case ENGINEER:

return new Engineer();

case SALESMAN:

return new Salesman();

case MANAGER:

return new Manager();

default:

throw new IllegalArgumentException("Incorrect type code value");

}

}

Of course this is the kind of switch statement we would prefer to avoid. But there is only one of them, and it is only used at creation. There are ways to deal with this too, see the discussion in replace constructor with factory method.

Naturally once you have created the subclasses you should push down appropriate methods and fields.

Self Encapsulate Field

You are using accessing a field directly, but the coupling to the field is becoming awkward.

Create Getting and Setting Methods for the field and use only those to access the field

Motivation

When it comes to accessing fields there are two schools of thought. One is that within the class where the variable is defined, you should access it the variable freely (Direct Variable Access). The other says that even within the class you should always use accessors (Indirect Variable Access). Debates between the two get very heated. I’m always in two minds with it, so I’m usually happy to do what the rest of the team wants to do. Left to myself though I like to use Direct Variable Access as a first resort, until it gets in the way. Once things start becoming awkward I switch to Indirect Variable Access. Refactoring gives you the freedom to change your mind.

The most important time to do this is when you are accessing a field in a superclass, but you want to override this variable access with a computed value in the subclass. Self-encapsulating the field is the first step, after that you can override the Getting and Setting methods as you need to.

Mechanics

· Create a Getting and Setting Method for the field

· Find all references to the field and replace them with a getting or setting method

· For accesses to the field, replace with a call to the getting method, for assignments replace it with a call to the setting method.

· You can’t entirely rely on the compiler in a strongly typed language here, as it is not an error to refer to the field in its own class.

· Make the field private.

· Smalltalk cannot do this (all subclasses can see a superclass variable). Making a field private will allow the compiler to catch any subclass using the field, but the compiler will still not catch references with the field’s class

· Double check you have caught all references

· Compile and Test

Refactory does this with the menu item “abstract” to either a class or an instance variable.

Example

This seems almost too simple for an example, but hey at least it’ll be quick to write.

class IntRange {

private int _low, _high;

boolean includes (int arg) {

return arg >= _low && arg <= _high;

}

void grow(int factor) {

_high = _high * 2;

}

IntRange (int low, int high) {

_low = low;

_high = high;

}

To self encapsulate I define getting and setting methods (if they don’t already exist) and use those.

class IntRange {

boolean includes (int arg) {

return arg >= getLow() && arg <= getHigh();

}

void grow(int factor) {

setHigh (getHigh() * 2);

}

private int _low, _high;

int getLow() {

return _low;

}

int getHigh() {

return _high;

}

void setLow(int arg) {

_low = arg;

}

void setHigh(int arg) {

_high = arg;

}

In cases like this you have to be more careful about using the setting method in the constructor. Often it is assumed that you use the setting method for changes after the object is created, so the setting method has different semantics. So in cases like this I prefer a separate initialization method.

IntRange (int low, int high) {

initialize (low, high);

}

private void initialize (int low, int high) {

_low = low;

_high = high;

}

The value in doing all this comes when you have a subclass.

class CappedRange extends IntRange {

CappedRange (int low, int high, int cap) {

super (low, high);

_cap = cap;

}

private int _cap;

int getCap() {

return _cap;

}

int getHigh() {

return Math.min(super.getHigh(), getCap());

}

}

I can override all of IntRange’s behavior to take into account the cap, without changing any of that behavior.

Separate Query from Modifier

You have a method that returns a value, but also changes the state of an object

Create two methods, one for the query and one for the modification

Motivation

When you have a function that gives you a value, and has no observable side-effects, you have a very valuable thing. You can call this function as often as you like, you can move to other places in the method. In short you have a lot less to worry about.

It is a good idea to clearly signal the difference between methods with side-effects and those without. A good rule to follow is to say that any method that returns a values should not have observable side effects. Some people (such as [Meyer]) treat this as an absolute rule. I’m not 100% pure on this (as on anything), but I try to follow it most of the time, and it has served me well.

So if you come across a method that returns a value but does also have side effects, then you should try to separtate the query from the modifier.

You’ll note I use the phrase observable side effects. A common optimization is to cache the value of a query in a field so that repeated calls go quicker. Although this changes the state of the object with the cache, the change is not observable, in that any sequence of queries will always return the same results for each query. (Again see [Meyer] for more details).

Mechanics

· Create a query that returns the same value as the original method

· Look in the original method to see what is returned. If the returned value is a temporary look at all uses of the temp to see what value is returned.

· Modify the original method so it returns the result of a call to the query.

· That is every return in the original method should say “return newQuery()”, instead of returning anything else.

· If the method used a temp to with a single assignment to capture the return value, you should be able to remove it.

· Compile and test

· For each call, replace the single call to the original method with a call to the query. Add a call to the original method before the line that calls the query. Compile and test and after each change to a calling method

· Make the original method have a void return type and remove the return expressions

Example

Here is a function that tells you the name of a miscreant for a security system and sends an alert. The rule is that only one alert is sent even if there is more than one miscreant.

String foundMiscreant(String[] people){

for (int i = 0; i < people.length; i++) {

if (people[i].equals ("Don")){

sendAlert();

return "Don";

}

if (people[i].equals ("John")){

sendAlert();

return "John";

}

}

return "";

}

It is called by

void checkSecurity(String[] people) {

String found = foundMiscreant(people);

someLaterCode(found);

}

To separate the query from the modifier I first need to create a suitable query that returns the same value as the modifier does, but without doing the side effects.

String foundPerson(String[] people){

for (int i = 0; i < people.length; i++) {

if (people[i].equals ("Don")){

return "Don";

}

if (people[i].equals ("John")){

return "John";

}

}

return "";

}

Then replace every return in the original function, one at a time, with calls to the new query. Test after each replacement. When you are done the original method looks like

String foundMiscreant(String[] people){

for (int i = 0; i < people.length; i++) {

if (people[i].equals ("Don")){

sendAlert();

return foundPerson(people);

}

if (people[i].equals ("John")){

sendAlert();

return foundPerson(people);

}

}

return foundPerson(people);

}

Now I alter all the calling methods to do two calls: first to the modifier, then to the query.

void checkSecurity(String[] people) {

foundMiscreant(people);

String found = foundPerson(people);

someLaterCode(found);

}

Once I have done this for all calls I can alter the modifier to give it a void return type. At this point it seems a good idea

void foundMiscreant (String[] people){

for (int i = 0; i < people.length; i++) {

if (people[i].equals ("Don")){

sendAlert();

return;

}

if (people[i].equals ("John")){

sendAlert();

return;

}

}

}

Now it seems better to change the name of the original

void sendAlert (String[] people){

for (int i = 0; i < people.length; i++) {

if (people[i].equals ("Don")){

sendAlert();

return;

}

if (people[i].equals ("John")){

sendAlert();

return;

}

}

}

Of course in this case I have a lot of code duplication as the modifier uses the query to do its work. I can now do an algorthm substitution on the modifier to take advantage of this.

void sendAlert(String[] people){

if (! foundPerson(people).equals(""))

sendAlert();

}

Split Temporary Variable

You have a temporary variable that assigned to more than once, but is not a Loop Variable nor a Collecting Temporary Variable.

Make a separate temporary variable for each assignment.

Motivation

Temporary variables are made for various uses. Some of these uses naturallylead to the temp being assigned to several times. Loop Variables [Beck] change for each run around a loop. Collecting Temporary Variables [Beck] collect together some value that is built up during the method.

Many other temporaries are used to hold the result of some long-winded bit of code for easy reference later. These kinds of variables should be only set once. If they are set more than once, that is a sign that they have more than one responsibility within the method. Any variable with more than one responsibility should be replaced by a temp for each responsibility. Using a temp for two different things is very confusing for the reader.

Mechanics

· Change the name of temp at it’s declaration and it’s first assignment.

· If the later assignments are of the form ‘i = i + some expression’ then that indicates that it is a Collecting Temporary Variable, so don’t split it. The operator for a Collecting Temporary Variable is usually addition, string concatenation, writing to a stream, or adding to a collection.

· Change all references of the temp up to it’s second assignment.

· Declare the temp at it’s second assignment.

· Compile and test.

· Repeat by stages, each stage renaming at the decaration, and changing references until the next assignment.

Example

For this example I will compute the distance travelled by a haggis. From a standing start a haggis experiences an initial force. After a delayed period a secondary adds to further accelerate the haggis. So using the common laws of motion we can compute the distance traveled as

double getDistanceTravelled (int time) {

double result;

double acc = _primaryForce / _mass;

int primaryTime = Math.min(time, _delay);

result = 0.5 * acc * primaryTime * primaryTime;

int secondaryTime = time - _delay;

if (secondaryTime > 0) {

double primaryVel = acc * _delay;

acc = (_primaryForce + _secondaryForce) / _mass;

result += primaryVel * secondaryTime + 0.5 * acc * secondaryTime * secondaryTime;

}

return result;

}

A nice awkward little function. The interesting thing for our example is the way the variable acc is set twice. It has two responsibilities: one to hold the initial acceleration due to the first force, and then later to hold the acceleration with both forces. This I would like to split. I start at the beginning by changing the name of the temp. Then I change all references to the temp from that point up to the next assignment. At the next assignment I declare it.

double getDistanceTravelled (int time) {

double result;

double primaryAcc = _primaryForce / _mass;

int primaryTime = Math.min(time, _delay);

result = 0.5 * primaryAcc * primaryTime * primaryTime;

int secondaryTime = time - _delay;

if (secondaryTime > 0) {

double primaryVel = primaryAcc * _delay;

double acc = (_primaryForce + _secondaryForce) / _mass;

result += primaryVel * secondaryTime + 0.5 * acc * secondaryTime * secondaryTime;

}

return result;

}

Then I continue, section by section until the original temp is no more.

double getDistanceTravelled (int time) {

double result;

double primaryAcc = _primaryForce / _mass;

int primaryTime = Math.min(time, _delay);

result = 0.5 * primaryAcc * primaryTime * primaryTime;

int secondaryTime = time - _delay;

if (secondaryTime > 0) {

double primaryVel = primaryAcc * _delay;

double secondaryAcc = (_primaryForce + _secondaryForce) / _mass;

result += primaryVel * secondaryTime + 0.5 * secondaryAcc * secondaryTime * secondaryTime;

}

return result;

}

I’m sure you can think of a lot more refactoring to be done here. Enjoy it.

Substitute Algorithm

You want to replace an algorithm with one that is clearer

Replace the body of the method with the new algorithm. Use the old body for comparative testing.

Motivation

I’ve never tried to skin at cat. I’m told there’s alternative ways to do it. I’m sure some are easier than others. So it is with algorithms. If you need to modify how you do something, life is easier if the algorithm is designed a certain way. It’s a lot easier if you can understand what’s going on.

Refactoring can break down something complex into simpler pieces, but sometimes you just reach a point where you have to remove the whole algorithm and replace it with something simpler.

When you have to take this step, make sure you have decomposed the method as much as you can. Substituting a large, complex algorithm is very difficult; only by making it simple can you make the substitution tractable.

Mechanics

· Prepare your alternative algoroithm. Get it so that it compiles.

· Run the new algorithm against your tests. If the results are the same you’re done.

· If they aren’t the same use the old algorithm for comparison in testing and debugging.

· Run each test case with old and new algorithms and watch both results. That will help you see which test cases are causing trouble, and how.

Example

You can find an example for this in tbd ref to utility refactoring.

1
12

_949126503.vsd

_949126549.vsd

