Chapter 4: Refactoring Two Tiers into Three
Over the last ten years we have seen the rise of two-tier client server systems. These use a GUI client and a relational database server to develop an information system. Buidling such systems can be very productive with the powerful graphical tools that manipulate and display database tables. For systems that have a direct mapping between UI and databases, and mild amounts of edit rules and calculations, they are unparalleled.

The problem appears when the processing: edit rules, calcuations etc, becomes more complex. As this processing gets buried into the UI it becomes hard to find and control. Stored Procedures can move this behavior into the database, but this also has its costs.

The alternative is the three-tier approach. Here we have a domain model that contains all the processing . This model, usually constructed in an OO environment, is entirely composed of non-visual objects. The UI is now much simpler and uses the services of the domain model. Not just does this simplify the UI, it also means that the UI cannot see the database layout, decoupling the UI from the database. The extra layer does add complexity, and I don’t recommend it for simple data update and display applications. But where there’s complex behavior, the third tier shines.

Of course many problems start out by looking like a data update and display problem, suitable for a two-tier solution. Also most programmers are more familiar with two-tier designs, and naturally embed logic into the GUI that should lie in a domain model. So you often find you need to extract this processing out of the GUI and into a domain model.

This extraction is the theme of this chapter. Here I will take a two tier design and pull the behavior that should be in the domain model out into domain objects. I should warn you now that I don’t entirely finish the job. When I started writing this chapter I wanted to go further, not just to extract the behavior from the GUI, but also to develop the domain model, and even to add a database interface layer to separate the domain model from the GUI. However I realized that just separating the domain behavior led to a long enough chapter on its own, so I leave the remaining stages as an exercise for the reader.

The Starting Program

I’ll begin by describing the starting program – a fairly simple program to capture and price an order. Figure 1 shows what the screen looks like. To capture the order the user types in the name of the customer and fills in the details of the order: the product and the quantity for each product. The system prices the product when you hit the price button. When you save to the database the system assigns a unique order number to the order. You can insert new orders, and find and edit existing orders. Ideally you should be able to delete orders too, but that’s a future enhancement.

[image: image1.png]
Figure 1. The screen of our program

The screen, called OrderFrame, was built with Symantec Café, so much of the code follows that style of development. I don’t want to get into how to build a GUI application here, only how to separate the layers, so I’m not going to pay much attention to the use of events and controls and the like. One thing I will point out is that the order frame acts as a mediator [Gang of Four] between the various controls. Thus instead of the save button sending events directly to the relevant fields, the save button sends the event to order frame, and the order frame does all subsequent processing. The table is a component from KL group which comes with Café.

Order frame talks to a relational database using JDBC. Figure 2 shows the physical layout of the database table. Each table has a numeric ID field for the primary key. Customer names and product names are textual. There are numbers for the quantity and amount of each order line, and the total amount for the order. I’ll explain the codes column in Customers and the various threshold and price columns in Products later on.

[image: image2.wmf]Name: Text

CustomerID: Number

Codes: Text

Customers

OrderID: Number

CustomerID: Number «FK»

Amount: Number

Orders

OrderID: Number «FK»

ProductID: Number «FK»

Quantity: Number

Amount: Number

OrderLines

ProductID: Number

Name: Text

Threshold1: Number

Price1: Number

Threshold2: Number

Price2: Number

Threshold3: Number

Price3: Number

Threshold4: Number

Price4: Number

Products

[

1

[

1

[

1

All classes are «SQL

Table». Bold attributes

show primary key columns.

«FK» indicates foreign keys

Figure 2. The layout of the RDBMS for this program. I am using UML modified for a physical relational database schema.

The order frame class is pretty involved. I’ll walk you through the code, but don’t worry too much about understanding it all. One of the purposes of refactoring is to learn how the code works. I’ll begin by talking about how the window gets initialized. There’s a whole bunch of code that Café generates which sits in the constructor for the order frame. This basically draws the frame and sets up the components in the appropriate places. I’m not going to go into that – I don’t care what it does anyway, such is the beauty of a UI painting program.

There is setup code needed, however, to load the lists of available products and customers from the database into the GUI. The order frame has an initialize method that is called from the constructor.

 void initialize()

 {

 try {

 //open database connection

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

_connection = DriverManager.getConnection("jdbc:odbc:orders", "", "");

System.out.println ("Order Frame Connected to Orders Database");

 // load the list of customers into the choice window

 ResultSet cursor = _connection.createStatement().executeQuery(

"SELECT * FROM CUSTOMERS");

 customerChoice.addItem("");

 while (cursor.next()) {

 String name = cursor.getString(2);

 customerChoice.addItem(name);

 }

 customerChoice.setEnabled(false);

 //get list of products

 Vector productNames = initializeProducts();

 //load product choice into table

 for (int i=0; i < linesTable.getNumRows(); i++) {

 //create a new choice

 Choice productChoice = new Choice();

 productChoice.addItemListener(new itemProductListener());

 Enumeration e = productNames.elements();

 while (e.hasMoreElements())

 productChoice.addItem((String) e.nextElement());

 linesTable.setComponent(i, 0, productChoice);

 //disallow edits on price column

 linesTable.setEditable(linesTable.ALL, 2, false);

 linesTable.setCharWidth(1,4);

 linesTable.setCharWidth(2,10);

 }

 } catch (Exception e) {

 messagesField.setText ("Unable to load static data");

 }

 }

The initializeProducts method is actually a bit complicated. As well as returning a vector of product names for the GUI it also creates a load of product objects that it puts into a dictionary within the order frame. Order frame declares the dictionary.

 Dictionary products = new Hashtable();

The dictionary has the product name (a string) as the key and a product object as the value. The product class is a simple data holder.

class Product {

 public String name()

 {

 return _name;

 }

 public int id()

 {

 return _id;

 }

 public int[] threshold() {

 return _threshold;

 }

 public double[] price() {

 return _price;

 }

 public Product (String name, int id) {

 _name = name;

 _id = id;

 }

 private int _id;

 private String _name;

 private int[] _threshold = new int[4];

 private double[] _price = new double[4];

}

I’ll explain what all those thresholds and prices are later on when we get to pricing.

The next part of order frame to talk about is how an existing order is summoned out the ether that is SQL. The user selects a find option out of the menu.

void find_Action(java.awt.event.ActionEvent event)

{

 linesTable.clearCells();

 messagesField.setText("");

_orderNumber.setText("");

_orderNumber.setEditable(true);

customerChoice.select("");

customerChoice.setEnabled(false);

_saveButton.setLabel("Load");

_saveButton.setEnabled(true);

 }

The code clears the fields on the screen, disables various fields but allows the user to type into the order number field. It also changes the label on the save button to “Find”. The user then types the number into the order number field and hits the save button.

void SaveButton_Action(java.awt.event.ActionEvent event)

{

 if (_saveButton.getLabel().equals("Load")) load();

 else if (_saveButton.getLabel().equals("Save")) save();

}

Because the save button says “Load” the order frame knows to do a load. The load procedure is rather involved.

 void load()

 {

 try {

 messagesField.setText("");

 String orderID = _orderNumber.getText();

 //check for blank order

 if (orderID.equals("")) {

 messagesField.setText("Please type an order ID");

 return;

 }

 clearLinesTable();

 //load order data

 ResultSet rows = _connection.createStatement().executeQuery(

 "SELECT * FROM ORDERS, Customers " +

 "WHERE Customers.CustomerID = Orders.CustomerID and " +

 "OrderID = " + orderID);

 boolean done = rows.next();

 if (! done) { //couln't find an order

 messagesField.setText("Unable to find order");

 return;

 }

 String customerName = rows.getString("name");

 customerChoice.select(customerName);

 customerCodes = rows.getString("codes");

 done = rows.next();

 new Assertion (! done, "Multiple rows for " + orderID);

 //show customer info

 StringBuffer buf = new StringBuffer();

 if (customerCodes.indexOf('G') != -1) buf.append("Gold\n");

 else if (customerCodes.indexOf('S') != -1) buf.append("Silver\n");

 if (customerCodes.indexOf('B') != -1) buf.append("Bonnie Prince\n");

 info.setText(buf.toString());

 //load the order lines

 rows = _connection.createStatement().executeQuery(

"SELECT * FROM OrderLines WHERE OrderID = " + orderID);

 int rowNumber = 0;

 NumberFormat currencyFormat = NumberFormat.getCurrencyInstance();

 double total = 0;

 while (rows.next()) {

 int productID = rows.getInt("ProductID");

 ResultSet cursor = _connection.createStatement().executeQuery(

 "SELECT NAME FROM Products WHERE ProductID = " +

String.valueOf(productID));

 cursor.next();

 String productName = cursor.getString(1);

 Choice thisChoice = (Choice) linesTable.getComponent(rowNumber, 0);

 thisChoice.select(productName);

 int quantity = rows.getInt("Quantity");

 linesTable.setCell(rowNumber, 1, String.valueOf(quantity));

 double price = rows.getDouble("Price");

 if (!rows.wasNull()) {

 String priceString = currencyFormat.format(price);

 linesTable.setCell(rowNumber, 2, priceString);

 total += price;

 }

 rowNumber++;

 }

 beNotModified();

 if (total != 0) {

 total = total * 10 / 10; //needed to get formatter to work

 totalPrice.setText (currencyFormat.format(total));

 }

 } catch (SQLException e) {

 messagesField.setText("SQL error: " + e.getMessage());

 System.out.println ("SQL error: " + e.getMessage());

 System.out.println ("state: " + e.getSQLState());

 }

 }

 void clearLinesTable()

 {

 linesTable.clearCells();

 for (int i=0; i < linesTable.getNumRows(); i++)

 ((Choice)linesTable.getComponent(i, 0)).select(0);

 totalPrice.setText("");

 }

Essentially all the data gets loaded from the database into the order frame. The method beNotModified puts the screen into a state that indicates that the data is the same as the database.

void beNotModified() {

 _orderNumber.setEditable(false);

 customerChoice.setEnabled(true);

 _saveButton.setLabel("Save");

 _saveButton.setEnabled(false);

 cancelButton.setEnabled(false);

 findMenuItem.setEnabled(true);

 insertMenuItem.setEnabled(true);

}

The save and cancel buttons are disabled, and the find and insert items on the menu are enabled. The user can now edit the customer, product, and quantity fields. If she does events are generated.

void customerChoice_ItemStateChanged(java.awt.event.ItemEvent event)

{

beModified();

}

void linesTable_enterCellBegin(jclass.table.JCEnterCellEvent event)

{

beModified();

}

All that happens is that order frame is marked as modified. This enables the save and cancel button, and disables the find and insert menu items.

 void beModified()

 {

 _saveButton.setEnabled(true);

 cancelButton.setEnabled(true);

 findMenuItem.setEnabled(false);

 insertMenuItem.setEnabled(false);

 }

Now the user has modified something, she can either back out by doing a cancel.

void cancelButton_Action(java.awt.event.ActionEvent event)

{

 if (_orderNumber.getText().equals("")) {

 customerChoice.select("");

 linesTable.clearCells();

 beNotModified();

 }

else load();

}

Or save the data to the database.

void SaveButton_Action(java.awt.event.ActionEvent event)

{

if (_saveButton.getLabel().equals("Find")) load();

else if (_saveButton.getLabel().equals("Save")) save();

}

public void save()

 {

 messagesField.setText("");

 if (_orderNumber.getText().equals("")) insert();

 else update();

 }

We have to do something slightly different depending on whether we are saving an existing order or creating a new order. Order frame can tell which we are doing because an existing order will have an order number. In that case we update the database.

 void update()

 {

 try {

 String customerName = customerChoice.getSelectedItem();

 String customerID = customerIDFor(customerName);

 String orderID = _orderNumber.getText();

 String statement = "UPDATE ORDERS SET CustomerID = " + customerID +

 " WHERE OrderID = " + orderID;

 _connection.createStatement().executeUpdate(statement);

 deleteOrderLines();

 insertOrderLines();

 load();

 } catch (SQLException e) {

 System.out.println (e.getMessage());

 messagesField.setText("SQL error: " + e.getMessage());

 }

 }

private String customerIDFor(String name) throws SQLException

 {

 ResultSet customers = _connection.createStatement().executeQuery(

"SELECT CustomerID FROM CUSTOMERS WHERE NAME = '" + name + "'");

 customers.next();

 return customers.getString(1);

 }

Creating a new order is pretty similar. It starts with choosing insert from the menu.

void insert_Action(java.awt.event.ActionEvent event)

{

 clearLinesTable();

 messagesField.setText("");

 _orderNumber.setText("");

 customerChoice.select("");

 info.setText("");

 customerCodes = null;

 beNotModified();

 cancelButton.setEnabled(true);

}

This blanks everything out and sets things up for modification. Again the save button is disabled until you edit something (just like in the modified case). Processing follows the same way until you do a save.

void SaveButton_Action(java.awt.event.ActionEvent event)

{

if (_saveButton.getLabel().equals("Find")) load();

else if (_saveButton.getLabel().equals("Save")) save();

}

public void save()

 {

 messagesField.setText("");

 if (_orderNumber.getText().equals("")) insert();

 else update();

 }

This time the order number is blank so we do an insert.

 void insert()

 {

 try {

 // determine which order number to give the new order

 String statement = "SELECT MAX (OrderID) FROM ORDERS";

 ResultSet rows = _connection.createStatement().executeQuery(statement);

 String orderID;

 if (rows.next())

 orderID = String.valueOf(rows.getInt(1) + 1);

 else orderID = "1"; // result set was empty

 _orderNumber.setText(orderID);

 // do the insert

 String customerID = customerIDFor(customerChoice.getSelectedItem());

 statement = "INSERT INTO ORDERS (OrderID, CustomerID)

VALUES (" + orderID + "," + customerID + ")";

 _connection.createStatement().executeUpdate(statement);

 insertOrderLines();

 load();

 } catch (SQLException e) {

 messagesField.setText("SQL error: " + e.getMessage());

 }

 }

 void insertOrderLines() throws SQLException

 {

 for (int i=0; i < linesTable.getNumRows(); i++) {

 String productName =

((Choice)linesTable.getComponent(i, 0)).getSelectedItem();

 if (productName.equals("")) continue;

 String productID =

String.valueOf(((Product) products.get(productName)).id());

 String quantity = (String) linesTable.getCell(i,1);

 Number price = null;

 try {

 price = NumberFormat.getCurrencyInstance().parse((String)

linesTable.getCell(i,2));

 } catch (ParseException e) {} // should not happen

 catch (NullPointerException e) {} // null price, so leave as null

 String priceString = (price == null ? "NULL" : price.toString());

 _connection.createStatement().executeUpdate("INSERT INTO OrderLines

(OrderID, ProductID, Quantity, Price) VALUES ('" +

 _orderNumber.getText() + "','" + productID + "','" + quantity + "'," +

priceString + ")");

 }

 }

So far all we have done is create and modify database data. If that were all we wanted to do we wouldn’t need to consider a 3-tier design. The real benefit of a 3-tier design comes with behavior. The interesting behavior in this program is that of pricing the order. The whole pricing process is invoked by hitting the price button.

void priceButton_Action(java.awt.event.ActionEvent event)

{

price();

}

 void price()

 {

 double total = 0;

 NumberFormat formatter = NumberFormat.getCurrencyInstance();

 int numberOfLines = linesTable.getNumRows();

 double[] price = new double [numberOfLines];

 double discountTotal;

 //get customer codes if we don't have them

 if (customerCodes == null) {

 try {

 String custID;

 ResultSet cursor = _connection.createStatement().executeQuery

 ("SELECT * FROM Customers WHERE name = '" +

 customerChoice.getSelectedItem() + "'");

 cursor.next();

 customerCodes = cursor.getString("codes");

 } catch (SQLException e) {

 messagesField.setText("SQL error: " + e.getMessage());

 System.out.println ("SQL error: " + e.getMessage());

 return;

 }

 }

 // price each line item

 for (int i=0; i < numberOfLines; i++) {

 String productName =

((Choice)linesTable.getComponent(i, 0)).getSelectedItem();

 if (productName.equals("")) {

 price[i] = -1;

 continue;

 }

 Product thisProduct = (Product) products.get(productName);

 int quantity = new Integer((String) linesTable.getCell(i,1)).intValue();

 int remainingQuantity = quantity;

 int lastThreshold = 0;

 price[i] = 0;

 BigDecimal thisItemPrice = new BigDecimal(0);

 //determine base price using thresholds

 for (int j=0; j < thisProduct.price().length; j++) {

 int thisThreshold = thisProduct.threshold()[j];

 double thisPrice = thisProduct.price()[j];

 if (thisThreshold == 0 || quantity <= thisThreshold) {

 thisItemPrice = thisItemPrice.add(new BigDecimal

(remainingQuantity * thisPrice));

 thisItemPrice.setScale(2, BigDecimal.ROUND_HALF_UP);

 break;

 }

 else {

 int thisQuantity = thisThreshold - lastThreshold;

 thisItemPrice = thisItemPrice.add(new BigDecimal

(thisQuantity * thisPrice));

 thisItemPrice.setScale(2, BigDecimal.ROUND_HALF_UP);

 remainingQuantity -= thisQuantity;

 lastThreshold = thisThreshold;

 }

 }

 price[i] = thisItemPrice.doubleValue();

 total += price[i];

 }

 discountTotal = calculateDiscounts(price, total);

 //set totals

 total = total * 10 / 10; // trick to fix formatter

 if (discountTotal != -1)

 totalPrice.setText(formatter.format(discountTotal));

 else totalPrice.setText(formatter.format(total));

 beModified();

 }

If you think that looks complicated enough, take a look at the calculateDiscounts method that is buried in there somewhere.

 private double calculateDiscounts(double[] price, double total)

 {

 BigDecimal[] discountPrice = new BigDecimal[price.length];

 BigDecimal discountTotal = new BigDecimal (0);

 NumberFormat formatter = NumberFormat.getCurrencyInstance();

 double discountFactor = 1;

 if (customerCodes.indexOf('G') != -1) {

 if (total > 2500) discountFactor = 0.93;

 else discountFactor = 0.97;

 }

 else if (customerCodes.indexOf('S') != -1)

 discountFactor = 0.97;

 double bonnieDiscount = (customerCodes.indexOf('B') != -1) ? discountFactor - 0.05 : -1;

 if (discountFactor != 1) {

 for (int i=0; i < linesTable.getNumRows(); i++) {

 if (price[i] == -1)

 linesTable.setCell(i,2,"");

 else {

 if (bonnieDiscount != -1) {

 int quantity = new Integer((String)

linesTable.getCell(i,1)).intValue();

 if (quantity > 15)

 discountPrice[i] = new BigDecimal

(price[i] * bonnieDiscount);

 else

 discountPrice[i] = new BigDecimal

(price[i] * discountFactor);

 }

 else

 discountPrice[i] = new BigDecimal (price[i] * discountFactor);

 discountPrice[i] = discountPrice[i].setScale

(2, BigDecimal.ROUND_HALF_UP);

 discountTotal = discountTotal.add(discountPrice[i]);

 String priceString =

formatter.format(discountPrice[i].doubleValue());

 linesTable.setCell(i, 2, priceString);

 }

 };

 }

 else {

 for (int i=0; i < linesTable.getNumRows(); i++) {

 if (price[i] == -1)

 linesTable.setCell(i,2,"");

 else {

 String priceString = formatter.format(price[i]);

 linesTable.setCell(i, 2, priceString);

 }

 };

 discountTotal = new BigDecimal(-1);

 };

 return discountTotal.doubleValue();

 }

This amount of complexity is not arbitrary, in fact it is not unusual in a sophisticated business. The basic price (without discounts) system is based on the product and the volume. The more you buy, the cheaper the later ones are. So if you buy five bottles of Talisker, you pay $41.20 for the first three bottle and $40 for each one after that. This is what the threshold and price fields in the products table is all about. Each threshold indicates the maximum amount of bottles at the stated price. Then you move up the next threshold. There’s room for four sets of thresholds and prices.

The discounts are based on the total value of the order and which discount plans the customer belongs to. The codes field in the Customers table indicates which discount plans the customer belongs to. That, together with the size of the total order, defines what discount the customer gets on this order. Part of the complexity is due to fact that the business keeps coming up with new discounting plans, so a good design should make it easy to add new discounting plans.

Am I being a little vague about the requirements here? There’s a reason for that. I don’t have any specifications for this program. This is realistic. With real programs people will usually only half remember the specifications and how the program works, and there’ll be little documentation. One of the great things about refactoring is that it is a good way to learn about the program, even if someone else wrote it.

The First Step in Refactoring

What’s the first step in refactoring? All together now: “Write the tests”.

So how do you go about writing the tests for a program like this. To work well the tests have to run through the GUI. You can buy tools to do this. They record a macro of mouse movements and button presses, and scrape the data from the windows. Something that simulates the user doing things to the controls is the best form of testing. However I was too cheap to buy such a tool (and anyway I want to show what you can do with the minimum tools).

You can still test through the GUI. What you need is build a suitable driver class that your tests can use to drive the GUI.

I’ll start with a simple example. I load some orders directly into the database. I now want to test that these are coming up correctly in the GUI. Order number 1 orders 10 bottles of the Macallan and has no amounts set (since the order was not priced). I need to be able to tell the order frame to respond to the find command, put a value into the id field, tell it go and get the data, and then find out what the quantity and price of Macallan is. I can do this with code that looks like this.

 private class testInitialOrderLines extends Script {

 public void runTest() {

 _driver.find();

 _driver.setID("1");

 _driver.getData();

 shouldEqual ("Amount of Macallan", "10",

_driver.quantityForProduct("Macallan"));

 shouldBeNull("Macallan price", _driver.priceForProduct("Macallan"));

 }

 }

The driver needs routines to be able to do this stuff. I created a class called OrderFrameTestDriver.

class OrderFrameTestDriver {

 private OrderFrame _frame = new OrderFrame();

 public OrderFrameTestDriver() {

 _frame.show();

 }

The find is pretty easy.

 void find()

 {

 _frame.find_Action(null);

 }

To set the id the driver needs to get at the appropriate component on the order frame.

 void setID(String value)

 {

 _frame._orderNumber.setText(value);

 }

The _orderNumber field in the frame is the name of the appropriate text field object. Of course this means direct access to the order frame’s data which is very naughty. Café built the order frame with all the data at package visibility, which is indeed very naughty. So for this case I just took advantage of that. If the order frame was built properly then you would have to do something else. Either you could put accessor functions into the order frame class, or you could make the test driver an inner class of the order frame. (Inner classes can access their outer’s fields.) The inner class would be my preferred option as it would clearly separate the driver behavior from the production behavior.

Continuing with the test. Again the get data method is trivial.

 void getData()

 {

 _frame.SaveButton_Action(null);

 }

Remember the save button is renamed to find when you are in that finding mode.

Finally we need to access the quantity and price values for Macallan.

 String priceForProduct(String requiredName)

 {

 return column_ForProduct(2, requiredName);

 }

 String quantityForProduct(String requiredName)

 {

 return column_ForProduct(1, requiredName);

 }

 String column_ForProduct(int columnNumber, String requiredName)

 {

 for (int i=0; i < _frame.linesTable.getNumRows(); i++) {

 if (requiredName.equals(productNameOfRow(i)))

 return (String) _frame.linesTable.getCell(i,columnNumber);

 }

 return null;

 }

 private String productNameOfRow(int row)

 {

 return ((Choice)_frame.linesTable.getComponent(row, 0)).getSelectedItem();

 }

That should give you a pretty good idea of how I set up the driver. Of course I also need routines to update the field values, but these follow much the same pattern as getting the data. Once I have my hands on the GUI component, the rest follows pretty easily.

The Refactoring Strategy

As I’ve suggested before, refactoring can be a very ad hoc process. You don’t need to know where you are going, all you need is the willingness to use refactoring to explore the code and make it clearer. As you make it clearer a superior design often suggests itself.

Sometimes, however, you can map out a strategy. I might look at a problem and think “Hmm I suspect this design would work well”. Then I refactor towards the design in my mind. But the design is really a hypothesis. I don’t actually expect the final design will end up exactly the same, although it probably will look broadly similar. The design in my mind is there primarily to give me a direction, rather than be an absolute.The design can thus also be very broad-brush, with lots of details left out. The details will get resolved during the refactoring while the broad design gives me the needed direction.

In this refactoring episode the broad design that I want to push towards is the way I want to set up the layers in the program. This is a very broad design and has no details, but I expect the final system will match it exactly. I can express this level design using UML packages.

Currently the broad design of the system looks like this.

[image: image3.wmf]OrderFrame

Product

orders

AWT

JDBC

«database

schema»

Orders Database

Figure 3. The existing two-tier package design.

The order frame is responsible for everything, and uses the AWT, JDBC, and knows the database schema. The design I am looking for is something different.

[image: image4.wmf]AWT

JDBC

«database

schema»

Orders Database

order

presentation

order domain

model

Figure 4. The three-tier package design that I would like

I prefer Figure 4 because it allows me to split the complex order frame into several parts with a clear division of responsibilities. Instead of one complex class, I will get several less complex classes. I usually find several less complex classes are easier to understand and modify, providing the responsibilities are clear. For Figure 4 the order presentation will be responsible for managing the GUI only. The order domain model will handle the domain behavior and the database access. (I can split those too, but that’s another exercise.)

Extracting an Order Object

Okay, I’ve talked about it for ages, I can’t put off starting any longer. I’ll begin by letting myself have a short panic, letting my eyes glaze and stopping for a coffee. Yes I know it’s not really that big a program but I like to indulge myself before I get going. The problem with any refactoring is wondering where to start. The good news is that doesn’t really matter that much.

The essence of this program is that everything is in the order frame class, so I need to split the class. What should I split first? Where is the biggest risk?

When I look at an overly complicated class there are two primary targets for splitting. The first is to go after the data. Look at the data in the class, consider what should be moved, move it, and then work through the methods refining that as you go. The second target is to look for large complex methods and break those down until the real structure of the code begins to become apparent.

In this case I’d to go after the data, since I want to move the domain data to the domain package. But with situations like the domain data isn’t immediately apparent as it is hidden inside GUI controls. So to find the domain data I need to look at where the window interacts with the database. These just happen to be long complex methods, so they also fit my second usual starting point. I shall begin with the ugly looking load method.

 void load()

 {

 try {

 messagesField.setText("");

 String orderID = _orderNumber.getText();

 //check for blank order

 if (orderID.equals("")) {

 messagesField.setText("Please type an order ID");

 return;

 }

 clearLinesTable();

 //load order data

 ResultSet rows = _connection.createStatement().executeQuery(

 "SELECT * FROM ORDERS, Customers " +

 "WHERE Customers.CustomerID = Orders.CustomerID and " +

 "OrderID = " + orderID);

 boolean done = rows.next();

 if (! done) { //couln't find an order

 messagesField.setText("Unable to find order");

 return;

 }

 String customerName = rows.getString("name");

 customerChoice.select(customerName);

 customerCodes = rows.getString("codes");

 done = rows.next();

 new Assertion (! done, "Multiple rows for " + orderID);

 //show customer info

 StringBuffer buf = new StringBuffer();

 if (customerCodes.indexOf('G') != -1) buf.append("Gold\n");

 else if (customerCodes.indexOf('S') != -1) buf.append("Silver\n");

 if (customerCodes.indexOf('B') != -1) buf.append("Bonnie Prince\n");

 info.setText(buf.toString());

 //load the order lines

 rows = _connection.createStatement().executeQuery(

"SELECT * FROM OrderLines WHERE OrderID = " + orderID);

 int rowNumber = 0;

 NumberFormat currencyFormat = NumberFormat.getCurrencyInstance();

 double total = 0;

 while (rows.next()) {

 int productID = rows.getInt("ProductID");

 ResultSet cursor = _connection.createStatement().executeQuery(

 "SELECT NAME FROM Products WHERE ProductID = " +

String.valueOf(productID));

 cursor.next();

 String productName = cursor.getString(1);

 Choice thisChoice = (Choice) linesTable.getComponent(rowNumber, 0);

 thisChoice.select(productName);

 int quantity = rows.getInt("Quantity");

 linesTable.setCell(rowNumber, 1, String.valueOf(quantity));

 double price = rows.getDouble("Price");

 if (!rows.wasNull()) {

 String priceString = currencyFormat.format(price);

 linesTable.setCell(rowNumber, 2, priceString);

 total += price;

 }

 rowNumber++;

 }

 beNotModified();

 if (total != 0) {

 total = total * 10 / 10; //needed to get formatter to work

 totalPrice.setText (currencyFormat.format(total));

 }

 } catch (SQLException e) {

 messagesField.setText("SQL error: " + e.getMessage());

 System.out.println ("SQL error: " + e.getMessage());

 System.out.println ("state: " + e.getSQLState());

 }

 }

Decomposing load

In this situation a good clue in starting refactoring is look for sections of code that are set off with a comment to explain what they do. I’ve highlighted a good candidate. I begin dumbly by just cutting and pasting that code into a separate method called loadOrderLines. Then I compile to find out what went goes awry, I’m expecting quite a few things. Here’s what I got.

· The rows variable was unknown in loadOrderLines. The temp was decared earlier on and is assinged to again here. I don’t like asssigning twice to a temp, since it means the temp is doing two things. So here I can redeclare it in the extracted method.

· The orderID variable was unknownin loadOrderLines. I pass that in as a parameter.

· SQLException needs to be declared, so I declare the method as throwing it.

· The variable total is unknown in load. This is declared in loadOrderLines and assigned to there. It is used but not assigned to in load. So I make this value the return value of loadOrderLines.

· The variable currencyFormat is unknown in load. This variable is decalred to and assigned once at the beginning of loadOrderLines. Thereafter it is used a couple of times but not changed. I’ll replace that temp with a query.

With that the class compiles and the tests work fine. It now looks like this

 void load()

 {

 try {

 messagesField.setText("");

 String orderID = _orderNumber.getText();

 //check for blank order

 if (orderID.equals("")) {

 messagesField.setText("Please type an order ID");

 return;

 }

 clearLinesTable();

 //load order data

 ResultSet rows = _connection.createStatement().executeQuery(

 "SELECT * FROM ORDERS, Customers " +

 "WHERE Customers.CustomerID = Orders.CustomerID and " +

 "OrderID = " + orderID);

 boolean done = rows.next();

 if (! done) { //couln't find an order

 messagesField.setText("Unable to find order");

 return;

 }

 String customerName = rows.getString("name");

 customerChoice.select(customerName);

 customerCodes = rows.getString("codes");

 done = rows.next();

 new Assertion (! done, "Multiple rows for " + orderID);

 //show customer info

 StringBuffer buf = new StringBuffer();

 if (customerCodes.indexOf('G') != -1) buf.append("Gold\n");

 else if (customerCodes.indexOf('S') != -1) buf.append("Silver\n");

 if (customerCodes.indexOf('B') != -1) buf.append("Bonnie Prince\n");

 info.setText(buf.toString());

 double total = loadOrderLines(orderID);

 beNotModified();

 if (total != 0) {

 total = total * 10 / 10; //needed to get formatter to work

 totalPrice.setText (getCurrencyFormat().format(total));

 }

 } catch (SQLException e) {

 messagesField.setText("SQL error: " + e.getMessage());

 System.out.println ("SQL error: " + e.getMessage());

 System.out.println ("state: " + e.getSQLState());

 }

 }

 private NumberFormat getCurrencyFormat() {

 return NumberFormat.getCurrencyInstance();

 }

 private double loadOrderLines(String orderID) throws SQLException{

 //separate the query from the modifier

 ResultSet rows = _connection.createStatement().executeQuery(

 "SELECT * FROM OrderLines WHERE OrderID = " + orderID);

 int rowNumber = 0;

 double total = 0;

 while (rows.next()) {

 int productID = rows.getInt("ProductID");

 ResultSet cursor = _connection.createStatement().executeQuery(

 "SELECT NAME FROM Products WHERE ProductID = " +

 String.valueOf(productID));

 cursor.next();

 String productName = cursor.getString(1);

 Choice thisChoice = (Choice) linesTable.getComponent(rowNumber, 0);

 thisChoice.select(productName);

 int quantity = rows.getInt("Quantity");

 linesTable.setCell(rowNumber, 1, String.valueOf(quantity));

 double price = rows.getDouble("Price");

 if (!rows.wasNull()) {

 String priceString = getCurrencyFormat().format(price);

 linesTable.setCell(rowNumber, 2, priceString);

 total += price;

 }

 rowNumber++;

 }

 return total;

 }

I don’t like the fact that loadOrderLines returns a value. I will need to separate the query from the modifier, but I don’t want to do that now, so I make a note in a comment.

I can do this a couple of times more to yield.

 void load()

 {

 try {

 messagesField.setText("");

 String orderID = _orderNumber.getText();

 //check for blank order

 if (orderID.equals("")) {

 messagesField.setText("Please type an order ID");

 return;

 }

 clearLinesTable();

 loadOrderData(orderID);

 showCustomerInfo();

 double total = loadOrderLines(orderID);

 beNotModified();

 if (total != 0) {

 total = total * 10 / 10; //needed to get formatter to work

 totalPrice.setText (getCurrencyFormat().format(total));

 }

 } catch (SQLException e) {

 messagesField.setText("SQL error: " + e.getMessage());

 System.out.println ("SQL error: " + e.getMessage());

 System.out.println ("state: " + e.getSQLState());

 }

 }

 void loadOrderData(String orderID) throws SQLException{

 ResultSet rows = _connection.createStatement().executeQuery(

 "SELECT * FROM ORDERS, Customers " +

 "WHERE Customers.CustomerID = Orders.CustomerID and " +

 "OrderID = " + orderID);

 boolean done = rows.next();

 if (! done) { //couln't find an order

 messagesField.setText("Unable to find order");

 return;

 }

 String customerName = rows.getString("name");

 customerChoice.select(customerName);

 customerCodes = rows.getString("codes");

 done = rows.next();

 new Assertion (! done, "Multiple rows for " + orderID);

 }

 void showCustomerInfo() {

 //show customer info

 StringBuffer buf = new StringBuffer();

 if (customerCodes.indexOf('G') != -1) buf.append("Gold\n");

 else if (customerCodes.indexOf('S') != -1) buf.append("Silver\n");

 if (customerCodes.indexOf('B') != -1) buf.append("Bonnie Prince\n");

 info.setText(buf.toString());

 }

Moving loadOrderData to the Order

All this is to get each method to a manageable size. From here I can work on the individual methods to work on the data. At this stage I’m interested in data that ought to be in the domain package. This will typically be data that comes from the database. So I’m most interested in what happens around SQL statements. In fact all the SQL calls have moved away from the load method into the subordinate methods. So I will work on those. I’ll begin with the first: loadOrderData. What I’m most interested in is where instance variables are updated. Some programmers highlight fields with some typographical convention, that isn’t done here which makes it harder to spot. But I can identify a couple:

 void loadOrderData(String orderID) throws SQLException{

 ResultSet rows = _connection.createStatement().executeQuery(

 "SELECT * FROM ORDERS, Customers " +

 "WHERE Customers.CustomerID = Orders.CustomerID and " +

 "OrderID = " + orderID);

 boolean done = rows.next();

 if (! done) { //couln't find an order

 messagesField.setText("Unable to find order");

 return;

 }

 String customerName = rows.getString("name");

 customerChoice.select(customerName);

 customerCodes = rows.getString("codes");

 done = rows.next();

 new Assertion (! done, "Multiple rows for " + orderID);

 }

The two show two different cases we can get with data in a gui. Customer codes is a string field, while customer choice is a gui component (java.awt.Choice). The first is easy to handle, the second is rather more tricky. Since customer codes is a string I can self-encapsulate it and then it doesn’t matter if the field is in the gui class or elsewhere. A gui component, however, must stay in the gui class, since it will be displayed. However since it is set by data loaded from the database, it really must be in the domain as well.

Moving customer codes

Well I’ll leave you suspense for how I’m going to do customer choice for a moment. I’ll do the easy one first. My first step is to create a domain class to go with the gui class. To do this I need to ask myself what is the domain object that this window is a window on to. The answer clearly is order.

package orders.domain;

public class Order {

}

I start as I mean to go on, but putting the domain object in a separate package. I also need a reference to this object from the window.

class OrderFrame…

 private Order _order = new Order();

This assumes that I will create an order object when I open a window and stay with that one object the whole time I’m with that window. That is not how I would design it from scratch, but it is the simple thing to work with for the moment.

Now I can self-encapsulate the customer codes field and move it over to the order. First I self-encapsulate. This means creating a getting method and setting method for the field, and finding every reference in the order frame class.

 private String getCustomerCodes() {

 return customerCodes;

 }

 private void setCustomerCodes (String arg) {

 customerCodes = arg;

 }

I made a whole bunch of changes with the search and replace. Here’s a few of them.

 void loadOrderData(String orderID) throws SQLException{

 ResultSet rows = _connection.createStatement().executeQuery(

 "SELECT * FROM ORDERS, Customers " +

 "WHERE Customers.CustomerID = Orders.CustomerID and " +

 "OrderID = " + orderID);

 boolean done = rows.next();

 if (! done) { //couln't find an order

 messagesField.setText("Unable to find order");

 return;

 }

 String customerName = rows.getString("name");

 customerChoice.select(customerName);

 setCustomerCodes (rows.getString("codes"));

 done = rows.next();

 new Assertion (! done, "Multiple rows for " + orderID);

 }

 void showCustomerInfo() {

 //show customer info

 StringBuffer buf = new StringBuffer();

 if (getCustomerCodes().indexOf('G') != -1) buf.append("Gold\n");

 else if (getCustomerCodes().indexOf('S') != -1) buf.append("Silver\n");

 if (getCustomerCodes().indexOf('B') != -1) buf.append("Bonnie Prince\n");

 info.setText(buf.toString());

 }

I do a quick compile, and then move on to actually move the field. First I create it, and appropriate accessors in order.

public class Order …

 private String _customerCodes;

 public String getCustomerCodes() {

 return _customerCodes;

 }

 public void setCustomerCodes (String arg) {

 _customerCodes = arg;

 }

Then I alter the accessors in order frame to use the new class and remove the field in order frame

 private String getCustomerCodes() {

 return _order.getCustomerCodes();

 }

 private void setCustomerCodes (String arg) {

 _order.setCustomerCodes (arg);

 }

Copying Customer Name

That compiled and tested perfectly. I hope everything else will be that easy. But I can immediately see that customer choice will not. The problem here is that what comes from the database is domain information, so must live in the domain. But we need the customer choice gui component in the window. This forces us to duplicate information. Duplication is something to avoid, because we need to ensure that the copies are kept up to date. This is easy to do in the gui, all I have to do is to get the setting method to set the values in both the gui component and in the domain object. But what happens if I change the domain object value. I cannot put a call to the order frame for that would break the rule that the domain object must not be aware of the gui.

Well again I’ll do the simple bit first. Let’s begin by doing the data change first. The first question to ask is what is the domain information. The naming of the temp gives us our answer, and so I’ll declare this in the order class.

class Order…

 private String _customerName;

 public String getCustomerName() {

 return _customerName;

 }

 public void setCustomerName (String arg) {

 _customerName = arg;

 }

Customer choice is a little more awkward to self encapsulate, as it is not a simple field. Still we can begin with providing a setting method.

class OrderFrame…

 void loadOrderData(String orderID) throws SQLException{

 ResultSet rows = _connection.createStatement().executeQuery(

 "SELECT * FROM ORDERS, Customers " +

 "WHERE Customers.CustomerID = Orders.CustomerID and " +

 "OrderID = " + orderID);

 boolean done = rows.next();

 if (! done) { //couln't find an order

 messagesField.setText("Unable to find order");

 return;

 }

 String customerName = rows.getString("name");

 setCustomerName (customerName);

 setCustomerCodes (rows.getString("codes"));

 done = rows.next();

 new Assertion (! done, "Multiple rows for " + orderID);

 }

 void setCustomerName (String arg) {

 customerChoice.select(arg);

 }

I completed the replacement of the setting value by replacing all occurrences of “customerChoice.select” with “setCustomerName”. At this stage I’m not going to provide a getting method. Since the customer choice is going to stay, I’ll let order frame work directly from it while I sort out the synchronization problem.

Another issue is whether to make customerChoice private. Like any good object programmer I insist on having my instance variables. However Café makes them package visibility. I’m tempted to change that, but the declaration is in a section of code generated by Café – so reluctantly I leave it alone.

The essential problem here is that I want any change to customer name on order to update the gui component, yet I don’t want the domain to actually know about the gui component when it updates. If you’re used to OO systems you will probably be familiar with the answer to this conumdrum: the Observer pattern [Gang of Four]. Helpfully the observer pattern is built into Java. I need to make order a subclass of observable and get order frame to implement observer.

To implement the observer interface the order frame must implement the update method. This method should get information from the order into the order frame.

 public update (Observable order, Object arg) {

 customerChoice.select (_order.getCustomerName());

 }

Notice I don’t use setCustomerName here. If I do that I will change the domain object, which will trigger update… and I’ll go on forever. I could create a special method like “setOnlyMyCustomerName” but I don’t think it’s worth the effort.

I also have to register the order frame as an observer on order. I could do this in the constructor, but the constructor is generated by the gui tool. There is an initialize method, called by the constructor, in which I can do this.

 void initialize()

 {

 try {

 createOrder();

[snip]

}

 private void createOrder() {

 _order = new Order();

 _order.addObserver(this);

 }

 private Order _order;

Since creating an order is more than just a constructor call, I’ll no longer do it in the variable initializer.

Now I have to modify the setting method on order to trigger the update.

class Order…

 public void setCustomerName (String arg) {

 _customerName = arg;

 setChanged();

 notifyObservers();

 }

At this point I’ve put in the observer mechanism, but I’m not updating the field through the order object yet. Still it’s a good moment to compile and test to ensure nothing is broken.

It wasn’t so now I’ll make the change to use the order object

class OrderFrame…

 void setCustomerName (String arg) {

 _order.setCustomerName(arg);

 }

I compile and test and, thanks to the magic of the observer pattern, it all works fine.

Copying the messages field

Load order data now looks like this.

 void loadOrderData(String orderID) throws SQLException{

 ResultSet rows = _connection.createStatement().executeQuery(

 "SELECT * FROM ORDERS, Customers " +

 "WHERE Customers.CustomerID = Orders.CustomerID and " +

 "OrderID = " + orderID);

 boolean done = rows.next();

 if (! done) { //couln't find an order

 messagesField.setText("Unable to find order");

 return;

 }

 String customerName = rows.getString("name");

 setCustomerName (customerName);

 setCustomerCodes (rows.getString("codes"));

 done = rows.next();

 new Assertion (! done, "Multiple rows for " + orderID);

 }

What I really want to do is to move every method that contains SQL statement over into the domain. So can I move this method? Almost, but I am still referencing one field on order frame: the messages field. This is really a gui item, a way of getting error information back to the user. It doesn’t seem quite right to put a messages field on the order class. But that is the easiest way for me to get this method onto the order class, so I will do that for the moment. I will think of something better later.

But wait. I’m a naturally suspicious person, and I know that testers often think to test values, but not to test for things going wrong. So I alter the message going into the test field, and run the tests. Nothing blows. As I suspected there was no test to ensure that if you ask for an order that isn’t there, you get a sensible message. I add a test for that message.

Now it’s time to move the data. Again this is a gui component so we need to copy the data and use the observer. First I put the necessary mechanism on order.

class Order

 private String _messages;

 public String getMessages() {

 return _messages;

 }

 public void setMessages (String arg) {

 _messages = arg;

 setChanged();

 notifyObservers();

 }

Then I create a setMessages on order frame and replace all occurrences of direct update to the text field with references to setMessages

 void loadOrderData(String orderID) throws SQLException{

 ResultSet rows = _connection.createStatement().executeQuery(

 "SELECT * FROM ORDERS, Customers " +

 "WHERE Customers.CustomerID = Orders.CustomerID and " +

 "OrderID = " + orderID);

 boolean done = rows.next();

 if (! done) { //couln't find an order

 setMessages("Unable to find order");

 return;

 }

 String customerName = rows.getString("name");

 setCustomerName (customerName);

 setCustomerCodes (rows.getString("codes"));

 done = rows.next();

 new Assertion (! done, "Multiple rows for " + orderID);

 }

 void setMessages (String arg) {

 messagesField.setText(arg);

 }

Quite a lot of places are affected by the search and replace. Again I compile and test at this point, before I use the order object. To use the order object I need to update update.

 public void update (Observable order, Object arg) {

 customerChoice.select (_order.getCustomerName());

 messagesField.setText(_order.getMessages());

 }

 void setMessages (String arg) {

 _order.setMessages(arg);

 }

This time I do get a failure, indeed a whole run of null pointer exceptions. A look at the stack trace gives me the clue. Now update is called at every change to message, and the error occurs as the customer choice is selected. This is because the order returns a null with getCustomerName when the order is first created. I need to initialize the customer name to blank string.

class Order…

 private String _customerName = "";

This fix gets rid of that error, but now the totals come out incorrectly. This time I’m forced to use the debugger and poke around a little. I don’t actually figure out exactly what went wrong, but I did notice that that although I have produced the mechanism for changes in the domain class to trigger a change in the gui, I have nothing to ensure that any change in the gui causes a change in the domain class. True the change get’s made if I use setCustomerName, but this is not called if the user changes the selection on the pop-up menu. The tests simulated that by changing the value directly in the gui control and not using setCustomerName.

To fix this I need to modify the event handler that listens for the change event on the gui.

void customerChoice_ItemStateChanged(java.awt.event.ItemEvent event)

{

beModified();

setCustomerName(customerChoice.getSelectedItem());

}

That fixes the problem.

I ought to say something at this point. Here I got an error that surprised me, and actually took a few minutes to find the cause. Indeed I didn’t really find the cause, in that I didn’t figure out exactly what went wrong, instead I quickly came up with a compelling theory of what went wrong. The fix seems to work, and I’m relying on my tests to verify this.

What if it didn’t work, what would I have done? The first thing is that I would have backed out that last change and restored myself to a position where everything worked. Then I would have tried another move. If I run into a problem when refactoring I don’t spend a lot of time debugging, rather I back out the change and try something else, usually a smaller step.

In this case I’d be more likely to try a move that would expose the error. In fact that is what I’m going to do now so that I’m more sure I have caught any problems still hanging around. When I created setCustomerName to use the order, I didn’t create a getCustomerName in the same way. I didn’t do that because I wanted to focus on loadOrderData. But that test failure makes me feel nervous and I will feel more confident if I create a getCustomerName. I’ll do this with the same steps as earlier. First I look search for references to customerChoice to find out how the code gets the customer name, and use that to create a self-encapsulating getCustomerName method.

 private String getCustomerName() {

 return customerChoice.getSelectedItem();

 }

I then do a search for “customerChoice.getSelectedItem()”, replacing it with “getCustomerName”. Then a complile and test. With that in place I can get the data from order.

 private String getCustomerName() {

 return _order.getCustomerName();

 }

 This time the tests went postal, everything seemed to fail. I think to myself that this has to be a synchronization problem, but I really thought I’d fixed it. I go into the debugger again and step through the code. As I see the the event handler again I realize what’s gone wrong. I’m using getCustomerName in the update for the event handler, effectively setting it back to the old value. This is one case where I should access the customerChoice directly.

void customerChoice_ItemStateChanged(java.awt.event.ItemEvent event)

{

beModified();

setCustomerName(customerChoice.getSelectedItem());

}

Now it all works out fine. This is another lesson that synchronizing between domain model and gui often can be tricky, until you get used to the idioms. I’m showing my relative ignorance of these mechanisms in Java. I expect as I go on that these mistakes won’t recur. When working with a new environment you have figure out the idioms that apply the basic refactoring ideas to that environment.

Moving the connection field

After all that I can now do what I’ve been after for a while, moving the loadOrderData method to the order. First I copy the method to order and change it to fit in its new home. I run into two problems

· loadOrderData uses the connection instance variable of order frame

· loadOrderData uses the Assertion class which is in the old package, not the domain package.

The second problem is easy to fix. Assertion does not do anything with the gui, so I can safely move it to the domain package.

The first one involves either passing the connection over to the order, or moving it over there. The connection really ought to be in the order, so I’ll move it over there. First I need to self encapsulate it in the order frame. I create the accessors

 Connection getConnection() {

 return _connection;

 }

 void setConnection (Connection arg) {

 _connection = arg;

 }

And replace all references to the field with the accessors. After compiling and testing from there I can move the instance variable and redirect the accessors.

class Order…

 private Connection _connection;

 public Connection getConnection() {

 return _connection;

 }

 public void setConnection (Connection arg) {

 _connection = arg;

 }

class OrderFrame…

 Connection getConnection() {

 return _order.getConnection();

 }

 void setConnection (Connection arg) {

 _order.setConnection(arg);

 }

I compile and test, and can now easily move loadOrderData to the order class

class Order…

 void loadOrderData(String orderID) throws SQLException{

 ResultSet rows = getConnection().createStatement().executeQuery(

 "SELECT * FROM ORDERS, Customers " +

 "WHERE Customers.CustomerID = Orders.CustomerID and " +

 "OrderID = " + orderID);

 boolean done = rows.next();

 if (! done) { //couln't find an order

 setMessages("Unable to find order");

 return;

 }

 String customerName = rows.getString("name");

 setCustomerName (customerName);

 setCustomerCodes (rows.getString("codes"));

 done = rows.next();

 new Assertion (! done, "Multiple rows for " + orderID);

 }

And call it from order frame

 void load()

 {

 try {

 setMessages("");

 String orderID = _orderNumber.getText();

 //check for blank order

 if (orderID.equals("")) {

 setMessages("Please type an order ID");

 return;

 }

 clearLinesTable();

 _order.loadOrderData(orderID);

 showCustomerInfo();

 double total = loadOrderLines(orderID);

 beNotModified();

 if (total != 0) {

 total = total * 10 / 10; //needed to get formatter to work

 totalPrice.setText (getCurrencyFormat().format(total));

 }

 } catch (SQLException e) {

 setMessages("SQL error: " + e.getMessage());

 System.out.println ("SQL error: " + e.getMessage());

 System.out.println ("state: " + e.getSQLState());

 }

 }

This all compiles and tests. I’ve reached a significant milestone – I’ve moved the first lump of behavior over to the order. Admittedly it’s a small piece, but it sets the theme to move the rest.

Moving the rest of load

Now I’ve started I might as well continue to move the load routines. I’d like to move all routines that have any SQL in them, and loading seems a good place to start. So a good thing to move would be two remaining methods that I extracted earlier: showCustomerInfo and loadOrderLines.

I start with showCustomerInfo.

 void showCustomerInfo() {

 //show customer info

 StringBuffer buf = new StringBuffer();

 if (getCustomerCodes().indexOf('G') != -1) buf.append("Gold\n");

 else if (getCustomerCodes().indexOf('S') != -1) buf.append("Silver\n");

 if (getCustomerCodes().indexOf('B') != -1) buf.append("Bonnie Prince\n");

 info.setText(buf.toString());

 }

I could inspect it to figure out what data I need to move first, but the easiest way to do that seems to be just compile the method as it stands in the order class. From that I find that info needs to be moved. The info field is a gui element, so it needs to be altered in the same way as earlier fields. So I back out that move, and build accessors for the info value. In fact the field is only updated, never read, so I only need a setInfo method.

 void showCustomerInfo() {

 //show customer info

 StringBuffer buf = new StringBuffer();

 if (getCustomerCodes().indexOf('G') != -1) buf.append("Gold\n");

 else if (getCustomerCodes().indexOf('S') != -1) buf.append("Silver\n");

 if (getCustomerCodes().indexOf('B') != -1) buf.append("Bonnie Prince\n");

 setInfo(buf.toString());

 }

 void setInfo (String arg) {

 info.setText(arg);

 }

Then I can copy the field information in the same way as above

class Order…

 private String _info;

 public String getInfo() {

 return _info;

 }

 public void setInfo (String arg) {

 _info = arg;

 setChanged();

 notifyObservers();

 }

class OrderFrame…

 public void update (Observable order, Object arg) {

 customerChoice.select (_order.getCustomerName());

 messagesField.setText(_order.getMessages());

 info.setText(_order.getInfo());

 }

 void setInfo (String arg) {

 _order.setInfo(arg);

 }

And move the method

class Order…

 public void showCustomerInfo() {

 StringBuffer buf = new StringBuffer();

 if (getCustomerCodes().indexOf('G') != -1) buf.append("Gold\n");

 else if (getCustomerCodes().indexOf('S') != -1) buf.append("Silver\n");

 if (getCustomerCodes().indexOf('B') != -1) buf.append("Bonnie Prince\n");

 setInfo(buf.toString());

 }

class OrderFrame…

 void load()

 {

 try {

 setMessages("");

 String orderID = _orderNumber.getText();

 //check for blank order

 if (orderID.equals("")) {

 setMessages("Please type an order ID");

 return;

 }

 clearLinesTable();

 _order.loadOrderData(orderID);

 _order.showCustomerInfo();

 double total = loadOrderLines(orderID);

 beNotModified();

 if (total != 0) {

 total = total * 10 / 10; //needed to get formatter to work

 totalPrice.setText (getCurrencyFormat().format(total));

 }

 } catch (SQLException e) {

 setMessages("SQL error: " + e.getMessage());

 System.out.println ("SQL error: " + e.getMessage());

 System.out.println ("state: " + e.getSQLState());

 }

I’m getting tired of using both setChanged and notifyObservers with all my updates. Really these should not be called together. In the usual use of a gui you would call setChanged with any change to a value in order, but then only use notifyObservers at the end of period of control in the domain, such as the end of the load method. It doesn’t harm to call notifyObservers with each setChanged, it only leads to additional updates, which might degrade performance. So I wouldn’t worry about it until later optimization. But I don’t like duplicate typing. so I create a method to change and notify.

 private void changeAndNotify() {

 setChanged();

 notifyObservers();

 }

Then I don’t have to use notifyObservers any more.

Moving loadOrderLines

While showCustomerInfo was an easy move, loadOrderLines is going to be more tricky. I do the usual move and compile routine, and see that the only field in order frame that I have to worry about in linesTable. The bad news is that lines table is a whole table, with lots to it.

Each row in the table corresponds to a line in the order, and has information loaded from the order lines table on the database. Since there are several lines, it seems reasonable to build an order line class and set it up so that the order has several of them.

class Order…

 private Vector _orderLines = new Vector();

public class Orderline {}

I’ll work with the gui code to figure out how to access the order lines. I’m interested in the places where the gui components in the table are referenced. The first one is the code to work with the product name, which I’ve highlighted below.

 private double loadOrderLines(String orderID) throws SQLException{

 //separate the query from the modifier

 ResultSet rows = getConnection().createStatement().executeQuery(

 "SELECT * FROM OrderLines WHERE OrderID = " + orderID);

 int rowNumber = 0;

 double total = 0;

 while (rows.next()) {

 int productID = rows.getInt("ProductID");

 ResultSet cursor = getConnection().createStatement().executeQuery(

 "SELECT NAME FROM Products WHERE ProductID = " +

 String.valueOf(productID));

 cursor.next();

 String productName = cursor.getString(1);

 Choice thisChoice = (Choice) linesTable.getComponent(rowNumber, 0);

 thisChoice.select(productName);

 int quantity = rows.getInt("Quantity");

 linesTable.setCell(rowNumber, 1, String.valueOf(quantity));

 double price = rows.getDouble("Price");

 if (!rows.wasNull()) {

 String priceString = getCurrencyFormat().format(price);

 linesTable.setCell(rowNumber, 2, priceString);

 total += price;

 }

 rowNumber++;

 }

 return total;

 }

I can extract a method to update the product name on particular line.

 private double loadOrderLines(String orderID) throws SQLException{

 //separate the query from the modifier

 ResultSet rows = getConnection().createStatement().executeQuery(

 "SELECT * FROM OrderLines WHERE OrderID = " + orderID);

 int rowNumber = 0;

 double total = 0;

 while (rows.next()) {

 int productID = rows.getInt("ProductID");

 ResultSet cursor = getConnection().createStatement().executeQuery(

 "SELECT NAME FROM Products WHERE ProductID = " +

 String.valueOf(productID));

 cursor.next();

 String productName = cursor.getString(1);

 setProductName_forLine (productName, rowNumber);

 int quantity = rows.getInt("Quantity");

 linesTable.setCell(rowNumber, 1, String.valueOf(quantity));

 double price = rows.getDouble("Price");

 if (!rows.wasNull()) {

 String priceString = getCurrencyFormat().format(price);

 linesTable.setCell(rowNumber, 2, priceString);

 total += price;

 }

 rowNumber++;

 }

 return total;

 }

 void setProductName_forLine (String arg, int lineNumber) {

 Choice thisChoice = (Choice) linesTable.getComponent(lineNumber, 0);

 thisChoice.select(arg);

 }

While I’m at it I’ll also look for other uses of linesTable.getComponent. In the price method there is this fragment of code

 for (int i=0; i < numberOfLines; i++) {

 String productName = ((Choice)

linesTable.getComponent(i, 0)).getSelectedItem();

 if (productName.equals("")) {

 price[i] = -1;

 continue;

 }

I can extract a getting method for the product name from this.

[snip]

 for (int i=0; i < numberOfLines; i++) {

 String productName = getProductNameForLine(i);

 if (productName.equals("")) {

 price[i] = -1;

 continue;

[snip]

 private String getProductNameForLine(int lineNumber) {

 return ((Choice)linesTable.getComponent(lineNumber, 0)).getSelectedItem();

 }

Again I do a search and replace to ensure all the references to this component are encapsulated. I check to documentation for the table component and find that the zero in getComponent refers to the first column in the table. The other tables are referenced through some other protocol, I’ll delve into that later.

My procedure so far has been to duplicate the encapsulating methods for the gui control on the Order class, so I’ll do that and implement them in a way that seems sensible.

class Order…

 private OrderLine getLine(int lineNumber) {

 return (OrderLine) _orderLines.elementAt(lineNumber);

 }

 public void setProductName_forLine (String arg, int lineNumber) {

 getLine(lineNumber).setProductName(arg);

 }

 public String getProductNameForLine(int lineNumber) {

 getLine(lineNumber).getProductName();

 }

class OrderLine…

 private String _productName = "";

 public String getProductName() {

 return _productName;

 }

 public void setProductName (String arg) {

 _productName = arg;

 }

One problem with this is in creating the order line objects. They need to be created as they are used, I don’t want to create a whole load in advance, so create them as I access them with a form of lazy initialization.

 private OrderLine getLine(int lineNumber) {

 if (lineNumber + 1 > _orderLines.size())

 growLinesTo (lineNumber);

 return (OrderLine) _orderLines.elementAt(lineNumber);

 }

 private void growLinesTo(int lineNumber) {

 _orderLines.setSize (lineNumber + 1);

 for (int i = 0; i < _orderLines.size(); i++)

 if (_orderLines.elementAt(i) == null)

 _orderLines.setElementAt(new OrderLine(), i);

 }

It’s a bit messy, but it should work.

The other problem lies in how to do the observer synchronization. Several options occur to me.

1) Make the order frame an observer on each order line

2) Make the order an observer of the order lines

3) Control updates through the order

4) Get the order line to tell the order when it is changed

Option 1 would work if I could add each observer of the order onto the order line when it is created. This is somewhat awkward at the best of times, and impossible in Java since I cannot get a list of observers to an object. I don’t like option 2 because I’ve seen too many people get into trouble by making using observers within the domain model. Option 3 would mean that I couldn’t let order line update themselves as needed. For option 4 I would need a reference from the order line to the order, which I haven’t done yet, and am reluctant to do at this stage.

I think the best of this bad lot is option 2. Although I avoid observers within the domain model, it seems the easiest way for the moment. I’m also being very restrictive on how I use it. The only reaction to a notify from the order line will be to propagate the notify – the order will not do anything else.

class Order…

 private void growLinesTo(int lineNumber) {

 _orderLines.setSize (lineNumber + 1);

 for (int i = 0; i < _orderLines.size(); i++)

 if (_orderLines.elementAt(i) == null) {

 OrderLine newLine = new OrderLine();

 newLine.addObserver(this);

 _orderLines.setElementAt(newLine, i);

 }

 }

 public void update (Observable obs, Object arg) {

 setChanged();

 }

I need to update update on the order frame.

class OrderFrame…

 public void update (Observable order, Object arg) {

 customerChoice.select (_order.getCustomerName());

 messagesField.setText(_order.getMessages());

 info.setText(_order.getInfo());

 updateOrderLines();

 }

 private void updateOrderLines() {

 for (int i = 0; i < _order.getNumberOfLines(); i++) {

 Choice thisChoice = (Choice) linesTable.getComponent(i, 0);

 thisChoice.select(_order.getProductNameForLine(i));

 }

 }

I know this loop for the order lines will get involved, so I will separate it now.

The last thing is to get the domain to react to the user changing the gui. I look for an event involving linesTable and find one triggerred when you enter a cell

void linesTable_enterCellBegin(jclass.table.JCEnterCellEvent event)

{

beModified();

}

This is not what I need. I need to trigger an update whenever the product choice is changed. The linesTable does not seem to give me the right event to work with. I need to find where the choice is created and put into the table. I search for linesTable and find the following fragment in initialize

for (int i=0; i < linesTable.getNumRows(); i++) {

//create a new choice

Choice productChoice = new Choice();

productChoice.addItemListener(new itemProductListener(i));

Enumeration e = productNames.elements();

while (e.hasMoreElements())

productChoice.addItem((String) e.nextElement());

linesTable.setComponent(i, 0, productChoice);

[snip]

I need to put a listener on the component as I create it. This method does that with the class itemProductListener. I do a search for that and find it as an inner class of order frame

class itemProductListener implements java.awt.event.ItemListener {

public void itemStateChanged(java.awt.event.ItemEvent event) {

 beModified();

}

}

I can modify this listener to update the order lines. The only question is how do I know which line number has been changed? This got somewhat tricky.

First I decided to not try to figure out how to find out which one changed. I just updated the whole table each time any row was changed. I (rightly) shrugged off performance issues since I would deal with them later during optimization. In any case I doubt if they would show up compared to the slowness of the database access. But I ran into a less tractable problem – correctness. It worked fine for the first row, but if you tried to add a second row, the table would update the first row, and reread the table from the domain, wiping out the change in the second row. I could put some control to stop updating the whole table from the domain, but I decided to try another tack. So I backed out the changes.

The second attempt involved trying to figure out which cell had been changed in the table. It looked like I might be able to do this by seeing which cell was selected. I tried for a while to get this to work but gave up. Again I backed out the changes for a third approach.

The final approach was to modify the listener. Each product choice gets it’s own listener, and during the creation we know the row number. So I can modify the listener to store the row number.

class itemProductListener implements java.awt.event.ItemListener {

public void itemStateChanged(java.awt.event.ItemEvent event) {

 beModified();

 }

 private int _row;

 public itemProductListener (int row) {

 _row = row;

 }

}

Once I did that I can put the code in to do the update to the domain.

class OrderFrame.itemProductListener…

public void itemStateChanged(java.awt.event.ItemEvent event) {

beModified();

 Choice productChoice = (Choice) linesTable.getComponent(row, 0);

 _order.setProductName_forLine (productChoice.getSelectedItem(), row);

}

The only problem with this is there is nothing for the tests to call to tell the frame to update. Café uses a convention of not putting the update code in the inner class, rather delegating it to a method in the outer. That separate method is perfect for the test driver to call.

class OrderFrame.itemProductListener…

public void itemStateChanged(java.awt.event.ItemEvent event) {

 productChoice_ItemStateChanged(null, _row);

}

void productChoice_ItemStateChanged(java.awt.event.ItemEvent event, int row) {

 beModified();

 _order.setProductName_forLine (getProductChoice(row).getSelectedItem(), row);

}

private Choice getProductChoice(int row) {

 return (Choice) linesTable.getComponent(row, 0);

}

This was rather long winded and messy, more so than I like during refactoring. I think it is inherent in splitting data between a gui and a domain model. Whenver that data needs to be copied you have to deal with the synchronization issues. Using the observer helps a lot, and certainly deals with single field cases very easily. A table, however, is a good bit more trouble, forcing me to invent a mechanism to handle the synchronization.

Timing Test at 58s
Duplicating the quantity field

Of course the product is only one column in that table. As I look at loadOrderLines I can see other columns I need to work with.

 //separate the query from the modifier

 ResultSet rows = getConnection().createStatement().executeQuery(

 "SELECT * FROM OrderLines WHERE OrderID = " + orderID);

 int rowNumber = 0;

 double total = 0;

 while (rows.next()) {

 int productID = rows.getInt("ProductID");

 ResultSet cursor = getConnection().createStatement().executeQuery(

 "SELECT NAME FROM Products WHERE ProductID = " +

 String.valueOf(productID));

 cursor.next();

 String productName = cursor.getString(1);

 setProductName_forLine (productName, rowNumber);

 int quantity = rows.getInt("Quantity");

 linesTable.setCell(rowNumber, 1, String.valueOf(quantity));

 double price = rows.getDouble("Price");

 if (!rows.wasNull()) {

 String priceString = getCurrencyFormat().format(price);

 linesTable.setCell(rowNumber, 2, priceString);

 total += price;

 }

 rowNumber++;

 }

 return total;

 }

The next item is the quantity which is set with the code I’ve highlighted. Again I want to copy this data to the order line. So I go through the steps again.

First I will encapsulate the gui data, beginning with the setting method.

 private double loadOrderLines(String orderID) throws SQLException{

 //separate the query from the modifier

 ResultSet rows = getConnection().createStatement().executeQuery(

 "SELECT * FROM OrderLines WHERE OrderID = " + orderID);

 int rowNumber = 0;

 double total = 0;

 while (rows.next()) {

 int productID = rows.getInt("ProductID");

 ResultSet cursor = getConnection().createStatement().executeQuery(

 "SELECT NAME FROM Products WHERE ProductID = " +

 String.valueOf(productID));

 cursor.next();

 String productName = cursor.getString(1);

 setProductName_forLine (productName, rowNumber);

 int quantity = rows.getInt("Quantity");

 setQuantity_forLine(quantity, rowNumber);

 double price = rows.getDouble("Price");

 if (!rows.wasNull()) {

 String priceString = getCurrencyFormat().format(price);

 linesTable.setCell(rowNumber, 2, priceString);

 total += price;

 }

 rowNumber++;

 }

 return total;

 }

 private void setQuantity_forLine(int quantity, int lineNumber) {

 linesTable.setCell(lineNumber, QUANTITY_COL, String.valueOf(quantity));

 }

 static final int PRODUCT_COL = 0;

 static final int QUANTITY_COL = 1;

 static final int PRICE_COL = 2;

I’ve also decided to start to use constants to replace the column numbers for the table. Now for a getting method. In some cases the code uses the string from the cell, but in other cases it converts the string to an int. So I’ll provide two getting methods: one for each.

 private String getQuantityString(int lineNumber) {

 return (String) linesTable.getCell(lineNumber, QUANTITY_COL);

 }

 private int getQuantity(int lineNumber) {

 return Integer.parseInt(getQuantityString(lineNumber));

 }

After a compile and test, I’ll update the event handling to use the new method. I look for a listener that is reacting to a change in a cell. I find

class SymJCEnterCell implements jclass.table.JCEnterCellListener

{

public void enterCellEnd(jclass.table.JCEnterCellEvent event)

{

Object object = event.getSource();

if (object == linesTable)

linesTable_enterCellEnd(event);

}

public void enterCellBegin(jclass.table.JCEnterCellEvent event)

{

}

}

void linesTable_enterCellEnd(jclass.table.JCEnterCellEvent event)

{

beModified();

}

I can query the enter cell event to find which cell has been used and use that to update the cell value.

void linesTable_enterCellEnd(jclass.table.JCEnterCellEvent event)

{

beModified();

if (event.getColumn() == QUANTITY_COL)

 quantity_changed(event.getRow());

}

void quantity_changed(int line) {

 setQuantity_forLine ((String) linesTable.getCell(line,QUANTITY_COL),line);

}

 private void setQuantity_forLine(int quantity, int lineNumber) {

 setQuantity_forLine(String.valueOf(quantity), lineNumber);

 }

 private void setQuantity_forLine (String quantity, int lineNumber) {

 linesTable.setCell(lineNumber, QUANTITY_COL, quantity);

 }

I’ve added a setting method that uses a string, using overloading.

I also have to update the test code to trigger the event.

class OrderFrameTestDriver…

 private void setQuantityForRow_to(int rowNumber, String quantity)

 {

 _frame.linesTable.setCell(rowNumber, _frame.QUANTITY_COL, quantity);

 _frame.quantity_changed(rowNumber);

 }

Now when I compile and test I’ll be updating the value of the cell, then triggering the event, which will call setQuantity_forLine using the current value of the cell to update the quantity for the cell. At the moment of course this is unnecessary duplication, but it is more likely to catch an error in the mechanism now. So by doing this and then compiling and testing – I make a smaller move which will help me to spot an error more quickly.

Now I’ve fixed up the gui to prepare it for the domain, I’ll work on the domain, starting with the order line.

 private String _qua12ntity = "";

 public String getQuantity() {

 return _quantity;

 }

 public void setQuantity(String arg) {

 _quantity = arg;

 changeAndNotify();

 }

You might find it odd that I’ve made the quantity field a string rather than an int. Certainly an int makes more sense in the domain, and it matches the database better. But the gui uses a string, so the smallest move is to store it as a string. I will consider converting it to an int later.

As I make this change, I ask myself “what happens if there is no quantity?” I check the tests to see what behavior is expected and find the tests are lacking. So I write a test to probe the behavior – and find that pricing with a blank quantity leads to a number format exception, and that saving such a situation leads to a database error.

In refactoring it is quite common to come across a bug like this. I have a choice: either fix the bug now, or refactor and fix the bug later. If it is simple to fix the bug now, that’s what I do. In this case it looks rather more complicated so I add the test to a suite of failed tests which I will come back to later on. What I do need to do is ensure a null quantity is not treated as zero and that I get an exception if I try to save or price with a blank quantity. So I put in a test to ensure this behavior still occurs. That way I won’t exchange one bug for a different one which, for some users, may be worse.

I also need to modify order to provide an interface for the quantity. I could do the same as I did for product and have a method like getQuantityForLine, but this is getting repetitive. Instead I make the getLine method public and use that.

Now it is time to redirect the order frame accessors to use the domain.

class OrderFrame…

 private void setQuantity_forLine(String quantity, int lineNumber) {

 _order.getLine(lineNumber).setQuantity(quantity);

 }

 private String getQuantityString(int lineNumber) {

 return _order.getLine(lineNumber).getQuantity();

 }

And to update update

 private void updateOrderLines() {

 for (int i = 0; i < _order.getNumberOfLines(); i++) {

 Choice thisChoice = (Choice) linesTable.getComponent(i, PRODUCT_COL);

 thisChoice.select(_order.getProductNameForLine(i));

 linesTable.setCell(i, QUANTITY_COL, _order.getLine(i).getQuantity());

 }

 }

I run it and get mixed news. The tests work fine, but as I watch it run I notice that the quantity field is not getting cleared out when the order is changed on the screen. I add a test to probe for this error. Once I can get a test to fail, it is easier to find the bug.

It looks like there’s some problem in clearing the screen. On a whim I search for “clear” and find

 void clearLinesTable()

 {

 linesTable.clearCells();

 for (int i=0; i < linesTable.getNumRows(); i++)

 setProductName_forLine ("", i);

 totalPrice.setText("");

 }

The clearCells method on linesTable will clear out the cells, but not the domain. I need to clear the domain. I need a suitable method on order.

class Order…

 public void clearLines() {

 for (int i = 0; i < _orderLines.size(); i++) {

 OrderLine newLine = new OrderLine();

 newLine.addObserver(this);

 _orderLines.setElementAt(newLine, i);

 }

 }

class OrderFrame…

 void clearLinesTable() {

 _order.clearLines();

 linesTable.clearCells();

 for (int i=0; i < linesTable.getNumRows(); i++)

 setProductName_forLine ("", i);

 totalPrice.setText("");

 }

I still need to use clearCells as the price is not yet in the domain. As I run the tests again I notice other problems with clearing, so I run the gui interactively and try a few things. I find a couple of problems and make tests for them. I suspect the problem is with incorrect clearing so I do another search for clear. I find one method that was calling linesTable.clearCells but not clearLinesTable. When I replace that call, all works fine.

With this last field movement I can confess something I’ve been doing with you. When I started writing this chapter I had not mapped out a defined mechanics for duplicating gui data in the domain in Java. I’d done it a few times and got a grasp of the principles but I didn’t write it down. I did this because I wanted you to see the process of coming up with a defined way to do a refactoring. The first couple of times were a bit haphazard and ran into a couple of messy problems. I took note of these problems and asked myself “how can I take smaller steps to reduce these problems”. With this last refactoring I had worked out a sequence, wrote it down, and followed it. As a result it went much more smoothly.

You will find a need to do this yourself. This book gives you some pointers on doing refactoring, and shows you the mechanics for several refactorings. But there are many more refactorings that are not present in this book, after all this is a very young field.

Duplicating the Price Field

The next field we need to move is the price field.

 private double loadOrderLines(String orderID) throws SQLException{

 //separate the query from the modifier

 ResultSet rows = getConnection().createStatement().executeQuery(

 "SELECT * FROM OrderLines WHERE OrderID = " + orderID);

 int rowNumber = 0;

 double total = 0;

 while (rows.next()) {

 int productID = rows.getInt("ProductID");

 ResultSet cursor = getConnection().createStatement().executeQuery(

 "SELECT NAME FROM Products WHERE ProductID = " +

 String.valueOf(productID));

 cursor.next();

 String productName = cursor.getString(1);

 setProductName_forLine (productName, rowNumber);

 int quantity = rows.getInt("Quantity");

 setQuantity_forLine(quantity, rowNumber);

 double price = rows.getDouble("Price");

 if (!rows.wasNull()) {

 String priceString = getCurrencyFormat().format(price);

 linesTable.setCell(rowNumber, 2, priceString);

 total += price;

 }

 rowNumber++;

 }

 return total;

 }

Now we have the sequence down pat, we can just follow it. First we I make the accessors, starting with the setting method.

 private double loadOrderLines(String orderID) throws SQLException{

 //separate the query from the modifier

 ResultSet rows = getConnection().createStatement().executeQuery(

 "SELECT * FROM OrderLines WHERE OrderID = " + orderID);

 int rowNumber = 0;

 double total = 0;

 while (rows.next()) {

 int productID = rows.getInt("ProductID");

 ResultSet cursor = getConnection().createStatement().executeQuery(

 "SELECT NAME FROM Products WHERE ProductID = " +

 String.valueOf(productID));

 cursor.next();

 String productName = cursor.getString(1);

 setProductName_forLine (productName, rowNumber);

 int quantity = rows.getInt("Quantity");

 setQuantity_forLine(quantity, rowNumber);

 double price = rows.getDouble("Price");

 if (!rows.wasNull()) {

 setPrice_forLine (price, rowNumber);

 total += price;

 }

 rowNumber++;

 }

 return total;

 }

 private void setPrice_forLine (double price, int lineNumber) {

 String priceString = getCurrencyFormat().format(price);

 setPrice_forLine (priceString, lineNumber);

 }

 private void setPrice_forLine (String price, int lineNumber) {

 linesTable.setCell(lineNumber, PRICE_COL, price);

 }

I found routine that updated the price through both doubles and strings, so I provided setting methods for both, just as with quantity. The only gettting case for price was interesting.

 void insertOrderLines() throws SQLException

 {

 for (int i=0; i < linesTable.getNumRows(); i++) {

 String productName = getProductNameForLine(i);

 if (productName.equals("")) continue;

 String productID =

String.valueOf(((Product) products.get(productName)).id());

 String quantity = getQuantityString(i);

 Number price = null;

 try {

 price = NumberFormat.getCurrencyInstance().parse(

(String) linesTable.getCell(i,2));

 } catch (ParseException e) {} // should not happen

 catch (NullPointerException e) {} // null price, so leave as null

 String priceString = (price == null ? "NULL" : price.toString());

 getConnection().createStatement().executeUpdate(

"INSERT INTO OrderLines (OrderID, ProductID, Quantity, Price) VALUES ('" +

 _orderNumber.getText() + "','" + productID + "','" + quantity +

"'," + priceString + ")");

 }

 }

This is to provide the price as a string, ready for a SQL insert. The question is, how much should I encapsulate? At this stage I’ll encapsulate the minimum, that is just the provision of the string.

 void insertOrderLines() throws SQLException {

 for (int i=0; i < linesTable.getNumRows(); i++) {

 String productName = getProductNameForLine(i);

 if (productName.equals("")) continue;

 String productID =

 String.valueOf(((Product) products.get(productName)).id());

 String quantity = getQuantityString(i);

 Number price = null;

 try {

 price = NumberFormat.getCurrencyInstance().parse(getPriceString(i));

 } catch (ParseException e) {} // should not happen

 catch (NullPointerException e) {} // null price, so leave as null

 String priceString = (price == null ? "NULL" : price.toString());

 getConnection().createStatement().executeUpdate(

"INSERT INTO OrderLines (OrderID, ProductID, Quantity, Price) VALUES ('" +

 _orderNumber.getText() + "','" + productID + "','" + quantity +

 "'," + priceString + ")");

 }

 }

 private String getPriceString(int line) {

 return (String) linesTable.getCell(line, PRICE_COL);

 }

I then compile and test. Now all references to getCell or setCell are within encapsulating methods. Next step is to do the event handling.

void linesTable_enterCellEnd(jclass.table.JCEnterCellEvent event)

{

beModified();

if (event.getColumn() == QUANTITY_COL)

 quantity_changed(event.getRow());

if (event.getColumn() == PRICE_COL)

 price_changed(event.getRow());

}

void price_changed(int line) {

 setPrice_forLine ((String) linesTable.getCell(line, PRICE_COL),line);

}

Now I set up the domain data, again I just use a string for storage at the moment.

class OrderLine…

 private String _price = “”;

 public String getPrice() {

 return _price;

 }

 public void setPrice(String arg) {

 _price = arg;

 changeAndNotify();

 }

I redirect the accessors

class OrderFrame…

 private void setPrice_forLine (String price, int lineNumber) {

 _order.getLine(lineNumber).setPrice(price);

 }

 private String getPriceString(int line) {

 return _order.getLine(line).getPrice();

 }

And update update

class OrderFrame…

 private void updateOrderLines() {

 for (int i = 0; i < _order.getNumberOfLines(); i++) {

 Choice thisChoice = (Choice) linesTable.getComponent(i, PRODUCT_COL);

 thisChoice.select(_order.getProductNameForLine(i));

 linesTable.setCell(i, QUANTITY_COL, _order.getLine(i).getQuantity());

 linesTable.setCell(i, PRICE_COL, _order.getLine(i).getPrice());

 }

 }

I got three failures, all due to some tests that test for blank prices expecting a null, but getting a blank. I’m tempted to change the tests as they are nearly equivalent, but I feel it is safer to fix it by removing the initializer on the price field.

class OrderLine…

 private String _price;

With that all tests work fine.

I’ve noticed that in a lot of places I’m using _order.getLine to reach certain lines. Soon I’m going to be moving lots of code over to order, so I’d like to remove the references to order. That’s easily done by replacing “_order.getLine” with “getLine” and adding a simple delegation method.

 private OrderLine getLine(int line) {

 return _order.getLine(line);

 }

I also remove the getProductNameForLine method on order, replacing it with “getLine().getProductName”.

Moving the load method

It’s now time to move the loadOrderLines method over to order. I start by pasting the method into order and compiling. Several lines aren’t recognized.

 private double loadOrderLines(String orderID) throws SQLException{

 //separate the query from the modifier

 ResultSet rows = getConnection().createStatement().executeQuery(

 "SELECT * FROM OrderLines WHERE OrderID = " + orderID);

 int rowNumber = 0;

 double total = 0;

 while (rows.next()) {

 int productID = rows.getInt("ProductID");

 ResultSet cursor = getConnection().createStatement().executeQuery(

 "SELECT NAME FROM Products WHERE ProductID = " +

 String.valueOf(productID));

 cursor.next();

 String productName = cursor.getString(1);

 setProductName_forLine (productName, rowNumber);

 int quantity = rows.getInt("Quantity");

 setQuantity_forLine(quantity, rowNumber);

 double price = rows.getDouble("Price");

 if (!rows.wasNull()) {

 setPrice_forLine (price, rowNumber);

 total += price;

 }

 rowNumber++;

 }

 return total;

 }

I replace these.

 private double loadOrderLines(String orderID) throws SQLException{

 //separate the query from the modifier

 ResultSet rows = getConnection().createStatement().executeQuery(

 "SELECT * FROM OrderLines WHERE OrderID = " + orderID);

 int rowNumber = 0;

 double total = 0;

 while (rows.next()) {

 int productID = rows.getInt("ProductID");

 ResultSet cursor = getConnection().createStatement().executeQuery(

 "SELECT NAME FROM Products WHERE ProductID = " +

 String.valueOf(productID));

 cursor.next();

 String productName = cursor.getString(1);

 getLine(rowNumber).setProductName(productName);

 int quantity = rows.getInt("Quantity");

 getLine(rowNumber).setQuantity(quantity,);

 double price = rows.getDouble("Price");

 if (!rows.wasNull()) {

 getLine(rowNumber).setPrice(price);

 total += price;

 }

 rowNumber++;

 }

 return total;

 }

Sadly some of these methods don’t work as I haven’t got setters that use numbers on the order class. I need to move the conversion code over from the order frame. At the moment the conversion is done in

class OrderFrame…

 private void setPrice_forLine (double price, int lineNumber) {

 String priceString = getCurrencyFormat().format(price);

 setPrice_forLine (priceString, lineNumber);

 }

I change this to

class OrderFrame…

 private void setPrice_forLine (double price, int lineNumber) {

 getLine(lineNumber).setPrice(price);

 }

class OrderLine…

 public void setPrice (double arg) {

 setPrice (getCurrencyFormat().format(arg));

 }

 private NumberFormat getCurrencyFormat() {

 return NumberFormat.getCurrencyInstance();

 }

I can test this change without moving the loadOrderLines method. I haven’t taken out the body or call in order frame yet, so I comment the method out in order to get it to make, and then compile and test. I then do the same thing for setQuantity_forLine. Another compile and test, and then I remove loadOrderLines from order frame and alter the load method.

class OrderFrame…

 void load()

 {

 try {

 setMessages("");

 String orderID = _orderNumber.getText();

 //check for blank order

 if (orderID.equals("")) {

 setMessages("Please type an order ID");

 return;

 }

 clearLinesTable();

 _order.loadOrderData(orderID);

 _order.showCustomerInfo();

 double total = _order.loadOrderLines(orderID);

 beNotModified();

 if (total != 0) {

 total = total * 10 / 10; //needed to get formatter to work

 totalPrice.setText (getCurrencyFormat().format(total));

 }

 } catch (SQLException e) {

 setMessages("SQL error: " + e.getMessage());

 System.out.println ("SQL error: " + e.getMessage());

 System.out.println ("state: " + e.getSQLState());

 }

 }

So now all I need to do is to move the load method itself. This means that some more data needs to be duplicated from the gui into the domain – specifically the orderNumber and total fields.

I won’t go into the details of these moves as they were pretty much the same sort of thing. There was only one trouble spot. There wasn’t an event handler set up for changes to the order number field. I got some problems when I put the event handler in place. I used the textChanged event, and it seems that this event is generated on any change to the value, whether through the gui or not. Thus I ended up in an endless loop of changes. I broke the cycle with

 private void setOrderNumber(String arg) {

 if (!arg.equals(getOrderNumber()))

 _orderNumber.setText(arg);

 }

As well as data there are other methods to move, the two obvious ones were clearLinesTable and beNotModified. The clearLinesTable is the easiest to consider.

 void clearLinesTable() {

 _order.clearLines();

 linesTable.clearCells();

 for (int i=0; i < linesTable.getNumRows(); i++)

 setProductName_forLine ("", i);

 setTotalPrice("");

 }

Now that we are updating the table from the domain, the update should do most of the clearing. We can test this by removing some of the code.

 void clearLinesTable() {

 _order.clearLines();

 setTotalPrice("");

 }

This still works, so I can now move this method to the order class. I find every call to the method in order frame and redirect it to call order.

beNotModified is a rather more awkward customer.

 void beNotModified() {

 _orderNumber.setEditable(false);

 customerChoice.setEnabled(true);

 _saveButton.setLabel("Save");

 _saveButton.setEnabled(false);

 cancelButton.setEnabled(false);

 findMenuItem.setEnabled(true);

 insertMenuItem.setEnabled(true);

 }

It makes many changes to the enabling of controls on the order frame. Clearly this needs to be done from the order frame, yet we need to initiate it from the order. The naming gives us a clue: we can create a bit of data on the order, and use the observer mechanism to make the changes to the order frame.

class Order…

 private boolean _isModified = false;

 public boolean isModified() {

 return _isModified;

 }

 public void beModified() {

 _isModified = true;

 changeAndNotify();

 }

 public void beNotModified() {

 _isModified = false;

 changeAndNotify();

 }

class OrderFrame…

The naming also suggests there might be a beModified method on order frame, which there is. So I updated update to

 public void update (Observable order, Object arg) {

 customerChoice.select (_order.getCustomerName());

 messagesField.setText(_order.getMessages());

 info.setText(_order.getInfo());

 _orderNumber.setText(_order.getOrderNumber());

 totalPrice.setText(_order.getTotalPrice());

 if (_order.isModified()) beModified();

 else beNotModified();

 updateOrderLines();

 }

I redirected all calls to beModified and beNotModified so they went to order. But the test blew up badly. To find the problem I did a search for any other routine that altered the state of the buttons modified in beModified. I found

void find_Action(java.awt.event.ActionEvent event)

{

 _order.clearLinesTable();

 setMessages("");

setOrderNumber("");

_orderNumber.setEditable(true);

setCustomerName("");

customerChoice.setEnabled(false);

_saveButton.setLabel("Load");

_saveButton.setEnabled(true);

 }

From this I can tell that the behavior is rather more complicated than just two states. Maybe there are three states: finding, modified, and not modified. But I don’t want to go into that right now, so I back out all of those changes: remove the modified stuff from order, and revert order frame to its prior state. I compile and test and all is working fine again.

So where does this leave me with load?

 void load()

 {

 try {

 setMessages("");

 String orderID = getOrderNumber();

 //check for blank order

 if (orderID.equals("")) {

 setMessages("Please type an order ID");

 return;

 }

 _order.clearLinesTable();

 _order.loadOrderData(orderID);

 _order.showCustomerInfo();

 double total = _order.loadOrderLines(orderID);

 beNotModified();

 if (total != 0) {

 total = total * 10 / 10; //needed to get formatter to work

 setTotalPrice (getCurrencyFormat().format(total));

 }

 } catch (SQLException e) {

 setMessages("SQL error: " + e.getMessage());

 System.out.println ("SQL error: " + e.getMessage());

 System.out.println ("state: " + e.getSQLState());

 }

 }

I try compiling in order to see what fails. Once I copy over getCurrencyFormat, everything other than beNotModified compiles fine. So I suspect that I can move everything other than beNotModified over to order. Inconveniently it lies in the middle of the method, this would imply chopping the method into two, unless I can move it to the beginning or the end. To make more complicated it lies in an exception block. If an exception occurs before it is reached, the command will not be executed. Well I can try moving it to the end of the try block.

 void load()

 {

 try {

 setMessages("");

 String orderID = getOrderNumber();

 //check for blank order

 if (orderID.equals("")) {

 setMessages("Please type an order ID");

 return;

 }

 _order.clearLinesTable();

 _order.loadOrderData(orderID);

 _order.showCustomerInfo();

 double total = _order.loadOrderLines(orderID);

 if (total != 0) {

 total = total * 10 / 10; //needed to get formatter to work

 setTotalPrice (getCurrencyFormat().format(total));

 }

 beNotModified();

 } catch (SQLException e) {

 setMessages("SQL error: " + e.getMessage());

 System.out.println ("SQL error: " + e.getMessage());

 System.out.println ("state: " + e.getSQLState());

 }

 }

That compiles and tests without a problem. So now I can extract a subset of the load method and move it to order. I’m feeling cocky so I’ll do that in one step.

class OrderFrame…

 void load()

 {

 try {

 _order.load();

 beNotModified();

 } catch (SQLException e) {

 setMessages("SQL error: " + e.getMessage());

 System.out.println ("SQL error: " + e.getMessage());

 System.out.println ("state: " + e.getSQLState());

 }

 }

class Order…

 public void load() throws SQLException {

 setMessages("");

 String orderID = getOrderNumber();

 //check for blank order

 if (orderID.equals("")) {

 setMessages("Please type an order ID");

 return;

 }

 clearLinesTable();

 loadOrderData(orderID);

 showCustomerInfo();

 double total = loadOrderLines(orderID);

 if (total != 0) {

 total = total * 10 / 10; //needed to get formatter to work

 setTotalPrice (getCurrencyFormat().format(total));

 }

 }

That compiled and tested fine. It is not what I wanted. I wanted to take the exception hander as well, as I think the domain should be able to handle the SQL exceptions without the gui getting involved. But I won’t be able to do that until I’ve really sorted out beModifed and its friends. I’d rather wait until the program is better factored before I tackle that task.

Still I’m rather pleased. I have moved nearly all the loading behavior from the GUI to the domain. In this process I’ve moved most of the GUI data to the domain, and figured out a reproducible refactoring for doing that. Let’s see how the rest of the behavior moves.

Moving the pricing calculation

For no particular reason, I decide to try and move the price and calculate discounts methods. I start with calculateDiscounts as this is called by price. I move it over to order and compile to see what happens. Here’s the code, I’ve highlighted the lines which the compiler gave me errors for.

private double calculateDiscounts(double[] price, double total)

 {

 BigDecimal[] discountPrice = new BigDecimal[price.length];

 BigDecimal discountTotal = new BigDecimal (0);

 NumberFormat formatter = NumberFormat.getCurrencyInstance();

 double discountFactor = 1;

 if (getCustomerCodes().indexOf('G') != -1) {

 if (total > 2500) discountFactor = 0.93;

 else discountFactor = 0.97;

 }

 else if (getCustomerCodes().indexOf('S') != -1)

 discountFactor = 0.97;

 double bonnieDiscount = (getCustomerCodes().indexOf('B') != -1) ? discountFactor - 0.05 : -1;

 if (discountFactor != 1) {

 for (int i=0; i < linesTable.getNumRows(); i++) {

 if (price[i] == -1)

 setPrice_forLine ("", i);

 else {

 if (bonnieDiscount != -1) {

 int quantity = getQuantity(i);

 if (quantity > 15)

 discountPrice[i] = new BigDecimal (price[i] * bonnieDiscount);

 else

 discountPrice[i] = new BigDecimal (price[i] * discountFactor);

 }

 else

 discountPrice[i] = new BigDecimal (price[i] * discountFactor);

 discountPrice[i] = discountPrice[i].setScale(2, BigDecimal.ROUND_HALF_UP);

 discountTotal = discountTotal.add(discountPrice[i]);

 String priceString = formatter.format(discountPrice[i].doubleValue());

 setPrice_forLine(priceString, i);

 }

 };

 }

 else {

 for (int i=0; i < linesTable.getNumRows(); i++) {

 if (price[i] == -1)

 setPrice_forLine("", i);

 else {

 String priceString = formatter.format(price[i]);

 setPrice_forLine(priceString, i);

 }

 };

 discountTotal = new BigDecimal(-1);

 };

 return discountTotal.doubleValue();

 }

This boils down to the following problems

· A reference to the linesTable control

· Using setPrice_forLine

· Using getQuantity()

The reference to linesTable could be a problem, since that is a gui control outside of the domain. However it is only used to get the number of rows in the table. A quick browse of the order class reminds me that I have a method for that: getNumberOfLines. The setPrice_forLine can be replaced by “getLine().setPrice()”. The getQuantity can almost be replaced by using getLine().getQuantity but the domain method returns a string rather than an int. I add a new method to order line to deal with this.

class OrderLine…

public int getQuantityInt() {

 return Integer.parseInt(getQuantity());

 }

The calculateDiscounts method now looks like

Class OrderFrame…

private double calculateDiscounts(double[] price, double total) {

 return _order.calculateDiscounts(price, total);

 }

class Order…

public double calculateDiscounts(double[] price, double total) {

 BigDecimal[] discountPrice = new BigDecimal[price.length];

 BigDecimal discountTotal = new BigDecimal (0);

 NumberFormat formatter = NumberFormat.getCurrencyInstance();

 double discountFactor = 1;

 if (getCustomerCodes().indexOf('G') != -1) {

 if (total > 2500) discountFactor = 0.93;

 else discountFactor = 0.97;

 }

 else if (getCustomerCodes().indexOf('S') != -1)

 discountFactor = 0.97;

 double bonnieDiscount = (getCustomerCodes().indexOf('B') != -1) ? discountFactor - 0.05 : -1;

 if (discountFactor != 1) {

 for (int i=0; i < getNumberOfLines(); i++) {

 if (price[i] == -1)

 getLine(i).setPrice ("");

 else {

 if (bonnieDiscount != -1) {

 int quantity = getLine(i).getQuantityInt();

 if (quantity > 15)

 discountPrice[i] = new BigDecimal (price[i] * bonnieDiscount);

 else

 discountPrice[i] = new BigDecimal (price[i] * discountFactor);

 }

 else

 discountPrice[i] = new BigDecimal (price[i] * discountFactor);

 discountPrice[i] = discountPrice[i].setScale(2, BigDecimal.ROUND_HALF_UP);

 discountTotal = discountTotal.add(discountPrice[i]);

 String priceString = formatter.format(discountPrice[i].doubleValue());

 getLine(i).setPrice(priceString);

 }

 };

 }

 else {

 for (int i=0; i < getNumberOfLines(); i++) {

 if (price[i] == -1)

 getLine(i).setPrice("");

 else {

 String priceString = formatter.format(price[i]);

 getLine(i).setPrice(priceString);

 }

 };

 discountTotal = new BigDecimal(-1);

 };

 return discountTotal.doubleValue();

 }

Next to move is the price method

 void price()

 {

 double total = 0;

 NumberFormat formatter = NumberFormat.getCurrencyInstance();

 int numberOfLines = linesTable.getNumRows();

 double[] price = new double [numberOfLines];

 double discountTotal;

 //get customer codes if we don't have them

 if (getCustomerCodes() == null) {

 try {

 String custID;

 ResultSet cursor = getConnection().createStatement().executeQuery

 ("SELECT * FROM Customers WHERE name = '" +

 getCustomerName() + "'");

 cursor.next();

 setCustomerCodes (cursor.getString("codes"));

 } catch (SQLException e) {

 setMessages("SQL error: " + e.getMessage());

 System.out.println ("SQL error: " + e.getMessage());

 return;

 }

 }

 // price each line item

 for (int i=0; i < numberOfLines; i++) {

 String productName = getLine(i).getProductName();

 if (productName.equals("")) {

 price[i] = -1;

 continue;

 }

 Product thisProduct = (Product) products.get(productName);

 int quantity = getQuantity(i);

 int remainingQuantity = quantity;

 int lastThreshold = 0;

 price[i] = 0;

 BigDecimal thisItemPrice = new BigDecimal(0);

 //determine base price using thresholds

 for (int j=0; j < thisProduct.price().length; j++) {

 int thisThreshold = thisProduct.threshold()[j];

 double thisPrice = thisProduct.price()[j];

 if (thisThreshold == 0 || quantity <= thisThreshold) {

 thisItemPrice = thisItemPrice.add(new BigDecimal (remainingQuantity * thisPrice));

 thisItemPrice.setScale(2, BigDecimal.ROUND_HALF_UP);

 break;

 }

 else {

 int thisQuantity = thisThreshold - lastThreshold;

 thisItemPrice = thisItemPrice.add(new BigDecimal (thisQuantity * thisPrice));

 thisItemPrice.setScale(2, BigDecimal.ROUND_HALF_UP);

 remainingQuantity -= thisQuantity;

 lastThreshold = thisThreshold;

 }

 }

 price[i] = thisItemPrice.doubleValue();

 total += price[i];

 }

 discountTotal = calculateDiscounts(price, total);

 //set totals

 total = total * 10 / 10; // trick to fix formatter

 if (discountTotal != -1)

 setTotalPrice(formatter.format(discountTotal));

 else setTotalPrice(formatter.format(total));

 beModified();

 }

Again I begin by copying it to order and compiling to find the problems.

There is a reference to linesTable to get the number of lines. I replace this by a call to getNumberOfLines.

There is a reference to getQuantity(i) which I replace with getLine(i).getQuantityInt().

There are references to the product class, which is in the original package. I take a look at this class and see that it is a simple data holder with no gui behavior. So I move it to the domain package.

There is a call to beModified at the end of the method. I decide to leave that in order frame.

The last item is the most tricky it is a reference to the products field on the order frame class. This is a dictionary. I search in the order frame for references and find it is loaded up by an intializeProducts method. Since it contains domain information and is not a gui control, I decide to move it to the order class. This is a straightfoward field move: self encapsulate the field, declare it in orders, and redirect the accessor.

With these changes the price method compiled and tested fine in order. Here’s the code.

Class OrderFrame…

void price() {

 _order.price();

 beModified();

 }

Class Order…

public void price() {

 double total = 0;

 NumberFormat formatter = NumberFormat.getCurrencyInstance();

 int numberOfLines = getNumberOfLines();

 double[] price = new double [numberOfLines];

 double discountTotal;

 //get customer codes if we don't have them

 if (getCustomerCodes() == null) {

 try {

 String custID;

 ResultSet cursor = getConnection().createStatement().executeQuery

 ("SELECT * FROM Customers WHERE name = '" +

 getCustomerName() + "'");

 cursor.next();

 setCustomerCodes (cursor.getString("codes"));

 } catch (SQLException e) {

 setMessages("SQL error: " + e.getMessage());

 System.out.println ("SQL error: " + e.getMessage());

 return;

 }

 }

 // price each line item

 for (int i=0; i < numberOfLines; i++) {

 String productName = getLine(i).getProductName();

 if (productName.equals("")) {

 price[i] = -1;

 continue;

 }

 Product thisProduct = (Product) getProductDict().get(productName);

 int quantity = getLine(i).getQuantityInt();

 int remainingQuantity = quantity;

 int lastThreshold = 0;

 price[i] = 0;

 BigDecimal thisItemPrice = new BigDecimal(0);

 //determine base price using thresholds

 for (int j=0; j < thisProduct.price().length; j++) {

 int thisThreshold = thisProduct.threshold()[j];

 double thisPrice = thisProduct.price()[j];

 if (thisThreshold == 0 || quantity <= thisThreshold) {

 thisItemPrice = thisItemPrice.add(new BigDecimal (remainingQuantity * thisPrice));

 thisItemPrice.setScale(2, BigDecimal.ROUND_HALF_UP);

 break;

 }

 else {

 int thisQuantity = thisThreshold - lastThreshold;

 thisItemPrice = thisItemPrice.add(new BigDecimal (thisQuantity * thisPrice));

 thisItemPrice.setScale(2, BigDecimal.ROUND_HALF_UP);

 remainingQuantity -= thisQuantity;

 lastThreshold = thisThreshold;

 }

 }

 price[i] = thisItemPrice.doubleValue();

 total += price[i];

 }

 discountTotal = calculateDiscounts(price, total);

 //set totals

 total = total * 10 / 10; // trick to fix formatter

 if (discountTotal != -1)

 setTotalPrice(formatter.format(discountTotal));

 else setTotalPrice(formatter.format(total));

 }

private Dictionary _products = new Hashtable();

 public Dictionary getProductDict() {

 return _products;

 }

Since price was the only method that called calculateDiscounts, I can now remove calculateDiscounts from the order frame class entirely. Later I will do a trawl to remove old methods, but since that was so recent I do it straightaway.

I now go on an orgy of method moving, quickly moving a whole load of methods from order frame to order. InitializeProducts, insertOrderLines, deleteOrderLines, insert, customerIDFor, update, save moved over easily with only minor changes similar to those above.

With those moved all I have left are those methods that work with the GUI themselves (listeners, café’s constructor, event handlers etc), some accessors for gui fields, and the initialize method. I tried to move the initialize method but all sorts of things showed up as errors. As I looked at the method I could see that it mixed gui code with domain code all mixed up. I will deal with that later. Before that I want to settle with the accessors.

Removing the accessors on order frame

The accessors are methods that look like this

Class OrderFrame…

private void setQuantity_forLine(int quantity, int lineNumber) {

 getLine(lineNumber).setQuantity(quantity);

 }

Many of them I suspect aren’t called any more, now the substantial behavior lies in the order class. But event those are I would prefer to remove. The method name is no clearer than than the body. Although I like short methods, there’s no point when the body is just as clear and short. So I will remove those I can, and inline the rest.

This is an easy procedure. I take the accessors one at a time. I cut an accessor and recompile. If it builds fine then I know it wasn’t used. If the build fails it highlights the line (or lines) that use the accessor, such as

void quantity_changed(int line) {

 setQuantity_forLine ((String) linesTable.getCell(line,QUANTITY_COL),line);

}

I can now inline the method

void quantity_changed(int line) {

 getLine(line).setQuantity ((String) linesTable.getCell(line,QUANTITY_COL));

}

I then compile and test to see if anything failed.

With this process I quickly burn through the accessors and remove all of them.

Breaking up initialize

Now I shall turn my attention to the initialize method

void initialize()

 {

 try {

 createOrder();

 //open database connection

 Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

 setConnection(DriverManager.getConnection("jdbc:odbc:orders", "", ""));

 System.out.println ("Order Frame Connected to Orders Database");

 // load the list of customers into the choice window

 ResultSet cursor = getConnection().createStatement().executeQuery("SELECT * FROM CUSTOMERS");

 customerChoice.addItem("");

 while (cursor.next()) {

 String name = cursor.getString(2);

 customerChoice.addItem(name);

 }

 customerChoice.setEnabled(false);

 //get list of products

 Vector productNames = _order.initializeProducts();

 //load product choice into table

 for (int i=0; i < linesTable.getNumRows(); i++) {

 //create a new choice

 Choice productChoice = new Choice();

 productChoice.addItemListener(new itemProductListener(i));

 Enumeration e = productNames.elements();

 while (e.hasMoreElements())

 productChoice.addItem((String) e.nextElement());

 linesTable.setComponent(i, 0, productChoice);

 //disallow edits on price column

 linesTable.setEditable(linesTable.ALL, 2, false);

 linesTable.setCharWidth(1,4);

 linesTable.setCharWidth(2,10);

 }

 } catch (Exception e) {

 setMessages ("Unable to load static data");

 }

 }

As I said earlier, I can’t just move this the domain, as this method mixed gui tasks with domain tasks. I need to separate the pieces and the domain pieces over. The way to break this method down is suggested by the comments. I start with some easy method extractions, I did several compiling and testing each time, of course, but I’ll just show you the result of the several

void initialize()

 {

 try {

 createOrder();

 openDatabaseConnection();

 loadCustomerChoice();

 //get list of products

 Vector productNames = _order.initializeProducts();

 //load product choice into table

 for (int i=0; i < linesTable.getNumRows(); i++) {

 //create a new choice

 Choice productChoice = new Choice();

 productChoice.addItemListener(new itemProductListener(i));

 Enumeration e = productNames.elements();

 while (e.hasMoreElements())

 productChoice.addItem((String) e.nextElement());

 linesTable.setComponent(i, 0, productChoice);

 initializeLinesTable();

 }

 } catch (Exception e) {

 setMessages ("Unable to load static data");

 }

 }

private void openDatabaseConnection() throws Exception {

 Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

 setConnection(DriverManager.getConnection("jdbc:odbc:orders", "", ""));

 System.out.println ("Order Frame Connected to Orders Database");

 }

 private void loadCustomerChoice() throws SQLException {

 ResultSet cursor = getConnection().createStatement().executeQuery("SELECT * FROM CUSTOMERS");

 customerChoice.addItem("");

 while (cursor.next()) {

 String name = cursor.getString(2);

 customerChoice.addItem(name);

 }

 customerChoice.setEnabled(false);

 }

private void initializeLinesTable() {

 disallowEditsToPriceColumn();

 linesTable.setCharWidth(QUANTITY_COL,4);

 linesTable.setCharWidth(PRICE_COL,10);

 }

 private void disallowEditsToPriceColumn() {

 linesTable.setEditable(linesTable.ALL, PRICE_COL, false);

 }

Those were all pretty easy extractions, but extracting the product listing is a little more involved. I’d like to build a method to create a new product choice, and then I can put that into the table

void initialize()

 {

 try {

 createOrder();

 openDatabaseConnection();

 loadCustomerChoice();

 //get list of products

 Vector productNames = _order.initializeProducts();

 //load product choice into table

 for (int i=0; i < linesTable.getNumRows(); i++) {

 linesTable.setComponent(i, 0, newProductChoice(productNames, i));

 initializeLinesTable();

 }

 } catch (Exception e) {

 setMessages ("Unable to load static data");

 }

 }

 private Choice newProductChoice (Vector listOfNames, int line) {

 Choice result = new Choice();

 result.addItemListener(new itemProductListener(line));

 Enumeration e = listOfNames.elements();

 while (e.hasMoreElements())

 result.addItem((String) e.nextElement());

 return result;

 }

That works quite well. But I don’t like the productNames temporary variable. I prefer to inline the temp and just get the data from order. The trouble is that initializeProducts is not a query – it has side effects. The side-effect is to load the product dictionary on order. I need to separate the query from the modifier.

The first step is to create the query – a good name is getProductNames. This query should have the same return type as the current method. I can get a list of names from the product dictionary quite easily as an enumeration, but I need to return a vector. This is frustrating because newProductChoice ends up using an enumeration later on. But for the moment I need the vector so I can make small steps.

Class Order

public Vector getProductNames() {

 Vector result = new Vector();

 Enumeration e = getProductDict().keys();

 while (e.hasMoreElements())

 result.addElement(e.nextElement());

 return result;

 }

I then replace the return value by a return to the new query.

public Vector initializeProducts() {

 try {

 ResultSet cursor = getConnection().createStatement().executeQuery(

 "SELECT Name, ProductID, threshold1, price1, threshold2, price2," +

 "threshold3, price3, threshold4, price4 FROM Products");

 Vector productNames = new Vector();

 productNames.addElement("");

 while (cursor.next()) {

 String name = cursor.getString(1);

 productNames.addElement(name);

 Product newProduct = new Product(name, cursor.getInt(2));

 newProduct.threshold()[0] = cursor.getInt(3);

 newProduct.price()[0] = cursor.getDouble(4);

 newProduct.threshold()[1] = cursor.getInt(5);

 newProduct.price()[1] = cursor.getDouble(6);

 newProduct.threshold()[2] = cursor.getInt(7);

 newProduct.price()[2] = cursor.getDouble(8);

 newProduct.threshold()[3] = cursor.getInt(9);

 newProduct.price()[3] = cursor.getDouble(10);

 getProductDict().put(name, newProduct);

 }

 return getProductNames();

 } catch (SQLException e) {

 setMessages("SQL error: " + e.getMessage());

 System.out.println ("SQL error: " + e.getMessage());

 System.out.println ("state: " + e.getSQLState());

 return null;

 }

 }

The tests fail, all mentioning an empty row. I see why, I’ve highlighted the offending line above, one that adds a blank string to the result vector. I need to modify the query to add this.

public Vector getProductNames() {

 Vector result = new Vector();

 result.addElement("");

 Enumeration e = getProductDict().keys();

 while (e.hasMoreElements())

 result.addElement(e.nextElement());

 return result;

 }

I can now remove the references to the productNames temp in initializeProducts.

public Vector initializeProducts() {

 try {

 ResultSet cursor = getConnection().createStatement().executeQuery(

 "SELECT Name, ProductID, threshold1, price1, threshold2, price2," +

 "threshold3, price3, threshold4, price4 FROM Products");

 while (cursor.next()) {

 String name = cursor.getString(1);

 Product newProduct = new Product(name, cursor.getInt(2));

 newProduct.threshold()[0] = cursor.getInt(3);

 newProduct.price()[0] = cursor.getDouble(4);

 newProduct.threshold()[1] = cursor.getInt(5);

 newProduct.price()[1] = cursor.getDouble(6);

 newProduct.threshold()[2] = cursor.getInt(7);

 newProduct.price()[2] = cursor.getDouble(8);

 newProduct.threshold()[3] = cursor.getInt(9);

 newProduct.price()[3] = cursor.getDouble(10);

 getProductDict().put(name, newProduct);

 }

 return getProductNames();

 } catch (SQLException e) {

 setMessages("SQL error: " + e.getMessage());

 System.out.println ("SQL error: " + e.getMessage());

 System.out.println ("state: " + e.getSQLState());

 return null;

 }

 }

I have a problem here with the exception handler. It returns null if it cannot build the product list due to a SQL error. I look for all users of initializeProducts, the only one is initialize – and it does not check for a null return. Swallowing errors like this is a bad habit, especially when initialize has its own exception handler. It is better to rethrow the exception.

public Vector initializeProducts() throws SQLException{

 try {

 ResultSet cursor = getConnection().createStatement().executeQuery(

 "SELECT Name, ProductID, threshold1, price1, threshold2, price2," +

 "threshold3, price3, threshold4, price4 FROM Products");

 while (cursor.next()) {

 String name = cursor.getString(1);

 Product newProduct = new Product(name, cursor.getInt(2));

 newProduct.threshold()[0] = cursor.getInt(3);

 newProduct.price()[0] = cursor.getDouble(4);

 newProduct.threshold()[1] = cursor.getInt(5);

 newProduct.price()[1] = cursor.getDouble(6);

 newProduct.threshold()[2] = cursor.getInt(7);

 newProduct.price()[2] = cursor.getDouble(8);

 newProduct.threshold()[3] = cursor.getInt(9);

 newProduct.price()[3] = cursor.getDouble(10);

 getProductDict().put(name, newProduct);

 }

 return getProductNames();

 } catch (SQLException e) {

 setMessages("SQL error: " + e.getMessage());

 System.out.println ("SQL error: " + e.getMessage());

 System.out.println ("state: " + e.getSQLState());

 throw e;

 }

 }

Now I can separate the calls in the calling method.

Class OrderFrame…

void initialize() {

 try {

 createOrder();

 openDatabaseConnection();

 loadCustomerChoice();

 //get list of products

 _order.initializeProducts();

 Vector productNames = _order.getProductNames();

 //load product choice into table

 for (int i=0; i < linesTable.getNumRows(); i++) {

 linesTable.setComponent(i, 0, newProductChoice(productNames, i));

 initializeLinesTable();

 }

 } catch (Exception e) {

 setMessages ("Unable to load static data");

 }

 }

The separation is now complete, I can now inline the temp.

void initialize() {

 try {

 createOrder();

 openDatabaseConnection();

 loadCustomerChoice();

 _order.initializeProducts();

 //load product choice into table

 for (int i=0; i < linesTable.getNumRows(); i++) {

 linesTable.setComponent(i, 0, newProductChoice(i));

 initializeLinesTable();

 }

 } catch (Exception e) {

 setMessages ("Unable to load static data");

 }

 }

 private Choice newProductChoice (int line) {

 Choice result = new Choice();

 result.addItemListener(new itemProductListener(line));

 Enumeration e = _order.getProductNames().elements();

 while (e.hasMoreElements())

 result.addItem((String) e.nextElement());

 return result;

 }

I don’t it that getProductNames returns a vector, I’d rather it return an enumeration. That way I hide what I’m doing with the vector and make the calling code simpler.

Class OrderFrame…

private Choice newProductChoice (int line) {

 Choice result = new Choice();

 result.addItemListener(new itemProductListener(line));

 Enumeration e = _order.getProductNames();

 while (e.hasMoreElements())

 result.addItem((String) e.nextElement());

 return result;

 }

class Order…

public Enumeration getProductNames() {

 Vector result = new Vector();

 result.addElement("");

 Enumeration e = getProductDict().keys();

 while (e.hasMoreElements())

 result.addElement(e.nextElement());

 return result.elements();

 }

It’s a pity that I have to do this messing around with the vector, but I’ll worry about that later.

Back to the initialize method. It’s odd that intitializeLinesTable is called within the for loop, for surely it only needs to be called once. It’s probably because the old code was bigger and the programmer didn’t realize it was in the loop. It is difficult to track these curlies at times.

void initialize() {

 try {

 createOrder();

 openDatabaseConnection();

 loadCustomerChoice();

 _order.initializeProducts();

 //load product choice into table

 for (int i=0; i < linesTable.getNumRows(); i++) {

 linesTable.setComponent(i, 0, newProductChoice(i));

 }

 initializeLinesTable();

 } catch (Exception e) {

 setMessages ("Unable to load static data");

 }

 }

My last step is to extract the for loop.

void initialize() {

 try {

 createOrder();

 openDatabaseConnection();

 loadCustomerChoice();

 _order.initializeProducts();

 loadProductChoiceIntoTable()

 initializeLinesTable();

 } catch (Exception e) {

 setMessages ("Unable to load static data");

 }

 }

 private loadProductChoiceIntoTable() {

 for (int i=0; i < linesTable.getNumRows(); i++) {

 linesTable.setComponent(i, 0, newProductChoice(i));

 }

Although as I look at it there, it seems better to call loadProductChoiceIntoTable from within initializeLinesTable, after all it is part of the initialization of the table.

void initialize() {

 try {

 createOrder();

 openDatabaseConnection();

 loadCustomerChoice();

 _order.initializeProducts();

 initializeLinesTable();

 } catch (Exception e) {

 setMessages ("Unable to load static data");

 }

 }

 private void initializeLinesTable() {

 loadProductChoiceIntoTable()

 disallowEditsToPriceColumn();

 linesTable.setCharWidth(QUANTITY_COL,4);

 linesTable.setCharWidth(PRICE_COL,10);

 }

Now the initialize method reads like documentation. We can also see that openDatabaseConnection can move over to order.

void initialize() {

 try {

 createOrder();

 _order.openDatabaseConnection();

 loadCustomerChoice();

 _order.initializeProducts();

 initializeLinesTable();

 } catch (Exception e) {

 setMessages ("Unable to load static data");

 }

 }

I would like to move loadCustomerChoice over as well, since it accesses the database to get the values. I need to split loadCustomerChoice into gui and domain parts. Currently it looks like this

private void loadCustomerChoice() throws SQLException {

 ResultSet cursor = getConnection().createStatement().executeQuery("SELECT * FROM CUSTOMERS");

 customerChoice.addItem("");

 while (cursor.next()) {

 String name = cursor.getString(2);

 customerChoice.addItem(name);

 }

 customerChoice.setEnabled(false);

 }

Splitting this into two parts is effectively an algorithm substitution. I come up with these two methods.

private Enumeration getCustomerNames() throws SQLException {

 Vector result = new Vector();

 ResultSet cursor = getConnection().createStatement().executeQuery("SELECT * FROM CUSTOMERS");

 result.addElement("");

 while (cursor.next()) {

 String name = cursor.getString(2);

 result.addElement(name);

 }

 return result.elements();

 }

 private void loadCustomerChoice(Enumeration list) {

 while (list.hasMoreElements()) {

 customerChoice.addItem((String) list.nextElement());

 }

 customerChoice.setEnabled(false);

 }

I then try the new methods in initialize

void initialize() {

 try {

 createOrder();

 _order.openDatabaseConnection();

 loadCustomerChoice(getCustomerNames());

 _order.initializeProducts();

 initializeLinesTable();

 } catch (Exception e) {

 setMessages ("Unable to load static data");

 }

 }

It works first time, which is mainly due to the algorithm being made short and easy to work with before it was substituted. It is now easy to move getCustomerNames over to the domain.

void initialize() {

 try {

 createOrder();

 _order.openDatabaseConnection();

 _order.initializeProducts();

 loadCustomerChoice(_order.getCustomerNames());

 initializeLinesTable();

 } catch (Exception e) {

 setMessages ("Unable to load static data");

 }

 }

Initializing the products and getting the customer names seem independent so I moved initialize products up the method. That worked too. Now I feel I should move the two methods on order into order, since it is about initialization it should be in the constructor. But that may be too much. I’d like to leave that until I’ve refactored order a bit more.

I’m almost done with order frame. But one thing I would like to do is break the dependency between order frame and java.sql. To do this I need to do something about the exception in load:

void load()

 {

 try {

 _order.load();

 beNotModified();

 } catch (SQLException e) {

 setMessages("SQL error: " + e.getMessage());

 System.out.println ("SQL error: " + e.getMessage());

 System.out.println ("state: " + e.getSQLState());

 }

 }

I cannot just move the handler into _order because beNotModified must not execute if an exception occurs in order.load. I suspect the real correct answer involves further refactoring and putting a modified flag into the domain. But for the moment I still want to reduce the package dependencies. With a large system one of the more important refactorings is just to reduce the inter-package connections. So here I’m prepared to suffer a less than perfect short term refactoring.

I’ll create a new exception for the domain to signal to the gui that an exception occurred.

package orders.domain;

public class DomainException extends Exception {

 public DomainException(String message) {

 super(message);

 }

}

I’ll then use this exception to signal trouble.

Class Order…

public void load() throws DomainException {

 try {

 setMessages("");

 String orderID = getOrderNumber();

 //check for blank order

 if (orderID.equals("")) {

 setMessages("Please type an order ID");

 return;

 }

 clearLinesTable();

 loadOrderData(orderID);

 showCustomerInfo();

 double total = loadOrderLines(orderID);

 if (total != 0) {

 total = total * 10 / 10; //needed to get formatter to work

 setTotalPrice (getCurrencyFormat().format(total));

 }

 } catch (SQLException e) {

 setMessages("SQL error: " + e.getMessage());

 System.out.println ("SQL error: " + e.getMessage());

 System.out.println ("state: " + e.getSQLState());

 throw new DomainException("SQL error: " + e.getMessage());

 }

}

class OrderFrame…

void load(){

 try {

 _order.load();

 beNotModified();

 } catch (DomainException e) {

 System.out.println ("SQL error: " + e.getMessage());

 }

 }

With that I can remove the import of java.sql in order frame.

Moving On

I’m going to bring this chapter to a close now. There is still a lot of refactoring to do. While I’ve moved a lot of messy behavior out of order frame, most of it just got plonked in order. But this book is long enough as it is, so I will leave the rest of the refactoring as an exercise for the reader.

The key lesson of this chapter is that you can use refactoring to break up a two-tier application into a three tier application. It needs care, but it can be done. I’ve also shown the evolution of a refactoring – from a rough idea to worked set of steps. This is how you will come up with your own refactorings in the future.

Question for the reviewer: Is it fair to end like this? Should I continue further even though it will take many pages to properly break up this program?

© Martin Fowler 10-Apr-98

Page 4- 3

_943094393.vsd

_943257827.vsd

_943257163.vsd

_943092235

