GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

Structural Patterns

The patterns in this chapter describe common ways that different types of objects can be organized to
work with each other.

Adapter
Synopsis

An Adapter class implements an interface known to its clients and provides access to an instance of a
class not know to its clients. An adapter object provides the functionality promised by an interface without
having to assume what classis being used to implement that interface.

Context

Suppose that you are writing a method that copies an array of objects, filtering out objects that do not
meet certain criteria. To promote reuse, you would like to make the method independent of the actual filtering
criteriabeing used. Y ou could achieve that by defining an interface that declares a method that the array copier
can call to find out if it should include a particular object in the new array:

—_— «interface»
1: isCopyable(Object) CopyFilterlF

ArrayCopier

isCopyable(Object) : booleal

MyCopyfilter

isCopyable(Object) : boolearn

Simple Copy Filter

In the above design, an Ar r ay Copi er class usesinstances of classes that implement the CopyFil terl F
interface to decide if it should copy an element of the old array to the new array. If their i sCopyabl e method
returns true for an object then that object is copied to the new array.

That solution solves the immediate problem of allowing the copy criteria used by the array copier to be
encapsulated in a separate object without having to be concerned about what the object’s class is. That solution
also presents a different problem. The problem is that the filtering logic is in a different object than the objects
that are being filtered. Sometimes the logic needed for the filtering is in a method of the objects to be filtered. If
those objects don’t implement tepyFi | t er | F interface then there is no way for the array copier to directly
ask those objects if they should be copied. However, it is possible for the array copier to indirectly ask the
filtered objects if they should be copied, even if they don’t implemer@dpgFi | t er | F interface.

Suppose that there is a class called Document that has a method <@ileidd that returns a boolean
result. Suppose that you need to use the result otV i d method to do the filtering for a copy operation.
Because Document does not implementtbyeyFi | t er | F interface, amvr r ayCopi er object cannot directly
use a document obiject for filtering. A class that implementSdpgFi | t er | F interface but tries to
independently determine if a Document object should be copied into a new array does not work. It does not work

1

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

because it has no way to get the necessary information without calling the Document iobjedtisl method.
The answer is for that object to call the Document objést&al i d method, resulting in this solution:

_— > «interface»
ArrayCopier 1: isCopyable(Object) CopyFilterlF
isCopyable(Object) : boolea
Document -

2: isValid()

DocumentCopyFilterAdapter

isValid() : boolean

isCopyable(Object) : boolea

Copy Filter Adapter

In this solution, the\r r ay Copi er object calls thé sCopyabl e method of an object that implements the
CopyFi | ter | F interface, as it always does. In this case, that object is an instance of a class called
Docunent CopyFi | t er Adapt er . TheDocunent CopyFi | t er Adapt er class implements thesCopyabl e
method by calling the Document objedt'sval i d method.

Forces

You want to use a class that calls a method through an interface, but you want to use it with a class that
does not implement that interface. Modifying that class to implement the interface is not an option either because

* You do not have the source code for the class.

e The class is a general-purpose class and it would be inappropriate for it to implement an interface for a
specialized purpose.

Solution

Suppose that you have a class that calls a method through an interface. You want an instance of that class
to call a method of an object that does not implement the interface. You can arrange for the instance to make the
call through an adapter object that implements the interface with a method that calls a method of the object that
doesn’t implement the interface. Here is a collaboration diagram showing how this works:

—_ «interface»
Client 1: interfaceMethod() TargetlF
interfaceMethod()
Document -
2: otherMethod() Adapter
otherMethod() interfaceMethod()
Adapter

Here are the roles the that the classes and interface play:

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

Client
This is a class that calls a method of another class through an interface in order not to assume that the
object its calls the method through belongs to a specific class.

TargetlF
This interface declares the method that the client class calls.

Adapter
This class implements the Tar get | F interface. It implements the method that the client calls by having
it call amethod of the Adapt ee class, which does not implement the Tar get | F interface.

Adaptee
This class does not implement the Tar get | F method but has a method that we want the Client class to
call.

It is possible for an adapter class to do more than simply del egate the method call. It may perform some
transformation on the arguments. It may provide additional logic to hide differences between the intended
semantics of the interface’s method and the actual semantics of the adaptee class’ method. There is no limit to
how complex an adapter class can be. So long as the essential purpose of the class is as an intermediary for
method calls, you can considered it to be an adapter class.

Conseguences

* The client and adaptee classes remain independent of each other.

« The Adapter pattern introduces an additional indirection into a program. Like any other indirection, it
contributes to the difficulty involved in understanding the program.

Implementation

Implementation of the adapter class is rather straightforward. However, there is an issue that you should
consider. That issue is how the adapter objects will know what instance of the adaptee class to call. There are two
approaches:

* Passing a reference to the client object as a parameter to the adapter object’s constructor or one of its
methods allows the adapter object to be used with any instance or possibly multiple instances of the
adaptee class.

« Make the adapter class an inner class of the adaptee class. That simplifies the association between the
adapter object and the adaptee object by making it automatic. It also makes the association inflexible.

JAVA API Usage & Example

A very common way to use adapter classes with the Java API is for event handling, like this:

Button ok = new Button("CK");
ok. addAct i onLi st ener (new Acti onLi stener () {
public void actionPerforned(ActionEvent evt) {
dolt();
} // actionPerformed(Acti onEvent)

P
add(ok) ;

The above example creates an instance of an anonymous class that implementisotiie st ener
interface. That classict i onPer f or med method is called when the Button object is pressed. This coding
pattern is very common for code that handles events.

3

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

The Java API does not include any public adapter objects that are ready to use. It does include classes
such asj ava. awt . event . W ndowAdapt er that are intended to be subclassed rather than used directly. The
ideaisthat there are some event listener interfaces, such as W ndowLi st ener that declare multiple methods that
may not need to all be implemented in many cases. The W ndowLi st ener interface declares eight methods that
are called to provide notification about eight different kinds of window events. Often only one or two of those
event types are of interest. The methods that correspond to the events that are not of interest will typically be
given do-nothing implementations. The W ndowAdapt er classimplementsthe W ndowLi st ener interface and
implements all eight of its methods with do-nothing implementations. An adapter class that subclasses the
W ndowAdapt er class only needsto implement the methods corresponding to events that are of interest. It
inherits do-nothing implementations for the rest. For example:

addW ndowLi st ener (new W ndowAdapter () {
public void wi ndowd osi ng(W ndowEvent e) {
exit();
} // wi ndowd osi ng(W ndowEvent)
P

In the above exampl e, the anonymous adapter classis a subclass of the W ndowAdapt er class. It only
implements the wi ndowCl osi ng method. It inherits do-nothing implementations for the other seven methods
from the W ndowAdapt er class.

Related Patterns

Iterator
The lterator pattern is a specialized version of the Adapter pattern for sequentially accessing the contents
of collection objects.

Proxy
The Proxy pattern, like the Adapter pattern, uses an object that is a surrogate for another object.
However, a Proxy object has the same interface as the object for which it is a surrogate.

Bridge
Synopsis

The Bridge pattern is useful when there is a hierarchy of abstractions and a corresponding hierarchy of
implementations. Rather than combining the abstractions and implementations into many distinct classes, the
Bridge pattern implements the abstractions and implementations as independent classes that can be combined
dynamically.

Context

Suppose that you need to provide Java classes that provide accessto sensors for control applications.
These are devices such as scales, speed measuring devices and location sensing devices. What these devices have
in common is that they perform a physical measurement and produce a number on the request of a computer. One
way that these devices differ isin the type of measurement that they produce.

* Thescale produces a single number based on a measurement at asingle point in time.
» The speed measuring device produces a single measurement that is an average over a period of time.
* Thelocation sensing device produces a stream of measurements.

This suggests that these devices can be supported by three classes that support these different
measurement techniques:

4

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

SimpleSensor

AveragingSensor StreamingSensor

Sensor Classes

These three classes provide clean abstractions that apply to many other types of sensors that the three that
inspired them. Since there are other kinds of sensors that produce simple measurements, time averaged
measurements and streams of measurements, you would like to be able to reuse these classes for kinds of sensors.
A difficulty in achieving such reuse is that the details of communicating with sensors from different
manufacturers vary. Suppose the software that you are writing will need to work with sensors from multiple
manufacturers called Eagle and Hawk. Y ou could handle that problem by having manufacturer specific classes
likethis:

EagleSimpleSensor HawkSimpleSensor

EagleAveragingSensor EagleStreamingSensor| HawkAveragingSensor HawkStreamingSensor

Manufacturer Specific Sensor Classes

The problem with this solution is not just that it does not reuse classes for simple, averaging and
streaming sensors. Because it exposes differences between manufacturers to other classes, it forces other classes
to recogni ze differences between manufacturers and therefore be less reusable. The challenge here is to represent
ahierarchy of abstractionsin away that keeps the abstractions independent of their implementations.

A way to accomplish that isto shield a hierarchy of classes that support abstractions from classes that

implement those abstractions by having the abstraction classes access implementation classes through a hierarchy
of implementation interfaces that parallels the abstraction hierarchy.

5

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

StreamingSensor

SimpleSensor setSamplingFrequency()
. 1
etValue AveragingSensor
g ue() veraging uses v
uses| 1 startAveragingl() 1
1 «interface»
used by | 1 uses ¥ StreamingSensorimpl

«interface» e setSamplingFrequency(
SimpleSensorimpl

1

getValue()

«interface»
AveragingSensorimpl

% startAveraging()

EagleSimpleSensor

EagleStreamingSensor|

EagleAveragingSensor

HawkSimpleSensor HawkStreamingSensor

HawkAveragingSensor

Independent Sensor and Sensor Manufacturer Classes
Forces

When you combine hierarchies of abstractions and hierarchies of their implementationsinto asingle
class hierarchy, classes that use those classes become tied to a specific implementation of the abstraction.
Changing the implementation used for an abstraction should not require changes to the classes that use
the abstraction.

Y ou would like to reuse logic common to different implementations of an abstraction. The usual way to
make logic reusable is to encapsulate it in a separate class.

Y ou would like to be able to create a new implementation of an abstraction without having to re-
implement the common logic of the abstraction.

Y ou would like to be able to extend the common logic of an abstraction by writing one new class rather
that writing a new class for each combination of the base abstraction and its implementation.

When appropriate, multiple abstractions should be able to share the same implementation.

Solution

The Bridge pattern allows classes corresponding to abstractions to be separate from classes that

implement those abstractions. Y ou can maintain a clean separation by having the abstraction classes access the
implementation classes through interfaces that are in a hierarchy that parallels the inheritance hierarchy of the
abstraction classes.

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

«interface» Impl2
used b 1
Abstraction uies 1y Abstractionlmpl
operation() operation() i
«interface» <} Specializedimpl1
SpecializedAbstraction |USES used by | SpecializedAbstractionimpl P P
1 1
specializedOperation() specializedOperation() Specializedimpl2

Bridge Pattern
Here are descriptions of the roles these classes and interfaces play in the Bridge pattern:

Abstraction
This class represents the top-level abstraction. It is responsible for maintaining a reference to an object
that implements the Abst r acti onl npl interface, so that it can delegate operations to its implementa-
tion. If an instance of the Abst r act i on classis also an instance of a subclass of the Abst r act i on class
then the instance will refer to an object that implements the corresponding sub-interface of the
Abstractionl npl interface.

SpecializedAbstraction
This role corresponds to any subclass of the Abstraction class. For each such subclass of the
Abstraction class there is a corresponding sub-interface of the Abst racti onl npl interface. Each
Speci al i zedAbst ract i on class delegates it operations to an implementation object that implements
the interface that corresponds to the Speci al i zedAbst ract i on class.

Abstractionimpl
This interface declares methods for all of the low-level operations that an implementation for the
Abst ract i on class must provide.

SpecializedAbstractionlmpl
This corresponds to a sub-interface of Abstracti onl npl . Each Speci al i zedAbst racti onl npl
interface corresponds to a Speci al i zedAbst racti on class and declares methods for the low-level
operations needed for an implementation of that class.

Impl1, Impl2
These classes implement the Abst r act i onl npl interface and provide different implementations for the
Abst racti on class.

Specializedimpl1, Specializedimpl2
These classes implement the one of the Speci al i zedAbstracti onl npl interfaces and provide
different implementations for a Speci al i zedAbst racti on class.

Conseguences

The Bridge pattern keeps the classes that represent an abstraction independent of the classes that supply
an implementation for the abstraction. The abstraction and itsimplementations are organized into separate class
hierarchies. Y ou can extend each class hierarchy without directly impacting another class hierarchy. Itisaso
possible to have multiple implementation classes for an abstraction class or multiple abstraction classes using the
same implementation class.

Classes that are clients of the abstraction classes do not have any knowledge of the implementation
classes, so an abstraction object can change its implementation without any impact on its clients.

7

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

Implementation

One issue that always must be decided when implementing the Bridge pattern is how to create
implementation objects for each abstraction object. The most basic decision to make whether abstraction objects
will create their own implementation objects or delegate the creation of their implementation objects to another
object.

Having the abstraction objects del egate the creation of implementation objectsis usually the best choice.
It preserves the independence of the abstraction and implementation classes. If an abstraction class is designed to
delegate the creation of implementation objects, it the design usually uses that Abstract Factory pattern to create
the implementation objects.

However, if there are only a small number of implementation classes for an abstract class and the set of
implementation classes is not expected to change then having the abstraction classes create their own
implementation objects is a reasonabl e optimization.

A related decision is whether an abstraction object will use the same implementation object during its
lifetime. As usage patterns or other conditions change, it may be appropriate to change the implementation object
that an abstraction abject is using. If an abstraction class directly creates its own implementation objectstheniit is
reasonable to directly embed the logic for changing the implementation object in the abstraction class. Otherwise,
you can use the Wrapper pattern to encapsulate the logic for switching implementation objects in awrapper class.

JAVA API| Usage

The Java API includes the packagej ava. awt . That package contains the Conponent class. The
Conponent classisan abstract class that encapsulates logic common to all GUI components. The Conponent
class has subclasses such asBut t on, Li st and Text Fi el d that encapsulate the logic for those GUI components
that is platform independent. The packagej ava. awt . peer containsinterfaces such as Conponent Peer ,

But t onPeer, Li st Peer and Text Fi el dPeer that declare methods required for implementation classes that
provide platform specific support for the subclasses of the Conponent class.

The subclasses of the Conponent class use the Abstract Factory pattern to create their implementation
objects. Thej ava. awt . Tool ki t classisan abstract class that plays the role of abstract factory. The platform
supplies the concrete factory class used to instantiate the implementation classes and the implementation classes.

Example

For an example of the Bridge pattern, we will look at some code to implement the sensor related classes
that were discussed under the context heading. We will assume that the objects that represent sensors and their
implementation are created by a Factory Method. The Factory Method object will know what sensors are
available, what objects to create to provide access to a sensor and will create those objects when accessto a
sensor isfirst requested.

Hereisthe code for the Si npl eSensor classthat playsthe role of abstraction class:

public class SinpleSensor {
/1 Areference to the object that inplenents operations specific to
/'l the actual sensor device that this object represents.
private SinpleSensorlnpl inpl;
/**
* Constructor
*<p>
* This constructor is intended to be called by a factory nethod
* object that is in the same package as this class and the the
* classes that inplenment its operations.

8

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

* @araminpl The object that inplements the sensor type-specific

* operations this object will provide.
*/
Si npl eSensor (Si npl eSensor I mpl i npl) {
this.impl = inpl;
} // constructor(Sinpl eSensorlnpl)
/**

* This nethod all ows subclasses of this class to get the reference
* to the inplenentation object.
*/
protected SinpleSensorlnpl getlnpl () {
return inpl;

Y /1 getlnpl()

/**
* Return the value of the sensor’s current measurenent.
* @xception SensorException if there is a problem accessing the
* sensor.
*/

public int getValue() throws SensorException {

return inpl.getVal ue();
} /1 getVal ue()
} /1 class SinpleSensor

Asyou can see, the Si npl eSensor classissimplein that it does little more than delegate its operations
to an object that implements the Si npl eSensor | mpl interface. Here is the code for the Si npl eSensor | npl
interface:

interface SinpleSensorlnpl {
/**
* Return the value of the sensor’s current measurenent.
* @xception SensorException if there is a problem accessing the
* sensor.
*/
public int getValue() throws SensorException;
} // interface SinpleSensorlnpl

Some subclasses of the Si npl eSensor class maintain the same simple structure. Here is code for the
Aver agi ngSensor class:
/**

* Instances of this class are used to represent sensors that produce
* val ues that are the average of nmeasurenents nmade over a period of

* time.

*/

public class Averagi ngSensor extends SinpleSensor {
/**

* Constructor

*<p>

* This constructor is intended to be called by a factory method

* object that is in the same package as this class and the the

* classes that inplenent its operations.

* @araminpl The object that inplements the sensor type-specific

* operations this object will provide.
*/
Aver agi ngSensor (Aver agi ngSensor |l mpl i nmpl) {
super (i npl);

} /1 constructor(Averagi ngSensor | npl)

/**

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

* Averagi ng sensors produce a value that is the average of
* measurenments made over a period of time. That period of tine
* begins when this nmethod is called.
* @xception SensorException if there is a problem accessing the
* sensor.
*/

public void begi nAverage() throws Sensor Exception {

((Averagi ngSensor | npl) get |l npl ()). begi nAver age();
} // begi nAverage()
} /1 class Averagi ngSensor

Asyou can see, the Aver agi ngSensor classisalso very smple, delegating its operations to the
implementation objects that it is using. Here isits corresponding implementation class:

i nterface Averagi ngSensor | npl extends SinpleSensorlnpl {
/**
* Averagi ng sensors produce a value that is the average of
* measurenents made over a period of tinme. That period of tine
* begins when this nmethod is called.
* @xception SensorException if there is a problem accessing the
* sensor.
*/
public void begi nAverage() throws Sensor Excepti on;
} // interface Averagi ngSensorl npl

It isreasonable for subclasses of the Si npl eSensor | mpl class to be more complex and provide
additional services of their own. The St r eani ngSensor class delivers a stream of measurements to objects that
have register to receive those measurements. It delivers those measurements by calling a method of the object it
is delivering the measurement to. It does not place any requirements on how long that method may take before it
returns. There is merely an expectation that the method will return in a reasonable amount of time. On the other
hand, the implementation objects used with instances of the St r eani ngSensor class may need to deliver
measurements at a steady rate or loose them. In order to avoid losing measurements, instances of the
St r eanmi ngSensor class buffer measurementsthat are delivered to it, while it asynchronously delivers those
measurements to other objects. Here is code for the St r eani ngSensor class:

/**
* Instances of this class are used to represent sensors that produce
* a stream of measurenment val ues.
*/
public class Stream ngSensor extends SinpleSensor inplenments Stream ngSensorlListener, Runnable {
/'l These objects are used to provide a buffer that allows the
/1 inplementation object to asynchronously deliver measurenment val ues
/1 while this object is delivering value it has already received to its
/1l listeners.
private Datal nput Stream consurer;
private DataCQut put Stream producer;

private Vector listeners = new Vector(); // aggregate listeners here
/**

* Constructor

*<p>

* This constructor is intended to be called by a factory met hod

* object that is in the same package as this class and the the

* classes that inplenent its operations.

* @araminpl The object that inplements the sensor type-specific

* operations this object will provide.
* @xception SensorException if initialization of this object fails.
*/
St ream ngSensor (St reami ngSensor |l nmpl i npl) throws SensorException {
super (i npl);

10

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

/'l Create pipe streamthat will support this object’s ability
/1 to deliver measurenment values at the same time it is
/1 receiving them
Pi pedl nput St ream pi pedl nput = new Pi pedl nput Strean();
consunmer = new Dat al nput St r ean{ pi pedl nput);
Pi pedCQut put St ream pi pedQut put ;
try {
pi pedQut put = new Pi pedCut put Strean(pi pedl nput);
} catch (1 OException e) {
t hrow new Sensor Excepti on("pi pe creation failed");
Y Il otry
producer = new Dat aQut put St r ean(pi pedCut put) ;

/] start a thread to deliver neasurenent val ues
new Thread(this).start();
} /1 constructor(Streamnm ngSensorlnpl)

/**

* Streaning sensors produce a stream of neasurenent values. The
* stream of values is produced with a frequency no greater than
* the given nunber of tinmes per mnute.

* @aram freq The maxi mum nunber of tinmes per minute that this

* stream ng sensor will produce a neasurenent val ue.
* @xception SensorException if there is a problem accessing the
* sensor.

*/

public void set SanplingFrequency(int freq) throws SensorException {
/1 delegate this to the inplenmentation object
((Stream ngSensorlnpl)getlnpl ()).setSanplingFrequency(freq);
} /] setSanplingFrequency(int)
/**
* Streani ngSensor objects deliver a streamof values to
* interested objects by passing each value to the object’s
* processMeasurenment nethod. The delivery of values is done
* using its own thread and is asynchronous of everyting el se.
* @aram val ue The measurenent val ue bei ng delivered.
*/
public void processMeasurenent (int value) {
try {
producer.witelnt(val ue);
} catch (1 OException e) {
// 1f the value cannot be delivered, just discard it.
Y I otry
} /1 processMeasurenent (int)
/**
* This nethod registers its argument as a recipient of future
* measurenment values fromthis sensor.
*/
public void addStream ngSensor Li st ener (St reani ngSensor Li stener |istener) {
|'i steners. addEl ement (1i stener);
} // addStreani ngSensor Li st ener (Stream ngSensor Li st ener)
/**
* This nethod unregisters its argunent as a recipient of future
* measurenment values fromthis sensor.
*/
public void renpveStreamnm ngSensor Li st ener (Stream ngSensorListener |istener) {
l'i steners.renoveEl enent (listener);
} // addStreani ngSensor Li st ener (Stream ngSensor Li st ener)
/**

* Thi s nethod asynchronously renoves neasurenent values fromthe pipe

ll

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

* and delivers themto registered |isteners.
*/
public void run() {
while (true) {

int val ue;

try {
val ue = consuner.readlnt();

} catch (1 OException e) {
/'l Pipes is broken so return fromthis method letting
/1 ths trhead die.
return;

Y Il otry

for (int i=0; i < listeners.size(); i++) {
St ream ngSensor Li stener |istener;
listener = (Streani ngSensorlListener)listeners.elenmentAt(i);
| i stener. processMeasur enent (val ue) ;

Yy /1 for

} /] while
} /1 run()
} /1 class Stream ngSensor

In order for the St r eani ngSensor classto deliver a measurement to an object, it requires that object to
implement the St r eami ngSensor Li st ener interface. It delivers measurements by passing them to the
pr ocessMeasur ement method that the St r eami ngSensor Li st ener interface declares. The
St reanmi ngSensor class also implementsthe St r eani ngSensor Li st ener interface. Implementation objects
deliver measurements to instances of the St r eanmi ngSensor class by calling its pr ocessMeasur erment
method.

Finally, here is the implementation interface that correspondsto the St r eani ngSensor class:

interface Stream ngSensorlnpl extends SinpleSensorlnpl {
/**
* Streaning sensors produce a stream of neasurenent values. The
* stream of values is produced with a frequency no greater than
* the given nunber of times per minute.
* @aram freq The maxi mum nunber of tinmes per minute that this

* stream ng sensor will produce a neasurenent val ue.
* @xception SensorException if there is a problem accessing the
* sensor.
*/
public void set SanplingFrequency(int freq) throws SensorException;
/**

* This nethod is called by an object than represents the

* streaning sensor abstraction so that this object can performa

* call-back to that object to deliver measurenent values to it.

* @aram abstracti on The abstraction object to deliver

* measur enent val ues to.

*/

public void set Stream ngSensorLi stener (Streani ngSensor Li stener |istener);

} /] interface Streani ngSensorl npl

Related Patterns

Layered Architecture analysis pattern
The Bridge design pattern is a way of organizing the entities identified using the Layered Architecture
analysis pattern into classes.

Abstract Factory/Toolkit
The Abstract Factory pattern can be used by the Bridge pattern to decide which implementation class to
instantiate for an abstraction object.

12

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

Facade

Synopsis

The Facade pattern simplifies access to arelated set of objects by providing one object that all objects
outside the set use to communicate with the set.

Context

Consider the organization of a set of classes that supports the creation and sending of e-mail messages. A
set of classes for sending e-mail messages might include the following classes:

* A MessageBody classwhose instances will contain message bodies.

e An Attachnent class whose instances will contain message attachments that can be attached to a
message body object.

* A MessageHeader class whose instances will contain the header information (to, from, subject...) for
an e-mail message.

« A Message class whose instances will tie togetheMsssageHeader object and avessageBody
object.

* A Security class whose instances can be used to add a digital signature to a message.

A MessageSender class whose instances are responsible for semisgpge objects to a server that is
responsible for delivering the e-mail to its destination or another server.

Here is a class diagram showing the relationships between these classes and a client class:

1 1
Client
1 1
1 1
0.* 0.1 1
Attachement Security MessageSender
0.1
Contains~ |0.* 1
1 1 1 1 1
1 1
MessageBody 1 Message 1 MessageHeader
0.*

E-Mail Creation

As you can see, working with these e-mail classes adds complexity to a client class. To work with these
classes, a client must know about at least these six classes, the relationship between them and the order in which
it must create instances of those classes. If every client of these classes must take on that additional complexity,

13

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

that makes the e-mail classes more difficult to reuse. The Facade pattern provides a way to shield clients of a set
of classes like the e-mail classes from the complexity of using those classes. The way that it does that is to
provide an additional reusable object that hides most of the complexity of working with the other classes from
client classes. Here is a class diagram showing this more reusable organization:

Client
1
1
1 1
MessageCreator
1 1
1 1
0.* 0.1 1
Attachement Security MessageSender
0.1
Contains~ |0-* 1
1 1 1 1 1
1 1
MessageBody 1 Message 1 MessageHeader
0.*

Reusable E-Mail Creation

Client classes now need only be aware oMiesageCr eat or class. Furthermore, the internal logic of
theMessageCr eat or class can shield client classes from having to create the parts of an e-mail message in any
particular order.

Forces

« There are many dependencies between the classes that implement an abstraction and their client classes.
The dependencies add noticeable complexity to the client classes.

* You want to simplify the client classes. Simpler client classes will result in fewer bugs. Simpler client
classes also mean that less work is required to reuse the classes that implement the abstraction.

« Interposing a facade class between the classes that implement an abstraction and their client classes
simplifies the client classes by moving the dependencies from the client classes to the facade class.

e ltis not necessary for a fagade class to act an impenetrable barrier separating the client classes from the
classes that implement an abstraction. It is sufficient, and sometimes better, for a fagade class to provide
a default way of accessing the functionality of the classes that implement an abstraction. If some client
classes need to directly access some of the abstraction implementing classes directly, then the facade
class should facilitate that with a method that returns a reference to the appropriate implementation
object.

The point of the facade class is to allow simple clients, not require them.

Solution

Here is a class diagram showing the general structure of the Facade pattern:

14

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

Client

1

Uses™
*

Facade

Facade Pattern

The client object interacts with a facade object that provides necessary functionality by interacting with
the rest of the objects. If there is some additional functionality that is only needed by some clients, then instead of
providing it directly, the facade object may provide a method to access another object that does provide the
functionality.

Conseguences

Clients of facade objects do not need to know about any of the classes behind the facade.

Because the Facade pattern reduces or eliminates the coupling between a client class and the classes thal
implement an abstraction, it may be possible to change the classes that implement the abstraction without any
impact on the client class.

Client objects that need direct access to abstraction implementing objects may access those objects.

Implementation

A facade class should provide a way for client objects to obtain a direct reference to an instance of some
abstraction implementing classes. However, there may be abstraction implementing classes that clients classes
have no legitimate reason to know about. The facade class should hide those classes from client classes. One wa
to do that is to make those classes private inner classes of the facade class.

Sometimes you want to vary the implementation classes that a facade object uses to accommodate
variations on the abstraction being implemented. For example, returning to the e-mail example under the context
heading, you may need a different set of classes to create MIME, MAPI or Notes compliant messages. Different
sets of implementation classes usually require different facade classes. You can hide the use of different facade
classes from client classes by applying the Class Decoupling pattern. Define an interface that all facade classes
for e-mail creation must implement. Then have client classes access the facade class through an interface rather
than directly.

JAVA API| Usage

Thej ava. net URL class is an example of the Facade pattern. It provides access to the contents of
URLSs. A class can be a client of tbeL class and use it to get the contents of a URL without being aware of the
many classes that operate behind the facade provided by the URL class. On the other hand, to send data to a

15

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

URL, the client of a URL object may call its openConnect i on method that returns the URLConnect i on object
that the URL object uses.

Example

Hereisthe code for the MessageCr eat or class show in the class diagram. It is shown here as atypical
example of a Facade class.

/**
* Instances of this class are used to create and send e-nmil nessages.
* |t assumes that an e-mmil message consists of a nmessage body and zero or
* nmore attachments. The content of the nmessage body nust be provided as
* either a String object or an object that inplenments an interface called
* RichText. Any kind of an object can be provided as the content of an
* attachment.
*/
public class MessageCreator {
/1 Constants to indicate the type of nessage to create
public final static int MM = 1,
public final static int MAPI = 2;
public final static int NOTES = 3;
public final static int BANYAN = 4;

private Hashtabl e headerFi el ds = new Hasht abl e();
private RichText nessageBody;

private Vector attachnents = new Vector();
private bool ean si gnMessage;

* Constructor to create a MessageCreator object that will create an
* e-mail message and send it to the given address. It will attenpt to
* infer the type of nmessage to create fromthe "to" address.
* @aramto The address that this object will send a nessage to.
* @aram from The address that the nmessage will say it is from
* @aram subj ect The subject of this nessage.
*/
public MessageCreator(String to, String from String subject) {
this(to, from, subject, inferMessageType(to));
} // Constructor(String, String, String)

/**
* Constructor to create a MessageCreator object that will create an
* e-mail message and send it to the given address. It will attenpt to
* infer the type of nmessage to create fromthe "to" address.
* @aramto The address that this object will send a nessage to.
* @aram from The address that the nmessage will say it is from
* @aram subj ect The subject of this nessage.
* @aramtype The type of nessage to create.
*/
public MessageCreator(String to, String from String subject, int type) {
header Fi el ds. put ("to", to);
header Fi el ds. put ("front, fronm;
header Fi el ds. put ("subj ect", subject);
/...
} // Constructor(String, String, String, int)

/**

* Set the contents of the nessage body.

* @aram nmessageBody The contents of the nessage body.
*/

public void set MessageBody(String nessageBody) {

16

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

set MessageBody(new Ri chText Stri ng(messageBody));
} /1 setMessageBody(String)

/**
* Set the contents of the contents body.
* @aram nmessageBody The contents of the nmessage body.
*/
public void set MessageBody(Ri chText messageBody) {
t hi s. messageBody = nessageBody;
} /1 setMessageBody(Ri chText)

/**

* Add an attachement to the nessage

* @aram attachnent the object to attach to the nessage

*/

public void addAttachnment (Obj ect attachment) {
attachment s. addEl enent (attachnent);

} // addAttachment (oj ect)

/**
* set whether this nmessage should be signed. The default is false.
*/
public void setSi gnMessage(bool ean signFlag) {
si gnMessage = si gnFl ag;
} /1 setSignMessage(bool ean)

/**
* Set the value of a header field.
* @aram nane The nane of the field to set the val ue of
* @aramvalue The value to set the field to.
*/
public void setHeaderField(String nane, String value) {
header Fi el ds. put (nane. t oLower Case(), val ue);
} /] setHeaderField(String, String)

/**
* Send the nmessage.
*/
public void send() {
MessageBody body = new MessageBody(nmessageBody);

for (int i =0; i < attachments.size(); i++) {
body. addAt t achnment (new Att achment (attachnments. el ementAt(i)));
Yy 11 for

MessageHeader header = new MessageHeader (header Fi el ds);
Message nmsg = new Message(header, body);
i f (signMessage) {
neg. set Security(createSecurity());
YILoif
cr eat eMessageSender (nsQ) ;
} /1 send()

/**
* Infer an nessage type froma destination e-mail address.
* @aram address an e-mail|l address.
*/
private static int inferMessageType(String address) {
int type = 0;

return type;
} /1 inferMessageType(String)

17

GRAND STRUCTURAL PATTERNS—UIUC PATTERNS GROUP DRAFT 1/20/98
/**
* Create a Security object appropriate for signing this nessage.
*/
private Security createSecurity() {
Security s = null;

return s;
} // createSecurity()

/**

* Create a MessageSender object appropriate for the type of
* message being sent.

*/

private void createMessageSender (Message nsg) {

} /1 createMessageSender (Message)

} /1 class MessageCreator

The Facade pattern places no demands on the classes that the Facade class uses. Since they contain
nothing that contributes to the Facade pattern their code is not shown here.

Related Patterns

Class Decoupling
The Class Decoupling pattern can be used with the Facade pattern to allow different sets of facade and
implementation classes to be used without client classes having to be aware of the different classes.

Don't Talk to Strangers
The Facade pattern is a way of satisfying with the “Don’t Talk to Strangers” analysis pattern.

FacadeFacadeFacadeFacade

Flyweight
Synopsis

If instances of a class that contain the same information and can be used interchangeably, the Flyweight
pattern allows a program to avoid the expense of multiple instances that contain the same information by sharing
oneinstance.

Context

Suppose that you are writing aword processor. Here is a class diagram showing the basic classes you
might use to represent a document:

18

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

DocumentElement 0.*

getFont() : Font

setFont(font:Font)

getParent() :DocumentContainer
setParent(parent:DocumentContainer)

I

‘ 1

DocChar DocumentContainer
getChild(index:int) : DocumentElement
addChild(child:DocumentElement)
removeChild(child:DocumentElement)
Document Page Paragraph LineOfText

Document Representation Classes

The above class organi zation includes the following classes:

e TheDocunent El enent classis ultimate superclass of all classes used to represent a document. All
subclasses of the Docunent El ement classinherit methods to set and fetch their font.

e Aninstance of the DocChar classis used to represent each character in a document.

e TheDocunent Cont ai ner classisthe superclass of container classes Docunent , Page, Par agr aph
and Li neOFf Text .

Y ou can specify the font of each character by calling the set Font method of the DocChar object that
represents it. If character’s font is unspecified, then it uses its container’s font. If its container’s font has not been
set, then it uses its container’s font.

Given the above structure, one document that is a few pages long might contairPteragofph
objects that contain a few hundreidheOf Text objects and thousands or tens of thousan@eothar objects.
Clearly, using this design will result in a program that uses a lot of memory to store characters.

It is possible to avoid the memory overhead of those many character objects by having only one instance
of each distincbocchar object. The classes in the diagram above W& ahar object to represent each
character in a document. To represent, “She saw her fatheresX Text object use®ocChar objects like
this:

19

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

:LineOfText

s|la|w hlelr fla|t
S:DocChar r:-DocChar
h:DocChar e:DocChar
e:DocChar h:DocChar
blank:DocChar t:DocChar

s:DocChar a:DocChar
a:DocChar f:DocChar
w:DocChar blank:DocChar
blank:DocChar r:-DocChar
h:DocChar e:DocChar

Unshared Character Objects

As you can see, the characters ‘h’, ‘e’, ‘ ’,'a’ and ‘e’ are used multiple times. In an entire document, all of
the characters typically occur many times. It is possible to reorganize the objects so DoatChiae object is
used to represent all occurrences of the same character like this:

:LineOfText
S hle s|la|w hlelr flal|t|h|e]|Tr

S:DocChar
r:-DocChar

h:DocChar
t:DocChar

e:DocChar

blank:DocChar
a:DocChar

s:DocChar

w:DocChar f:DocChar

Shared Character Objects

In order to make the sharingbdcChar objects work, th®ocChar objects cannot have any intrinsic
attributes that are not common to every place the object is referenced. An intrinsic attribute is an attribute whose

20

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

value is stored with the object. That is distinct from an extrinsic attribute, whose value is stored outside of the
object that it appliesto.

The class organization shown in the preceding class diagram captioned “Document Representation
Classes” shows ocChar class whose instances can have an intrinsic font attribute. Thasact er objects
that do not have a font stored intrinsically use the font of their paragraph.

To make the sharing @bcChar objects work, the classes need to be reorganized sooihatar
objects that have their own font store them extrinsically. The following class diagram includes a
Chr act er Cont ext class whose instances store extrinsic attributes for a range of characters.

0.*

DocumentElement

DocumentContainer

getFont() : Font
DocChar 0.* setFont(font:Font)
< Creates and 4 getParent() :DocumentContainer

setParent(parent:DocumentContainer)
getChild(index:int) : DocumentElement
1 addChild(child:DocumentElement)

removeChild(child:DocumentElement)

1.% Manages Reuse o

DocCharFactory

getDocChar(c:char):DocChal

1

CharacterContext Document Page Paragraph LineOfText

Document Shared Representation Classes

In this organization, thBocChar Fact ory class is responsible for providindgpacChar object that
represents a given character. Given the same character to repr@sehax Fact or y object’'sget DocChar
method will always return the sarbecChar object. Also, théocunent Cont ai ner class defines the font
methods rather than tiecunent El enent class. All the concrete classes are subclasses of the
Docunent Cont ai ner class, except for thaocChar class. That means that thecChar class does not have an
intrinsic font attribute. If the user wants to associate a font with a character or range of characters then the
program creates@nar act er Cont ext object like this:

21

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

:LineOfText

:CharacterContext

font:Font = italic-Serif-12

S:DocChar h e r

r:DocChar

h:DocChar

t:DocChar

e:DocChar

blank:DocChar

a:DocChar

s:DocChar

w:DocChar f:DocChar

Font in CharacterContext

Forces

« The primary motivation for using the Facade pattern is as an optimization for an application that uses a
large number of similar objects.

* The program does not rely on the object identity of any of the objects that you want it to share. When a
program uses different objects in different contexts, it is possible to distinguish between the contexts by
the object identities of the objects. When different contexts share objects, then their object identities are
no longer useful for distinguishing between contexts.

e ltis possible, through object sharing, to reduce a large number of similar objects to a small number of
shared unique objects.

« ltis possible to further reduce the number of objects by changing some of the intrinsic attributes of the
unique shared object to extrinsic attributes.

Solution

The following class diagram shows the general organization of classes for the Flyweight pattern.

22

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

. AbstractFlyweight
Client

operation(extrinsicState:object)

Y Uses
UsesY UsesY

Creates and Manages Reuse of *

FlyweightFactory SharedConcreteFlywieght UnsharedConcreteFlywieght
getFlywieght(attribute:object) operation(extrinsicState:object) operation(extrinsicState:object)
‘ Creates !

Flyweight Pattern
Here are descriptions of the roles that classes that participate in the Flyweight pattern play:

AbstractFlyweight
The Abt r act Fl ywei ght class is the superclass of all other flyweight classes. It defines the operations
common to flyweight classes. Those operations that require access to extrinsic state information obtain it
as parameters.

SharedConcreteFlyweight
Instances of classes in this role are sharable objects. If they contain any intrinsic state, it must be
common to all of the entities that they represent. For example, the sharable DocChar objects from the
example under the Context heading have the character that the represent as their intrinsic state.

UnsharedConcreteFlyweight
Instances of classes that participate in the Unshar edConcr et eFl ywei ght are not sharable. The
Flyweight pattern does not require the sharing of objects. It simply allows the sharing of objects. If there
are unsharable objects that are instances of the Abst r act Fl ywei ght class, then they will typically be
instances of different subclasses of the Abst r act Fl ywei ght class than objects that are sharable.

FlyweightFactory

Instances of Fl ywei ght Fact ory classes provide instances of the Abst r act Fl ywei ght class to client
objects. If a client object asks a Fl ywei ght Factory object to provide an instance of an
Unshar edConcr et eFl ywei ght class, then it simply creates the instance. However, if a client object
asks a Fl ywei ght Fact ory object to provide an instance of a Shar edConcr et eFl ywei ght class, it
first checksto seeif it previously created a similar object. If it did previously create a similar object, then
it provides that object to the client object. Otherwise, it creates a new object and provides that to the
client.

Client
Instances of client classes are objects that use flyweight objects.

If thereisonly one classin the Shar edConcr et eFl ywei ght role, then it may be unnecessary to have
any classesin therole of Abst ract Fl ywei ght or Unshar edConcr et eFl ywei ght .

Conseguences

Using shared flyweight objects can drastically reduce the number of objectsin memory. Thereisaprice
to pay for the reduced memory consumption:

* The Flyweight pattern makes a program more complex. The major sources of additional complexity are
providing flyweight objects with their extrinsic state and managing the reuse of flyweight objects.

23

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

» The Flyweight pattern can increase the run time of a program because it takes more effort for an object to
access extrinsic state than intrinsic state.

Usually it is possible to distinguish between entities by the objects that represent them. The flyweight
pattern makes that impossible, because it results in multiple entities being represented by the same object.

Shared flyweight objects cannot contain parent pointers.

Because of the complexity that the Flyweight pattern adds and the constraints it places on the
organization of classes, the Flyweight pattern should be considered an optimization to be used after the rest of a
design isworked out.

Implementation

Thereis atradeoff to make between the number of attributes you make extrinsic and the number of
flyweight objects needed at run time. The more attributes you make extrinsic, the fewer flyweight objects will be
needed. The more attributes you make intrinsic, the less time it will take objects to access their attributes.

For example, in the document representation example, if the user makes arange of charactersitalic, the
program creates a separate Char act er Cont ext object to contain the extrinsic font attribute for the Doc Char
objects that represent those characters. An alternative would be to allow the font attribute to be intrinsic to the to
DocChar objects. If the font attribute isintrinsic then DocChar objects will spend less time accessing their font
attribute. Letting the font attribute be intrinsic also means that the program will need a DcoChar object for each
combination of character and font that it has to represent.

JAVA API| Usage

Java uses the flyweight pattern to manage the St ri ng objects used to represent string literals. If thereis
more than one string literal in a program that consists of the same sequence of characters, Java virtual machine
usesthe same St ri ng object to represent all of those string literals.

The St ri ng class’ intern method is responsible for managingsthe ng objects used to represent
string literals.

Example

Below is some of the code that implements the class diagram captioned “Document Shared
Representation Classes”. Some of the classes don't contain any code that is of interest with respect to the
Flyweight pattern, so code for those classes not presented. For example, there is no code of interest in the
Docunent El ement class. On the other hand, tbecunent Cont ai ner class defines some methods that all of
the container classes that are used to represent a document inherit:

/**
* Instances of this class are conposite objects that contain
* Docurent El ement obj ect s.
*/
abstract class Docunent Cont ai ner extends Docunent El ement {
/1 Collection of this object’s children
private Vector children = new Vector();

/1 This is the font associated with this object. |[|f the font
// variable is null, then this object’s font will be inherited
/1 through the container hierarchy froman encl osing object.

private Font font;

Docunent Cont ai ner parent; // this object’s container

24

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

/**
* Return the child object of this object that is at the given
* position.
* @aram index The index of the child.
*/
publ i c Docunent El enent get Chil d(int index) {
return (Docunent El enent) chil dren. el enent At (i ndex);
} /1 getChild(int)

/**
* Make the given DocunentEl enent a child of this object.
*/
public synchroni zed voi d addChi | d(Docunent El enent child) {
synchroni zed (child) {
chi | dren. addEl enent (chil d);
if (child instanceof Docunent Contai ner)
((Docunent Cont ai ner)child). parent = this;
} /1 synchronized
} // addChi | d(Docunent El emrent)

/**
* Make the given DocunentEl enent NOT a child of this object.
*/
public synchroni zed voi d renmoveChi |l d(Docunent El ement child) {
synchroni zed (child) {
if (child instanceof Docunent Contai ner
&& this == ((Docunent Cont ai ner)child). parent)
((Docunent Cont ai ner)child). parent = null;
chil dren. renoveEl enent (child);
} 1/ synchronized
} // renoveChil d(Docunent El enent)

/**
* Return this object’s parent or null if it has no parent.
*/
publ i ¢ Docunent Cont ai ner getParent () {
return parent;
} /1 getParent()

* Return the Font associatiated with this object. |If there is no
* Font associated with this object, then return the Font associ ated
* with this object’s parent. If there is no Font associ ated
* with this object’s parent the return null.
*/
public Font getFont() {
if (font !'= null)
return font;
else if (parent != null)
return parent.getFont();
el se
return null;
} /] getFont()

/**
* Associate a Font with this object.
* @aramfont The font to associate with this object
*/
public void setFont(Font font) ({
this.font = font;

25

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

} /1 setFont(Font)

} /1 class Docunent Cont ai ner

The methods shown for the Docunent Cont ai ner class are used to manage the state of al of the
document container classes including the Char act er Cont ext class. Using those inherited methods, the
Char act er Cont ext classis able to manage the extrinsic state of Doc Char objects even though it doesn’t
declare any of its own methods for that purpose. Here is the code fwrcthiear class:

/**
* Instances of this class represent a character in a docunent.
*/
cl ass DocChar extends Docunent El ement {
private char character;

/**
* Constructor
* @aramc the character that this object represents.
*/
DocChar (char c) {
character = c;
} // Constructor(char)

/**
* Return the character that this object represents
*/
public char getChar() {
return character;
} /] getChar()

/**
* This nethod returns a unique value that deternmines where it is stored
* internally in a hash table.
*/
public int hashCode() {
return get Char();
} /1 hashCode()

/**
* Redefine equals so that two DocChar objects are considered
* equal if they represent the same character.
*/
publ i c bool ean equal s(bject o) {
/1 Call getChar rather than access character directly so that
// this nethod will any alternate way a subcl ass has of
/1 providing the character it represents.
return (o instanceof DocChar
&& ((DocChar)o).getChar() == getChar());
} /1 equal s(nj ect)
} /1 class DocChar

Lastly, here is the code for tlbecChar Fact or y class, which is responsible for the sharin@®adf Char
objects:

cl ass DocChar Factory {
private Mitabl eDocChar nyChar = new Mit abl eDocChar () ;

/**

* This is being witten before the release of Java 1.2. The

* prelimnary APl docunentation for Java 1.2, which is available
* at this time but subject to change, docunents a class called

26

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

* javal .util.HashSet that will be nore appropriate to use in this
* class than java.util.Hashtable.
*/

private Hashtabl e docChar Pool = new Hashtabl e();

/**
* Return a DocChar object that represents the given character.
* @aramc The character to be represented.
*/
DocChar get DocChar (char c) {
nmyChar . set Char (c) ;
DocChar thi sChar = (DocChar) docChar Pool . get (nyChar);
if (thisChar == null) {
t hi sChar = new DocChar (c);
docChar Pool . put (t hi sChar, thisChar);
YILoif
return thisChar;
} /1 get DocChar (char)

* To al |l ow | ookups of DocChar objects in a Hashtable or sinillar
* collection, we will need a DocChar object that represents the
* same character as the DocChar object we want to find in the
* collection. Creating a DocChar object to perform each | ookup
* woul d largely defeat the purpose of putting the DocChar objects
* into the collection. That purpose is to avoid creating a
* DocChar object for each character to be represented and instead
* use one DocChar object to represent every occurence of a
* character.
*<p>
* An alternative to creatning a DocChar object for each | ookup is
* to reuse the same DocChar object, changing the character that
* it represents for each | ookup. The problemwi th wanting to
* change the character that a DocChar object represents is that
* DocChar objects are immutable. There is no way to change the
* character that a DocChar object represents.
*<p>
* Away to get around that problemit by using this private
* subcl ass of DocChar that does provide a way to change the
* character it represents.
*/
private class Mitabl eDocChar extends DocChar {
private char character;

/**
* Constructor
*/
Mut abl eDocChar () {
super (' \u0000’); // 1t doesn’t natter what we pass to super.
} /1 Constructor(char)

/**
* Return the character that this object represents.
*/
public char getChar() {
return character;
} /1 getChar()

/**

* Set the character that this object represents.
* @aramc The character that this object will represent.

27

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

*/
public void setChar(char c) {
character = c;
} // setChar(char)
} /1 class Mitabl eDocChar
} /1 class DocCharFactory

Related Patterns

Recursive Composition
The Flyweight pattern is often combined with the Recursive Composition pattern to represent the leaf
nodes of a hierarchical structure with shared objects.

Factory Method
The Flyweight pattern uses the factory method pattern to create new flyweight objects.

Immutable Object
Shared flyweight objects are often immutable.

Dynamic Linkage

Synopsis

Allow a program, upon request, to load and use arbitrary classes that implement a known interface.

Context

Suppose that you are writing software for a new kind of smart food processor that can be fed raw
ingredients and by dlicing, dicing, mixing, boiling, baking, frying and stirring is able to produce cooked, ready to
eat food. On amechanical level, the new food processor is a very sophisticated piece of equipment. However, a
crucial part of the food processor is a selection of programsto prepare different kinds of foods. A program that
can turn flour, water, yeast and other ingredients into different kinds of bread is very different from a program
that can stir-fry shrimp to exactly the right texture. The food processor will be required to run a great variety of
programs that allow it to produce a great variety of foods. Because of the large variety of programs that will be
required, it is not possible to build al of the necessary programs into the food processor. Instead, the food
processor will load its programs from a CD-ROM or similar media.

In order for these dynamically loaded programs and the food processor’s operating environment to work
with each other, they will need a way to call each other's methods. The following class diagram shows an
arrangement of classes and interfaces that allows that:

28

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

«interface»

FoodProcessorEnvironmentlF

AbstractFoodProcessorProgram

setEnvironment(environment:FoodProcessorEnvironement|F

slice() getName()
mix() start()
weigh()
1

1

uses *
(]
1 uses 1

FoodProcessorEnvironement

ConcreteFoodProcessorProgram

Food Processor Program Class Diagram

The organization shown in the above class diagram allows an object in the food processor environment to
call to methods of the top level object in afood processor program by calling the methods of its superclass. It aso
alows that top level object to call the methods of the food processor environment object through the
FoodPr ocessor Envi r onenent | F interface that it implements.

Hereis a collaboration diagram that showing these classes work together:

-
-

1.1: programClass := forName(programName:String)

Class

—_—
1.2: program := newlnstance()

B —
1.3: setEnvironment(env)
1.4: name := getName()

programClass:Class

1.6: start()

program:ConcreteFoodProcessorProgram

B
1: run(programName:String)

D —
1.6.1: Weigh()
1.6.2: mix()
env:FoodProcessorEnvironmen
:Displa
1.5: displayProgramName(name) ispay

Food Processo

r Collaboration

The above collaboration diagram shows the initial steps that occur when the food processor’s operating
environment is asked to run a program:

1.1 The environment calls th@ ass class’f or Nane method, passing it the name of the program to run.
Thef or Name method finds th€l ass object having the same name as the program. If necessary, it
loads the class from the CD-ROM. Ther Nane method concludes by returning thleass object
that encapsulates the top-level class of the program.

1.2 The environment creates an instance of the class that is the top level class of the program. The
diagram names that instanmeogr am

29

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

13 The environment passes areference to itself to the pr ogr amobject’sset Envi r onment method.
Passing that reference to the program allows the program to call the environment’'s methods.

1.4 The environment gets the program’s name from the program.
15 The environment displays the program’s name.

1.6 The environment starts the program running.

1.6.1 The program weights its ingredients.

1.6.2 The program mixes its ingredients

The program will continue as it executes additional steps that are beyond the scope of the drawing.

Forces

e A program must be able to load and use arbitrary classes that it has no prior knowledge of.

* Aloaded class must be able to call back to the program that loaded it.

Solution

Here is a class diagram showing the interfaces and classes that participate in the Dynamic Linkage
pattern:

«interface» AbstractLoadableClass
EnvironmentlF

i setEnvironment(:EnvironementIF
operation1() start()
operation2()

uses "’

[]
1 uses 1

Environement ConcretelLoadableClass

Dynamic Linkage Pattern
Here are descriptions of the roles these classes play in the Dynamic Linkage pattern.

Environmentl F
An interface in this role declares the methods provided by an environment object that a loaded class can
call.

Environment
A class in this role is part of the environment that loads a Concr et eLoadabl ed ass class. It
implements the Envi r onnment | F interface. A reference to an instance of this class is passed to instances
of the Concr et eLoadabl ed ass class, so that they can call the methods of the Envi r onment object
that are declared by the Envi r onrent | F interface.

30

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

AbstractL oadableClass
Any class that is the top level class of a food processor program must be a subclass of
Abst r act Loadabl eCl ass. A class in this role is expected to declare a number of other, usualy
abstract, methods in addition to the two that are shown. Here is a description of those methods:

* There should be a method with aname like set Envi r onnent , that allows instances of subclasses of
Abst r act Loadabl eC ass to be passed areference to an instance of aclass that implements the
Envi r onenent | F interface. The purpose of this method isto allow Abst r act Loadabl ed ass
objectsto call the methods of an Envi r onment object.

« Theenvironment calls other method, typically named st ar t , to tell an instance of aloaded class to
start doing whatever it is supposed to be doing.

Concretel oadableClass
Classes in this role are classes are subclasses of Abst ract Loadabl ed ass that can be dynamically
loaded.

Conseguences

e Subclasses of the Abst r act Loadabl eCl ass class can be dynamically loaded.

» The operating environment and the loaded classes do not need any specific foreknowledge of each other.

» Dynamic linkage increases the total amount of time it takes for a program to load all of the classes that it
uses. However, it does have the effect of spreading out, over time, the overhead of loading. That can
make an interactive program seem more responsive. The Virtual Proxy pattern can be used for that
purpose.

Implementation

The Dynamic Linkage pattern, as presented, requires that the environment knows about the
Abst r act Loadabl ed ass class and that the loaded class knows about the Envor i nnent | F interface. In cases
where less structure than that is needed, other mechanisms for interoperation are possible. For example,
JavaBeans uses a combination of reflection classes and naming conventions to allow other classes to infer how to
interact with a bean.

JAVA API| Usage

Web browsers use the Dynamic Linkage pattern to run applets. Here is a class diagram showing the
relationship between applet and browser:

«interface» Applet
AppletStub
1
1
uses "
< uses
1 1
BrowserAppletEnvironment MyApplet

Applets and Browsers

31

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

The browser environment accesses a subclass of Appl et that it loads through the Appl et class. Loaded
applet subclasses access the browser environment through the Appl et St ub interface.

Example

The example is the code that implements the food processor design shown under the “Context” heading.
First, here is the interface for the food processor environment:

public interface FoodProcessorEnvironnent|F {
/**
* Make a slice of food of the given width.
* @aramw dth The width of the slice to make.
*/
public void slice(int w dth)

/**

* Mx food at the given speed.

* @aram speed The speed to mx at.
*/

public void m x(int speed)

/**

* Wi ght food.

* @eturn the wieght in ounces.
*/

publ i c doubl e wei ght ()

} /1 interface FoodProcessorEnvironnent!|F
Here is the abstract class that is the superclass for all top level program classes:

public abstract class Abstract FoodProcessor Program {
private FoodProcessor Environnent| F environnent;

/**
* The food processor environment passes a reference to itself to
* this method. That allows instances of subcal sses of this class
* to call the nethods of the food processor environement object
* that inplenments the FoodProcessorEnvironnmentl F interface.
*/
public void setEnvironment (FoodProcessor Envi ronnment | F envi ronment) {
this. environment = environnent;
} /1 setEnvironment (FoodProcessor Environnent | F)

/**
* Al'l ow subcl asses to fetch the reference to the environenent.
*/
prot ect ed FoodProcessor Environnent| F get Environment () {
return environnent;
} /1 getEnvironnent()

/**

* Return the nane of this food processing program object.
*/

public abstract String getNane()

/**

* Acall to this method tells a food processing programto start
* doi ng whatever it is supposed to be doing.

*/

public abstract void start()

32

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

} // class Abstract FoodProcessor Program

Hereisthe classthat is responsible fo the food processor environment being able to run programs:

public class FoodProcessor Environnent inplenents FoodProcessor Environnent|F {
/**
* Make a slice of food of the given width.
* @aramw dth The width of the slice to make.
*/
public void slice(int width) {

} /1 slice(int)

/**

* Mx food at the given speed.

* @aram speed The speed to mx at.
*/

public void mx(int speed) {

Y /1 mx(int)

/**
* Wi ght food.
* @eturn the wieght in ounces.
*/
publ i c doubl e wei gh() {
doubl e weight = 0.0;

return weight;
} 11 weight()

/**
* Run the named program
* @aram progranNanme the nane of the programto run.
*/
void run(String progranmiNanme) {
Cl ass progranC ass;
try {
prograntC ass = C ass. f or Nanme(progranmNane) ;
} catch (d assNot FoundException e) {
/1 Not found

return;
Y I otry
Abst r act FoodPr ocessor Program pr ogr am
try {
program = (Abstract FoodPr ocessor Progran) progranCl ass. newl nstance();
} catch (Exception e) {
/1 Unable to run

return;
Y I otry
program set Envi ronnent (t hi s);
di spl ay(program get Narme());
programstart();
} /1 run(String)

} /1 class FoodProcessor Environment
Finally, here is sample code the atop level program class:

public class Concret eFoodProcessor Program

33

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

ext ends Abstract FoodProcessor Program {
/**
* Return the nane of this food processing program object.
*/
public String getNane() { return "Chocolate MIk"; }

/**
* Acall to this method tells a food processing programto start
* doi ng whatever it is supposed to be doing.
*/
public void start() {

doubl e wei ght = get Envi ronment (). wei gh();

if (weight > 120.0 && weight < 160.0)

get Envi ronnent (). m x(4);

. } /1 start()

} /1 class ConcreteFoodProcessor Program

Related Patterns

Virtual Proxy
The Virtual Proxy pattern is often used with the Dynamic Linkage pattern.

Virtual Proxy

Synopsis

If an object is expensive to instantiate and may not be needed, it may be advantageous to postpone its
instantiation until it is clear that the object is needed. The Virtual Proxy pattern hides the fact that an object may
not yet exist from its clients, by having them access the object indirectly through a proxy object that implements
the same interface as the object that may not exist.

Context

Suppose that you are part of ateam that has written alarge Java applet for a company that operates a
chain of home improvement warehouses. The applet allows people to buy everything that the warehouses sell
through aweb page. In addition to offering a catalog, it includes a variety of assistantsto allow customersto
decide just what they need. These aidesinclude

« A kitchen cabinet assistant that allows a customer to design a set of kitchen cabinets and then
automatically order all of the pieces necessary to assembl e the cabinets.

¢ Anassistant to determine how much lumber a customer needs to build a wood deck.

* Anassistant to determine the quantity of broadloom carpet needed for a particular floor plan and the best
way to cut it.

There are more of these assistant, but they are not the point of this discussion. The point is that the applet
isvery large. Duetoits size, it takes an unacceptably long amount of time for a browser to download the applet
over amodem connection.

34

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

One way to reduce the time needed to download the applet is not to download any of the assistants until
they are needed. The Virtual Proxy pattern provides away to postpone downloading part of an applet in away
that is transparent to the rest of the applet. The ideais that instead of having the rest of the applet directly access
the classes that comprise an assistant, they will access those classes indirectly through a proxy class. The proxy
classes are specially coded so that they don’t contain any static reference to the class that they are a proxy for.
That means that when the proxy classes are loaded, the Java virtual machine does not see any reference to the
class that those classes are a proxy for. If the rest of the applet refers only to the proxies and not to the classes
that implement assistants, Java will not automatically load the assistants.

When a method of a proxy is called, it first ensures that the classes that implement the assistant are
loaded and instantiated. It then calls the corresponding method through an interface. Here is a class diagram
showing that organization:

«interface»
N CabinetAssistantlF
Uses
1 operationl()
operation2() ‘
1
CabinetAssistantProxy CabinetAssistant

operation1() operationl()
operation2() operation2()
1 Creates > ! ‘ H

Cabinet Assistant Proxy

The above diagram shows the main portion of the applet referrinQatoi aet Assi st ant Pr oxy class
that implements theat i net Assi st ant | F interface. The main portion of the applet contains no references to
the classes that implement the cabinet assistant. When it is needadithet Assi st ant Pr oxy class ensures
that the classes that implement the cabinet assistant are loaded and instantiated. The code that accomplishes that
is below under the “Example” heading.

Forces

* Aclass is very time consuming to instantiate.

e It may not be necessary to instantiate the class.

» If there are a number of classes whose instances will not be needed until an indefinite amount of time has
passed, instantiating them all at once may introduce a noticeable delay in the program’s response.
Postponing their instantiation until they are needed may spread out the time that the program spends
instantiating them and appear to make the program more responsive.

e Managing the delayed instantiation of classes should not be a burden placed the class’ clients. Therefore,
the delayed instantiation of a class should be transparent to its clients.

35

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

Solution
Here is a class diagram showing the organization of classes that participate in the Virtual Proxy pattern:
«interface»
ServicelF

Uses ?

1 operationl()
operation2()

ServiceHelperl

Client 1 *
1* ServiceProxy 1
1 | operationl() :]
Uses * operation2() 1 Creates® Service ServiceHelper2
1
operationl() *
operation2() 1

Virtual Proxy Pattern
Hereis an explanation of the roles played by the interface and classes of the Virtual Proxy pattern:

Service
A Ser vi ce class provides the top level logic for a service that it provides. When you create an instance
of it, it creates instances of the rest of the classes that it needs. Those classes are indicated in the diagram
asServi ceHel per 1, Servi ceHel per2...

Client
The dient class is any class that uses the service provided bgethievce class.Cli ent classes
never directly use &ervice class. Instead, they use Servi ceProxy class that provides the
functionality of theSer vi ce class. Not directly using$er vi ce class keeps client classes insensitive to
whether or not the instance of ther vi ce class thaCl i ent objects indirectly use already exists.

ServiceProxy
The purpose of th8er vi cePr oxy class is to delay creating instances of $hevi ce class until they
are actually needed.

A ServiceProxy class provides indirection betweeahi ent classes and &ervice class. The
indirection hides fromd i ent objects the fact that when $ervi ceProxy object is created, the
correspondinger vi ce object does not exist and tBer vi ce class may not even have been loaded.

A ServiceProxy object is responsible for creating the correspondieyvi ce object. A
Ser vi ceProxy oObject creates the correspondi8gr vi ce object the first time that it is asked to
perform an operation that required the existence af¢hei ce object.

A ServiceProxy class is specially coded to obtain access toSthevi ce class through a dynamic
reference. Usually, classes reference other classes through static references. A static reference simply
consists of the name of a class appearing in an appropriate place in some source code. When a compiler
sees that kind of reference, it generates output that causes the other class to automatically be loaded
along with the class that contains the reference.

The Virtual Proxy pattern prevents the loading of $hevi ce class and related classes along with the

rest of the program by ensuring that the rest of the program does not contain any static references to the
Ser vi ce class. Instead, the rest of the program refers t&dhei ce class through théer vi cePr oxy

class and th&er vi cePr oxy class refers to th&er vi ¢ class through a dynamic reference.

A dynamic reference consists of a method call that passes a string, containing the name of a class, to a
method that loads the class if it isn’t loaded and returns a reference to the class. Because the name of the

36

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

class only appears inside of a string, compiler are not aware that the class will be referenced and so they
do not generate any output that causes that classto be loaded.

ServicelF

A Servi ceProxy class creates an instance of the Servi ce class through method calls that do not
require any static references to the Ser vi ¢ class. A Servi cePr oxy class generally also needs to call
methods of the Ser vi ¢ class without having any static references to the Ser vi ce class. It is able to do
that by taking advantage of the fact that the Ser vi ce classimplementsthe Ser vi cel F interface.

The Servi cel F interface is an interface that declares all of the methods that the Service class
implements that are needed by the Ser vi cePr oxy class. Because of that, a Ser vi cePr oxy object can
treat the reference to the Ser vi ce object that it creates as a reference to a Ser vi cel F object. That
means that the Ser vi ce class can use static references to the Ser vi cel F interface to call methods of
Ser vi ce objects. No static references to the Ser vi ce class are required.

Conseguences

Im

Classes accessed by the rest of a program exclusively through avirtual proxy are not loaded until they are
needed.

Instances of classes accessed by the rest of a program exclusively through avirtual proxy are not created
until they are needed.

All classes other than the proxy class must access the services of the Ser vi ce class indirectly through
the proxy. That is critical. If just one class accesses the Ser vi ce class directly, then the Ser vi ce class
will be loaded before it is needed. That isa quiet sort of bug; it generally affects performance but not
function.

Classes that use the proxy do not need to be aware of whether or not the Ser vi ce classisloaded, an
instance of it exists or that the class even exists.

plementation

does

In many cases, the class accessed through avirtual proxy uses other classes that the rest of the program
not use. Because of that relationship, those classes are not loaded until the class accessed by the virtua

proxy isloaded. If it isimportant that those classes are not loaded until the class accessed by the virtual proxy is
loaded, then a problem may occur when the program is in the maintenance phase of itslife cycle. A maintenance
programmer may add a direct reference to one of those classes without realizing the performance implications.

You

can lessen the likelihood of that happening by making the relationship explicit. Y ou can make the

relationship explicit by putting the putting the classes in question in a package with only the class used by the
proxy being visible outside the package:
ServicePackage
Uses «interface» .
1 +ServicelF -ServiceHelperl
*
Client
1 1 1
Uses * ! ServiceProxy | — Creates » 1 +Service 1 * -ServiceHelper2

Relationship Made Explicit by the Use of a Package

37

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

Example

To conclude the example begun under the “Context” heading, below is some of the code that implements
the cabinet assistant and it proxy. First, the relevant code feathaet Assi st ant class:

/**
* This is a skeletal exanple of a service class that is used by a
* virtual proxy. The notworthy aspect of this class is that it
* inplements an interface that is witten to declare the nethods of this
* class rather than the other way around.
*/
public class Cabi net Assi stant inplenents Cabi net AssistantlF {
/**
* constructor
*/
publ i c Cabi net Assistant(String s) {

} // Constructor(String)
public void operationl() {
} // operationl()

public void operation2() {

} // operation2()
} // class Cabinet Assi st ant

TheCabi net Assi st ant | F interface simply declares the methods defined byt net Assi st ant
class:

public interface CabinetAssistantlF {
public void operationl();
public void operation2();

} /] interface CabinetAssistantlF

Finally, here is the code for ti@abi net Assi st ant Pr oxy class where all of the interesting things
happen:

public class Cabi net Assi st ant Proxy {
private CabinetAssistantlF assistant = null;
private String nyParam /1 for assistant object’s constructor

/**
* Constructor
*/
publ i c Cabi net Assi stant Proxy(String s) {
nmyParam = s;
} // constructor(String)

/**
* Get the the CabinetAssistant object that is used to inplenent
* operations. This nmethod creates it if it did not exist.

*/
privat e Cabi net Assi stant | F get Cabi net Assi stant () {
if (assistant == null) {
try {

/'l Get class object that represents the Assistant class.
Class clazz = O ass. forNanme("Cabi net Assistant");

38

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

/1 CGet a constructor object to access the

/1 Cabi net Assi stant class’ constructor that takes a
/'l single string argunent.

Constructor constructor;

/'l CGet the constructor object to create the

/1 Cabi net Assi st ant obj ect.

Class[] formal Args = new Cass [] { String.class };
constructor = clazz. get Constructor(formal Args);

/'l User the constructor object.
oj ect[] actuals = new bject[] { nyParam};
assi st ant
= (Cabi net Assi stant| F) construct or. newl nst ance(actual s);
} catch (Exception e) {
Yy I otry
if (assistant == null) {
/1 deal with failure to create Cabi netAssistant object
t hrow new Runti neException();
YILoif
Y oILoif
return assistant;
} /1 get Cabi net Assi stant ()

public void operationl() {
get Cabi net Assi stant (). operationl();
} /1 operationl()

public void operation2() {
get Cabi net Assi stant (). operation2();
} /1 operation2()

} /1 class Cabinet Assi st ant Proxy

Related Patterns

Facade
The Facade pattern can be used with the Virtual Proxy pattern to minimize the number of proxy classes
that are needed.

Proxy
The Virtual Proxy pattern is a specialized version of the Proxy pattern.

Wrapper

The Wrapper pattern is aso known as the Decorator pattern.

Synopsis

The Wrapper pattern extends the functionality of an object in away that is transparent to its clients, by
using an instance of a subclass of the original class that delegates operations to the original object.

The Wrapper pattern is also known as the decorator pattern because when it is applied to user interfaces
it is often used to add additional user interface elements or decorations to an object.

39

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

Context

Suppose that you have become responsible for maintaining software that runs the portion of a security
system responsible for controlling physical access to a building. Its basic architecture of that isthat a card reader
or other data entry device captures some identifying information and passes that information to an object the
controls adoor. If the object that controls the door is satisfied with the information, it unlocks the door. Hereisa
collaboration diagram showing that:

_——»
1: requestOpen(data:String) theDoor:DoorControlerZ

:DataEntry

Basic Physical Access Control

Now suppose that you need to integrate this access control mechanism with a surveillance system. A
surveillance system typically has many more cameras connected to it than it has TV monitors. Most of the TV
monitors will cycle through the images of different cameras, showing the picture from each camerafor afew
seconds and then moving on to the next camera for which that monitor is responsible. There are some rules about
how the surveillance system is supposed to be set up to ensure its effectiveness. For this discussion, the relevant
rules are:

« At least one camera covers each doorway connected to the access control system.
» Each monitor is responsible for not more than one camerathat covers an access-controlled doorway.
The specific integration requirement is that when an object that controls a door receives arequest for that
door to open, the monitors responsible for the cameras pointed at the doorway display that doorway. Y our first

thought about satisfying this requirement is that you will enhance a class or write some subclasses. Then you
discover the relationships shown in this class diagram:

«interface» «interface»
SurveillanceMonitorlF DoorControllerlF
SurveillanceMonitorA SurveillanceMonitorB DoorControllerl DoorController2 DoorController3

Security System Classes

There are three different kinds of doors installed and two different kinds of surveillance monitorsin use.
Y ou could resolve the situation by writing two subclasses of each of the door controller classes, but you would
rather not have to write six classes. Instead, you use the Wrapper pattern that solves the problem by delegation
rather than inheritance.

What you do is write two new classes called Door Cont r ol | er A and Door Cont r ol | er B. These classes
both implement the Door Cont r ol | er | F interface:

40

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

«interface»
DoorControllerlF

AbstractDoorControllerWrapper DoorControllerl DoorController2 DoorController3

DoorControllerWrapperA DoorControllerWrapperB|

Door Controller Classes

The new class, Abst r act Door Cont r ol | er W apper , is an abstract class that implements all of the
methods of the Door Cont r ol | er interface with implementations that simply call the corresponding method of
another object that implements the Door Cont r ol | er interface. The Door Cont r ol | er A and
Door Cont r ol | er B, are concrete wrapper classes. They extend the behavior of ther equest Qpen
implementation that they inherit to also ask a surveillance monitor to display its view of that doorway. Hereisa
collaboration diagram showing this:

_
3: requestOpen(data:String theDoor:DoorControler2

_ >
1: requestOpen(data: String) -DoorControlerA

:DataEntry

_——»
2: viewNow(theDoor)

:SurveillanceMonitorA

Door Surveillance Collaboration

This approach allows doorways viewed by multiple cameras to be handled by simply putting multiple
wrappers in front of the Door Control | er | F object.

Forces
* Thereisaneed to extend the functionality of aclass but there are reasons not to extend it through
inheritance.

e Thereisthe need to dynamically extend the functionality of an object and possibly also to withdraw the
extended functionality.

Solution

Hereis a class diagram showing the general structure of the Wrapper pattern:

41

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

AbstractService
1 *
Operation1() .
Operation2()
Z} “« Extends
1
ConcreteService AbstractWrapper
Operation() Operation()
Operation2() Operation2()
ConcreteWrapperA ConcreteWrapperB
Operation() Operation()
Operation2() Operation2()

Wrapper Pattern

AbstractService
An abstract classin thisroll is the common superclass of al of the service objects that may potentially be
extended through the Wrapper pattern. In some cases the service objects to be extended do not have a
common superclass but do implement a common interface. In that case, the common interface takes the
place of the abstract class.

ConcreteService
The Wrapper pattern extends classes in this role by using objects that delegate to instances of a
Concr et eSer vi ce class.

AbstractWrapper
The abstract class in this roll is the common super class for wrapper classes. This class takes
responsibility for maintaining a collection of references to the service objects that wrapper objects
delegate to.

This class also normally overrides all of the methods it inherits from the Abst r act Ser vi ce class so
that they simply call the like named method of the service object that the wrapper object delegates to.
That default implementation provides exactly the behavior needed for methods whose behavior is not
being extended.

ConcreteWrapperA, ConcreteWrapperB...
These concrete wrapper classes extend the behavior of the methods they inherit from the
Abst r act W apper class in whatever way is needed.

Conseguences

The Wrapper pattern provides more flexibility than inheritance. It alows you to dynamically alter the
behavior of individual objects by adding and removing wrappers. Inheritance, on the other hand, determines the
nature of all instances of aclass statically.

By using different combinations of afew different kinds of wrapper objects, you can create many
different combinations of behavior. To create that many different kinds of behavior with inheritance requires that
you define that many different classes.

42

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

The flexibility of wrapper objects makes them more error prone than inheritance. For example, it is
possible to combine wrapper objects in ways that do not work, or to create circular references between wrapper
objects.

Using the Wrapper pattern generally results in fewer classes than using inheritance. Having fewer classes
simplifies the design and implementation of programs. On the other hand, using the Wrapper pattern usually
results in more objects. The larger number of objects can make debugging more difficult, especially since the
objects tend to look mostly alike.

One last difficulty associated with using the Wrapper pattern is that it make using object identity to
identify service objects difficult, since it hide service objects behind wrapper objects.

Implementation

Most implementations of the Wrapper pattern are simpler than the general case. Here are some of the
common simplifications:

e If thereisonly one Concr et eSer vi ce classand no Abst r act Ser vi ce classthen the
Abst r act W apper classis usually a subclass of the Concr et eSer vi ce class.

« Often the Wrapper pattern is used to delegate to a single object. In that case, there isno need for the
Abst r act W apper classto maintain a collection of references. Just keeping asimple referenceis
sufficient.

« If there will only be one concrete wrapper class then there is no need for a separate
Abst r act W apper class. You can mergethe Abst r act W apper class’ responsibilities with the
concrete wrapper class. It may also be reasonable to dispense witls thact W apper class if
there will be two concrete wrapper classes, but no more than that.

Example

Here is some code that implements some of the door controller classes shown in diagrams under the
“Context” heading. Here is the DoorControllerlF interface:

interface DoorControllerlF {

/**

* Ask the door to open if the given key is acceptable.

* @aramkey A data string presented as a key to open the door.
*/

public void requestOpen(String key);

/**

* cl ose the door

*/

public void close();

} /] interface DoorControllerlF

Here is thedbst r act Door Cont r ol | er W apper class that provides default implementations to its
subclasses for the methods declared byptwe Cont r ol | er | F interface:

abstract class AbstractDoorControl |l erWapper inplements DoorControllerlF {
private DoorControllerlF wappee;

/**

* Constructor

43

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

* @aram w appee The DoorControl |l er object that this object wll
* del egate to.
*/
Abst ract Door Cont rol | er W apper (Door Control | erl F w appee) {
t hi s. wappee = wrappee;
} // constructor(w appee)

/**
* Ask the door to open if the given key is acceptable.
* @aramkey A data string presented as a key to open the door.
*/
public void requestOpen(String key) {
wr appee. r equest Open(key) ;
} /1 request Open(String)

/**

* cl ose the door

*/

public void close() {
wr appee. cl ose();

} /1 close()

} /1 class Abstract Door Control | er Wapper

Finally, here is one the subclasses of the Abst r act Door Cont r ol | er W apper classthat extends the
default behavior by asking a monitor to display the image from an named camera:

cl ass Door Control | er Wapper A extends Abstract Door Control | er Wapper {
private String canera; /1 nane of canera that views this doorway
private SurveillanceMnitorlF nonitor; // nonitor for canera.

/**
* Constructor
* @aram w appee The DoorControl |l er object that this object wll
* del egate to.
* @aram canera The name of a canmera that views this door
* @aramnonitor The nonitor to ask to view canera’s inage.
*/
Door Cont r ol | er W apper A(Door Control | erl F wr appee,
String canera,
Surveill anceMonitorl F nmonitor) {
super (wr appee) ;
this.camera = canera;
this.nonitor = nonitor;
} // constructor(w appee)

/**
* Ask the door to open if the given key is acceptable.
* @aramkey A data string presented as a key to open the door.
*/
public void request Open(String key) {
noni t or . vi ewNow(caner a) ;
super . r equest Open(key);
} /1 request Qpen(String)
} // class DoorControl |l erWapperA

Related Patterns
Delegation
The Wrapper pattern is a structured way of applying the Delegation pattern.

44

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

Filter
The Filter pattern is a specialized version of the Wrapper pattern that focuses on manipulating a data
stream.

Strategy
The Wrapper pattern is useful for arranging for things to happen before or after the methods of another
object are called. If you want to arrange for different things to happen in the middle of calls to a method,
consider using the Strategy pattern.

Template Method
The Template Method pattern is another alternative to the Wrapper pattern that allows variable behavior
in the middle of a method call instead or before or after it.

Cache Management
Synopsis

The Cache Management pattern involves keeping alocal copy of objects that are fetched from outside of
aprogram, such as aremote server or database. There reason for doing that isto save the relatively high expense
of fetching such objects.

Context

Suppose that you are writing a program that allows people to fetch information about productsin a
catalog. Fetching all of the information for a product can take a few seconds, because it may have to be gathered
from multiple sources. Keeping the information for a product in the program’s memory can speed things up the
next time that information for that product is requested, since it would not be necessary to spend the time to
gather the information.

The technique of keeping information that takes a relatively long time to fetch into memory in memory
for quick accessed the next time it is needed is calielling. Because there are a few hundred thousand
products in the catalog, it is not feasible to cache information for all of the products in memory. What can be
done is to keep information for as many of the products as feasible in memory, trying to insure that those
products guessed to be the most likely to be used are in memory when they are needed. Deciding which and how
many objects to keep in memory is caltaghe management.

Here is how cache management would work for the product information example:

—
2: getProductinfo(productID)
4: removeProductinfo(productID)

_— :
1: getProductinfo(product!D ProductCacheManager 5: addProductinfo(productinfo)

Cache

—_—
3: getProductinfo(productiD) | ProductinfoFetcher

Product Cache Management Collaboration

1. A product ID is passed toRx oduct CacheManager object’sget Pr oduct | nf o method.

2. TheProduct CacheManager object'sget Pr oduct | nf o method attempts to retrieve the product
information from aCache object. If it successfully retrieves the information form the cache, then it
returns that information.

45

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

3. Ifitwasnot able to retrieve the information from the cache, then it callsa Pr oduct I nf oFet cher
object’sget Product | nf o method to fetch the product information.

4. Cache managers generally implement a policy to limit the number of objects in a cache because keeping
too many objects in the cache can be wasteful or even counterproductive. If the cache manager decides
that the retrieved information should be stored in the cache and the cache already contains as many
objects as it should, the cache manager will avoid increasing the number of objects in the cache. It does
that by picking a product’s information to remove from the cache and pass its product I@4otbe
object’sr enovePr oduct | nf o method.

5. Finally, if the cache manager had decided that the fetched product information should be stored in the
cache, it now calls theache object’'saddPr oduct | nf o method.

Forces

» Fetching objects from external sources can take thousands or even millions of times longer that accessing
an object that is already cached in internal memory.

* When the number of objects that can be fetched from external sources is small enough that they can all
fit comfortably in local memory, then keeping all of the objects in local memory will provide the best
results. If there are very many objects that may potentially be fetched from external sources, then they
may not fit in memory. If they do fit in memory, they may use memory that will later be needed for other
purposes. Therefore, it may be necessary to set an upper bound on the number of objects cached in local
memory.

e An upper bound on the number of objects in a cache requires an enforcement policy. The enforcement
policy will determine which fetched objects to cache and which to discard when the number of objects in
the cache reaches the upper bound. Such a policy should attempt to predict which objects are the most
and least likely to be used in the near future.

Solution
Here is the general structure of the cache management pattern:
CacheManager 1< Caches objects forl Cache
fetchObject(ObjectID) addObject(Object)
fetchObject(ObjectID)
1
Fetches _ 1
) remote objects for ObjectiD Caches™
: 0.*
ObjectFetcher
fetchObject(ObjectiD) Object

Cache Management Pattern

Here are descriptions of the classes that participate in the Cache Management pattern and the roles that

they play:
ObjectID

Instances of the Obj ect | D class are used to identify objectsto be fetched.

46

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

CacheManager
All requests for objects from classes that do not participate in the Cache Management pattern are
presented to a CacheManager object by calling its f et chObj ect method. The argument to the
f et chQbj ect method is an Obj ecdt | D object that identifies the object to fetch. The f et chCbj ect
method works by first calling the Cache object’s f et chCbj ect method. If that fails, it calls the
Obj ect Fet cher object’sf et chCbj ect method.

ObjectFetcher
(Obj ect Fet cher objects are responsible for fetching objects that are not in the cache.

Cache
A Cache object is responsible for managing the collection of objects in the cache so that given an
Obj ect | D object, it quickly finds the corresponding object. TecheManager object passes an
Obj ect | D object to theCache object’sf et chCbj ect method to try to get an object from the cache. If
the CacheManager object does not get the object it requested front thehChj ect method, then it
requests the object from ti@bj ect Fet cher object. If theOoj ect Fet cher object gives it the object
that it requested, then it will pass the fetched object to this objadi&hj ect method. The
addhj ect method adds the object to the cache if that is consistent with its cache management policy.
The addhj ect method may remove an object from the cache to make room for the object that it is
adding to the cache.

Conseguences

The impact of the Cache Management pattern on the rest of aprogram is minimal. If the CacheManager
classisimplemented as a subclass of the Obj ect Fet cher class then, using the Wrapper pattern, an
implementation of the Cache Management pattern can be inserted into aworking program with minimal
modification to existing code.

The primary consequence of using the Cache Management pattern is that a program spends less time
fetching objects from expensive sources. The simplest way of measuring the effectiveness of caching is by
computing a statistic called its hit rate. The hit rate is the percentage of object fetch requests that the cache
manager is able to satisfy with objects stored in the cache. If every request is satisfied with an object from the
cache then the hit rate is 100%. If no request is satisfied then the hit rate is 0%. The hit rate depends largely on
how well the implementation of the Cache Management pattern matches the way that objects are requested.

Another consequence of using the Cache Management pattern is that the cache may become inconsi stent
with the original data source. The consistency problem breaks down into two separate problems that can be
solved independently of each other. Those problems are read consistency and write consistency.

Read consistency means that the cache always reflects updates to information in the original object
source. If the objects being cached are stock prices, then the prices in the object source can change while the
pricesin the cache will no longer be current. To achieve absolute read consistency while caching objectsin a
cache, the object source must notify the program of updates to cached objects. Y ou can accomplish that using the
Publish-Subscribe pattern.

If it is not feasible to get the object source to send updates, you may be able to settle for relative read
consistency. Relative read consistency does not ensure that the contents of a cache are current. Instead, the
guarantee is that the objects in the cache were current within some amount of time in the past. For example, you
may want to ensure that stock prices in a cache are not more than 15 minutes old. To accomplish that you can
simply remove an object from the cache after it has been there for 15 minutes.

Write consistency means that updates to the the original object source always reflects updates to the
cache.

47

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

Implementation

Implementing the Cache Management pattern involves making some potentially complex choices.
Making optimal choices can involve much statistical analysis, queuing theory and other sorts of mathematical
analysis. However, it is usually possible to produce a reasonable implementation by being aware of what the
choices are and experimenting with different solutions.

The most basic decision to make when implementing the Cache Management pattern is how to
implement the cache itself. The considerations for picking a data structure for the cache are:

e It must be able to quickly find objects when given their Cbj ect | D.

e Since search operations will be done more frequently than addition or removal, searching should be as
fast or faster than those operations.

* Since we expect frequent additions and removals of objects, the data structure must not make those
operations a lot more expensive than search operations.

A hash table satisfies these needs. When implementing in Java, a cacheis usually implemented using an
instance of thej ava. uti| . Hasht abl e class.

The remaining implementation issues relate to performance tuning. Performance tuning is not something
to spend time on until after you program is functioning correctly. In the design and initial coding stages of your
development effort, make someinitial decisions about how to deal the these issues and then ignore them until you
are ready to deal with performance related issues.

Thereis aways a maximum amount of memory that you can afford to devote to a cache. That means that
you will haveto set alimit on the objects that can be in the cache. If the potential set of objects that are available
for collection in a cache is small, you don't have to impose an explicit limit. Most problems are not so
conveniently self-limiting.

Specifying in advance a maximum amount of memory to devote to a cache is difficult since you may not
know in advance how much memory will be available or how much memory the rest of your program will need.
Enforcing a limit on the amount of memory a cache can use is especially difficult in Java because there is no
definite relationship between an object and the amount of physical memory that it occupies.

An alternative to specifying and enforcing a limit that measures memory is to simply count objects.
Object counting is a workable alternative to measuring actual memory usage if the average memory usage for
each object is a reasonable approximation of the memory usage for each object. Counting objects is very straight
forward, so you can simplify things by limiting the contents of a cache to a certain number of objects. Of course,
the existence of a limit on the size of a cache raises the question of what should happen when the size of the
cache reaches the maximum number of objects and another object is fetched. At that point, there is one more
object than the cache is supposed to hold. The cache manager must then discard an object.

The selection of which object to discard is important because it directly affects the hit rate. If the
discarded object is always the next one requested then the hit rate will be 0%. On the other hand, if the object
discarded will not be requested before any of the other object in the cache, then discarding that object has the
least negative impact on the hit rate. Clearly, making good choice of which object to discard requires a forecast
of future object requests.

In some cases, it is possible to make an educated guess about which objects a program will need in the
near future, based on knowledge of the application domain. In the most fortunate cases, it is possible to predict
with high probability that a specific object will be the next one requested. In those cases, if the object is not

48

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

aready in the cache, it may be advantageousto load it immediately rather than wait for the program to request it.
That is called prefetching the object.

In most cases, the application domain will not provide enough clues to make such precise forecasts.
However, there is a pattern that turns up in so many cases that it is the basis for a good default strategy for
deciding which object to discard. That pattern is that the more recently a program has requested an object, the
more likely it is to request the object again. The strategy to from that is to always discard the least recently used
object. People often abbreviate that as LRU.

Now let’s take a look a setting a numeric limit on the number of objects in a cache. A mathematical
analysis can give a precise value to use for the maximum number of objects that may be placed in a cache. It is
unusual to do such an analysis for two reasons. The first is that the mathematical analysis involves probability
and queuing theory that is beyond the knowledge of most programmers. The other reason is that such an analysis
can be prohibitively time consuming. The number of details that need to be gathered about the program and its
environment can be prohibitively large. However, you can usually arrive at a reasonable cache size empirically.

Begin by adding code to yo@acheManager class to measure the hit rate as the number of object
requests satisfied from the cache divided by the total number of object requests. You can the try running with
different limits on the object size. As you do that, you will be looking for two things. The most important thing to
look out for its that if the cache is too large is can cause the rest of you program to fail or slow down. The
program can fail by running out of memory. If the program is garbage collected, as most Java programs are, it can
slow down waiting for the garbage collector to finish scavenging memory for new objects. If the program is
running in a virtual memory environment, a large cache can cause excessive paging.

Suppose that you want to tune a program that uses a cache. You run the program, under otherwise
identical conditions, with different maximum cache sizes set. Let’s say that you try values as large as 6,000. At
6,000 you find that the program takes three times as long to run as at 4000. That means that 6000 is too large.
Suppose that the hit rate you got at the other values was

Max Cache | Hit Rate
Size

250 20%
500 60%
1000 80%
2000 90%
3000 98%
4000 100%
5000 100%

Clearly, there is no need to allow the cache to be larger than 4000 objects since that achieves a 100% hit
rate. Under the conditions that you ran the program, the ideal cache size is 4000. If the program will only be run
under those exact conditions, then no further tuning may be needed. Many programs will be run under other
conditions. If you are concerned that your program will be run under other conditions, you may want to use a
smaller cache size to avoid problems under conditions where less memory is available. The number you pick will
be a compromise between wanting a high hit rate and a small cache size. Since lowering the cache size to 3,000
only reduces the hit rate to 98% then 3,000 might be an acceptable cache size. If a 90% hit rate is good enough,
then 2,000 is an acceptable cache size.

If it is not possible to achieve a high hit rate with available memory and fetching objects from the
original data source is sufficiently expensive, then you should consider using a secondary cache. A secondary
cache is typically a disk file that is used as a cache. The secondary cache takes longer to access than the primary
cache that is in memory. However, if it takes sufficiently less time to fetch objects out of a local disk file than is
does to fetch them from the original object source then it can be advantageous to use a secondary cache.

49

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

The way that you use a secondary cache is to move objects from the primary cache to the secondary
cache instead of discarding the objects when the primary cacheisfull.

Example

Suppose that you are involved in writing software for an employee timekeeping system. The system
consists of timekeeping terminals and a timekeeping server. The terminals are small boxes mounted on the walls
of aplace of business. When an employee arrives at work or leaves work, the employee notifies the timekeeping
system. The employee notifies the timekeeping system by running his or her ID card through a timekeeping
terminal. The terminal reads the employee’s id on the card and acknowledges the card by displaying the
employee’s name and options. The employee then presses a button to indicate that he or she is starting work,
ending work, going on break or other options. The timekeeping terminals transmit the comings and goings of
each employee to the timekeeping server. At the end of each pay period, the business’ payroll system gets the
number of hours each employee worked from the timekeeping system and prepares paychecks.

The exact details of what an employee sees will depend on an employee profile that a terminal receives
from the timekeeping server. The employee profile will include the employee’s name, the language in which to
display prompts for the employee and what special options apply to the employee.

Most businesses assign their employees a fixed location in the business place to do their work.
Employees with a fixed work location will normally use the timekeeping terminal nearest to their work location.
To avoid long lines in front of timekeeping terminals, it is recommended that the terminals be positioned so that
fewer than 70 employees with fixed work locations will use the same timekeeping terminal.

Because a substantial portion of the cost of the timekeeping system will be the cost of the terminals, to
keep their cost down, the timekeeping terminals will have a minimal amount of memory. On the other hand, to
keep response time down, we will want the terminals to cache employees profiles so that most of the time they
will be able to respond immediately when presented with an employee’s ID card. That means that you will have
to impose a maximum cache size that is rather modest. A reasonable basis for an initial maximum cache size is
the recommendation that the terminals be position so that no more than 70 employees with fixed work locations
use the same terminal. Based on that we come up with an initial cache size of up to 80 employee profiles.

The reason for picking a number larger than 70 is that under some situations more than 70 employees
may use the same timekeeping terminal. Sometimes one part of a business will borrow employees from another
part of a business when they experience a peak workload. Also, there will be employees, such as maintenance
staff, that float from one location to another.

Here is a class diagram that show how the Cache Management pattern is applied to this problem.

4 Fetches employee profiles fo
1

EmployeeProfileCache

EmployeeProfileManager

fetchEmployee(EmployeetID) addEmployee(EmployeeProfile)
fetchEmployee(EmployeelD)

1
~ 1
Fetches
employee profiles for CachesY

1 EmployeelD

EmployeeProfileFetcher 0.*
fetchEmployee(EmployeetID) EmployeeProfile

Timekeeping Cache Management

Here is the code that implements the timekeeping terminal’'s cache management. First, here is the code
for theEnpl oyeePr of i | eManager class:

50

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

cl ass Enpl oyeeProfi | eManager {
private Enpl oyeeCache cache = new Enpl oyeeCache();
private Enpl oyeeProfil eFetcher server
= new Enpl oyeeProfil eFetcher();

/**

* Fetch an enployee profile for the given enployee id fromthe
* internal cache or tinekeeping server if the profile is not

* found in the internal cache.

* @aramid the enployee's id

* @return the enployee’s profile or null if the enployee’s
* profile is not found on the tinmekeepi ng server.
*/

Enpl oyeeProfil e fetchEnmpl oyee(Enpl oyeel D id) {
Enpl oyeeProfile profile = cache. fetchEnpl oyee(id);
if (profile == null) { /1 if profile not in cache try server
profile = server.fetchEnpl oyee(id);
if (profile !=null) { // Got the profile fromthe server
/1 put profile in the cache
cache. addEnpl oyee(profile);
Yy /L if = null
Yy /1 if == null
return profile;
} /1 fetchEnpl oyee(Enpl oyeel D)
} /1 class Enpl oyeeProfil eManager

Thelogic inthe Enpl oyeePr of i | eManager classisrather straightforward conditional logic. Thelogic
of the Enpl oyeeCache classis moreintricate, since it has to manipulate a data structure to determine which
employee profile to remove from the cache when the adding an employee profile to afull cache.

cl ass Enpl oyeeCache {
/**
* W use a linked list to determine the |east recently used enpl oyee
* profile. The cache that itself is inplemented by a Hashtabl e
* object. The Hashtable values are linked |ist objects that refer
* to the actual Enpl oyeeProfile object.
*/
private Hashtabl e cache = new Hashtabl e();

/**

* This is the head of the linked list that refers to the nost
* recently used Enpl oyeeProfile.

*/

Li nkedLi st mru = nul|;

/**

* this is the end of the linked list that referes to the | east
* recently used Enpl oyeeProfile.

*/

LinkedList lru = null;

/**

* The maxi mum nunber of Enpl oyeeProfile objects that nay be in the
* cache.

*/

private final int MAX CACHE S| ZE = 80;

/**

* The nunber of Enpl oyeeProfile objects currently in the cache.
*/
private int currentCacheSize = 0;

51

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

* (pjects are passed to this method for addition to the cache
* However, this method is not required to actually add an object
* to the cache if that is contrary to its policy for what object
* shoul d be added. This nmethod may al so renobve objects already in
* the cache in order to make room for new objects.
* @aram enp The enpl oyeeProfile that is being proposed as an
* addition to the cache
*/
public voi d addEnmpl oyee(Enpl oyeeProfile enmp) {
Enpl oyeel D id = enp.getlD();
if (cache.get(id) == null) { // if profile not in cache
/1 Add profile to cache, making it the nost recently used
if (currentCacheSize == 0) {
// treate enpty cache as a special case
Iru = ntu = new Li nkedList();
nru.profile = enp;
} else { /1 current CacheSize > 0
Li nkedLi st newLi nk;
if (currentCacheSize >= MAX_CACHE_SI ZE) {
/'l renove |east recently used Enpl oyeeProfile fromthe cache
newLi nk = Iru;
I ru = newli nk. previous;
cache. renmove(newLi nk) ;
I ru.next = null
} else {
newLi nk = new Li nkedLi st ();
} /1 if >= MAX_CACHE_SI ZE
newLi nk. profile = enp;
newLi nk. next = nru
newLi nk. previ ous = nul |
nru = newli nk;
Yy /1 if o0
/1 put the now nobst recently used profile in the cache
cache. put(id, nru);
current CacheSi ze++
} else { /1 profile already in cache
// addEnpl oyee shoul dn’t be called when the object is already
/1 in the cache. Since that has happened, do a fetch so
// that so object beconmes the nobst recently used
f et chEnpl oyee(id);
} /1 if cache.get(id)
} // addEnpl oyee(Enpl oyeeProfile)

/**
* Return the Enpl oyeeProfile associated with the given Enpl oyeel D
* the cache or null if no EnployeeProfile is associated witht the
* given Enpl oyeel D.
* @aramid the EnployeelD to retrieve a profile for.
*/
publ i c Enpl oyeeProfile fetchEnmpl oyee(Enpl oyeel D id) {
Li nkedLi st foundLi nk = (LinkedLi st)cache. get(id);
if (foundLink == null)

return null
if (nmru !'= foundLink) {
i f (foundLink.previous !'= null)
f oundLi nk. previ ous. next = foundLi nk. next;
i f (foundLink.next !'= null)

f oundLi nk. next . previ ous = foundLi nk. previ ous;
f oundLi nk. previ ous = nul |

52

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

f oundLi nk. next = nru;
nru = foundLi nk;
} /1 if currentCacheSize > 1
return foundLink. profile;
} /1 fetchEnpl oyee(Enpl oyeel D)

/**
* private doublely linked list class for managing |ist of nost
* recently used enpl oyee profiles.
*/
private class LinkedList {
Enpl oyeeProfile profile;
Li nkedLi st previ ous;
Li nkedLi st next;
} /1 class LinkedLi st
} /1 class Enpl oyeeCache

Finally, here are the Enpl oyeePr of i | e and Enpl oyeel D classes:

cl ass Enpl oyeeProfile {

private Enpl oyeel D i d; /1 Enpl oyee Id

private Local e | ocal e; /1 Language Preference
private bool ean supervi sor;

private String nane; /1 Enpl oyee nane

/**

* Constructor
* @aramid Enployee Id
* @aram | ocale The |ocale of the enployee’s | anguage of choice.
* @aram supervisor true if this enployee is a supervisor.
* @aram nane Enpl oyee’s nane
*/
publ i c Enpl oyeeProfil e(Enpl oyeel D i d,
Local e | ocal e,
bool ean supervi sor,
String name) {
this.id =id;
this.locale = | ocal e;
thi s. supervi sor = supervisor;
thi s. name = nane;
} // Constructor(Enpl oyeel D, Local e, bool ean, String)

/**

* Return the enployee’s ID

*/

public Enployeel D getI () { return id; }

/**
* return the Locale indicating the Enployee’'s preferred | anguage.
*/

public Locale getLocale() { return locale; }

/**

* Return true if the enployee is a supervisor.

*/

publ i c bool ean i sSupervisor() { return supervisor; }
} // class EnployeeProfile

cl ass Enpl oyeel D {
private String id;

53

GRAND STRUCTURAL PATTERNS —UIUC PATTERNS GROUP DRAFT 1/20/98

/**
* constructor
* @aramid A string containing the enployee ID.
*/
public Enpl oyeel D(String id) {
this.id =id;
} // constructor(String)

/**

* Returns a hash code value for this object.
*/

public int hashCode() { return id.hashCode(); }

/**

* Return true if the given object is an enployee id that is equal to this
* one.

* @aram obj The object to conpare with this one.

*/

publ i c bool ean equal s(oj ect obj) {
return (obj instanceof Enployeel D
&& id. equal s(((Enpl oyeelDyobj).id));
} /1 equal s(nj ect)

/**
* Return the string representation of this Enpl oyeel D.
*/
public String toString() { return id; }
} /1 class Enpl oyeel D

Related Patterns

Facade
The Cache Management pattern uses the Facade pattern.

Publish-Subscribe
You can use the Publish-Subscribe pattern to ensure that read consistency of a cache.

Remote Proxy
The Remote Proxy provides an alternative to the Cache Management pattern by working with objects
that exist in a remote environment rather than fetching them into the local environment.

Template Method
The Cache Management pattern uses the Template Method pattern to kesghétsclass reusable

across application domains.

Virtual Proxy
The cache management pattern is often used with a variant of the Virtual Proxy pattern to make the
cache transparent to objects that access object in the cache.

54

