
GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 1 *

7. Structural Patterns
The patterns in this chapter describe common ways that different types of objects can be organized to

work with each other.

Adapter
Synopsis

An Adapter class implements an interface known to its clients and provides access to an instance of a
class not know to its clients. An adapter object provides the functionality promised by an interface without
having to assume what class is being used to implement that interface.

Context
Suppose that you are writing a method that copies an array of objects, filtering out objects that do not

meet certain criteria. To promote reuse, you would like to make the method independent of the actual filtering
criteria being used. You could achieve that by defining an interface that declares a method that the array copier
can call to find out if it should include a particular object in the new array:

Simple Copy Filter
In the above design, an ArrayCopier class uses instances of classes that implement the CopyFilterIF

interface to decide if it should copy an element of the old array to the new array. If their isCopyable method
returns true for an object then that object is copied to the new array.

That solution solves the immediate problem of allowing the copy criteria used by the array copier to be
encapsulated in a separate object without having to be concerned about what the object’s class is. That solution
also presents a different problem. The problem is that the filtering logic is in a different object than the objects
that are being filtered. Sometimes the logic needed for the filtering is in a method of the objects to be filtered. If
those objects don’t implement the CopyFilterIF interface then there is no way for the array copier to directly
ask those objects if they should be copied. However, it is possible for the array copier to indirectly ask the
filtered objects if they should be copied, even if they don’t implement the CopyFilterIF interface.

Suppose that there is a class called Document that has a method called isValid that returns a boolean
result. Suppose that you need to use the result of the isValid method to do the filtering for a copy operation.
Because Document does not implement the CopyFilterIF interface, an ArrayCopier object cannot directly
use a document object for filtering. A class that implements the CopyFilterIF interface but tries to
independently determine if a Document object should be copied into a new array does not work. It does not work

ArrayCopier

«interface»
CopyFilterIF

isCopyable(Object) : boolean

1: isCopyable(Object)

MyCopyfilter

isCopyable(Object) : boolean

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 2 *

because it has no way to get the necessary information without calling the Document object’s isValid method.
The answer is for that object to call the Document object’s isValid method, resulting in this solution:

Copy Filter Adapter
In this solution, the ArrayCopier object calls the isCopyable method of an object that implements the

CopyFilterIF interface, as it always does. In this case, that object is an instance of a class called
DocumentCopyFilterAdapter. The DocumentCopyFilterAdapter class implements the isCopyable
method by calling the Document object’s isValid method.

Forces
You want to use a class that calls a method through an interface, but you want to use it with a class that

does not implement that interface. Modifying that class to implement the interface is not an option either because

• You do not have the source code for the class.

• The class is a general-purpose class and it would be inappropriate for it to implement an interface for a
specialized purpose.

Solution
Suppose that you have a class that calls a method through an interface. You want an instance of that class

to call a method of an object that does not implement the interface. You can arrange for the instance to make the
call through an adapter object that implements the interface with a method that calls a method of the object that
doesn’t implement the interface. Here is a collaboration diagram showing how this works:

Adapter
Here are the roles the that the classes and interface play:

ArrayCopier

«interface»
CopyFilterIF

isCopyable(Object) : boolean

1: isCopyable(Object)

DocumentCopyFilterAdapter

isCopyable(Object) : boolean

Document

...
isValid() : boolean

2: isValid()

Client

«interface»
TargetIF

interfaceMethod()

1: interfaceMethod()

Adapter

interfaceMethod()

Document

...
otherMethod()

2: otherMethod()

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 3 *

Client
This is a class that calls a method of another class through an interface in order not to assume that the
object its calls the method through belongs to a specific class.

TargetIF
This interface declares the method that the client class calls.

Adapter
This class implements the TargetIF interface. It implements the method that the client calls by having
it call a method of the Adaptee class, which does not implement the TargetIF interface.

Adaptee
This class does not implement the TargetIF method but has a method that we want the Client class to
call.

It is possible for an adapter class to do more than simply delegate the method call. It may perform some
transformation on the arguments. It may provide additional logic to hide differences between the intended
semantics of the interface’s method and the actual semantics of the adaptee class’ method. There is no limit to
how complex an adapter class can be. So long as the essential purpose of the class is as an intermediary for
method calls, you can considered it to be an adapter class.

Consequences
• The client and adaptee classes remain independent of each other.

• The Adapter pattern introduces an additional indirection into a program. Like any other indirection, it
contributes to the difficulty involved in understanding the program.

Implementation
Implementation of the adapter class is rather straightforward. However, there is an issue that you should

consider. That issue is how the adapter objects will know what instance of the adaptee class to call. There are two
approaches:

• Passing a reference to the client object as a parameter to the adapter object’s constructor or one of its
methods allows the adapter object to be used with any instance or possibly multiple instances of the
adaptee class.

• Make the adapter class an inner class of the adaptee class. That simplifies the association between the
adapter object and the adaptee object by making it automatic. It also makes the association inflexible.

JAVA API Usage & Example
A very common way to use adapter classes with the Java API is for event handling, like this:

Button ok = new Button("OK");

ok.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent evt) {

 doIt();

 } // actionPerformed(ActionEvent)

 });

add(ok);

The above example creates an instance of an anonymous class that implements the ActionListener
interface. That class’ actionPerformed method is called when the Button object is pressed. This coding
pattern is very common for code that handles events.

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 4 *

The Java API does not include any public adapter objects that are ready to use. It does include classes
such as java.awt.event.WindowAdapter that are intended to be subclassed rather than used directly. The
idea is that there are some event listener interfaces, such as WindowListener that declare multiple methods that
may not need to all be implemented in many cases. The WindowListener interface declares eight methods that
are called to provide notification about eight different kinds of window events. Often only one or two of those
event types are of interest. The methods that correspond to the events that are not of interest will typically be
given do-nothing implementations. The WindowAdapter class implements the WindowListener interface and
implements all eight of its methods with do-nothing implementations. An adapter class that subclasses the
WindowAdapter class only needs to implement the methods corresponding to events that are of interest. It
inherits do-nothing implementations for the rest. For example:

addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {

 exit();

 } // windowClosing(WindowEvent)

 });

In the above example, the anonymous adapter class is a subclass of the WindowAdapter class. It only
implements the windowClosing method. It inherits do-nothing implementations for the other seven methods
from the WindowAdapter class.

Related Patterns
Iterator

The Iterator pattern is a specialized version of the Adapter pattern for sequentially accessing the contents
of collection objects.

Proxy
The Proxy pattern, like the Adapter pattern, uses an object that is a surrogate for another object.
However, a Proxy object has the same interface as the object for which it is a surrogate.

Bridge
Synopsis

The Bridge pattern is useful when there is a hierarchy of abstractions and a corresponding hierarchy of
implementations. Rather than combining the abstractions and implementations into many distinct classes, the
Bridge pattern implements the abstractions and implementations as independent classes that can be combined
dynamically.

Context
Suppose that you need to provide Java classes that provide access to sensors for control applications.

These are devices such as scales, speed measuring devices and location sensing devices. What these devices have
in common is that they perform a physical measurement and produce a number on the request of a computer. One
way that these devices differ is in the type of measurement that they produce.

• The scale produces a single number based on a measurement at a single point in time.

• The speed measuring device produces a single measurement that is an average over a period of time.

• The location sensing device produces a stream of measurements.

This suggests that these devices can be supported by three classes that support these different
measurement techniques:

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 5 *

Sensor Classes
These three classes provide clean abstractions that apply to many other types of sensors that the three that

inspired them. Since there are other kinds of sensors that produce simple measurements, time averaged
measurements and streams of measurements, you would like to be able to reuse these classes for kinds of sensors.
A difficulty in achieving such reuse is that the details of communicating with sensors from different
manufacturers vary. Suppose the software that you are writing will need to work with sensors from multiple
manufacturers called Eagle and Hawk. You could handle that problem by having manufacturer specific classes
like this:

Manufacturer Specific Sensor Classes
The problem with this solution is not just that it does not reuse classes for simple, averaging and

streaming sensors. Because it exposes differences between manufacturers to other classes, it forces other classes
to recognize differences between manufacturers and therefore be less reusable. The challenge here is to represent
a hierarchy of abstractions in a way that keeps the abstractions independent of their implementations.

A way to accomplish that is to shield a hierarchy of classes that support abstractions from classes that
implement those abstractions by having the abstraction classes access implementation classes through a hierarchy
of implementation interfaces that parallels the abstraction hierarchy.

SimpleSensor

StreamingSensorAveragingSensor

EagleSimpleSensor

EagleStreamingSensorEagleAveragingSensor

HawkSimpleSensor

HawkStreamingSensorHawkAveragingSensor

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 6 *

Independent Sensor and Sensor Manufacturer Classes
Forces

• When you combine hierarchies of abstractions and hierarchies of their implementations into a single
class hierarchy, classes that use those classes become tied to a specific implementation of the abstraction.
Changing the implementation used for an abstraction should not require changes to the classes that use
the abstraction.

• You would like to reuse logic common to different implementations of an abstraction. The usual way to
make logic reusable is to encapsulate it in a separate class.

• You would like to be able to create a new implementation of an abstraction without having to re-
implement the common logic of the abstraction.

• You would like to be able to extend the common logic of an abstraction by writing one new class rather
that writing a new class for each combination of the base abstraction and its implementation.

• When appropriate, multiple abstractions should be able to share the same implementation.

Solution
The Bridge pattern allows classes corresponding to abstractions to be separate from classes that

implement those abstractions. You can maintain a clean separation by having the abstraction classes access the
implementation classes through interfaces that are in a hierarchy that parallels the inheritance hierarchy of the
abstraction classes.

SimpleSensor

getValue() AveragingSensor

startAveragingI()

StreamingSensor

setSamplingFrequency()

«interface»
SimpleSensorImpl

getValue()

uses

used by

«interface»
AveragingSensorImpl

startAveraging()

uses 6

«interface»
StreamingSensorImpl

setSamplingFrequency()

EagleSimpleSensor

EagleAveragingSensor

EagleStreamingSensor

HawkAveragingSensor

HawkStreamingSensorHawkSimpleSensor

1

1

1

1

1

1
uses 6

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 7 *

Bridge Pattern
Here are descriptions of the roles these classes and interfaces play in the Bridge pattern:

Abstraction
This class represents the top-level abstraction. It is responsible for maintaining a reference to an object
that implements the AbstractionImpl interface, so that it can delegate operations to its implementa-
tion. If an instance of the Abstraction class is also an instance of a subclass of the Abstraction class
then the instance will refer to an object that implements the corresponding sub-interface of the
AbstractionImpl interface.

SpecializedAbstraction
This role corresponds to any subclass of the Abstraction class. For each such subclass of the
Abstraction class there is a corresponding sub-interface of the AbstractionImpl interface. Each
SpecializedAbstraction class delegates it operations to an implementation object that implements
the interface that corresponds to the SpecializedAbstraction class.

AbstractionImpl
This interface declares methods for all of the low-level operations that an implementation for the
Abstraction class must provide.

SpecializedAbstractionImpl
This corresponds to a sub-interface of AbstractionImpl. Each SpecializedAbstractionImpl
interface corresponds to a SpecializedAbstraction class and declares methods for the low-level
operations needed for an implementation of that class.

Impl1, Impl2
These classes implement the AbstractionImpl interface and provide different implementations for the
Abstraction class.

SpecializedImpl1, SpecializedImpl2
These classes implement the one of the SpecializedAbstractionImpl interfaces and provide
different implementations for a SpecializedAbstraction class.

Consequences
The Bridge pattern keeps the classes that represent an abstraction independent of the classes that supply

an implementation for the abstraction. The abstraction and its implementations are organized into separate class
hierarchies. You can extend each class hierarchy without directly impacting another class hierarchy. It is also
possible to have multiple implementation classes for an abstraction class or multiple abstraction classes using the
same implementation class.

Classes that are clients of the abstraction classes do not have any knowledge of the implementation
classes, so an abstraction object can change its implementation without any impact on its clients.

Abstraction

operation()

SpecializedAbstraction

specializedOperation()

«interface»
AbstractionImpl

operation()

«interface»
SpecializedAbstractionImpl

specializedOperation()

uses

uses

used by

used by

Impl1

SpecializedImpl1

SpecializedImpl2

Impl2

1

1 1

1

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 8 *

Implementation
One issue that always must be decided when implementing the Bridge pattern is how to create

implementation objects for each abstraction object. The most basic decision to make whether abstraction objects
will create their own implementation objects or delegate the creation of their implementation objects to another
object.

Having the abstraction objects delegate the creation of implementation objects is usually the best choice.
It preserves the independence of the abstraction and implementation classes. If an abstraction class is designed to
delegate the creation of implementation objects, it the design usually uses that Abstract Factory pattern to create
the implementation objects.

However, if there are only a small number of implementation classes for an abstract class and the set of
implementation classes is not expected to change then having the abstraction classes create their own
implementation objects is a reasonable optimization.

A related decision is whether an abstraction object will use the same implementation object during its
lifetime. As usage patterns or other conditions change, it may be appropriate to change the implementation object
that an abstraction object is using. If an abstraction class directly creates its own implementation objects then it is
reasonable to directly embed the logic for changing the implementation object in the abstraction class. Otherwise,
you can use the Wrapper pattern to encapsulate the logic for switching implementation objects in a wrapper class.

JAVA API Usage
The Java API includes the package java.awt. That package contains the Component class. The

Component class is an abstract class that encapsulates logic common to all GUI components. The Component
class has subclasses such as Button, List and TextField that encapsulate the logic for those GUI components
that is platform independent. The package java.awt.peer contains interfaces such as ComponentPeer,
ButtonPeer, ListPeer and TextFieldPeer that declare methods required for implementation classes that
provide platform specific support for the subclasses of the Component class.

The subclasses of the Component class use the Abstract Factory pattern to create their implementation
objects. The java.awt.Toolkit class is an abstract class that plays the role of abstract factory. The platform
supplies the concrete factory class used to instantiate the implementation classes and the implementation classes.

Example
For an example of the Bridge pattern, we will look at some code to implement the sensor related classes

that were discussed under the context heading. We will assume that the objects that represent sensors and their
implementation are created by a Factory Method. The Factory Method object will know what sensors are
available, what objects to create to provide access to a sensor and will create those objects when access to a
sensor is first requested.

Here is the code for the SimpleSensor class that plays the role of abstraction class:

public class SimpleSensor {

 // A reference to the object that implements operations specific to

 // the actual sensor device that this object represents.

 private SimpleSensorImpl impl;

 /**

 * Constructor

 *<p>

 * This constructor is intended to be called by a factory method

 * object that is in the same package as this class and the the

 * classes that implement its operations.

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 9 *

 * @param impl The object that implements the sensor type-specific

 * operations this object will provide.

 */

 SimpleSensor(SimpleSensorImpl impl) {

 this.impl = impl;

 } // constructor(SimpleSensorImpl)

 /**

 * This method allows subclasses of this class to get the reference

 * to the implementation object.

 */

 protected SimpleSensorImpl getImpl() {

 return impl;

 } // getImpl()

...

 /**

 * Return the value of the sensor’s current measurement.

 * @exception SensorException if there is a problem accessing the

 * sensor.

 */

 public int getValue() throws SensorException {

 return impl.getValue();

 } // getValue()

} // class SimpleSensor

As you can see, the SimpleSensor class is simple in that it does little more than delegate its operations
to an object that implements the SimpleSensorImpl interface. Here is the code for the SimpleSensorImpl
interface:

interface SimpleSensorImpl {

 /**

 * Return the value of the sensor’s current measurement.

 * @exception SensorException if there is a problem accessing the

 * sensor.

 */

 public int getValue() throws SensorException;

} // interface SimpleSensorImpl

Some subclasses of the SimpleSensor class maintain the same simple structure. Here is code for the
AveragingSensor class:

/**

 * Instances of this class are used to represent sensors that produce

 * values that are the average of measurements made over a period of

 * time.

 */

public class AveragingSensor extends SimpleSensor {

 /**

 * Constructor

 *<p>

 * This constructor is intended to be called by a factory method

 * object that is in the same package as this class and the the

 * classes that implement its operations.

 * @param impl The object that implements the sensor type-specific

 * operations this object will provide.

 */

 AveragingSensor(AveragingSensorImpl impl) {

 super(impl);

 } // constructor(AveragingSensorImpl)

...

 /**

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 10 *

 * Averaging sensors produce a value that is the average of

 * measurements made over a period of time. That period of time

 * begins when this method is called.

 * @exception SensorException if there is a problem accessing the

 * sensor.

 */

 public void beginAverage() throws SensorException {

 ((AveragingSensorImpl)getImpl()).beginAverage();

 } // beginAverage()

} // class AveragingSensor

As you can see, the AveragingSensor class is also very simple, delegating its operations to the
implementation objects that it is using. Here is its corresponding implementation class:

interface AveragingSensorImpl extends SimpleSensorImpl {

 /**

 * Averaging sensors produce a value that is the average of

 * measurements made over a period of time. That period of time

 * begins when this method is called.

 * @exception SensorException if there is a problem accessing the

 * sensor.

 */

 public void beginAverage() throws SensorException;

} // interface AveragingSensorImpl

It is reasonable for subclasses of the SimpleSensorImpl class to be more complex and provide
additional services of their own. The StreamingSensor class delivers a stream of measurements to objects that
have register to receive those measurements. It delivers those measurements by calling a method of the object it
is delivering the measurement to. It does not place any requirements on how long that method may take before it
returns. There is merely an expectation that the method will return in a reasonable amount of time. On the other
hand, the implementation objects used with instances of the StreamingSensor class may need to deliver
measurements at a steady rate or loose them. In order to avoid losing measurements, instances of the
StreamingSensor class buffer measurements that are delivered to it, while it asynchronously delivers those
measurements to other objects. Here is code for the StreamingSensor class:

/**

 * Instances of this class are used to represent sensors that produce

 * a stream of measurement values.

 */

public class StreamingSensor extends SimpleSensor implements StreamingSensorListener, Runnable {

 // These objects are used to provide a buffer that allows the

 // implementation object to asynchronously deliver measurement values

 // while this object is delivering value it has already received to its

 // listeners.

 private DataInputStream consumer;

 private DataOutputStream producer;

 private Vector listeners = new Vector(); // aggregate listeners here

 /**

 * Constructor

 *<p>

 * This constructor is intended to be called by a factory method

 * object that is in the same package as this class and the the

 * classes that implement its operations.

 * @param impl The object that implements the sensor type-specific

 * operations this object will provide.

 * @exception SensorException if initialization of this object fails.

 */

 StreamingSensor(StreamingSensorImpl impl) throws SensorException {

 super(impl);

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 11 *

 // Create pipe stream that will support this object’s ability

 // to deliver measurement values at the same time it is

 // receiving them.

 PipedInputStream pipedInput = new PipedInputStream();

 consumer = new DataInputStream(pipedInput);

 PipedOutputStream pipedOutput;

 try {

 pipedOutput = new PipedOutputStream(pipedInput);

 } catch (IOException e) {

 throw new SensorException("pipe creation failed");

 } // try

 producer = new DataOutputStream(pipedOutput);

 // start a thread to deliver measurement values

 new Thread(this).start();

 } // constructor(StreamingSensorImpl)

...

 /**

 * Streaming sensors produce a stream of measurement values. The

 * stream of values is produced with a frequency no greater than

 * the given number of times per minute.

 * @param freq The maximum number of times per minute that this

 * streaming sensor will produce a measurement value.

 * @exception SensorException if there is a problem accessing the

 * sensor.

 */

 public void setSamplingFrequency(int freq) throws SensorException {

 // delegate this to the implementation object

 ((StreamingSensorImpl)getImpl()).setSamplingFrequency(freq);

 } // setSamplingFrequency(int)

 /**

 * StreamingSensor objects deliver a stream of values to

 * interested objects by passing each value to the object’s

 * processMeasurement method. The delivery of values is done

 * using its own thread and is asynchronous of everyting else.

 * @param value The measurement value being delivered.

 */

 public void processMeasurement(int value) {

 try {

 producer.writeInt(value);

 } catch (IOException e) {

 // If the value cannot be delivered, just discard it.

 } // try

 } // processMeasurement(int)

 /**

 * This method registers its argument as a recipient of future

 * measurement values from this sensor.

 */

 public void addStreamingSensorListener(StreamingSensorListener listener) {

 listeners.addElement(listener);

 } // addStreamingSensorListener(StreamingSensorListener)

 /**

 * This method unregisters its argument as a recipient of future

 * measurement values from this sensor.

 */

 public void removeStreamingSensorListener(StreamingSensorListener listener) {

 listeners.removeElement(listener);

 } // addStreamingSensorListener(StreamingSensorListener)

 /**

 * This method asynchronously removes measurement values from the pipe

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 12 *

 * and delivers them to registered listeners.

 */

 public void run() {

 while (true) {

 int value;

 try {

 value = consumer.readInt();

 } catch (IOException e) {

 // Pipes is broken so return from this method letting

 // ths trhead die.

 return;

 } // try

 for (int i=0; i < listeners.size(); i++) {

 StreamingSensorListener listener;

 listener = (StreamingSensorListener)listeners.elementAt(i);

 listener.processMeasurement(value);

 } // for

 } // while

 } // run()

} // class StreamingSensor

In order for the StreamingSensor class to deliver a measurement to an object, it requires that object to
implement the StreamingSensorListener interface. It delivers measurements by passing them to the
processMeasurement method that the StreamingSensorListener interface declares. The
StreamingSensor class also implements the StreamingSensorListener interface. Implementation objects
deliver measurements to instances of the StreamingSensor class by calling its processMeasurement
method.

Finally, here is the implementation interface that corresponds to the StreamingSensor class:

interface StreamingSensorImpl extends SimpleSensorImpl {

 /**

 * Streaming sensors produce a stream of measurement values. The

 * stream of values is produced with a frequency no greater than

 * the given number of times per minute.

 * @param freq The maximum number of times per minute that this

 * streaming sensor will produce a measurement value.

 * @exception SensorException if there is a problem accessing the

 * sensor.

 */

 public void setSamplingFrequency(int freq) throws SensorException;

 /**

 * This method is called by an object than represents the

 * streaming sensor abstraction so that this object can perform a

 * call-back to that object to deliver measurement values to it.

 * @param abstraction The abstraction object to deliver

 * measurement values to.

 */

 public void setStreamingSensorListener(StreamingSensorListener listener);

} // interface StreamingSensorImpl

Related Patterns
Layered Architecture analysis pattern

The Bridge design pattern is a way of organizing the entities identified using the Layered Architecture
analysis pattern into classes.

Abstract Factory/Toolkit
The Abstract Factory pattern can be used by the Bridge pattern to decide which implementation class to
instantiate for an abstraction object.

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 13 *

Facade

Synopsis
The Facade pattern simplifies access to a related set of objects by providing one object that all objects

outside the set use to communicate with the set.

Context
Consider the organization of a set of classes that supports the creation and sending of e-mail messages. A

set of classes for sending e-mail messages might include the following classes:

• A MessageBody class whose instances will contain message bodies.

• An Attachment class whose instances will contain message attachments that can be attached to a
message body object.

• A MessageHeader class whose instances will contain the header information (to, from, subject…) for
an e-mail message.

• A Message class whose instances will tie together a MessageHeader object and a MessageBody
object.

• A Security class whose instances can be used to add a digital signature to a message.

• A MessageSender class whose instances are responsible for sending Message objects to a server that is
responsible for delivering the e-mail to its destination or another server.

Here is a class diagram showing the relationships between these classes and a client class:

E-Mail Creation
As you can see, working with these e-mail classes adds complexity to a client class. To work with these

classes, a client must know about at least these six classes, the relationship between them and the order in which
it must create instances of those classes. If every client of these classes must take on that additional complexity,

Client

MessageBody

Attachement

MessageHeaderMessage

Security MessageSender

Contains 5 0..*
1

1
1 1

1

1

0..1 1

0..*

1

1

1 1

1

1

1

0..* 0..1

1 1

1

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 14 *

that makes the e-mail classes more difficult to reuse. The Façade pattern provides a way to shield clients of a set
of classes like the e-mail classes from the complexity of using those classes. The way that it does that is to
provide an additional reusable object that hides most of the complexity of working with the other classes from
client classes. Here is a class diagram showing this more reusable organization:

Reusable E-Mail Creation
Client classes now need only be aware of the MessageCreator class. Furthermore, the internal logic of

the MessageCreator class can shield client classes from having to create the parts of an e-mail message in any
particular order.

Forces
• There are many dependencies between the classes that implement an abstraction and their client classes.

The dependencies add noticeable complexity to the client classes.

• You want to simplify the client classes. Simpler client classes will result in fewer bugs. Simpler client
classes also mean that less work is required to reuse the classes that implement the abstraction.

• Interposing a façade class between the classes that implement an abstraction and their client classes
simplifies the client classes by moving the dependencies from the client classes to the façade class.

• It is not necessary for a façade class to act an impenetrable barrier separating the client classes from the
classes that implement an abstraction. It is sufficient, and sometimes better, for a façade class to provide
a default way of accessing the functionality of the classes that implement an abstraction. If some client
classes need to directly access some of the abstraction implementing classes directly, then the façade
class should facilitate that with a method that returns a reference to the appropriate implementation
object.

The point of the façade class is to allow simple clients, not require them.

Solution
Here is a class diagram showing the general structure of the Façade pattern:

MessageCreator

MessageBody

Attachement

MessageHeaderMessage

Security MessageSender

Contains 5 0..*
1

1
1 1

1

1

0..1 1

0..*

1

1

1 1

1

1

1

0..* 0..1

1 1

1

Client

1

1

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 15 *

Façade Pattern
The client object interacts with a façade object that provides necessary functionality by interacting with

the rest of the objects. If there is some additional functionality that is only needed by some clients, then instead of
providing it directly, the façade object may provide a method to access another object that does provide the
functionality.

Consequences
Clients of façade objects do not need to know about any of the classes behind the façade.

Because the Façade pattern reduces or eliminates the coupling between a client class and the classes that
implement an abstraction, it may be possible to change the classes that implement the abstraction without any
impact on the client class.

Client objects that need direct access to abstraction implementing objects may access those objects.

Implementation
A façade class should provide a way for client objects to obtain a direct reference to an instance of some

abstraction implementing classes. However, there may be abstraction implementing classes that clients classes
have no legitimate reason to know about. The façade class should hide those classes from client classes. One way
to do that is to make those classes private inner classes of the façade class.

Sometimes you want to vary the implementation classes that a façade object uses to accommodate
variations on the abstraction being implemented. For example, returning to the e-mail example under the context
heading, you may need a different set of classes to create MIME, MAPI or Notes compliant messages. Different
sets of implementation classes usually require different façade classes. You can hide the use of different façade
classes from client classes by applying the Class Decoupling pattern. Define an interface that all facade classes
for e-mail creation must implement. Then have client classes access the façade class through an interface rather
than directly.

JAVA API Usage
The java.net URL class is an example of the Façade pattern. It provides access to the contents of

URLs. A class can be a client of the URL class and use it to get the contents of a URL without being aware of the
many classes that operate behind the façade provided by the URL class. On the other hand, to send data to a

Client

Facade

Uses6

‘

1

*

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 16 *

URL, the client of a URL object may call its openConnection method that returns the URLConnection object
that the URL object uses.

Example
Here is the code for the MessageCreator class show in the class diagram. It is shown here as a typical

example of a Façade class.

/**

 * Instances of this class are used to create and send e-mail messages.

 * It assumes that an e-mail message consists of a message body and zero or

 * more attachments. The content of the message body must be provided as

 * either a String object or an object that implements an interface called

 * RichText. Any kind of an object can be provided as the content of an

 * attachment.

 */

public class MessageCreator {

 // Constants to indicate the type of message to create

 public final static int MIME = 1;

 public final static int MAPI = 2;

 public final static int NOTES = 3;

 public final static int BANYAN = 4;

 private Hashtable headerFields = new Hashtable();

 private RichText messageBody;

 private Vector attachments = new Vector();

 private boolean signMessage;

 /**

 * Constructor to create a MessageCreator object that will create an

 * e-mail message and send it to the given address. It will attempt to

 * infer the type of message to create from the "to" address.

 * @param to The address that this object will send a message to.

 * @param from The address that the message will say it is from.

 * @param subject The subject of this message.

 */

 public MessageCreator(String to, String from, String subject) {

 this(to, from , subject, inferMessageType(to));

 } // Constructor(String, String, String)

 /**

 * Constructor to create a MessageCreator object that will create an

 * e-mail message and send it to the given address. It will attempt to

 * infer the type of message to create from the "to" address.

 * @param to The address that this object will send a message to.

 * @param from The address that the message will say it is from.

 * @param subject The subject of this message.

 * @param type The type of message to create.

 */

 public MessageCreator(String to, String from, String subject, int type) {

 headerFields.put("to", to);

 headerFields.put("from", from);

 headerFields.put("subject", subject);

 //...

 } // Constructor(String, String, String, int)

 /**

 * Set the contents of the message body.

 * @param messageBody The contents of the message body.

 */

 public void setMessageBody(String messageBody) {

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 17 *

 setMessageBody(new RichTextString(messageBody));

 } // setMessageBody(String)

 /**

 * Set the contents of the contents body.

 * @param messageBody The contents of the message body.

 */

 public void setMessageBody(RichText messageBody) {

 this.messageBody = messageBody;

 } // setMessageBody(RichText)

 /**

 * Add an attachement to the message

 * @param attachment the object to attach to the message

 */

 public void addAttachment(Object attachment) {

 attachments.addElement(attachment);

 } // addAttachment(Object)

 /**

 * set whether this message should be signed. The default is false.

 */

 public void setSignMessage(boolean signFlag) {

 signMessage = signFlag;

 } // setSignMessage(boolean)

 /**

 * Set the value of a header field.

 * @param name The name of the field to set the value of

 * @param value The value to set the field to.

 */

 public void setHeaderField(String name, String value) {

 headerFields.put(name.toLowerCase(), value);

 } // setHeaderField(String, String)

 /**

 * Send the message.

 */

 public void send() {

 MessageBody body = new MessageBody(messageBody);

 for (int i = 0; i < attachments.size(); i++) {

 body.addAttachment(new Attachment(attachments.elementAt(i)));

 } // for

 MessageHeader header = new MessageHeader(headerFields);

 Message msg = new Message(header, body);

 if (signMessage) {

 msg.setSecurity(createSecurity());

 } // if

 createMessageSender(msg);

 } // send()

 /**

 * Infer an message type from a destination e-mail address.

 * @param address an e-mail address.

 */

 private static int inferMessageType(String address) {

 int type = 0;

...

 return type;

 } // inferMessageType(String)

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 18 *

 /**

 * Create a Security object appropriate for signing this message.

 */

 private Security createSecurity() {

 Security s = null;

...

 return s;

 } // createSecurity()

 /**

 * Create a MessageSender object appropriate for the type of

 * message being sent.

 */

 private void createMessageSender(Message msg) {

...

 } // createMessageSender(Message)

...

} // class MessageCreator

The Façade pattern places no demands on the classes that the Façade class uses. Since they contain
nothing that contributes to the Façade pattern their code is not shown here.

Related Patterns
Class Decoupling

The Class Decoupling pattern can be used with the Façade pattern to allow different sets of façade and
implementation classes to be used without client classes having to be aware of the different classes.

Don’t Talk to Strangers
The Façade pattern is a way of satisfying with the “Don’t Talk to Strangers” analysis pattern.

FacadeFacadeFacadeFacade

Flyweight
Synopsis

If instances of a class that contain the same information and can be used interchangeably, the Flyweight
pattern allows a program to avoid the expense of multiple instances that contain the same information by sharing
one instance.

Context
Suppose that you are writing a word processor. Here is a class diagram showing the basic classes you

might use to represent a document:

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 19 *

Document Representation Classes
The above class organization includes the following classes:

• The DocumentElement class is ultimate superclass of all classes used to represent a document. All
subclasses of the DocumentElement class inherit methods to set and fetch their font.

• An instance of the DocChar class is used to represent each character in a document.

• The DocumentContainer class is the superclass of container classes Document, Page, Paragraph
and LineOfText.

You can specify the font of each character by calling the setFont method of the DocChar object that
represents it. If character’s font is unspecified, then it uses its container’s font. If its container’s font has not been
set, then it uses its container’s font.

Given the above structure, one document that is a few pages long might contain tens of Paragraph
objects that contain a few hundred LineOfText objects and thousands or tens of thousands of DocChar objects.
Clearly, using this design will result in a program that uses a lot of memory to store characters.

It is possible to avoid the memory overhead of those many character objects by having only one instance
of each distinct Docchar object. The classes in the diagram above use a DocChar object to represent each
character in a document. To represent, “She saw her father” a LineOfText object uses DocChar objects like
this:

DocumentElement

...
getFont() : Font
setFont(font:Font)
getParent() :DocumentContainer
setParent(parent:DocumentContainer)

DocumentContainer

getChild(index:int) : DocumentElement
addChild(child:DocumentElement)
removeChild(child:DocumentElement)
...

Document Page Paragraph LineOfText

0..*

1

DocChar

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 20 *

Unshared Character Objects
As you can see, the characters ‘h’, ‘e’, ‘ ’,‘a’ and ‘e’ are used multiple times. In an entire document, all of

the characters typically occur many times. It is possible to reorganize the objects so that one DocChar object is
used to represent all occurrences of the same character like this:

Shared Character Objects
In order to make the sharing of DocChar objects work, the DocChar objects cannot have any intrinsic

attributes that are not common to every place the object is referenced. An intrinsic attribute is an attribute whose

:LineOfText

S:DocChar

h:DocChar

blank:DocChar

e:DocChar

s:DocChar

a:DocChar

e:DocChar

r:DocChar

h:DocChar

t:DocChar

a:DocChar

f:DocChar

blank:DocCharw:DocChar

blank:DocChar r:DocChar

h:DocChar e:DocChar

S h e s a w h e r f a t h e r

:LineOfText

S:DocChar

h:DocChar

blank:DocChar

e:DocChar

s:DocChar

r:DocChar

t:DocChar

a:DocChar

f:DocCharw:DocChar

S h e s a w h e r f a t h e r

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 21 *

value is stored with the object. That is distinct from an extrinsic attribute, whose value is stored outside of the
object that it applies to.

The class organization shown in the preceding class diagram captioned “Document Representation
Classes” shows a DocChar class whose instances can have an intrinsic font attribute. Those Character objects
that do not have a font stored intrinsically use the font of their paragraph.

To make the sharing of DocChar objects work, the classes need to be reorganized so that DocChar
objects that have their own font store them extrinsically. The following class diagram includes a
ChracterContext class whose instances store extrinsic attributes for a range of characters.

Document Shared Representation Classes
In this organization, the DocCharFactory class is responsible for providing a DocChar object that

represents a given character. Given the same character to represent, a DocCharFactory object’s getDocChar
method will always return the same DocChar object. Also, the DocumentContainer class defines the font
methods rather than the DocumentElement class. All the concrete classes are subclasses of the
DocumentContainer class, except for the DocChar class. That means that the DocChar class does not have an
intrinsic font attribute. If the user wants to associate a font with a character or range of characters then the
program creates a CharacterContext object like this:

DocumentContainer

getFont() : Font
setFont(font:Font)
getParent() :DocumentContainer
setParent(parent:DocumentContainer)
getChild(index:int) : DocumentElement
addChild(child:DocumentElement)
removeChild(child:DocumentElement)
...

Document Page Paragraph LineOfText

0..*

1

DocumentElement

1..*

1

CharacterContext

DocChar

DocCharFactory

getDocChar(c:char):DocChar

3 Creates and
Manages Reuse of

1

0..*

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 22 *

Font in CharacterContext

Forces
• The primary motivation for using the Façade pattern is as an optimization for an application that uses a

large number of similar objects.

• The program does not rely on the object identity of any of the objects that you want it to share. When a
program uses different objects in different contexts, it is possible to distinguish between the contexts by
the object identities of the objects. When different contexts share objects, then their object identities are
no longer useful for distinguishing between contexts.

• It is possible, through object sharing, to reduce a large number of similar objects to a small number of
shared unique objects.

• It is possible to further reduce the number of objects by changing some of the intrinsic attributes of the
unique shared object to extrinsic attributes.

Solution
The following class diagram shows the general organization of classes for the Flyweight pattern.

:LineOfText

S:DocChar

h:DocChar

blank:DocChar

e:DocChar

s:DocChar

r:DocChar

t:DocChar

a:DocChar

f:DocCharw:DocChar

S

h e s a w

h e r

f a t h e

r

:CharacterContext

font:Font = italic-Serif-12

...

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 23 *

Flyweight Pattern
Here are descriptions of the roles that classes that participate in the Flyweight pattern play:

AbstractFlyweight
The AbtractFlyweight class is the superclass of all other flyweight classes. It defines the operations
common to flyweight classes. Those operations that require access to extrinsic state information obtain it
as parameters.

SharedConcreteFlyweight
Instances of classes in this role are sharable objects. If they contain any intrinsic state, it must be
common to all of the entities that they represent. For example, the sharable DocChar objects from the
example under the Context heading have the character that the represent as their intrinsic state.

UnsharedConcreteFlyweight
Instances of classes that participate in the UnsharedConcreteFlyweight are not sharable. The
Flyweight pattern does not require the sharing of objects. It simply allows the sharing of objects. If there
are unsharable objects that are instances of the AbstractFlyweight class, then they will typically be
instances of different subclasses of the AbstractFlyweight class than objects that are sharable.

FlyweightFactory
Instances of FlyweightFactory classes provide instances of the AbstractFlyweight class to client
objects. If a client object asks a FlyweightFactory object to provide an instance of an
UnsharedConcreteFlyweight class, then it simply creates the instance. However, if a client object
asks a FlyweightFactory object to provide an instance of a SharedConcreteFlyweight class, it
first checks to see if it previously created a similar object. If it did previously create a similar object, then
it provides that object to the client object. Otherwise, it creates a new object and provides that to the
client.

Client
Instances of client classes are objects that use flyweight objects.

If there is only one class in the SharedConcreteFlyweight role, then it may be unnecessary to have
any classes in the role of AbstractFlyweight or UnsharedConcreteFlyweight.

Consequences
Using shared flyweight objects can drastically reduce the number of objects in memory. There is a price

to pay for the reduced memory consumption:

• The Flyweight pattern makes a program more complex. The major sources of additional complexity are
providing flyweight objects with their extrinsic state and managing the reuse of flyweight objects.

FlyweightFactory

getFlywieght(attribute:object)

AbstractFlyweight

operation(extrinsicState:object)

SharedConcreteFlywieght

operation(extrinsicState:object)

UnsharedConcreteFlywieght

operation(extrinsicState:object)

Creates and Manages Reuse of 4

Client

6Uses
Uses6 Uses6

Creates 4

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 24 *

• The Flyweight pattern can increase the run time of a program because it takes more effort for an object to
access extrinsic state than intrinsic state.

Usually it is possible to distinguish between entities by the objects that represent them. The flyweight
pattern makes that impossible, because it results in multiple entities being represented by the same object.

Shared flyweight objects cannot contain parent pointers.

Because of the complexity that the Flyweight pattern adds and the constraints it places on the
organization of classes, the Flyweight pattern should be considered an optimization to be used after the rest of a
design is worked out.

Implementation
There is a tradeoff to make between the number of attributes you make extrinsic and the number of

flyweight objects needed at run time. The more attributes you make extrinsic, the fewer flyweight objects will be
needed. The more attributes you make intrinsic, the less time it will take objects to access their attributes.

For example, in the document representation example, if the user makes a range of characters italic, the
program creates a separate CharacterContext object to contain the extrinsic font attribute for the DocChar
objects that represent those characters. An alternative would be to allow the font attribute to be intrinsic to the to
DocChar objects. If the font attribute is intrinsic then DocChar objects will spend less time accessing their font
attribute. Letting the font attribute be intrinsic also means that the program will need a DcoChar object for each
combination of character and font that it has to represent.

JAVA API Usage
Java uses the flyweight pattern to manage the String objects used to represent string literals. If there is

more than one string literal in a program that consists of the same sequence of characters, Java virtual machine
uses the same String object to represent all of those string literals.

The String class’ intern method is responsible for managing the String objects used to represent
string literals.

Example
Below is some of the code that implements the class diagram captioned “Document Shared

Representation Classes”. Some of the classes don’t contain any code that is of interest with respect to the
Flyweight pattern, so code for those classes not presented. For example, there is no code of interest in the
DocumentElement class. On the other hand, the DocumentContainer class defines some methods that all of
the container classes that are used to represent a document inherit:

/**

 * Instances of this class are composite objects that contain

 * DocumentElement objects.

 */

abstract class DocumentContainer extends DocumentElement {

 // Collection of this object’s children

 private Vector children = new Vector();

 // This is the font associated with this object. If the font

 // variable is null, then this object’s font will be inherited

 // through the container hierarchy from an enclosing object.

 private Font font;

 DocumentContainer parent; // this object’s container

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 25 *

 /**

 * Return the child object of this object that is at the given

 * position.

 * @param index The index of the child.

 */

 public DocumentElement getChild(int index) {

 return (DocumentElement)children.elementAt(index);

 } // getChild(int)

 /**

 * Make the given DocumentElement a child of this object.

 */

 public synchronized void addChild(DocumentElement child) {

 synchronized (child) {

 children.addElement(child);

 if (child instanceof DocumentContainer)

 ((DocumentContainer)child).parent = this;

 } // synchronized

 } // addChild(DocumentElement)

 /**

 * Make the given DocumentElement NOT a child of this object.

 */

 public synchronized void removeChild(DocumentElement child) {

 synchronized (child) {

 if (child instanceof DocumentContainer

 && this == ((DocumentContainer)child).parent)

 ((DocumentContainer)child).parent = null;

 children.removeElement(child);

 } // synchronized

 } // removeChild(DocumentElement)

 /**

 * Return this object’s parent or null if it has no parent.

 */

 public DocumentContainer getParent() {

 return parent;

 } // getParent()

 /**

 * Return the Font associatiated with this object. If there is no

 * Font associated with this object, then return the Font associated

 * with this object’s parent. If there is no Font associated

 * with this object’s parent the return null.

 */

 public Font getFont() {

 if (font != null)

 return font;

 else if (parent != null)

 return parent.getFont();

 else

 return null;

 } // getFont()

 /**

 * Associate a Font with this object.

 * @param font The font to associate with this object

 */

 public void setFont(Font font) {

 this.font = font;

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 26 *

 } // setFont(Font)

...

} // class DocumentContainer

The methods shown for the DocumentContainer class are used to manage the state of all of the
document container classes including the CharacterContext class. Using those inherited methods, the
CharacterContext class is able to manage the extrinsic state of DocChar objects even though it doesn’t
declare any of its own methods for that purpose. Here is the code for the DocChar class:

/**

 * Instances of this class represent a character in a document.

 */

class DocChar extends DocumentElement {

 private char character;

 /**

 * Constructor

 * @param c the character that this object represents.

 */

 DocChar (char c) {

 character = c;

 } // Constructor(char)

...

 /**

 * Return the character that this object represents

 */

 public char getChar() {

 return character;

 } // getChar()

 /**

 * This method returns a unique value that determines where it is stored

 * internally in a hash table.

 */

 public int hashCode() {

 return getChar();

 } // hashCode()

 /**

 * Redefine equals so that two DocChar objects are considered

 * equal if they represent the same character.

 */

 public boolean equals(Object o) {

 // Call getChar rather than access character directly so that

 // this method will any alternate way a subclass has of

 // providing the character it represents.

 return (o instanceof DocChar

 && ((DocChar)o).getChar() == getChar());

 } // equals(Object)

} // class DocChar

Lastly, here is the code for the DocCharFactory class, which is responsible for the sharing of DocChar
objects:

class DocCharFactory {

 private MutableDocChar myChar = new MutableDocChar();

 /**

 * This is being written before the release of Java 1.2. The

 * preliminary API documentation for Java 1.2, which is available

 * at this time but subject to change, documents a class called

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 27 *

 * javal.util.HashSet that will be more appropriate to use in this

 * class than java.util.Hashtable.

 */

 private Hashtable docCharPool = new Hashtable();

 /**

 * Return a DocChar object that represents the given character.

 * @param c The character to be represented.

 */

 DocChar getDocChar(char c) {

 myChar.setChar(c);

 DocChar thisChar = (DocChar)docCharPool.get(myChar);

 if (thisChar == null) {

 thisChar = new DocChar(c);

 docCharPool.put(thisChar, thisChar);

 } // if

 return thisChar;

 } // getDocChar(char)

 /**

 * To allow lookups of DocChar objects in a Hashtable or simillar

 * collection, we will need a DocChar object that represents the

 * same character as the DocChar object we want to find in the

 * collection. Creating a DocChar object to perform each lookup

 * would largely defeat the purpose of putting the DocChar objects

 * into the collection. That purpose is to avoid creating a

 * DocChar object for each character to be represented and instead

 * use one DocChar object to represent every occurence of a

 * character.

 *<p>

 * An alternative to creatning a DocChar object for each lookup is

 * to reuse the same DocChar object, changing the character that

 * it represents for each lookup. The problem with wanting to

 * change the character that a DocChar object represents is that

 * DocChar objects are immutable. There is no way to change the

 * character that a DocChar object represents.

 *<p>

 * A way to get around that problem it by using this private

 * subclass of DocChar that does provide a way to change the

 * character it represents.

 */

 private class MutableDocChar extends DocChar {

 private char character;

 /**

 * Constructor

 */

 MutableDocChar() {

 super(’\u0000’); // It doesn’t matter what we pass to super.

 } // Constructor(char)

 /**

 * Return the character that this object represents.

 */

 public char getChar() {

 return character;

 } // getChar()

 /**

 * Set the character that this object represents.

 * @param c The character that this object will represent.

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 28 *

 */

 public void setChar(char c) {

 character = c;

 } // setChar(char)

 } // class MutableDocChar

} // class DocCharFactory

Related Patterns
Recursive Composition

The Flyweight pattern is often combined with the Recursive Composition pattern to represent the leaf
nodes of a hierarchical structure with shared objects.

Factory Method
The Flyweight pattern uses the factory method pattern to create new flyweight objects.

Immutable Object
Shared flyweight objects are often immutable.

Dynamic Linkage

Synopsis
Allow a program, upon request, to load and use arbitrary classes that implement a known interface.

Context
Suppose that you are writing software for a new kind of smart food processor that can be fed raw

ingredients and by slicing, dicing, mixing, boiling, baking, frying and stirring is able to produce cooked, ready to
eat food. On a mechanical level, the new food processor is a very sophisticated piece of equipment. However, a
crucial part of the food processor is a selection of programs to prepare different kinds of foods. A program that
can turn flour, water, yeast and other ingredients into different kinds of bread is very different from a program
that can stir-fry shrimp to exactly the right texture. The food processor will be required to run a great variety of
programs that allow it to produce a great variety of foods. Because of the large variety of programs that will be
required, it is not possible to build all of the necessary programs into the food processor. Instead, the food
processor will load its programs from a CD-ROM or similar media.

In order for these dynamically loaded programs and the food processor’s operating environment to work
with each other, they will need a way to call each other’s methods. The following class diagram shows an
arrangement of classes and interfaces that allows that:

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 29 *

Food Processor Program Class Diagram
The organization shown in the above class diagram allows an object in the food processor environment to

call to methods of the top level object in a food processor program by calling the methods of its superclass. It also
allows that top level object to call the methods of the food processor environment object through the
FoodProcessorEnvironementIF interface that it implements.

Here is a collaboration diagram that showing these classes work together:

Food Processor Collaboration
The above collaboration diagram shows the initial steps that occur when the food processor’s operating

environment is asked to run a program:

1.1 The environment calls the Class class’ forName method, passing it the name of the program to run.
The forName method finds the Class object having the same name as the program. If necessary, it
loads the class from the CD-ROM. The forName method concludes by returning the Class object
that encapsulates the top-level class of the program.

1.2 The environment creates an instance of the class that is the top level class of the program. The
diagram names that instance program.

1.3: setEnvironment(env)
1.4: name := getName()
1.6: start()

env:FoodProcessorEnvironment1: run(programName:String)

program:ConcreteFoodProcessorProgram

Class

programClass:Class

1.1: programClass := forName(programName:String)

1.2: program := newInstance()

:Display
1.5: displayProgramName(name)

1.6.1: Weigh()
1.6.2: mix()
...

3uses

AbstractFoodProcessorProgram

setEnvironment(environment:FoodProcessorEnvironementIF)
getName()
start()
...

«interface»
FoodProcessorEnvironmentIF

slice()
mix()
weigh()
...

FoodProcessorEnvironement ConcreteFoodProcessorProgram

1 1

uses 4
1

1

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 30 *

1.3 The environment passes a reference to itself to the program object’s setEnvironment method.
Passing that reference to the program allows the program to call the environment’s methods.

1.4 The environment gets the program’s name from the program.

1.5 The environment displays the program’s name.

1.6 The environment starts the program running.

1.6.1 The program weights its ingredients.

1.6.2 The program mixes its ingredients

The program will continue as it executes additional steps that are beyond the scope of the drawing.

Forces
• A program must be able to load and use arbitrary classes that it has no prior knowledge of.

• A loaded class must be able to call back to the program that loaded it.

Solution
Here is a class diagram showing the interfaces and classes that participate in the Dynamic Linkage

pattern:

Dynamic Linkage Pattern
Here are descriptions of the roles these classes play in the Dynamic Linkage pattern.

EnvironmentIF
An interface in this role declares the methods provided by an environment object that a loaded class can
call.

Environment
A class in this role is part of the environment that loads a ConcreteLoadableClass class. It
implements the EnvironmentIF interface. A reference to an instance of this class is passed to instances
of the ConcreteLoadableClass class, so that they can call the methods of the Environment object
that are declared by the EnvironmentIF interface.

AbstractLoadableClass

setEnvironment(:EnvironementIF)
start()
...

«interface»
EnvironmentIF

operation1()
operation2()
...

Environement ConcreteLoadableClass

1

1

3uses

uses 4

1

1

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 31 *

AbstractLoadableClass
Any class that is the top level class of a food processor program must be a subclass of
AbstractLoadableClass. A class in this role is expected to declare a number of other, usually
abstract, methods in addition to the two that are shown. Here is a description of those methods:

• There should be a method with a name like setEnvironment, that allows instances of subclasses of
AbstractLoadableClass to be passed a reference to an instance of a class that implements the
EnvironementIF interface. The purpose of this method is to allow AbstractLoadableClass
objects to call the methods of an Environment object.

• The environment calls other method, typically named start, to tell an instance of a loaded class to
start doing whatever it is supposed to be doing.

ConcreteLoadableClass
Classes in this role are classes are subclasses of AbstractLoadableClass that can be dynamically
loaded.

Consequences
• Subclasses of the AbstractLoadableClass class can be dynamically loaded.

• The operating environment and the loaded classes do not need any specific foreknowledge of each other.

• Dynamic linkage increases the total amount of time it takes for a program to load all of the classes that it
uses. However, it does have the effect of spreading out, over time, the overhead of loading. That can
make an interactive program seem more responsive. The Virtual Proxy pattern can be used for that
purpose.

Implementation
The Dynamic Linkage pattern, as presented, requires that the environment knows about the

AbstractLoadableClass class and that the loaded class knows about the EnvorinmentIF interface. In cases
where less structure than that is needed, other mechanisms for interoperation are possible. For example,
JavaBeans uses a combination of reflection classes and naming conventions to allow other classes to infer how to
interact with a bean.

JAVA API Usage
Web browsers use the Dynamic Linkage pattern to run applets. Here is a class diagram showing the

relationship between applet and browser:

Applets and Browsers

«interface»
AppletStub

BrowserAppletEnvironment

Applet

MyApplet

3uses

1

1

uses 4

1

1

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 32 *

The browser environment accesses a subclass of Applet that it loads through the Applet class. Loaded
applet subclasses access the browser environment through the AppletStub interface.

Example
The example is the code that implements the food processor design shown under the “Context” heading.

First, here is the interface for the food processor environment:

public interface FoodProcessorEnvironmentIF {

 /**

 * Make a slice of food of the given width.

 * @param width The width of the slice to make.

 */

 public void slice(int width) ;

 /**

 * Mix food at the given speed.

 * @param speed The speed to mix at.

 */

 public void mix(int speed) ;

 /**

 * Weight food.

 * @return the wieght in ounces.

 */

 public double weight() ;

...

} // interface FoodProcessorEnvironmentIF

Here is the abstract class that is the superclass for all top level program classes:

public abstract class AbstractFoodProcessorProgram {

 private FoodProcessorEnvironmentIF environment;

 /**

 * The food processor environment passes a reference to itself to

 * this method. That allows instances of subcalsses of this class

 * to call the methods of the food processor environement object

 * that implements the FoodProcessorEnvironmentIF interface.

 */

 public void setEnvironment(FoodProcessorEnvironmentIF environment) {

 this.environment = environment;

 } // setEnvironment(FoodProcessorEnvironmentIF)

 /**

 * Allow subclasses to fetch the reference to the environement.

 */

 protected FoodProcessorEnvironmentIF getEnvironment() {

 return environment;

 } // getEnvironment()

 /**

 * Return the name of this food processing program object.

 */

 public abstract String getName() ;

 /**

 * A call to this method tells a food processing program to start

 * doing whatever it is supposed to be doing.

 */

 public abstract void start() ;

...

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 33 *

} // class AbstractFoodProcessorProgram

Here is the class that is responsible fo the food processor environment being able to run programs:

public class FoodProcessorEnvironment implements FoodProcessorEnvironmentIF {

 /**

 * Make a slice of food of the given width.

 * @param width The width of the slice to make.

 */

 public void slice(int width) {

...

 } // slice(int)

 /**

 * Mix food at the given speed.

 * @param speed The speed to mix at.

 */

 public void mix(int speed) {

...

 } // mix(int)

 /**

 * Weight food.

 * @return the wieght in ounces.

 */

 public double weigh() {

 double weight = 0.0;

...

 return weight;

 } // weight()

...

 /**

 * Run the named program

 * @param programName the name of the program to run.

 */

 void run(String programName) {

 Class programClass;

 try {

 programClass = Class.forName(programName);

 } catch (ClassNotFoundException e) {

 // Not found

...

 return;

 } // try

 AbstractFoodProcessorProgram program;

 try {

 program = (AbstractFoodProcessorProgram)programClass.newInstance();

 } catch (Exception e) {

 // Unable to run

...

 return;

 } // try

 program.setEnvironment(this);

 display(program.getName());

 program.start();

 } // run(String)

...

} // class FoodProcessorEnvironment

Finally, here is sample code the a top level program class:

public class ConcreteFoodProcessorProgram

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 34 *

 extends AbstractFoodProcessorProgram {

 /**

 * Return the name of this food processing program object.

 */

 public String getName() { return "Chocolate Milk"; }

 /**

 * A call to this method tells a food processing program to start

 * doing whatever it is supposed to be doing.

 */

 public void start() {

 double weight = getEnvironment().weigh();

 if (weight > 120.0 && weight < 160.0)

 getEnvironment().mix(4);

...

 } // start()

...

} // class ConcreteFoodProcessorProgram

Related Patterns
Virtual Proxy

The Virtual Proxy pattern is often used with the Dynamic Linkage pattern.

Virtual Proxy

Synopsis
If an object is expensive to instantiate and may not be needed, it may be advantageous to postpone its

instantiation until it is clear that the object is needed. The Virtual Proxy pattern hides the fact that an object may
not yet exist from its clients, by having them access the object indirectly through a proxy object that implements
the same interface as the object that may not exist.

Context
Suppose that you are part of a team that has written a large Java applet for a company that operates a

chain of home improvement warehouses. The applet allows people to buy everything that the warehouses sell
through a web page. In addition to offering a catalog, it includes a variety of assistants to allow customers to
decide just what they need. These aides include

• A kitchen cabinet assistant that allows a customer to design a set of kitchen cabinets and then
automatically order all of the pieces necessary to assemble the cabinets.

• An assistant to determine how much lumber a customer needs to build a wood deck.

• An assistant to determine the quantity of broadloom carpet needed for a particular floor plan and the best
way to cut it.

There are more of these assistant, but they are not the point of this discussion. The point is that the applet
is very large. Due to its size, it takes an unacceptably long amount of time for a browser to download the applet
over a modem connection.

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 35 *

One way to reduce the time needed to download the applet is not to download any of the assistants until
they are needed. The Virtual Proxy pattern provides a way to postpone downloading part of an applet in a way
that is transparent to the rest of the applet. The idea is that instead of having the rest of the applet directly access
the classes that comprise an assistant, they will access those classes indirectly through a proxy class. The proxy
classes are specially coded so that they don’t contain any static reference to the class that they are a proxy for.
That means that when the proxy classes are loaded, the Java virtual machine does not see any reference to the
class that those classes are a proxy for. If the rest of the applet refers only to the proxies and not to the classes
that implement assistants, Java will not automatically load the assistants.

When a method of a proxy is called, it first ensures that the classes that implement the assistant are
loaded and instantiated. It then calls the corresponding method through an interface. Here is a class diagram
showing that organization:

Cabinet Assistant Proxy
The above diagram shows the main portion of the applet referring to a CabinetAssistantProxy class

that implements the CatinetAssistantIF interface. The main portion of the applet contains no references to
the classes that implement the cabinet assistant. When it is needed the CabinetAssistantProxy class ensures
that the classes that implement the cabinet assistant are loaded and instantiated. The code that accomplishes that
is below under the “Example” heading.

Forces
• A class is very time consuming to instantiate.

• It may not be necessary to instantiate the class.

• If there are a number of classes whose instances will not be needed until an indefinite amount of time has
passed, instantiating them all at once may introduce a noticeable delay in the program’s response.
Postponing their instantiation until they are needed may spread out the time that the program spends
instantiating them and appear to make the program more responsive.

• Managing the delayed instantiation of classes should not be a burden placed the class’ clients. Therefore,
the delayed instantiation of a class should be transparent to its clients.

CabinetAssistantProxy

operation1()
operation2()
...

«interface»
CabinetAssistantIF

operation1()
operation2()
...

CabinetAssistant

operation1()
operation2()
...

Uses 4

Creates 4

1

1 1

1

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 36 *

Solution
Here is a class diagram showing the organization of classes that participate in the Virtual Proxy pattern:

Virtual Proxy Pattern
Here is an explanation of the roles played by the interface and classes of the Virtual Proxy pattern:

Service
A Service class provides the top level logic for a service that it provides. When you create an instance
of it, it creates instances of the rest of the classes that it needs. Those classes are indicated in the diagram
as ServiceHelper1, ServiceHelper2…

Client
The Client class is any class that uses the service provided by the Serivce class. Client classes
never directly use a Service class. Instead, they use a ServiceProxy class that provides the
functionality of the Service class. Not directly using a Service class keeps client classes insensitive to
whether or not the instance of the Service class that Client objects indirectly use already exists.

ServiceProxy
The purpose of the ServiceProxy class is to delay creating instances of the Service class until they
are actually needed.

A ServiceProxy class provides indirection between Client classes and a Service class. The
indirection hides from Client objects the fact that when a ServiceProxy object is created, the
corresponding Service object does not exist and the Service class may not even have been loaded.

A ServiceProxy object is responsible for creating the corresponding Service object. A
ServiceProxy object creates the corresponding Service object the first time that it is asked to
perform an operation that required the existence of the Service object.

A ServiceProxy class is specially coded to obtain access to the Service class through a dynamic
reference. Usually, classes reference other classes through static references. A static reference simply
consists of the name of a class appearing in an appropriate place in some source code. When a compiler
sees that kind of reference, it generates output that causes the other class to automatically be loaded
along with the class that contains the reference.

The Virtual Proxy pattern prevents the loading of the Service class and related classes along with the
rest of the program by ensuring that the rest of the program does not contain any static references to the
Service class. Instead, the rest of the program refers to the Service class through the ServiceProxy
class and the ServiceProxy class refers to the Servic class through a dynamic reference.

A dynamic reference consists of a method call that passes a string, containing the name of a class, to a
method that loads the class if it isn’t loaded and returns a reference to the class. Because the name of the

ServiceHelper1

ServiceHelper2

Uses 4

Creates 4

Client

Uses 4

1..*
1

1

1

1

1

1

1

*

*

ServiceProxy

operation1()
operation2()
...

Service

operation1()
operation2()
...

«interface»
ServiceIF

operation1()
operation2()
...

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 37 *

class only appears inside of a string, compiler are not aware that the class will be referenced and so they
do not generate any output that causes that class to be loaded.

ServiceIF
A ServiceProxy class creates an instance of the Service class through method calls that do not
require any static references to the Servic class. A ServiceProxy class generally also needs to call
methods of the Servic class without having any static references to the Service class. It is able to do
that by taking advantage of the fact that the Service class implements the ServiceIF interface.

The ServiceIF interface is an interface that declares all of the methods that the Service class
implements that are needed by the ServiceProxy class. Because of that, a ServiceProxy object can
treat the reference to the Service object that it creates as a reference to a ServiceIF object. That
means that the Service class can use static references to the ServiceIF interface to call methods of
Service objects. No static references to the Service class are required.

Consequences
• Classes accessed by the rest of a program exclusively through a virtual proxy are not loaded until they are

needed.

• Instances of classes accessed by the rest of a program exclusively through a virtual proxy are not created
until they are needed.

• All classes other than the proxy class must access the services of the Service class indirectly through
the proxy. That is critical. If just one class accesses the Service class directly, then the Service class
will be loaded before it is needed. That is a quiet sort of bug; it generally affects performance but not
function.

• Classes that use the proxy do not need to be aware of whether or not the Service class is loaded, an
instance of it exists or that the class even exists.

Implementation
In many cases, the class accessed through a virtual proxy uses other classes that the rest of the program

does not use. Because of that relationship, those classes are not loaded until the class accessed by the virtual
proxy is loaded. If it is important that those classes are not loaded until the class accessed by the virtual proxy is
loaded, then a problem may occur when the program is in the maintenance phase of its life cycle. A maintenance
programmer may add a direct reference to one of those classes without realizing the performance implications.
You can lessen the likelihood of that happening by making the relationship explicit. You can make the
relationship explicit by putting the putting the classes in question in a package with only the class used by the
proxy being visible outside the package:

Relationship Made Explicit by the Use of a Package

+Service

-ServiceHelper1

-ServiceHelper2

«interface»
+ServiceIF

ServiceProxy

Uses 4

Creates 4

Client

Uses 4

1..*
1

1

1 1

1

1

1

*

*

ServicePackage

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 38 *

Example
To conclude the example begun under the “Context” heading, below is some of the code that implements

the cabinet assistant and it proxy. First, the relevant code for the CabinetAssistant class:

/**

 * This is a skeletal example of a service class that is used by a

 * virtual proxy. The notworthy aspect of this class is that it

 * implements an interface that is written to declare the methods of this

 * class rather than the other way around.

 */

public class CabinetAssistant implements CabinetAssistantIF {

 /**

 * constructor

 */

 public CabinetAssistant(String s) {

...

 } // Constructor(String)

...

 public void operation1() {

...

 } // operation1()

 public void operation2() {

...

 } // operation2()

} // class CabinetAssistant

The CabinetAssistantIF interface simply declares the methods defined by the CabinetAssistant
class:

public interface CabinetAssistantIF {

 public void operation1();

 public void operation2();

...

} // interface CabinetAssistantIF

Finally, here is the code for the CabinetAssistantProxy class where all of the interesting things
happen:

public class CabinetAssistantProxy {

 private CabinetAssistantIF assistant = null;

 private String myParam; // for assistant object’s constructor

 /**

 * Constructor

 */

 public CabinetAssistantProxy(String s) {

 myParam = s;

 } // constructor(String)

 /**

 * Get the the CabinetAssistant object that is used to implement

 * operations. This method creates it if it did not exist.

 */

 private CabinetAssistantIF getCabinetAssistant() {

 if (assistant == null) {

 try {

 // Get class object that represents the Assistant class.

 Class clazz = Class.forName("CabinetAssistant");

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 39 *

 // Get a constructor object to access the

 // CabinetAssistant class’ constructor that takes a

 // single string argument.

 Constructor constructor;

 // Get the constructor object to create the

 // CabinetAssistant object.

 Class[] formalArgs = new Class [] { String.class };

 constructor = clazz.getConstructor(formalArgs);

 // User the constructor object.

 Object[] actuals = new Object[] { myParam };

 assistant

 = (CabinetAssistantIF)constructor.newInstance(actuals);

 } catch (Exception e) {

 } // try

 if (assistant == null) {

 // deal with failure to create CabinetAssistant object

 throw new RuntimeException();

 } // if

 } // if

 return assistant;

 } // getCabinetAssistant()

public void operation1() {

 getCabinetAssistant().operation1();

 } // operation1()

 public void operation2() {

 getCabinetAssistant().operation2();

 } // operation2()

...

} // class CabinetAssistantProxy

Related Patterns
Façade

The Façade pattern can be used with the Virtual Proxy pattern to minimize the number of proxy classes
that are needed.

Proxy
The Virtual Proxy pattern is a specialized version of the Proxy pattern.

Wrapper
The Wrapper pattern is also known as the Decorator pattern.

Synopsis
The Wrapper pattern extends the functionality of an object in a way that is transparent to its clients, by

using an instance of a subclass of the original class that delegates operations to the original object.

The Wrapper pattern is also known as the decorator pattern because when it is applied to user interfaces
it is often used to add additional user interface elements or decorations to an object.

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 40 *

Context
Suppose that you have become responsible for maintaining software that runs the portion of a security

system responsible for controlling physical access to a building. Its basic architecture of that is that a card reader
or other data entry device captures some identifying information and passes that information to an object the
controls a door. If the object that controls the door is satisfied with the information, it unlocks the door. Here is a
collaboration diagram showing that:

Basic Physical Access Control
Now suppose that you need to integrate this access control mechanism with a surveillance system. A

surveillance system typically has many more cameras connected to it than it has TV monitors. Most of the TV
monitors will cycle through the images of different cameras, showing the picture from each camera for a few
seconds and then moving on to the next camera for which that monitor is responsible. There are some rules about
how the surveillance system is supposed to be set up to ensure its effectiveness. For this discussion, the relevant
rules are:

• At least one camera covers each doorway connected to the access control system.

• Each monitor is responsible for not more than one camera that covers an access-controlled doorway.

The specific integration requirement is that when an object that controls a door receives a request for that
door to open, the monitors responsible for the cameras pointed at the doorway display that doorway. Your first
thought about satisfying this requirement is that you will enhance a class or write some subclasses. Then you
discover the relationships shown in this class diagram:

Security System Classes
There are three different kinds of doors installed and two different kinds of surveillance monitors in use.

You could resolve the situation by writing two subclasses of each of the door controller classes, but you would
rather not have to write six classes. Instead, you use the Wrapper pattern that solves the problem by delegation
rather than inheritance.

What you do is write two new classes called DoorControllerA and DoorControllerB. These classes
both implement the DoorControllerIF interface:

:DataEntry theDoor:DoorControler21: requestOpen(data:String)

«interface»
SurveillanceMonitorIF

«interface»
DoorControllerIF

SurveillanceMonitorA SurveillanceMonitorB DoorController2DoorController1 DoorController3

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 41 *

Door Controller Classes
The new class, AbstractDoorControllerWrapper, is an abstract class that implements all of the

methods of the DoorController interface with implementations that simply call the corresponding method of
another object that implements the DoorController interface. The DoorControllerA and
DoorControllerB, are concrete wrapper classes. They extend the behavior of the requestOpen
implementation that they inherit to also ask a surveillance monitor to display its view of that doorway. Here is a
collaboration diagram showing this:

Door Surveillance Collaboration
This approach allows doorways viewed by multiple cameras to be handled by simply putting multiple

wrappers in front of the DoorControllerIF object.

Forces
• There is a need to extend the functionality of a class but there are reasons not to extend it through

inheritance.

• There is the need to dynamically extend the functionality of an object and possibly also to withdraw the
extended functionality.

Solution
Here is a class diagram showing the general structure of the Wrapper pattern:

:DataEntry

theDoor:DoorControler23: requestOpen(data:String)

:DoorControlerA1: requestOpen(data:String)

:SurveillanceMonitorA2: viewNow(theDoor)

«interface»
DoorControllerIF

DoorController2DoorController1 DoorController3

DoorControllerWrapperBDoorControllerWrapperA

AbstractDoorControllerWrapper

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 42 *

Wrapper Pattern
AbstractService

An abstract class in this roll is the common superclass of all of the service objects that may potentially be
extended through the Wrapper pattern. In some cases the service objects to be extended do not have a
common superclass but do implement a common interface. In that case, the common interface takes the
place of the abstract class.

ConcreteService
The Wrapper pattern extends classes in this role by using objects that delegate to instances of a
ConcreteService class.

AbstractWrapper
The abstract class in this roll is the common super class for wrapper classes. This class takes
responsibility for maintaining a collection of references to the service objects that wrapper objects
delegate to.

This class also normally overrides all of the methods it inherits from the AbstractService class so
that they simply call the like named method of the service object that the wrapper object delegates to.
That default implementation provides exactly the behavior needed for methods whose behavior is not
being extended.

ConcreteWrapperA, ConcreteWrapperB…
These concrete wrapper classes extend the behavior of the methods they inherit from the
AbstractWrapper class in whatever way is needed.

Consequences
The Wrapper pattern provides more flexibility than inheritance. It allows you to dynamically alter the

behavior of individual objects by adding and removing wrappers. Inheritance, on the other hand, determines the
nature of all instances of a class statically.

By using different combinations of a few different kinds of wrapper objects, you can create many
different combinations of behavior. To create that many different kinds of behavior with inheritance requires that
you define that many different classes.

AbstractService

Operation1()
Operation2()
...

ConcreteService

Operation()
Operation2()
...

AbstractWrapper

Operation()
Operation2()
...

ConcreteWrapperA

Operation()
Operation2()
...

ConcreteWrapperB

Operation()
Operation2()
...

5Extends

1..*

1

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 43 *

The flexibility of wrapper objects makes them more error prone than inheritance. For example, it is
possible to combine wrapper objects in ways that do not work, or to create circular references between wrapper
objects.

Using the Wrapper pattern generally results in fewer classes than using inheritance. Having fewer classes
simplifies the design and implementation of programs. On the other hand, using the Wrapper pattern usually
results in more objects. The larger number of objects can make debugging more difficult, especially since the
objects tend to look mostly alike.

One last difficulty associated with using the Wrapper pattern is that it make using object identity to
identify service objects difficult, since it hide service objects behind wrapper objects.

Implementation
Most implementations of the Wrapper pattern are simpler than the general case. Here are some of the

common simplifications:

• If there is only one ConcreteService class and no AbstractService class then the
AbstractWrapper class is usually a subclass of the ConcreteService class.

• Often the Wrapper pattern is used to delegate to a single object. In that case, there is no need for the
AbstractWrapper class to maintain a collection of references. Just keeping a simple reference is
sufficient.

• If there will only be one concrete wrapper class then there is no need for a separate
AbstractWrapper class. You can merge the AbstractWrapper class’ responsibilities with the
concrete wrapper class. It may also be reasonable to dispense with the AbstractWrapper class if
there will be two concrete wrapper classes, but no more than that.

Example
Here is some code that implements some of the door controller classes shown in diagrams under the

“Context” heading. Here is the DoorControllerIF interface:

interface DoorControllerIF {

 /**

 * Ask the door to open if the given key is acceptable.

 * @param key A data string presented as a key to open the door.

 */

 public void requestOpen(String key);

 /**

 * close the door

 */

 public void close();

...

} // interface DoorControllerIF

Here is the AbstractDoorControllerWrapper class that provides default implementations to its
subclasses for the methods declared by the DoorControllerIF interface:

abstract class AbstractDoorControllerWrapper implements DoorControllerIF {

 private DoorControllerIF wrappee;

 /**

 * Constructor

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 44 *

 * @param wrappee The DoorController object that this object will

 * delegate to.

 */

 AbstractDoorControllerWrapper(DoorControllerIF wrappee) {

 this.wrappee = wrappee;

 } // constructor(wrappee)

 /**

 * Ask the door to open if the given key is acceptable.

 * @param key A data string presented as a key to open the door.

 */

 public void requestOpen(String key) {

 wrappee.requestOpen(key);

 } // requestOpen(String)

 /**

 * close the door

 */

 public void close() {

 wrappee.close();

 } // close()

...

} // class AbstractDoorControllerWrapper

Finally, here is one the subclasses of the AbstractDoorControllerWrapper class that extends the
default behavior by asking a monitor to display the image from an named camera:

class DoorControllerWrapperA extends AbstractDoorControllerWrapper {

 private String camera; // name of camera that views this doorway

 private SurveillanceMonitorIF monitor; // monitor for camera.

 /**

 * Constructor

 * @param wrappee The DoorController object that this object will

 * delegate to.

 * @param camera The name of a camera that views this door

 * @param monitor The monitor to ask to view camera’s image.

 */

 DoorControllerWrapperA(DoorControllerIF wrappee,

 String camera,

 SurveillanceMonitorIF monitor) {

 super(wrappee);

 this.camera = camera;

 this.monitor = monitor;

 } // constructor(wrappee)

 /**

 * Ask the door to open if the given key is acceptable.

 * @param key A data string presented as a key to open the door.

 */

 public void requestOpen(String key) {

 monitor.viewNow(camera);

 super.requestOpen(key);

 } // requestOpen(String)

} // class DoorControllerWrapperA

Related Patterns
Delegation

The Wrapper pattern is a structured way of applying the Delegation pattern.

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 45 *

Filter
The Filter pattern is a specialized version of the Wrapper pattern that focuses on manipulating a data
stream.

Strategy
The Wrapper pattern is useful for arranging for things to happen before or after the methods of another
object are called. If you want to arrange for different things to happen in the middle of calls to a method,
consider using the Strategy pattern.

Template Method
The Template Method pattern is another alternative to the Wrapper pattern that allows variable behavior
in the middle of a method call instead or before or after it.

Cache Management
Synopsis

The Cache Management pattern involves keeping a local copy of objects that are fetched from outside of
a program, such as a remote server or database. There reason for doing that is to save the relatively high expense
of fetching such objects.

Context
Suppose that you are writing a program that allows people to fetch information about products in a

catalog. Fetching all of the information for a product can take a few seconds, because it may have to be gathered
from multiple sources. Keeping the information for a product in the program’s memory can speed things up the
next time that information for that product is requested, since it would not be necessary to spend the time to
gather the information.

The technique of keeping information that takes a relatively long time to fetch into memory in memory
for quick accessed the next time it is needed is called caching. Because there are a few hundred thousand
products in the catalog, it is not feasible to cache information for all of the products in memory. What can be
done is to keep information for as many of the products as feasible in memory, trying to insure that those
products guessed to be the most likely to be used are in memory when they are needed. Deciding which and how
many objects to keep in memory is called cache management.

Here is how cache management would work for the product information example:

Product Cache Management Collaboration
1. A product ID is passed to a ProductCacheManager object’s getProductInfo method.

2. The ProductCacheManager object’s getProductInfo method attempts to retrieve the product
information from a Cache object. If it successfully retrieves the information form the cache, then it
returns that information.

ProductCacheManager1: getProductInfo(productID)
Cache

2: getProductInfo(productID)
4: removeProductInfo(productID)
5: addProductInfo(productInfo)

ProductInfoFetcher3: getProductInfo(productID)

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 46 *

3. If it was not able to retrieve the information from the cache, then it calls a ProductInfoFetcher
object’s getProductInfo method to fetch the product information.

4. Cache managers generally implement a policy to limit the number of objects in a cache because keeping
too many objects in the cache can be wasteful or even counterproductive. If the cache manager decides
that the retrieved information should be stored in the cache and the cache already contains as many
objects as it should, the cache manager will avoid increasing the number of objects in the cache. It does
that by picking a product’s information to remove from the cache and pass its product ID to the Cache
object’s removeProductInfo method.

5. Finally, if the cache manager had decided that the fetched product information should be stored in the
cache, it now calls the Cache object’s addProductInfo method.

Forces
• Fetching objects from external sources can take thousands or even millions of times longer that accessing

an object that is already cached in internal memory.

• When the number of objects that can be fetched from external sources is small enough that they can all
fit comfortably in local memory, then keeping all of the objects in local memory will provide the best
results. If there are very many objects that may potentially be fetched from external sources, then they
may not fit in memory. If they do fit in memory, they may use memory that will later be needed for other
purposes. Therefore, it may be necessary to set an upper bound on the number of objects cached in local
memory.

• An upper bound on the number of objects in a cache requires an enforcement policy. The enforcement
policy will determine which fetched objects to cache and which to discard when the number of objects in
the cache reaches the upper bound. Such a policy should attempt to predict which objects are the most
and least likely to be used in the near future.

Solution
Here is the general structure of the cache management pattern:

Cache Management Pattern
Here are descriptions of the classes that participate in the Cache Management pattern and the roles that

they play:

ObjectID
Instances of the ObjectID class are used to identify objects to be fetched.

ObjectID

CacheManager

fetchObject(ObjectID)

ObjectFetcher

fetchObject(ObjectID)

Fetches
remote objects for5

1

1

Cache

addObject(Object)
fetchObject(ObjectID)

3 Caches objects for
1 1

Object

1

0..*

Caches6

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 47 *

CacheManager
All requests for objects from classes that do not participate in the Cache Management pattern are
presented to a CacheManager object by calling its fetchObject method. The argument to the
fetchObject method is an ObjecdtID object that identifies the object to fetch. The fetchObject
method works by first calling the Cache object’s fetchObject method. If that fails, it calls the
ObjectFetcher object’s fetchObject method.

ObjectFetcher
ObjectFetcher objects are responsible for fetching objects that are not in the cache.

Cache
A Cache object is responsible for managing the collection of objects in the cache so that given an
ObjectID object, it quickly finds the corresponding object. The CacheManager object passes an
ObjectID object to the Cache object’s fetchObject method to try to get an object from the cache. If
the CacheManager object does not get the object it requested from the fetchObject method, then it
requests the object from the ObjectFetcher object. If the ObjectFetcher object gives it the object
that it requested, then it will pass the fetched object to this object’s addObject method. The
addObject method adds the object to the cache if that is consistent with its cache management policy.
The addObject method may remove an object from the cache to make room for the object that it is
adding to the cache.

Consequences
The impact of the Cache Management pattern on the rest of a program is minimal. If the CacheManager

class is implemented as a subclass of the ObjectFetcher class then, using the Wrapper pattern, an
implementation of the Cache Management pattern can be inserted into a working program with minimal
modification to existing code.

The primary consequence of using the Cache Management pattern is that a program spends less time
fetching objects from expensive sources. The simplest way of measuring the effectiveness of caching is by
computing a statistic called its hit rate. The hit rate is the percentage of object fetch requests that the cache
manager is able to satisfy with objects stored in the cache. If every request is satisfied with an object from the
cache then the hit rate is 100%. If no request is satisfied then the hit rate is 0%. The hit rate depends largely on
how well the implementation of the Cache Management pattern matches the way that objects are requested.

Another consequence of using the Cache Management pattern is that the cache may become inconsistent
with the original data source. The consistency problem breaks down into two separate problems that can be
solved independently of each other. Those problems are read consistency and write consistency.

Read consistency means that the cache always reflects updates to information in the original object
source. If the objects being cached are stock prices, then the prices in the object source can change while the
prices in the cache will no longer be current. To achieve absolute read consistency while caching objects in a
cache, the object source must notify the program of updates to cached objects. You can accomplish that using the
Publish-Subscribe pattern.

If it is not feasible to get the object source to send updates, you may be able to settle for relative read
consistency. Relative read consistency does not ensure that the contents of a cache are current. Instead, the
guarantee is that the objects in the cache were current within some amount of time in the past. For example, you
may want to ensure that stock prices in a cache are not more than 15 minutes old. To accomplish that you can
simply remove an object from the cache after it has been there for 15 minutes.

Write consistency means that updates to the the original object source always reflects updates to the
cache.

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 48 *

Implementation
Implementing the Cache Management pattern involves making some potentially complex choices.

Making optimal choices can involve much statistical analysis, queuing theory and other sorts of mathematical
analysis. However, it is usually possible to produce a reasonable implementation by being aware of what the
choices are and experimenting with different solutions.

The most basic decision to make when implementing the Cache Management pattern is how to
implement the cache itself. The considerations for picking a data structure for the cache are:

• It must be able to quickly find objects when given their ObjectID.

• Since search operations will be done more frequently than addition or removal, searching should be as
fast or faster than those operations.

• Since we expect frequent additions and removals of objects, the data structure must not make those
operations a lot more expensive than search operations.

A hash table satisfies these needs. When implementing in Java, a cache is usually implemented using an
instance of the java.util.Hashtable class.

The remaining implementation issues relate to performance tuning. Performance tuning is not something
to spend time on until after you program is functioning correctly. In the design and initial coding stages of your
development effort, make some initial decisions about how to deal the these issues and then ignore them until you
are ready to deal with performance related issues.

There is always a maximum amount of memory that you can afford to devote to a cache. That means that
you will have to set a limit on the objects that can be in the cache. If the potential set of objects that are available
for collection in a cache is small, you don’t have to impose an explicit limit. Most problems are not so
conveniently self-limiting.

Specifying in advance a maximum amount of memory to devote to a cache is difficult since you may not
know in advance how much memory will be available or how much memory the rest of your program will need.
Enforcing a limit on the amount of memory a cache can use is especially difficult in Java because there is no
definite relationship between an object and the amount of physical memory that it occupies.

An alternative to specifying and enforcing a limit that measures memory is to simply count objects.
Object counting is a workable alternative to measuring actual memory usage if the average memory usage for
each object is a reasonable approximation of the memory usage for each object. Counting objects is very straight
forward, so you can simplify things by limiting the contents of a cache to a certain number of objects. Of course,
the existence of a limit on the size of a cache raises the question of what should happen when the size of the
cache reaches the maximum number of objects and another object is fetched. At that point, there is one more
object than the cache is supposed to hold. The cache manager must then discard an object.

The selection of which object to discard is important because it directly affects the hit rate. If the
discarded object is always the next one requested then the hit rate will be 0%. On the other hand, if the object
discarded will not be requested before any of the other object in the cache, then discarding that object has the
least negative impact on the hit rate. Clearly, making good choice of which object to discard requires a forecast
of future object requests.

In some cases, it is possible to make an educated guess about which objects a program will need in the
near future, based on knowledge of the application domain. In the most fortunate cases, it is possible to predict
with high probability that a specific object will be the next one requested. In those cases, if the object is not

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 49 *

already in the cache, it may be advantageous to load it immediately rather than wait for the program to request it.
That is called prefetching the object.

In most cases, the application domain will not provide enough clues to make such precise forecasts.
However, there is a pattern that turns up in so many cases that it is the basis for a good default strategy for
deciding which object to discard. That pattern is that the more recently a program has requested an object, the
more likely it is to request the object again. The strategy to from that is to always discard the least recently used
object. People often abbreviate that as LRU.

Now let’s take a look a setting a numeric limit on the number of objects in a cache. A mathematical
analysis can give a precise value to use for the maximum number of objects that may be placed in a cache. It is
unusual to do such an analysis for two reasons. The first is that the mathematical analysis involves probability
and queuing theory that is beyond the knowledge of most programmers. The other reason is that such an analysis
can be prohibitively time consuming. The number of details that need to be gathered about the program and its
environment can be prohibitively large. However, you can usually arrive at a reasonable cache size empirically.

Begin by adding code to your CacheManager class to measure the hit rate as the number of object
requests satisfied from the cache divided by the total number of object requests. You can the try running with
different limits on the object size. As you do that, you will be looking for two things. The most important thing to
look out for its that if the cache is too large is can cause the rest of you program to fail or slow down. The
program can fail by running out of memory. If the program is garbage collected, as most Java programs are, it can
slow down waiting for the garbage collector to finish scavenging memory for new objects. If the program is
running in a virtual memory environment, a large cache can cause excessive paging.

Suppose that you want to tune a program that uses a cache. You run the program, under otherwise
identical conditions, with different maximum cache sizes set. Let’s say that you try values as large as 6,000. At
6,000 you find that the program takes three times as long to run as at 4000. That means that 6000 is too large.
Suppose that the hit rate you got at the other values was

Max Cache
Size

Hit Rate

250 20%
500 60%
1000 80%
2000 90%
3000 98%
4000 100%
5000 100%

Clearly, there is no need to allow the cache to be larger than 4000 objects since that achieves a 100% hit
rate. Under the conditions that you ran the program, the ideal cache size is 4000. If the program will only be run
under those exact conditions, then no further tuning may be needed. Many programs will be run under other
conditions. If you are concerned that your program will be run under other conditions, you may want to use a
smaller cache size to avoid problems under conditions where less memory is available. The number you pick will
be a compromise between wanting a high hit rate and a small cache size. Since lowering the cache size to 3,000
only reduces the hit rate to 98% then 3,000 might be an acceptable cache size. If a 90% hit rate is good enough,
then 2,000 is an acceptable cache size.

If it is not possible to achieve a high hit rate with available memory and fetching objects from the
original data source is sufficiently expensive, then you should consider using a secondary cache. A secondary
cache is typically a disk file that is used as a cache. The secondary cache takes longer to access than the primary
cache that is in memory. However, if it takes sufficiently less time to fetch objects out of a local disk file than is
does to fetch them from the original object source then it can be advantageous to use a secondary cache.

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 50 *

The way that you use a secondary cache is to move objects from the primary cache to the secondary
cache instead of discarding the objects when the primary cache is full.

Example
Suppose that you are involved in writing software for an employee timekeeping system. The system

consists of timekeeping terminals and a timekeeping server. The terminals are small boxes mounted on the walls
of a place of business. When an employee arrives at work or leaves work, the employee notifies the timekeeping
system. The employee notifies the timekeeping system by running his or her ID card through a timekeeping
terminal. The terminal reads the employee’s id on the card and acknowledges the card by displaying the
employee’s name and options. The employee then presses a button to indicate that he or she is starting work,
ending work, going on break or other options. The timekeeping terminals transmit the comings and goings of
each employee to the timekeeping server. At the end of each pay period, the business’ payroll system gets the
number of hours each employee worked from the timekeeping system and prepares paychecks.

The exact details of what an employee sees will depend on an employee profile that a terminal receives
from the timekeeping server. The employee profile will include the employee’s name, the language in which to
display prompts for the employee and what special options apply to the employee.

Most businesses assign their employees a fixed location in the business place to do their work.
Employees with a fixed work location will normally use the timekeeping terminal nearest to their work location.
To avoid long lines in front of timekeeping terminals, it is recommended that the terminals be positioned so that
fewer than 70 employees with fixed work locations will use the same timekeeping terminal.

Because a substantial portion of the cost of the timekeeping system will be the cost of the terminals, to
keep their cost down, the timekeeping terminals will have a minimal amount of memory. On the other hand, to
keep response time down, we will want the terminals to cache employees profiles so that most of the time they
will be able to respond immediately when presented with an employee’s ID card. That means that you will have
to impose a maximum cache size that is rather modest. A reasonable basis for an initial maximum cache size is
the recommendation that the terminals be position so that no more than 70 employees with fixed work locations
use the same terminal. Based on that we come up with an initial cache size of up to 80 employee profiles.

The reason for picking a number larger than 70 is that under some situations more than 70 employees
may use the same timekeeping terminal. Sometimes one part of a business will borrow employees from another
part of a business when they experience a peak workload. Also, there will be employees, such as maintenance
staff, that float from one location to another.

Here is a class diagram that show how the Cache Management pattern is applied to this problem.

Timekeeping Cache Management
Here is the code that implements the timekeeping terminal’s cache management. First, here is the code

for the EmployeeProfileManager class:

EmployeeProfileManager

fetchEmployee(EmployeetID)

EmployeeProfileFetcher

fetchEmployee(EmployeetID)

5

Fetches
employee profiles for

1

1

EmployeeProfileCache

addEmployee(EmployeeProfile)
fetchEmployee(EmployeeID)

3 Fetches employee profiles for

1 1

EmployeeProfile

Caches6

1

0..*

EmployeeID

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 51 *

class EmployeeProfileManager {

 private EmployeeCache cache = new EmployeeCache();

 private EmployeeProfileFetcher server

 = new EmployeeProfileFetcher();

 /**

 * Fetch an employee profile for the given employee id from the

 * internal cache or timekeeping server if the profile is not

 * found in the internal cache.

 * @param id the employee’s id

 * @ return the employee’s profile or null if the employee’s

 * profile is not found on the timekeeping server.

 */

 EmployeeProfile fetchEmployee(EmployeeID id) {

 EmployeeProfile profile = cache.fetchEmployee(id);

 if (profile == null) { // if profile not in cache try server

 profile = server.fetchEmployee(id);

 if (profile != null) { // Got the profile from the server

 // put profile in the cache

 cache.addEmployee(profile);

 } // if != null

 } // if == null

 return profile;

 } // fetchEmployee(EmployeeID)

} // class EmployeeProfileManager

The logic in the EmployeeProfileManager class is rather straightforward conditional logic. The logic
of the EmployeeCache class is more intricate, since it has to manipulate a data structure to determine which
employee profile to remove from the cache when the adding an employee profile to a full cache.

class EmployeeCache {

 /**

 * We use a linked list to determine the least recently used employee

 * profile. The cache that itself is implemented by a Hashtable

 * object. The Hashtable values are linked list objects that refer

 * to the actual EmployeeProfile object.

 */

 private Hashtable cache = new Hashtable();

 /**

 * This is the head of the linked list that refers to the most

 * recently used EmployeeProfile.

 */

 LinkedList mru = null;

 /**

 * this is the end of the linked list that referes to the least

 * recently used EmployeeProfile.

 */

 LinkedList lru = null;

 /**

 * The maximum number of EmployeeProfile objects that may be in the

 * cache.

 */

 private final int MAX_CACHE_SIZE = 80;

 /**

 * The number of EmployeeProfile objects currently in the cache.

 */

 private int currentCacheSize = 0;

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 52 *

 /**

 * Objects are passed to this method for addition to the cache.

 * However, this method is not required to actually add an object

 * to the cache if that is contrary to its policy for what object

 * should be added. This method may also remove objects already in

 * the cache in order to make room for new objects.

 * @param emp The employeeProfile that is being proposed as an

 * addition to the cache.

 */

 public void addEmployee(EmployeeProfile emp) {

 EmployeeID id = emp.getID();

 if (cache.get(id) == null) { // if profile not in cache

 // Add profile to cache, making it the most recently used.

 if (currentCacheSize == 0) {

 // treate empty cache as a special case

 lru = mru = new LinkedList();

 mru.profile = emp;

 } else { // currentCacheSize > 0

 LinkedList newLink;

 if (currentCacheSize >= MAX_CACHE_SIZE) {

 // remove least recently used EmployeeProfile from the cache

 newLink = lru;

 lru = newLink.previous;

 cache.remove(newLink);

 lru.next = null;

 } else {

 newLink = new LinkedList();

 } // if >= MAX_CACHE_SIZE

 newLink.profile = emp;

 newLink.next = mru;

 newLink.previous = null;

 mru = newLink;

 } // if 0

 // put the now most recently used profile in the cache

 cache.put(id, mru);

 currentCacheSize++;

 } else { // profile already in cache

 // addEmployee shouldn’t be called when the object is already

 // in the cache. Since that has happened, do a fetch so

 // that so object becomes the most recently used.

 fetchEmployee(id);

 } // if cache.get(id)

 } // addEmployee(EmployeeProfile)

 /**

 * Return the EmployeeProfile associated with the given EmployeeID

 * the cache or null if no EmployeeProfile is associated witht the

 * given EmployeeID.

 * @param id the EmployeeID to retrieve a profile for.

 */

 public EmployeeProfile fetchEmployee(EmployeeID id) {

 LinkedList foundLink = (LinkedList)cache.get(id);

 if (foundLink == null)

 return null;

 if (mru != foundLink) {

 if (foundLink.previous != null)

 foundLink.previous.next = foundLink.next;

 if (foundLink.next != null)

 foundLink.next.previous = foundLink.previous;

 foundLink.previous = null;

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 53 *

 foundLink.next = mru;

 mru = foundLink;

 } // if currentCacheSize > 1

 return foundLink.profile;

 } // fetchEmployee(EmployeeID)

 /**

 * private doublely linked list class for managing list of most

 * recently used employee profiles.

 */

 private class LinkedList {

 EmployeeProfile profile;

 LinkedList previous;

 LinkedList next;

 } // class LinkedList

} // class EmployeeCache

Finally, here are the EmployeeProfile and EmployeeID classes:

class EmployeeProfile {

 private EmployeeID id; // Employee Id

 private Locale locale; // Language Preference

 private boolean supervisor;

 private String name; // Employee name

 /**

 * Constructor

 * @param id Employee Id

 * @param locale The locale of the employee’s language of choice.

 * @param supervisor true if this employee is a supervisor.

 * @param name Employee’s name

 */

 public EmployeeProfile(EmployeeID id,

 Locale locale,

 boolean supervisor,

 String name) {

 this.id = id;

 this.locale = locale;

 this.supervisor = supervisor;

 this.name = name;

 } // Constructor(EmployeeID, Locale, boolean, String)

 /**

 * Return the employee’s ID

 */

 public EmployeeID getID() { return id; }

 /**

 * return the Locale indicating the Employee’s preferred language.

 */

 public Locale getLocale() { return locale; }

 /**

 * Return true if the employee is a supervisor.

 */

 public boolean isSupervisor() { return supervisor; }

} // class EmployeeProfile

class EmployeeID {

 private String id;

GRAND STRUCTURAL PATTERNS – UIUC PATTERNS GROUP DRAFT 1/20/98

* 54 *

 /**

 * constructor

 * @param id A string containing the employee ID.

 */

 public EmployeeID(String id) {

 this.id = id;

 } // constructor(String)

 /**

 * Returns a hash code value for this object.

 */

 public int hashCode() { return id.hashCode(); }

 /**

 * Return true if the given object is an employee id that is equal to this

 * one.

 * @param obj The object to compare with this one.

 */

 public boolean equals(Object obj) {

 return (obj instanceof EmployeeID

 && id.equals(((EmployeeID)obj).id));

 } // equals(Object)

 /**

 * Return the string representation of this EmployeeID.

 */

 public String toString() { return id; }

} // class EmployeeID

Related Patterns
Façade

The Cache Management pattern uses the Façade pattern.

Publish-Subscribe
You can use the Publish-Subscribe pattern to ensure that read consistency of a cache.

Remote Proxy
The Remote Proxy provides an alternative to the Cache Management pattern by working with objects
that exist in a remote environment rather than fetching them into the local environment.

Template Method
The Cache Management pattern uses the Template Method pattern to keep its Cache class reusable
across application domains.

Virtual Proxy
The cache management pattern is often used with a variant of the Virtual Proxy pattern to make the
cache transparent to objects that access object in the cache.

