Creational Patterns

Creational patterns provide guidance as to how objects should be created when their creation requires
decisions to be made. These decisions will typically involve dynamically deciding which class to instantiate or
which objects an object will delegate responsibility to. The value of creational patternsisto tell us how to
structure and encapsul ate these decisions.

Often, there is more that one creational pattern that can be applied to a situation. Sometimes multiple
patterns can be combined advantageously. In other cases you must choose between competing patterns. For these
reasons, it isimportant to be acquainted will all five of the patterns described in this chapter.

If you only have time to learn one pattern in this chapter, the most commonly used one is Factory
Method.

Factory Method
Synopsis

When you are writing a class to be reusable with arbitrary data types, it can be useful to organize it so
that when it wants to instantiate a class, it delegates the choice of which class to instantiate to another object. The
Factory Method pattern provides a way to do that.

Context

Consider the problem of writing a framework for desktop applications. Such applications are typically
organized in adocument or file centered manner. Their operation will typically begin with a command to create
or edit aword processing document, spreadsheet, time line or whatever type of document or file the application is
intended to work with. In the case of aword processor, the program may be required to work with multiple types
of files.

A framework to support this type of application will clearly include an Application class that has
methods to create and open documents in addition to other common operations. The reason to put those methods
in an Application classisto give menu items and the like a consistent set of methods to call when the user issues
acommand.

Because the logic to implement most of these commands varies with the type of document, an
Application object usually delegates most of these commands to some sort of document object. Thelogicin
document objects for implementing these commands varies with the type of document. However there are some
operations, such a getting the title string to display for adocument, that will be common to all document objects.
That suggests that there be an application independent abstract Document class and application specific
subclasses for specific types of documents. Here is a class diagram to show these classes:

1

Dacument Application

getTitlel iz edited by edits | newDocument()
newllocument]) apenDocumenti)
openlocument|)

i

MyDocument

newlDocument()
openDocument()

Application Framework

What neither the above diagram or the preceding discussion show is how an Application object can
create instances of application specific document classes without itself being application specific.

Forces

» It should be possible to organize a class that is able to create an instance of a class that is a subclass of a
given class or implements a given interface. In order to be reusable, it must be able to do that without
knowing what subclasses of the given class are available or what classes that implement the given
interface are available.

e The set of classes a class may be expected to be able to instantiate may be dynamic as new classes
become available.

Solution

The Factory Method pattern provides an application independent object with an application specific
object to which it can delegate the creation of other application specific objects. Hereis a class diagram that
shows the interfaces and classes that typically make up the Factory Method pattern:

Froduct CreationReguestor
getTitle]) 1z edited by edits | newDocurment()
operationTi) Dperat_inn“l[i
oeprationz]) operation2()

FactorylF requests creation
l‘l ginterfaces
' createProduct])
ConcreteProduct creates
aperationt () Z‘&
operation2()
Fact
is created by Actory
createFroduct()
creates

Factory Method Pattern

2

The above class diagram shows the roles in which classes and interfaces can participate in the Factory
Method pattern:

Product
The product class is an abstract class that is the superclass of objects produced by the Factory Method
pattern. The product class corresponds to the Document class mentioned in the context section.

An actual classin this role would not normally be called product, but have a name like Document or Image.

Concrete Product
Thisis any concrete class instantiated by the objects participating in the Factory Method pattern. If these
classes share no common logic, then the product can be an interface instead of an abstract class.

An actual classin thisrole would not normally be called ConcreteProduct, but have a name like
RTFDocument or JPEGImage.

Creation Requestor
The creation requestor is an application independent class that needs to create application specific
classes. It does so indirectly through an instance of afactory class.

Factory Interface
Thisis an application independent interface that is implemented by the objects that create product objects
on behalf of creation requestor objects. Interfaces of this sort declare a method that can be called by a
creation requestor object to create concrete product objects. The method typically has a name like
cr eat eDocunent or creat el mage. The method takes whatever arguments are needed to deduce the
classto instantiate.

Interfaces filling this role will typically have a name like Docunent Fact or yl F or | nageFact oryl F.

Factory Class
Thisis an application specific class that implements the appropriate factory interface and has a method to
create concrete product objects. Classes filling this role will typicaly have a name like
Docunent Fact ory or | mageFact ory.

Conseguences

The primary consequences of using the Factory Method pattern are:

* Thecreation requester classisindependent of the class of the concrete product objects actually created.

e The set of product classes that can be instantiated can be changed dynamically.

Implementation

In situations where al the concrete product classes are know in advance, the indirection of a product
interface may not be necessary. In these situations, the only benefit realized from the Factory Method pattern is
that the creation requestor class is kept independent of the actual concrete product classes instantiated. The way
thisworks isthat the creation requestor class refers directly to afactory object. That factory object has a
cr eat ePr oduct method implemented with the necessary logic to instantiate the correct concrete product class.

If al classes that implement a product interface create only one kind of concrete product, then the
cr eat ePr oduct method defined by the interface may not need n parameters. However, if factory objects are
required to create multiple kinds of product objects then their createProduct method will need to take the
necessary parameters to allow the method to deduce which product class to instantiate. Parametric createProduct
methods often look something like this:

3

I mage createlmage (String ext) ({
if (ext.equals("gif")
return new A Fl mage();

if (ext.equals("jpeg"))

return new JPEG rmage();
E
} /I createlmage(String)

The above sequence of i f statements works well for createProduct methods that have a fixed set of
product classes to instantiate. To write a createProduct method that handles a dynamic or large number of product
classes, you can use the Hashed Adapter Objects pattern. Alternatively, if you are writing in Java, you can use the
various objects that indicate which class to instantiate as keys in a hash table with
java.lang. refl ect. Construct or objectsfor values. Using that technique, you look up an argument value
in the hash table and the use the Constructor object that isits value in the hash table to instantiate the desired
object.

JAVA API| Usage

The Java API uses the Factory Method pattern in afew different places to allow the integration of the
applet environment with its host program. For example, each URL object has associated with it a
URLConnect i on object. URLConnect i on objects can be used to read the raw bytes of aURL. URLConnect i on
objects also have a method called get Cont ent that returns the content of the URL packaged in an appropriate
sort of object. For example, if the URL containsagi f file then the URLConnect i on object'sget Cont ent
method returns an Image object.

The way it works is thatRLConnect i on objects play the role of creation requester in the Factory
Method pattern. They delegate the work ofdbeCont ent method to &ont ent Handl er object.
Cont ent Handl er is an abstract class that serves as a product class that knows about handling a specific type of
content. The way that@RLConnect i on object gets &ont ent Handl er object is through a
Cont ent Handl er Fact or y object. TheCont ent Handl er Fact or y class is an abstract class that participates in
the Factory Method pattern as a factory interface.URi&onnect i on class also has a method called
set Cont ent Handl er Fact or y. Programs that host applets call that method to provide a factory object used for
all URLConnect i on objects.

Example

For our example, suppose we are developing an extension to the Socket class to encrypt the stream of
bytes written to a socket and decrypt the bytes read from the socket. We will call thEnclagst edSocket .

We will want theEncr ypt edSocket class to support multiple encryption algorithms. Because of U.S.A.
legal restrictions on the import and export of encryption software, we will want to keepcthgt edSocket
class independent of the encryption classes being used.

The requirement tha@ncr ypt edSocket objects be able to work with multiple encryption algorithms
without knowing in advance what classes will encapsulate those algorithms suggests the use of the Factory
Method pattern. Here is a class diagram to show this:

Enchgption Socket
encryatOuputStraam|)
decnptinoutSreami) encrypts bytes for /—(‘\—“
uses
[‘5‘ EncryptedSocket
gconstructors
Encrypted Socket{key,
RSAEncryption EncryptionF actarylF)
is created) getlnputstream()
by DESEncryption getOutputStreami)

is created by

creates

EncryptionFactary

creates
createEncryption Key)

!

EncryptionFactorylF requests creation
zinterfaces

createEncrsption] Key)

Factory Method Example

Hereis adescription of the classes and interface used in this design:

Encr ypt edSocket
Thissubclass of j ava. net . Socket fillstherole of creation requestor.

Encrypti onFactoryl F
Thisinterface fillsthe role of factory interface.

Encrypti onFactory
This classfillsthe role of factory class.

Encryption
This classfills the role of product.

RSAEncr ypti on
Thisclassisin therole of concrete product.

DESEncrypti on
Thisclassisintherole of concrete product.

Let’s look at the code that implements these classes. Here is the codeHorrthpt edSocket class:

/**

* This class extends socket so that the stream of bytes that goes over

* the net is encrypted.

*/

public class EncryptedSocket extends Socket {
private static Encryption crypt;
private Key key;
/**

* Constructor

* @aram key The key to use for encryption and decryption. This
* object will determne the encryption technique to use
* by calling the key object’s getAlgorithm() method.
* @param factory The Factory object to use to create Encryption
* objects.
* @exception NoSuchAlgorithmException if the key specifies an
* encryption technique that is not available.
*
public EncryptedSocket(Key key, EncryptionFactorylF factory)
throws NoSuchAlgorithmException {
this.key = key;
crypt = factory.createEncryption(key);
} /I Constructor(Key, EncryptionFactorylF)
/**
* Returns an input stream for this socket that decrypts the
* inbound stream of bytes.
* @return an input stream for reading decrypted bytes from

* this socket.

* @exception IOException if an /O error occurs when creating
* the input stream.

*

public InputStream getinputStream() throws IOException {
return crypt.decryptinputStream(super.getinputStream());
} /I getinputStream()
/**
* Returns an output stream for this socket that encrypts the

* outbound stream of bytes.
* @return an output stream for reading decrypted bytes from

* this socket.
* @exception |IOException if an I/O error occurs when creating
* the output stream.

*
public OutputStream getOutputStream() throws IOException {
return crypt.encryptOutputStream(super.getOutputStream());
} /I getOutputStream()
} /I class EncryptedSocket

An Encrypt edSocket object works by first getting an Encryption object from the
Encrypt i onFact or yl F object that is passed to its constructor. It then accomplishes the encryption and
decryption using the Filter pattern. It extends the get | nput St r eamand get Qut put St r eammethods so that the
i nput St r eamobjects and out put St r eamobjects that they would otherwise return are filtered through objects

created by the Encryption object.

Hereis code for the Encr ypt i onFact or yl F interface:

/**
* This interface must be implemented by all factory classes used to
* create instances of subclasses of Encryption.
*
public interface EncryptionFactorylF {
/**
* This method returns an instance of the appropriate subclass of
* Encryption as determined from information provided by the given
* Key object.
* @param key The key that will be used to perform the encryption.
*
public Encryption createEncryption(Key key)
throws NoSuchAlgorithmException;
} /Il interface EncryptionFactorylF

Hereisthe code for the Encrypt i onFact ory class:

/**
* This interface nust be inplenmented by all factory classes used to
* create instances of subclasses of Encryption.
*/
public class EncryptionFactory {
/**
* This method returns an instnace of the appropriate subcl ass of
* Encryption as determined frominformation provided by the given
* Key object.
* @aram key The key that will be used to performthe encryption.
*/
public Encryption createEncryption(Key key)
t hrows NoSuchAl gorit hnmExcepti on{
String algorithm = key.getAl gorithn();
if (ODES".equals(algorithm))
return new DESEncryption(key);
if ("RSA".equals(algorithm))
return new RSAEncryption(key);
throw new NoSuchAlgorithmException(algorithm);
} /I createEncryption(Key)
} /I class EncryptionFactory

Finally, here is the code for the Encryption class:

/**
* Abstract class to encrypt/decrypt streams of bytes.
*
abstract public class Encryption {
private Key key;
/**
* Constructor
* @param key The key to use to perform the encryption.
*/
public Encryption(Key key) {
this.key = key;
} /I Constructor(Key)
/**
* Return the key this object used for encryption and decryption.
*/
protected Key getKey() {
return key;
} /1 getKey()
/**
* This method returns an OutputStream that encrypts the bytes
* written to it and writes the encrypted bytes to the given
* QutputStream.
* @param out The OutputStream that the OutputStream returned by

* this method will write encrypted bytes to.

*

abstract OutputStream encryptOutputStream(OutputStream out);
/**

* This method returns an InputStream that decrypts the stream of
* bytes that it reads from the given InputStream.
* @param in The InputStream that the InputStream returned by this
* method will read bytes from.
*
abstract InputStream decryptinputStream(InputStream in);
} /I class Encrypt

Related Patterns

Abstract Factory
The Factory Method pattern is useful for constructing individual objects for a specific purpose without
the construction requestor knowing the specific classes being instantiated. If you need to create a
matched set of such objects, then the Abstract Factory pattern is a more appropriate pattern to use.

Template Method
The full Factory Method pattern is often used with the Template Method pattern.

Prototype
The Prototype pattern provides an alternate way for an object to work with other objects without
knowing the details of their construction.Factory M ethodFactory Method

Abstract Factory

Abstract Factory is aso known as kit or toolkit.

Synopsis

Given a set of related abstract classes, the Abstract Factory pattern gives us away to create instances of
those abstract classes from a matched set of concrete subclasses. The Abstract Factory pattern can be very useful
for allowing a program to work with a variety of complex external entities such as different windowing systems
that have similar functionality.

Context

Suppose that you have the task of building a user interface framework that works on top of multiple
windowing systems, like MS-Windows, Motif or MacOS. Y ou can make it work with a native look and feel by
creating an abstract class for each type of widget (text field, push button, list box,...) and then writing a concrete
subclass of each of those classes for each supported platform. To make that way of doing things work robustly,
you will need a way of ensuring that the widget objects that are created are all for the desired platform. That is
where the abstract factory comes into play.

In the context of this situation, an abstract factory class is a class that defines methods to create an
instance of each one of the abstract classes that correspond to a user interface widget. Concrete factories are
classes that are a concrete subclass of an abstract factory that implements its methods to create instances of
concrete widget classes for the same platform.

In a more general context, an abstract factory class and its concrete subclasses organize sets of concrete
classes that work different but related products.

Forces

A system should function is a way that is independent of the specific product that it interfaces with.

« It should be possible for a system to be configured to work with one or multiple members of a family of
products.

* Instances of classes intended to interface with a product should be used together and only with that
product. That constraint must be enforced.

* The rest of a system should be able to work with a product without being aware of the specific classes
used to interface with the product.

8

« It should be possible to extend a system to work with additional products by adding additional sets of
classes and changing at most only afew lines of code.

Solution
) 1 0 * Chiant
AbstractFactony |
create Al Widgetd -
create B 7
getFactory()
[‘3 Froduct1Widg et Froduct2Widgetd
f Y f Y
ConcreteFactory?
create Al)
createB() ConcreteFactary WidgetE
create Al) *
createB() .ff‘}.
¥
ProductWidgetB Froduct2Widgetb
F 3

Abstract Factory

The Abstract Factory pattern involves the following kinds of classes:

Client
Client classes are classes that use various widget classes to request or receive services from the product
that is being interfaced with. Client classes only know about the abstract widget classes. They should
have no knowledge of any concrete widget classes.

Abstract Factory
Abstract factory classes define abstract methods for creating instances of concrete widget classes.

Abstract factory classes provide client classes with a method that returns an instance of a concrete
factory appropriate for interfacing with a particular product. If al clients will be interfacing with the
same product then the method may not need any arguments. Otherwise, it will usually be necessary for
the method to take an argument that tellsit what products the client wants to interface with.

At most one instance of an abstract factory is needed, so instances of abstract factory classes can be
created using the Singleton pattern

Concrete Factory
Concrete factory classes implement the methods defined by their abstract factory superclasses to create
instances of concrete widget classes. The client classes that call these methods should not have any direct
knowledge of these concrete factory classes, but instead access singleton instances of these classes by
calling amethod of their abstract factory superclass.

9

Abstract Widget
Abstract widget classes correspond to a feature of a product that their concrete subclasses will interface
with.

Concrete Widget
Concrete widget classes correspond to a feature of a product that they interface with.

Conseguences

* The concrete widget classes that are used to interface with products are independent of the classes that
use them, because the abstract factory class encapsul ates the process of creating widget objects.

» Adding (as opposed to writing) classesto interface with additional productsis simple. The class of a
concrete factory object needs to appear where it isinstantiated. The only other place that it may need to
appear isthe code or construction of the data structure in the abstract factory class that is responsible for
selecting what concrete factory class the abstract factory class should return to aclient. That also makes
it easier to change the concrete factory used to interface with a particular product.

« By forcing client classesto go through concrete factory objects to create concrete widget objects, the
abstract factory pattern ensures that client objects use a consistent set of objects to interface with the
features of a product.

e Themain drawback to the Abstract Factory pattern isthat it can be alot of work to write a set of classes
to interface with a new product. It can also take alot of work to extend the set of features that the
existing set of classesis able to exercise in the products that they interface with.

Adding support for a new product involves writing a complete set of concrete widget classes to support
that product. A concrete widget class must be written for each abstract widget class. If there is a large
number of abstract widget classes then it will be alot of work to support an additional product.

Adding access to an additional feature of the products interfaced to can also take alot of work if there are
many supported products. It involves writing a new abstract widget class corresponding to the new
feature and a new concrete widget class corresponding to each product.

» Client objects may have a need to organize widget classesinto a hierarchy that serves the needs of client
objects. The basic Abstract Factory pattern does not lend itself to that because it requires concrete widget
classes to be organized into a class hierarchy that is independent of client objects. That difficulty can be
overcome by mixing the Bridge pattern with the Abstract Factory pattern: Create a hierarchy of product-
independent widget classes that suites the needs of the client classes. Have each product-independent
widget class delegate product specific logic to a product specific instance of an abstract widget class.

Java’'sj ava. awt package contains a number of classes that are implemented using this variation.
Classes likeBut t on andText Fi el d contain logic that is independent of the windowing system being
used. These classes delegate windowing system operations to concrete widget classes that implement
interfaces defined in theava. awt . peer package.

Implementation

If you are writing in Java and you implement the abstract factory class as an abstract class, as
recommended, then itet Fact or y method will have to be static. The reason for is that you will want to call the
get Fact ory method without having to create an instance of the abstract factory class.

A deeper implementation issue for the Abstract Factory pattern is the mechanism the abstract factory
class’get Fact or y method uses to select the class of the concrete factory it supplies to client objects. The

10

simplest situation is an abstract factory object used to interface with only one product during itslifetime. In that
case, the code that creates that abstract factory object can provide it with the concrete factory objects that will
always provide to clients.

If the abstract factory object will use information provided by the requesting client to select among
multiple concrete factory objects, you can hard code the selection logic and choice of concrete factory objectsin
the abstract factory class. That strategy has the advantage of simplicity. It has the drawback of requiring a source
code modification to add a new concrete factory class.

A different strategy isto put references to the concrete factory objects, aong with the information used
to select the concrete factory objects, into a data structure that allows the abstract factory object to select a
concrete factory object by looking up the selection information in the data structure. The advantage of using the
data structureisthat it is possible to devise schemes that allow an abstract factory to work with new concrete
factory classes without any source code modification.

Another implementation issue arises with the variation of the Abstract Factory pattern mentioned under
consequences that uses a hierarchy of product independent classes that del egate product specific logic to product
specific objects. In that variation, because al the widget independent logic isin the widget independent objects,
the abstract widget classes contain no product specific logic. To help ensure that all of the product independent
logic remains in the product independent widget classes when the product isin its maintenance phase, it is better
to substitute widget interfaces for abstract widget classes.

JAVA API| Usage

The Abstract Factory pattern is used in the Java API to implement the j ava. awt . Tool kit class. The
java. awt . Tool kit classisan abstract factory class that is used for creating objects that interface with the
native windowing system. The concrete factory class that it usesis determined by initialization code and the
singleton concrete factory object isreturned by its get Def aul t Tool ki t method.

Example

L et us suppose that we are writing a program that performs remote diagnostics on computers for a
computer manufacturer called Stellar computers. Over time, Stellar has produced computer models having
substantially different architectures. Their oldest computers used CPU chips from Enginolathat had a traditional
complex instruction set. Since then, they have released three generations of computers based on their own RISC
architectures called ember, super-ember and ultra-ember. The core components used in these models perform
similar functions, but involve different sets of components.

In order for the program we are writing to be able to know that tests to run and how to interpret the
results, it will need to be able to instantiate objects that correspond to each one of the core componentsin the
computer being diagnosed. The class of each object will correspond to the type of component to be tested. That
means that we will have a set of classes for each computer architecture. There will be aclassin each set
corresponding to the same type of computer component. Because this situation fits the Abstract Factory so well,
we will use that pattern to organize the creation of objects that correspond to core computer components.

Hereis aclass diagram that shows classes for only two types of components in only two architectures:

11

Chent

AbstractFactany *
P CPUl X
create ML K i

F 3

fgetFactnr}f[]§§
Z‘S EnginolaCPU EmberCFU
¥ 3
EmberFactary
eradta CPUI K
oreatehMU()5 | | EnginolaP actory]

§|':'r'EEitE'CF‘U[' 'jr{
createhMU()8: ﬂi

¥
EnginolahihLl Emberhihdll

3

Abstract Factory Example

Here is some Java code that implements some of these classes. The abstract widget classes have the
obvious structure:

/**
* This is an abstract class for objects that performrenpte tests
* on CPUs.
*/
public abstract class CPU extends Conponent Tester {
/...

} /1 class CPU
The concrete widget classes are simply concrete subclasses of the abstract widget classes:

/**
* This is a class for objects that performrenote tests on Enber
* architecture CPUs.
*/
cl ass Enber CPU ext ends Conponent Tester {
...
} /1 class Ember CPU

Hereis code for a concrete factory class to create instance of classes to test ember architecture

computers:

/**

* This is a concrete factory class for creating objects used to

* performrenote tests on core conponents of enber architecture

* conputers.

*/

cl ass Enber Factory extends AbstractFactory {

/**

12

* Method to create objects for renpte testing enber CPUs.
*/
public CPU createCPU() {
return new Enber CPU();
} /1 createCPU()
/**
* Method to create objects for renpte testing enber MVs.
*/
public MW createMV)() {
return new Enber M) ;

} /1 createMM))

} /1 class EnberFactory

Finally, here isthe code for the abstract factory class:
/ * %

* This is an abstract factory class for creating objects that are
* used to performrenote tests on core conponents of conputers.
*/
public abstract class AbstractFactory {
private static final EnberFactory enberFactory
= new Enber Factory();
private static Enginol aFactory engi nol aFactory
= new Engi nol aFactory();

/1 Symbolic names to identify types of conputers
public final static int ENG NOLA = 900;
public final static int EVMBER = 901,

/**
* This nethod returns a concrete factory object that is an
* instance of the concrete factory class that is appropriate for
* the given conputer architecture.
* @aram architecture a value indicating the architecture that a
* concrete factory should be returned for.
*/
static final AbstractFactory getFactory(int architecture) {
switch (architecture) {
case ENG NOLA:
return engi nol aFactory;

case EMBER:
return enberFactory;
I
} /] switch
String errMsg = Integer.toString(architecture);
throw new |11 egal Argunent Excepti on(errMsg);
} /1 getFactory()

/**

* Method to create objects for renpte testing CPUs.
*/

public abstract CPU createCPU() ;

/**

* Method to create objects for renpte testing MVs.
*/
public abstract MVU createMM)) ;

13

/...
} // AbstractFactory

Client classes will typically create concrete widget objects using code that |ooks something like this:
/**
* Sanple client class to show how a client class can create concrete
* wi dget objects using an abstract factory
*
/
public class Cient {
public void dolt () {
Abstract Factory af;
af = AbstractFactory. get Fact ory(Abstract Fact ory. EMBER) ;
CPU cpu = af.createCPU();
...
} //dolt
} // class Qient

Related Patterns

Factory Method
In the preceding example, the abstract factory class uses the Factory Method pattern to decide which
concrete factory object to giveto aclient class.

Singleton
Concrete Factory classes are usually implemented as a Singleton classes. Abstract FactoryAbstract
Factory

Builder
Synopsis

The Builder pattern allows a client object to construct a complex object by specifying only its type and
content. The client is shielded from the details of the object’s construction.

Context

When a company is building a commercial quality compiler, one of the typical goals is that the compiler
be able to generate native code for multiple platforms. The part of a compiler responsible for generating the code
produce by the compiler is called a code generator. The rest of the compiler should not need to contribute any
more to the code generation process than specifying what the target platform is and the low-level operations that
are to be performed by the generated program. Another goal is that a code generator be able to work with
multiple compilers. Once the company has built a C++ compiler that runs on multiple platforms, it might want to
build a COBOL compiler that uses the same code generators as the C++ compilers and so is able to generate cod
for all of the same platforms. Those goals require that the code generator have no knowledge of how the rest of
the compiler represents a program. They also require that the rest of the compiler be independent of the code
generated by the code generator.

You can satisfy these requirements by defining an abstract class that declares abstract methods
corresponding to all of the low-level operations that code generators need to support. You can then write concrete
subclasses of the abstract class that will be code generators for specific platforms. To put the pieces together, you
will also need an object to take the knowledge that the compiler has produced from parsing source code and turn
it into a series of calls to the code generator’'s methods.

The objects and relationships described in the preceding paragraph are the essence of the Builder pattern.

14

Forces

* Multiple data representations may need to be provided.

« The object providing the content for the object being built isindependent of the data representation being
built.

* The object that builds the data representation object is independent of the object that provides the content
and can work with multiple content providing objects.

Solution

Hereis a class diagram showing the participantsin the Builder pattern

Directar Bullder

construct() getinstance()

P Parti|]
Pl Part2f |

bl der ProductlF
getProduct() sinterfaces

1

ConcreteBuilder

buildPart1 {)

buildPar2(| o Frodudt
getProduct()
Builder
Here are the roles that these classes in interface play in the Builder pattern;
Product

The product class is not a specific class but any class that corresponds to a data representation. All
product classes should implement the ProductlF interface.

ProductIF
The ProductlF interface defines no methods. It is a semantic marker that provides a common type for
product objects. The reason for not defining any methods is that product classes will differ greatly in
their functionality. All that they have in common is content rather than function.

Concrete Builder
A concrete builder class is a concrete subclass of the builder class that is used to build a specific kind of
data representation.

Builder
The builder class is an abstract class. It defines a class method, typically called get | nst ance, which
takes an argument that specifies a data representation. The get | nst ance method returns an instance of
aconcrete builder class that produces the specified data representation.

The builder class also defines methods, shown in the class diagram as buildPartl1, buildPart2... that can
be called to tell the object returned by tiet | nst ance method what to content to put in the created
object.

15

Finally, the builder class defines a method, typically called get Pr oduct , that returns the product object
created by the concrete builder object.

Director

A director object has the responsibility of calling the methods of a concrete builder object to provide it
with the content of the product object hat it builds.

Hereis a collaboration diagram to show how these classes work together:

aClient ~— aBuilder aBuilder

1:getinstance

20 new(aBuilder) | aDirector | 3:buildPart1()
-

4-buildParti()

-y product
5. getProduct()

Builder Collaboration
Conseguences

Content determination and the construction of a specific data representation are independent of each
other. The data representation of the product can change without any impact on the objects that provide
the content. Also, builder objects can work with different content providing object without requiring any
changes.

Builder provides finer control over construction than other patterns such as Factory Method by giving the
director object step by step control over creation of the product object. Other patterns ssimply create
entire object in one step.

Implementation

The key design and implementation issue for the Builder pattern is the set of methods defined by the

builder class to provide content to concrete builder objects. These methods can be amajor concern because there
can be alarge number of them. The methods should be general enough to allow all reasonable data representation
to be constructed. On the other hand, an excessively general set of methods can be more difficult to implement
and to use. The consideration of generality versus difficulty of implementation raises theseissuesin the
implementation phase:

Each of the content providing methods declared by the builder class can be declared abstractly or
provided with a default do-nothing implementation. Abstract method declarations force concrete builder
classes to provide an implementation for that method. Forcing concrete builder classesto provide
implementations for methods is good in those cases where the method provides essential information
about content. It prevents implementers of those classes from forgetting to implement those methods.

However, methods that provide optional content or supplementary information about the structure of the
content may be unnecessary or even inappropriate for some data representations. Providing a default do-
nothing implementation for methods such as these saves effort in the implementation of concrete builder

16

classes that do not need those methods.

» Organizing concrete builder classes so that call to content providing methods simply add datato the
product object is often good enough. In some cases there will be no simple way to tell the builder where
in the finished product a particular piece of the product will go. In those situations it may be simplest for
the content providing method to return a partial product object that contains part of the data so that the
director object can pass it back into another content providing method at a later appropriate time.

Example

Consider the problem of writing a program that receives e-mail messages that arein MIME format” and
forwarding it as a message in a different format for a different kind of e-mail system. This situation isagood fit
for the Builder pattern. It is very straightforward to organize this program into an object that parses MIME
messages and as it recognizes each header field and message body part calls the corresponding method of the
concrete builder object that it isworking with. Also, that is adesign that will allow the program to be extended to
convert from message formats other than MIME.

Here is aclass diagram showing that structure:

MessagelManager MessageParser
parses
parse(Message)
Wessage is parsed by MIMEFarser
parselmpl()
DuthoundisglF -
gintetfaces Wessage Bullda
sendi) getlnstance(String)
ol)
fraw()

organization()

plain Textl String)
jregimage(Image)

Cutboundhdsg

getOutboundMsgl)

I

MAPIBuilder PROFSBuilder

" MIME is an acronym for Multipurpose Internet Mail Extensions. It is the standard that most e-mail messages on the internet conform to. You can find a
description of MIME at
http://mgrand.home.mindspring.com/mime.html.

17

Builder Example

In the above diagram, the MessageManager classisresponsible for receiving e-mail messages.

The MessagePar ser classisan abstract class that is the superclass for classes that knows how to parse
e-mail messages and passes their content to a builder object.

That brings us to the classes in the dashed line, which are the classes that implement the Builder pattern.

The M MEPar ser classisasubclass of that MessagePar ser that is ableto parse MIME e-mail
messages and pass their contents on to a builder object. MessageBui | der isan abstract builder class. It defines
methods that correspond to the various header fields and body types that MIME supports. It declares methods
that correspond to required header fields and the most common body types to be abstract. It declares them
abstract because all concrete subclasses of MessageBui | der should define those method. However, some of the
optional header fields such as organization and fancier body types such as Image/Jpeg may not be supported in all
message formats, so the MessageBui | der class provides do-nothing implementations of those methods.

The MAPI Bui | der and PROFSBuUI | der classes are concrete builder classes for building MAPI and
PROFS messages, respectively.

The builder classes create product objects that implement the Qut boundMsgl F interface. That interface
defines amethod called send that is intended to send the e-mail message wherever it is supposed to go.

Hereis a collaboration diagram that shows how these classes work together:

aMessage

-— v anDuthoundisg

aMessageManager |2 parse(ahlessage)

1receivelahlessag e]i

11 zendi)

3: new(ahlessage) WessageParsar
4: parselmpl()

anDutboundMseg — -

abdIMEParser -t

| MessageBuilder

o getlnstance(destination)
B: tol)

7 fromi)

8. plainText()

9. getOutboundhd=gl)

-— v anCuthoundhsg

AnDUthoundMay |ag 10 NEW(]

Builder Example Collaboration

Here is what's happening in the above diagram:

18

1 A MessageManager object receives a message.
2. The MessageManager object callsthe MessagePar ser class’ parse method.

3. That parse method always assumes that the e-mail message to be parsed is a MIME message, so it
always creates ldl MEPar ser object. If the program is extended to convert from other message types
that MIME, then the message type would most likely be passed into parse.

4, TheMessagePar ser class’ parse method calls thieVEPar ser object’spar sel npl method to do
the actual message parsing.

5. TheM MEPar ser object calls théessageBui | der class’get | nst ance method, passing it the
destination e-mail address. By analyzing the address, the method selects a concrete subclass of the
MessageBui | der class and creates an instance of it.

6. TheM MEPar ser object passes the destination e-mail address taedweageBui | der object’s to
method.
7. TheM MEPar ser object passes the originating e-mail address ttvitheageBui | der object’s

from method.

8. TheM MEPar ser object passes the e-mail message’s simple content ke dlsageBui | der
object’spl ai nText method.

9. TheM MEPar ser object calls thévessageBui | der object’sget Qut boundMsg method.

10. TheMessageBui | der object’'sget Qut boundMsg method completes the creation of the
Qut boundMsg object.

11. TheMessageManager object calls théut boundMsg object’s send method. That sends the message
off, and completes the processing of that message.

Let's look at some sample code for the classes in this example that collaborate in the Builder pattern.
Instances of th&1 MEPar ser class fill the role of director objects. Here is the source fokthvEPar ser class:

cl ass M MEParser extends MessageParser {
private Message nsg; /'l The message bei ng parsed
private MessageBuil der builder; // The buil der object
E
MIMEParser(Message msg) {
this.msg = msg;
} /I constructor(Message)
/**
* parse a MIME message, calling the builder methods that
* correspond to the messageOs header fields and body parts.
*
OutboundMsgIF parselmpl() {
builder = MessageBuilder.getinstance(getDestination());
MessagePart hdr = nextHeader();
while (hdr != null) {
if (hdr.getName().equals("to"))
builder.to((String)hdr.getValue());
else if (hdr.getName().equals(OfromQ))

19

bui I der. fron((String)hdr.getVal ue());

E
hdr = nextHeader();
} // while hdr

MessagePart bdy = nextBodyPart();
while (bdy != null) {
if (bdy.getName().equals(Otext/plainO))
builder.plainText((String)bdy.getValue());
E
else if (bdy.getName().equals(Oimage/jpegO))
builder.jpeglmage((Image)bdy.getValue());
E
bdy = nextHeader();
} I/ while bdy
return builder.getOutboundMsg();
} /I parselmpl(Message)

private MessagePart nextHeader() {
MessagePart mp = null;
E
return mp;

} /I nextHeader()

private MessagePart nextBodyPart() {
MessagePart mp = null;
E
return mp;

} /I nextBodyPart()

/I return the destination e-mail address for the message
private String getDestination() {

String dest = null;

E

return dest;
} /I getDestination()

private class MessagePart {

private String name;

private Object value;

/**

* Consructor

*

MessagePart(String name, Object value) {
this.name = name;
this.value = value;

} /I Consructor(String, String)

String getName() { return name; }

Object getValue() { return value; }
} /I class MessagePart
} /I class MIMEParser

The chains of if statements that occur in the parselmpl method of the above class would be rather long.
MIME supports over 25 different kinds of header fields alone. A less awkward way to organize a chain of tests of
object equality that result in amethod call is to use the Hashed Adapter Objects pattern.

Hereis code for the MessageBui | der class, that fills the role of abstract builder class.
/**

* This is an abstract builder class for building e-mail messages

20

*/
abstract class MessageBuil der {
/ * %
* Return an object of the subclass appropriate for the e-mail
* message format inplied by the given destination address.
* @aram dest The e-nmil address the nessage is to be sent to
*/
static MessageBuil der getlnstance(String dest) ({
MessageBui | der builder = null;
E
return builder;
} /I getinstance(String)
/**
* pass the value of the OtoO header field to this method.
*
abstract void to(String value);
/**
* pass the value of the OfromO header field to this method.
*
abstract void from(String value);
E
/**
* pass the value of the OorganizationO header field to this
* method.
*
void organization(String value) { }
/**
* pass the content of a plain text body part to this method.
*
abstract void plainText(String content);
/**
* pass the content of a jpeg image body part to this method.
*
void jpegimage(Image content) { }
/**
* complete and return the outbound e-mail message.
*
abstract OutboundMsglIF getOutboundMsg() ;
} /I class MessageBuilder

Finally, here isthe code for the Qut boundMsgl F interface:

public interface OutboundMsgIF {
public void send() ;
} /I interface OutboundMsgIF

Related Patterns

Composite

The object built using the Builder pattern istypically a Composite.

Factory Method
The Builder pattern uses the Factory Method pattern to decide which concrete builder class to instantiate.

Semantic Marker

The ProductlF interface uses the Semantic Marker pattern.

Visitor

The visitor pattern allows the client object to be more closely couple to the construction to the new
complex object. Instead of describing the content of the objects to be built through a series of method
calls, theinformation is presented in bulk as a complex data structure.BuilderBuilder

21

Prototype
Synopsis

The Prototype pattern allows an object to create other objects without knowing their exact class or the
details of how to create them. It works by giving prototypical instances of the objects to be created to the object
that will initiate the creation of objects. The object initiating the creation then creates objects by asking the
prototypical objectsto clone themselves.

Context

Suppose that we are writing a program such as a CAD program that allows its users to draw diagrams
using a palette of symbols. The program will have a core set of symbolsthat are built into it. However, the
program is intended for use by people with different and specialized interests. The core set of symbolswill not be
adeqguate for people with a specialized interest. Those people will want additional symbols that are specific to
their interests. Most users of this program will be in that category. Therefore, it must be possible to provide
additional sets of symbolsthat users can add to the program to suite their needs.

That gives us the problem of how to provide these pal ettes of additional symbols. We can easily organize
things so that all symbols, both core and additional, are al descended from a common ancestor class. That will
give the rest of our diagram drawing program a consistent way of manipulating symbol objects. It does leave
open the question of how the program will create these objects. Creating objects such as these is often more
complicated than knowing how to instantiate a class. It may also involve setting values for data attributes of
objects or combining objects to form a composite object.

The solution that the Prototype pattern suggests to provide the drawing program with previously created
objectsto use as prototypes to create similar objects. The most important requirement for objects to be used as
prototypesis that they have a method, typically called clone, that returns a new object that is a copy of the
original object. Hereis a class diagram that shows how this would be organized:

DrawingFrogram SyrbollF

: , ginterfacen
registers symbol objects |1 P
{ clone

SymbalBuilder Symbal
0.* clonel)

creates symbol objects

Symbol Prototype

Synbol objectsimplement the Synbol | F interface that declares amethod called cl one. Thecl one
method returns a copy of the object. The drawing program maintains a collection of prototypical Synbol objects
that it uses by cloning. Syrbol Bui | der objects create Synbol objects and register them with the drawing
program.

22

Forces

* A system must be able to work with objects without knowing their exact class, how they are created or
what data they represent.

» Classesto beinstantiated are not known by the system until run time, when they are acquired on the fly
by atechnique such as dynamic loading.

» Creating alarge hierarchy of factory classes or abstract factories to parallel ahierarchy of classesto be
instantiated is undesirable.

« Thedifference between different objectsthat a system is to work with may be instances of the same class
that contain different state information or data content.

Solution

Here are the classes and interfaces that participate in the Prototype pattern:

Client PrototypelF
gintertaces

s | Clone()

registers ohjects | 1 ,f‘}‘

Frototype

FrototypeBuilder | () # clonel)
creates objects

registerPrototypel)

Prototype Pattern
Here are descriptions of the roles these classes and interfaces play in the Prototype pattern:

Client
The client class represents the rest of the program for the purposes of the Prototype pattern. The client
class needs to create objects that it knows little about. The client class will have a method that can be
called to add a prototypical object to a client object’'s collection. In the above diagram, that method is
indicated with the nameegi st er Pr ot ot ype. However, a name that reflects the sort of object being
prototyped, such asegi st er Synbol , is more appropriate in an actual implementation.

PrototypelF
All prototypical objects that a client object clones to create new objects must belong to a class that
implements an interface such as thisPrét ot ypel F interface minimally declares a clone method that
is intended to return a new copy of an object. Normally, additional methods are declared for the client to
use to manipulate objects that implementRhet ot ypel F interface.

The name of the interface used in this role is not norntliyt ot ypel F, but rather a name that
indicates the sort of object that will be implementing the interfaceSlikéol | F.

Prototype
This corresponds to multiple classes that implemenPtloe ot ypel F interface and are instantiated for
the purpose of being cloned by the client.

23

PrototypeBuilder
This corresponds to any class that is instantiated to supply prototypical objects to the client object. Such
classes should have a name that denotes the type of prototypical object that they build, such as
Synbol Bui | der.

Conseguences

Prototypical objects can be dynamically added and removed at run time. That is a distinct advantage
offered by none of the other creational patternsin this book.

e« A PrototypeBuil der object can simply supply afixed set of prototypical objects. A
Pr ot ot ypeBui | der object provides the additional flexibility of allowing new kinds of prototypical
objectsto be created by object composition and changes to the values of object attributes.

* Theclient object may also be able to create new kinds of prototypical objects. In the drawing program
example we looked at previously, the client object could very reasonably allow the user to identify a sub-
drawing and then turn the sub-drawing into a new symbol.

» Theclient classisindependent of the exact class that of the prototypical objectsthat it uses. Also, the
client class does not need to know the details of how to build the prototypical objects.

* TheProt ot ypeBui | der objects encapsulate the details of constructing prototypical objects.

* By insisting that prototypical objectsimplement an interface such as Pr ot ot ypel F, the Prototype
pattern ensures that the prototypical objects provide a consistent set of methods for the client object to
use.

* A drawback of the Prototype pattern is the additional work to writing Pr ot ot ypeBui | der classes.

e Programsthat use the Prototype pattern rely on dynamic linking or similar mechanisms. Installation of
programs that rely on dynamic linking or similar mechanisms can be more complicated.

e Thereisno need to organize prototypical objectsinto any sort of class hierarchy.

Implementation

An essential implementation issue is how the Pr ot ot ypeBui | der objects add objectsto aclient
object’s palette of prototypical objects. The simplest strategy is for the client class to provide a method for that
purpose that can be called ot ot ypeBui | der objects. A possible drawback to that is that the
Pr ot ot ypeBui | der objects will need so know the class of the client object. If that is a problem, the
Pr ot ot ypeBui | der objects can be shielded from knowing the exact class of the client objects by providing an
interface or abstract class for the client object.

How to implement the clone operation for the prototypical objects is another important implementation
issue. There are two basic strategies for implementing the clone operation:

» Shallow copying means that the variables of the cloned object contain the same values as the variables of
the original object and that all object references are to the same objects. In other words, only the object
being cloned is copied, not that objects that it refers to.

24

» Deep copying means that the variables of the cloned object contain the same values as the variabl es of
the original object, except that those variables that refer to objects refer to copies of the objects referred
to by the original object. Implementing deep copying can be tricky. Y ou will need to decide if you want
to make deep or shallow copies of the indirectly copied objects. Y ou will also need to be careful about
handling any circular references.

If you are coding in Java, the shallow copying is easy to implement because all classesinherit aclone
method that does just that. However, unless an object’s class implemetiteribabl e interface, it will refuse
to work. If all of the prototypical objects your program uses will be cloning themselves by shallow copying, you
can save yourself some work by declaringRhet ot ypel F interface to extend th@ oneabl e interface. That
way, all classes that implement theot ot ypel F interface also implement ti@ oneabl e interface.

Unless the client object’s palette of prototypical objects consists of a fixed number of objects having
fixed purposes, it will be inconvenient to use individual variables to refer each prototypical object. Instead, you
will want to use some sort of collection object that can contain a dynamically growing or shrinking palette of
prototypical objects. A collection object that plays this role in the Prototype pattern is called a prototype
manage. Prototype managers can be fancier than just a simple collection. They may allow objects to be retrieved
by their attribute values or other keys.

If your program will have multiple client objects, then you have another issue to consider. Will the client
objects have their own palette of prototypical objects or will they all share the same palette? The answer will
depend of the needs of your application.

JAVA API| Usage

The Prototype pattern is the very essence of Java Beans. Java Beans are instances of classes that conforr
to certain naming conventions that allow a bean creation program to know how to customize them. After a bean
object has been customized for use in an application, the object is saved to a file to be loaded by the application
while it is running.

Example

Suppose that you are writing an interactive role playing game. That is, a game that allows the user to
interact with computer simulated characters. One of the expectations for this game is that the people who play it
will grow tired of interacting with the same characters and want to interact with new characters. Because of that
expectation, you are also developing an add-on to the game that consists of a few pre-generated characters and a
program to generate additional characters.

The characters in the game are instances of a relatively small number of classes such as Hero, Fool,
Villain and Monster. What makes instances of the same class different from each other is the different attributes
values that are set for them, such as the images that are used to represent them on the screen, height, weight,
intelligence and dexterity.

Here is a class diagram that shows some of the classes involved in the game:

25

CharacterManager
getRandamCharacter] K ——= Character {{g?ﬁﬁ:gg}
addCharacter() cione()
getlmagel) ﬁﬁ
registers objects | 1 setiMage()
0 #* | creates objects Z‘S
CharacterLoader
Hera b onster
getBravery() getisciousness()
setBraveryl) setVisciousness()

Prototype Example

Hereisthe code for the Character class, an abstract class that servesin the role of Prototypel F:

public abstract class Character inplenents O oneable {
private String nane;
private |nage inage;
private int strength;

/**
* Qverride clone to make it public.
*/
public Object clone() {
try {
return super.clone();
} catch (Cd oneNot SupportedException e) {
/1 shoul d never happen because this class inplenents
/1 Cl oneabl e.
throw new Internal Error();
Y Il otry
} /1 clone()

public String getNane() {
return nane;
} /1 getNane()

public void setNane(String nane) {
thi s. name = nane;
} // setName(String)

public I nmage getlnage() {
return inage;

} /1 getlmage(l mage)

public void setlnage(lnage inage) {
this.imge = inage;

} /1 setlmage(l mage)

public int getStrength() {

26

return strength;
} /1 getStrength()

public void setStrength(int strength) {
this.strength = strength;
} // setStrength(int)

} // class Character

Asyou can see most of thisisjust simple accessor methods. The one less than obvious method is the
clone method. All abjects inherit a clone method from the Object class. Because that clone method is not public,
the character class must override it with a public declaration, just to make it accessible to other classes.

Here is source code for the Hero and Monster classes that serve as Prototype classes:

public class Hero extends Character {
private int bravery;

public int getBravery() {
return bravery;
} // getBravery()

public void setBravery(int bravery) {
this.bravery = bravery;
} // setBravery(int)
} // class Hero

public class Monster extends Character {
private int visciousness;

public int getVisciousness() {
return visciousness;
} // getVisciousness()

public void setVisciousness(int visciousness) {
this.visciousness = visci ousness;
} // setVisciousness(int)
} // class Monster

Hereisthe code for the Char act er Manager classthat servesintherole of client class:
/**
* This class manages the collection of prototypical objects for the
* game. Wien asked to, it clones an appropriate prototypical object
* and returns it to the requesting object.
*/
public class CharacterManager {
private Vector characters = new Vector();

/**
* Return a random character fromthe collection.
*/
Char acter get RandontCharacter () {
int i = (int)(characters.size()*Math.randon());
return (Character)((Character)characters.elenentAt(i)).clone();
} // get RandontCharacter()
/**
* Add a prototypical object to the collection.
* @aram character The character to add.
*/

27

voi d addCharact er (Character character) {
charact ers. addEl enent (character);
} // addCharacter(Character)

} // class CharacterManager

Hereisthe code for the Char act er Loader classthat fills the role of PrototypeBuilder:

/**
* This class | oads character objects and adds themto the
* the CharacterManager.
*/
cl ass Charact er Loader {
private Character Manager ngr;
/**
* Constructor
* @aram cm The CharacterManager that this object will work with.
*/
Char act er Loader (Char act er Manager cn) {
ngr = cm
} // Constructor(CharacterManager)
/**
* Load character objects fromthe specified file.
* Since failure only affects the rest of the programto the extent
* that new character objects are not |oaded, we need not throw any
* exceptions.
* @aram fname The nanme of the file to read objects from
* @eturn The nunber of Charcter objects | oaded.
*/
nt | oadCharacters(String fnane) {

i nt object Count = 0; /1 The nunber of objects | oaded
/1 If construction of the InputStreamfails, just return
try {

| nput Stream i n;
in = new Fil el nput Strean{fnane);
in = new Bufferedl nput Strean{in);
Obj ect I nput Stream ol n = new Obj ect | nput Strean(in);
whil e(true) {
Object ¢ = oln.readject();
if (c instanceof Character) {
ngr . addChar act er ((Character)c);
YoILOif
} I/ while
} catch (Exception e) {
Y Il otry
return obj ect Count;
} // loadCharacters(String)
} /1 class CharacterlLoader

Related Patterns

Abstract Factory
The Abstract Factory pattern can be a good alternative to the Prototype pattern where the dynamic
changes that the Prototype pattern allows to the prototypical object palette are not needed.

PrototypeBuilder classes may use the Abstract Factory pattern to create a set of prototypical objects.

Facade
The client class commonly acts as facade that separates the other classes that participate in the Prototype

pattern from the rest of the program.

28

Factory Method
The Factory Method pattern can be an aternative to the Prototype pattern when the palette of
prototypical objects never contains more than ne object.

Composite and Wrapper
The Prototype pattern is often used with the Composite and Wrapper patterns.PrototypePrototype

Singleton
Synopsis

The Singleton pattern ensures that all objects that use an instance of a class use the same instance of that

class.

Context

Some classes should have exactly one instance. These classes usually involve the centrally management
of aresource. The resource may be external, as is the case with an object than manages the reuse of database
connections. The resource may be internal, such as an object that keeps an error count and other statistics for a
compiler.

Forces

e There must be exactly one instance of aclass.

* Theoneinstance of aclass must be accessible to al clients of that class.

Solution

The Singleton pattern is relatively simple, since it only involves one class:

singleton
getlnstance()
operation()
operation()

singletoninstance
singletonD atal
singletonD atal

Singleton

A singleton class has a static variable that refers to the one instance of the class that you want use. That
instance is created when the class is loaded into memory. The class should be implemented in away that prevents

other classes from creating any additional instances of a singleton class. That means ensuring that all of the class’

constructors are private.

To access the one instance of a singleton class, the class provides a static method, typically called

get I nst ance orget d assnane, which returns a reference to the one instance of the class.

29

Conseguences

» Exactly oneinstance of asingleton class exists.

» Other classes that want a reference to the one instance of the singleton class must get that instance by
calling the classget | nst ance static method, rather than by constructing the instance themselves.

Implementation

To enforce the nature of a singleton class, the class must be coded in a way that prevents other classes
from creating instances of the class. The way to accomplish that is to declare all of the class’ constructors private.
Be careful to declare at least one private constructor. If a class does not declare any constructors, then a default
public constructor is generated for it.

One common variation on the Singleton pattern occurs in situations where the instance of a Singleton
may not be needed. In situations like that, you can use the Lazy Materialization pattern to postpone creation of
the instance until it is needed.

JAVA API| Usage

The Java API clagsava. | ang. Runt i ne is a singleton class. It has exactly one instance. It has no
public constructors. To get a reference to its one instance, other classes must call its statigenBtimod ne.

Example

Here is a Java class that can be used to avoid playing two audio clips at the same time. The class is a
singleton class. Its instance can be accessed by calling itsgstaticst ance method. When you play audio
clips through that object, it stops the last audio clip it was playing before it starts the newly requested one. If all
audio clips are played through thedi oCl i pManager object then there will never be more than one audio clip
playing at the same time.

public class Audi od ipManager inplenents Audi od i p{

private static Audi odipManager instance = new Audi oC i pManager ();
private AudioCip prevdip; // previously requested audio clip
/**
* Return a reference to the only instance of this class.
*/
public static AudiodipManager getlnstance() {

return instance;
} // getlnstance()
/**
* Starts playing this audio clip. Each tinme this nethod is called,
* the clip is restarted fromthe begi nning.
*/
public void play() {

if (prevdip !'= null)

prevdip.play();

} 11 oplay()
/**
* Stop the previously requested audio clip and play the given
* audio clip.
* @aramclip the new audio clip to play.
*/
public void play(Audiodip clip) {

if (prevdip !'= null)

prevdip.stop();
prevdip = clip;

30

clip.play();
} /1 play(Audiodip)
/**
* Starts playing this audio clip in a | oop.
*/
public void loop() {
if (prevCip !'= null)
prevdip.loop();
} /1 1oop()
/**
* Stop the previously requested audio clip and play the given
* audio clip in a |oop.
* @aramclip the new audio clip to play.
*/
public void | oop(AudioCip clip) {
if (prevCip !'= null)
prevdip.stop();
prevCip = clip;
clip.loop();
} /1 play(Audiodip)
/**
* Stops playing this audio clip.
*/
public void stop() {
if (prevCip != null)
prevdip.stop();

} 11 stop()
} /1 class Audiod i pManager

Related Patterns

The Singleton pattern can be used with many other patterns. In particular, it is often used with the
Abstract Factory, Builder and Prototype patterns.Singleton

31

