Fundamental Patterns

The patterns in this chapter are the most fundaments and most important to know. Y ou will find these
patterns used extensively in other patterns.

Deleqgation (When not to use Inheritance)
Synopsis

Delegation isaway of extending and reusing the functionality of a class by writing an additional class
with additional functionality that uses instances of the original classto provide the original functionality.

Context

Inheritance is a common way of extending and reusing the functionality of a class. However, inheritance
isinappropriate for many situations. For example:

« Inheritanceis useful for capturing is-a-kind-of relationships because they are very static in nature.
However, is-a-role-played-by relationships are awkward to model by inheritance. Instances of aclass can
play multiple roles. For example, consider the example of an airline reservation system.

An airline reservation system will include such roles as passenger, ticket selling agent and flight crew. It
is possible to represent this as a class called Person that has subclasses corresponding to these roles. The
problem is that the same person can fill more than one of these roles. A person who is normally part of a
flight crew can also be a passenger. Some airlines will sometimes float flight crew to the ticket counter.
The means that the same person can fill any combination of these roles. To model this situation we would
need seven subclasses for Person. The number of subclasses needed increases exponentially with the
number of roles, so that 63 subclasses are needed to mode! 6 roles.

A more serious problem is that the same person can play different combinations of roles at different
times. Using inheritance will necessitate using multiple objects to represent the same person in order to
capture changesinrole.

« If youfind thereis aneed for an object to be a different subclass of a class at different pointsin time,
then it should not be a subclass of that class in the first place.

« If youfindthat aclassistrying to hide amethod or variable inherited from a superclass from other
classes, then that class should not inherit from that subclass.

» Declaring a class that is related to a program’s problem domain as a subclass of a utility class is usually
not a good idea for two reasons:

* When you declare a class to be a subclass of a clasgtiker or Hasht abl e, you are running the
risk that these classes that you do not control will change in an incompatible way in the future.
Though it is a low risk, there is usually no corresponding benefit to offset it.

* When people write a problem domain specific class as a subclass of a utility class, the intent is
usually to use the functionality of the utility class to implement problem domain specific

1

functionality. The problem because it weakens the encapsulation of the problem domain class’
implementation.

Client classes that use the problem domain class may be written in a way that assumes the problem
domain class is a subclass of the utility class. If the implementation of the problem domain changes
in away that resultsin its having a different superclass, those client classes that rely on its having its
original superclass will break.

An even more serious problem is that client classes can call the public methods of the utility
superclass, which defeats its encapsul ation.

Inappropriate use of inheritance is sufficiently common to classify as an anti-pattern.

Forces

* Many or even possibly most reuse and extension of a class is not appropriately done through inheritance.

« By determining its superclass, a class’ declaration determines the behavior that a class inherits from its
superclass. Inheritance is not useful when the behavior that a class should build on is determined at run
time.

Solution

Delegation is a way of reusing and extending the behavior of a class. It works writing a new class that
incorporates the functionality of the original class by using an instance of the original class and calling its
methods.

uzes
Lelagates

Crelagator

uzed by

Delegation

Delegation is more general purpose than inheritance. Any extension to a class that can be accomplished
by inheritance can also be accomplished by delegation.

Conseguences

Delegation can be used without the problems that accompany inheritance. Another advantage of
delegation is that it is easy to compose behavior at run time.

The main disadvantage of delegation is that it is less structured than inheritance. Relationships between
classes built using delegation are less obvious than those built using inheritance. Here are some strategies for
improving the clarity of delegation based relationships:

* Use well-known design and coding patterns. A person reading code that uses delegation will be more
likely to understand the role that the objects play if the roles are part of a well know pattern or a pattern
the recurs frequently in your program.

« Use consistent naming schemes to refer to objects in a particular role. For example if multiple classes
delegate the creation of widget objects, the role of the delegatee object becomes more obvious if all of
the classes that delegate that operation refer to delegatee objects through a variable called
wi dget Factory.

e You can always clarify he purpose of a delegation by writing comments.

Note that it is possible and advantageous to use all three of these strategies at the same time.

Implementation

The implementation of delegation is very straightforward. It simply involves acquiring areference to an
instance of the class you want to extend.

JAVA API| Usage

The Java APl isfull of examples of delegation. A particularly good example is the
j ava. awt . AWTEvent Mul ti cast er class. Other classes that implement GUI components and are sources of
awt eventsusethe AWTEvent Mul ti cast er class. Instances of those classes delegate to instances of
AWEvent Ml ti cast er theresponsibility of remembering what objects are listening for the events that they
produce and also the responsibility of sending an event to al of those objects.

Example

For aexample of delegation, we will look at another part of an airline reservation system. Suppose that
the reservation system is responsible for keeping track of checked pieces of luggage. We can expect this part of
the system to include classes to represent a flight segment, aluggage compartment and pieces of luggage as
shown in the following collaboration diagram:

FlightSegrment 1: checkLuggageiluggage) | LuggageC ompartment
-
checkLugzageLugzage) Luggage - checklLugzageLugzage)

Check Luggage

In the above diagram, the FI i ght Segnent class that has a method called checkLuggage that checks a
piece of luggage onto a flight. The flight class del egates that operation to an instance of the
LuggageConpart ment class.

Another common use for delegation is to implement aggregation. A class such as
LuggageConpart ment that maintains an aggregation of other objects normally delegates that aggregation to
another object, such asan instance of j ava. uti | . Vect or . Because implementing aggregation by delegation is
S0 common, the separate aggregation object is frequently omitted from design drawings.

Here are code fragments that implement the above design. Firstly, hereisthe Fl i ght Segrent class that
delegates the checkLuggage operation to the LuggageConpar t ment class:

cl ass Flight Segnent {

LuggageConpart ment | uggage

/**
* Check a piece of |uggage
* @aram pi ece The piece of luggage to be checked
* @xception LuggageException if piece cannot be checked
*/
voi d checkLuggage(Luggage piece) throws LuggageException {
| uggage. checkLuggage(pi ece) ;
} /1 checkLuggage(Luggage)
} /1 class FlightSegnent

3

Hereisthe LuggageConpart ment classthat delegates the aggregation of pieces of luggage to the
Vector class

cl ass LuggageConpartnment {
/1 Max weight for this |uggage conpartnent in kg
private float nmaxWeight;
private float weight = 0.0F; /1 Total weight of checked | uggage

/1 The pieces of luggage in this LuggageConpart nent
private Vector pieces; //
/**
* Constructor
* @aram max\Wei ght max weight for this |uggage conpartnent in kg
*/
LuggageConpart nent (fl oat maxWei ght) {
t hi s. max\Wei ght = maxWei ght;
pi eces = new Vector();
} // Constructor(float)
/**
* Check a piece of |uggage
* @aram pi ece The piece of |luggage to be checked.
* @xception LuggageException if piece cannot be checked.
*/
synchroni zed
voi d checkLuggage(Luggage pi ece) throws LuggageException {
fl oat pi eceWeight = piece.getWight();
if (pieceWeight + weight > maxWei ght)
t hrow new LuggageExcepti on("Luggage conpartnent is full");
wei ght += pi ece\ei ght;
pi eces. addEl enent (pi ece);
} /1 checkLuggage(Luggage)
} /1 class LuggageConpart nent

Related Patterns

Almost every other pattern uses delegation.
DelegationDel egationDel egationDel egati onDel egati onDel egati onDel egati onDel egationDel egationDel eg
ationDel egationDel egationDel egation

Class Decoupling
Synopsis

Keep aclassthat uses data and services provided by instances of other classes independent of those
classes by having it access those instances through an interface.

Context

Suppose that you are writing an application to managing the purchase of goods for a business. Among the
entities your program will need to be informed about will be vendors, freight companies, receiving locations and
billing locations. One thing they have in common is that they all have street addresses. These street addresses will
appear in different parts of the user interface. Y ou will want to have a class for displaying and editing street
addresses so that you can reuse it wherever there is an address in the user interface. Let’s call that class
Addr essPanel .

You will wantAddr essPanel objects to be able to get and set address information in a separate data
object. That raises the question of what can instances afithessPanel class assume about the class of the

4

data objects that will be with them. Clearly, you will use different classes to represent vendors, freight companies
and the like. If you program in a language like C++ that supports multiple inheritance, you can arrange for the
data objects that instances of Addr essPanel useto inherit from an address classin addition to the other classes
they inherit from. If you program in a language like Java that uses a single inheritance object model, then you
must explore other solutions.

Y ou can solve the problem by creating an address interface. Instances of the Addr essPanel classwould
then simply require data objects that implement the address interface. The would then be able to call the accessor
methods of that object to get and the its address information. Using the indirection that the interface provides,
instances of the Addr essPanel are ableto call the methods of the data object without having to be aware of
what classit belongs to. Here is a class diagram showing these relationships:

winterfacex
AddressIF

getfddress1)
setfddress1)
getfddress2i)
AddressPane| [HSES setfddress2) gy EECRRTEEPRID DataClass
used by | getCity)
setCity
getState

zat State
getPostalCader)
setPostalCodel)

Indirection Through Address Interface
Forces

» If theinstances of a must use another object and that object is assumed to belong to a particular class the
reusability of a class would be compromised.

Solution

To avoid the coupling of classes because they share a uses/used-by relationship, make the usage indirect
through an interface. Here is a class diagram showing this rel ationship:

i interfaces]
Client uses winterfaces | o -
=" Used by IndirectionlF [envice

Class Decoupling
Here are the roles that these classes and interface play:

Client
Thed i ent classuses other classes that implement the | nt er ect i onl F interface.

Indirectionl F
The I ndi recti onl F interface provides the indirection that keeps the Cl i ent class independent of the
classthat is playing the Ser vi ce role.

Service
Classesin thisrole provide aserviceto classesinthe d i ent role.

5

Conseguences

* Applying the Class Decoupling pattern keeps a class the needs a service from another class from being
coupled to any specific class.

e Like any other indirection, the Class Decoupling pattern can make a program more difficult to
understand.

Implementation

Implementation of the Class Decoupling pattern is straightforward. Define an interface to provide a
service, write client classes to access the service through the interface and write service providing classes that
implement the interface.

JAVA API| Usage

The Java API definesthe interfacej ava. i o. Fi | enaneFi | t er. That interface declares a method that
can be used to decide is anamed file should be included in a collection. The Java API aso defines the
java. awt . Fi | eDi al og classthat can useaFi | enaneFi | t er object to filter thefilesthat it displays. You can
passthel i st method of thej ava. i o. Fil e classaFi | enaneFi | t er object to filter the filesthat it putsin the
array that it returns.

Example

The example for the Class Decoupling pattern isthe Addr essPanel classand Addr essl F interface
discussed under the Context heading. Here is code for the Addr essPanel class:

cl ass AddressPanel extends Panel {
private AddresslF dat a; /1 Data object
/1 Text fields
TextField addresslField
Text Fiel d address2Field
TextField cityField
TextField stateField
Text Fi el d post al CodeFi el d

new Text Fi el d("", 35);
new Text Fi el d("", 35);
new Text Fiel d("", 16);
new Text Fiel d("", 2);

new Text Fi el d("", 10);

] **

* Set the data object that this panel will work with.
* @aram address The data object that this object should fetch
* and store data from
*/
public void setData(AddresslF address) {
data = address;
addr ess1Fi el d. set Text (addr ess. get Address1());
addr ess2Fi el d. set Text (addr ess. get Address2());
cityField. set Text (address.getCity());
stat eFi el d. set Text (address. getState());
post al CodeFi el d. set Text (addr ess. get Post al Code());
} // setData(AddresslF)

/**
* Save the contents of the TextFields into the data object.
*/
public void save() {
if (data !'= null) {
dat a. set Addr ess1(addresslFi el d. get Text());
dat a. set Addr ess2(addr ess2Fi el d. get Text());

data.setCity(cityField.getText());
dat a. set State(stateField.getText());
dat a. set Post al Code(post al CodeFi el d. get Text ());
} /1 if data
} /1 save()
} // class AddressPanel

Notice that the Class Decoupling pattern only manifestsitself in the fact that the Addr essPanel class
declaresits dat a instance variable as an interface type.

The heart of the Class Decoupling pattern is the interface that provides the indirection between the client
class and the service class. Here is the code for the Addr ess| F interface that provides that indirection for the
Addr essPanel class:

public interface AddresslF {

/**

* Get the first line of the street address.
*/

public String getAddressl();

/**

* Set the first line of the street address.
*/

public void setAddress1(String addressl);

/**

* Get the second line of the street address.
*/

public String getAddress2();

/**

* Set the second line of the street address.
*/

public void setAddress2(String address2);

/**

* CGet the city.

*/

public String getGty();

/**

* Set the city.

*/

public void setCty(String city);

/**

* Get the state.

*/

public String getState();

* Set the state.
*/
public void setState(String state);

* get the postal code
*/
public String getPostal Code() ;

/**
* set the postal code
*/
public void setPostal Code(String Postal Code);
} /] interface AddresslF

The interface simply declares the methods required for the needed service.

Finally, hereis code for service class. The only impact that the Class Decoupling pattern has on the class
isthat it implements the Addr ess| F interface.

cl ass ReceivingLocation extends Facility inplements Addressl F{
private String addressl,;
private String address2;
private String city;
private String state;
private String postal Code;

/**

* Get the first line of the street address.

*/

public String getAddress1() { return addressl; }

/**

* Set the first line of the street address.

*/

public void set Address1(String addressl) { this.addressl = addressl; }

/**

* CGet the second line of the street address.

*/

public String getAddress2() { return address2; }

/**

* Set the second line of the street address.

*/

public void set Address2(String address2) { this.address2 = address2; }

/**

* CGet the city.

*/

public String getGty() { return city; }

/**

* Set the city.

*/

public void setGty(String city) { this.city =city; }

/**

* Get the state.

*/

public String getState() { return state; }

/**

* Set the state.

*/

public void setState(String state) { this.state = state; }

/**

* get the postal code
*/

public String getPostal Code() { return postal Code; }

/**
* set the postal code
*/
public void setPostal Code(String postal Code) {
t hi s. post al Code = post al Code;
} // setPostal Code(String)
} // class ReceivinglLocation

Related Patterns
Delegation
The Delegation and Class Decoupling patterns are often used together.

The Class Decoupling pattern is used in many other patterns.Class DecouplingClass DecouplingClass
DecouplingClass DecouplingClass Decoupling

Immutable Object
Synopsis

The Immutable Object pattern increases the robustness of objects that share references to the same object
and reduces the overhead of concurrent access to an object. It accomplishes that by not allowing any of an
object’s state information to change after the object is constructed. The Immutable Object pattern also avoids the
need to synchronize multiple threads of execution that share an object.

Context

The Immutable Object pattern is useful in a great variety of contexts. What these contexts have in
common is that they use instances of a class that are shared by multiple objects and whose states are fetched mo
often than changed.

In situations where multiple objects share access to the same object, a problem can arise if changes to the
shared object are not properly coordinated between the objects that share it. That can require careful
programming that is easy to get wrong. If the changes to and fetches of the shared objects’ state are done
asynchronously, then in addition to the greater likelihood of bugs, correctly functioning code will have the
overhead of synchronizing the accesses to the shared objects’ state.

The Immutable Object pattern avoids these problems. It organizes a class so that the state information of
its instances never changes after they are constructed.

Forces

e Your program uses instances of a class that is passive in nature. The instances do not ever need to change
their own state. The instances of that class are used by multiple other objects.

« Correctly coordinating changes to the state information of an object that is used by multiple other objects
is difficult and bug prone.

» If access to a shared object’s state information involves multiple threads and modification of its state
information, then the threads that access the state information must be synchronized in order to ensure
consistency.

« Theoverhead of synchronizing the threads may add an unacceptable overhead to accessing the shared
object’s state information.

Solution

To avoid having to manage the propagation and synchronization of changes to the state information of
objects used by multiple other objects, make the shared objects immutable, disallowing any changes to their state
after they are constructed. You can accomplish that by not including any methods, other than constructors, in
their class that modify state information. Such a class can be organized like this:

ImmutableClass

woonstructors ImmutableClass))
getfttributeq])
getattributez])
getfttribute3])

Immutable

Notice that the class has accessor methods to get state information but not set it.

Conseguences

Since the state of immutable objects never changes, there is no need to write code to manage such
changes. Also, there is no need to synchronize threads that access immutable objects.

Operations that would otherwise have changed the state of an object must create a new object. This is an
overhead that mutable object do not incur.

Implementation

There are two concerns you should have when implementing the Immutable Object pattern.

* No method, other than a constructor, should modify the values of a class’ instance variables.

* Any method that computes new state information must store that information in a new instance of the
same class, rather than modifying the existing object’s state.

JAVA API| Usage

Instances of thét ri ng class are immutable. The sequence of characters $hai ag object
represents is determined when it is constructed.STheng class does not provide any methods to change the
sequence of characters represented I8y @ ng object. Methods of thét ri ng class, such asoLower Case
andsubst ri ng, that compute a new sequence of characters return the new sequence of characters in a new
St ri ng object.

Example

Suppose that you are writing a game program that involves the placement and occasional movement of
objects on a playing field. In the course of designing the classes for that program, you decide that you want to use
immutable objects to represent the position of objects on the playing field. The organization of a class for
modeling position that way might look like this:

10

Faszitian

win nstructo e P ositioncn
getes)

getr()

Faszition: Offset(:, v)

Immutable Position

You have aclass called Posi t i on that has an x and y value associated with itsinstances. The class has a
constructor that specifies the x an 'y value. It a'so has methods to fetch the x and y value associated its instances.
Lastly, it has a method that creates anew Posi t i on object that isagiven x and y offset from an existing
position.

Here iswhat the declaration for such a position class might look like:

class Position {
private int x;
private int vy;

/**
* Constructor
* @aram x The x position associationed with this object.
* @aramy The y position associationed with this object.
*/
public Position(int x, int y) {
this.x = x;
this.y = vy;
} // Position(int, int)

/**

* Return the x value assolciated with this object.
*/

public int getX() { return x; }

/**

* Return the y value assolciated with this object.
*/

public int getY() { returny; }

/**
* Return a Position object that has x and y values that are
* offset fromthe x and y values of this object by the given
* amount .
* @aram xOf fset The x of fset.
* @aramyOfset The y of fset.
*/
public Position offset(int xOffset, int yOffset) {
return new Position(x+xCffset, y+yOifset);
} // offset(int, int)
} // classs Position

Related Patterns

Single Threaded Execution
The Single Threaded Execution pattern is the pattern most frequently used to synchronize the
access by multiple thread of a shared object. Immutable Objectlmmutable Objectimmutable
Objectlmmutabl e Objectlmmutable Objectlmmutable Object

11

Semantic Interface

The Semantic Interface pattern occurs rarely outside of utility classes. However, it isincluded in this
chapter because it takes advantage of the fundamental nature of class declarations.

Synopsis

The Semantic Interface pattern uses interfaces that declare no methods or variables to indicate semantic
attributes of aclass. It works particularly well with utility classes that must determine something about objects
without assuming they are an instance of any particular class.

Context

Java’'sQbj ect class defines a method callegual s that takes an argument that can be a reference to
any object. Since Javathj ect class us the ultimate superclass of all other classes in Java, all other classes
inherit theequal s method from th&bj ect class. The implementation efjual s provided by théxj ect
class returns true if the object passed to it is the same object as the object it is associated with. Classes that want
their instances to be considered equal if they contain the same values overifleattemethod appropriately.

Container objects, such pava. uti | . Vect or, call an object'®qual s method when performing a
search of their contents to find an object that is equal to a given object. Such searches might call an object’s
equal s method for each object in the container objects. That is wasteful in those cases where the object being
searched for belongs to a class that does not overridgtlaé s method. It is faster to use the operator to
determine if two objects are the same object than it is to calbfhect class’ implementation of thequal s
method. If the container class were able to determine that the object being searched for belongs to a class that
does not override thequal s method, then it could use the operator instead of calliregual s. The problem
with that is that there is no way to determine if an arbitrary object’s class overridegities method.

It is possible to provide a hint to container classes to let them know that it is correct to=use the
operator for an equality test on instances of a class. You can define an interfaceqealle®y | dent i ty that
declares no methods or variables. You can then write container classes to assume that if a class implements
Equal Byl dent i t y then it the equality comparison can be done usingthaperator.

An interface that does not declare methods or variables and is used to indicate attributes of classes that
implement them is said to be a semantic interface.

Forces

» Utility classes may need to know something about the intended use of an object’s class without relying
on object’s being an instance of a particular class.

* Classes can implement any number of interfaces.

* ltis possible to determine if an object’s class implements a known interface without relying on the object
being an instance of any particular class.

Solution

For instances of a utility class to determine if another class’ instances are included in a classification
without the utility class having knowledge other classes, it can determine if other classes implement a semantic
interface. A semantic interface is an interface that does not declare any methods or variables. You declare a class

12

to implement a semantic interface to indicate that it belongs to the classification associated with the semantic
interface.

Here isadiagram that shows these rel ationships:

* winterface . Unmaned
Recognizes ™ SemanticlF

Utility
i

aperationd{ Object)

haked

Semantic Interface Class Diagram

The above diagram shows a semantic interface called Semant i cl F. Thereisaclass called Mar ked that
implements Semant i ¢l F and a class called Unmar ked that doesn’t. There is also a utility class calledl ity
that is aware of thBemant i cl F interface.

—_—
operation1ilnmarke di ility
operation Object)
—_—
operationdihdaked)

Semantic Interface Collaboration

Instances obit i | i t yCl ass receive calls to thewper at i on1 method. The parameter passed to that
method can be an object that implements or does not impl&memtt i cl F.

Conseguences

« Instances of utility classes are able to make inferences about objects passes to their methods without
depending on the objects to be instances of any particular class.

e The relationship between the utility class and the semantic interface is transparent to all other classes
except for those classes that implement the interface.

Implementation

The essence of the Semantic Interface pattern is that an object that either does or does not implement a
semantic interface is passed to a method of a utility class. The formal parameter that corresponds to that object is
typically declared aébj ect . If appropriate, it is reasonable to declare that formal parameter to be a more
specialized. class.

It is also possible to use an interface that declares methods in the Semantic Interface method. In such
cases, the interface used as a semantic interface usually extends a purely semantic interface.

Declaring that a class implements a semantic interface implies that the class is included in that
classification implied by the interface. It also implies that all subclasses of that class are included in the
classification. If there is any possibility that someone will declare a subclass that does not fit the classification,

13

then you should take measures to prevent that from happening. Such measures might include declaring the class
final to prevent it from being subclassed or its equals method to be final to prevent it from being overridden.

JAVA API| Usage

The Obj ect Qut put st r eamclass writes objects as a stream of bytes that can be read and turned back
into an object by the Qbj ect | nput St r eamclass. The conversion of an object to a stream of bytesis called
serialization. There are a number of reasons why instances of some classes should not be serialized. Because of
that, the Obj ect Qut put st r eamclass refuses to serialize objects unless their class indicates that the serialization
should be allowed. The way that classes indicate that their instances are allowed to be serialized is by
implementing the Ser i al i zabl e interface.

Example

For an example of an application of the Semantic Interface pattern, see the following class that
implements alinked list data structure. At the bottom of the listing, you will see methods called fi nd, fi ndEq
and f i ndEqual s. The purpose of al three methodsisto find aLi nkedLi st node that refersto a specified
object. Thefi nd method is the only one of the threethat is public. Thef i ndEq method performs the necessary
equality tests using the == operator. Thef i ndEqual s method performs the necessary equality tests using the
equals method of the object being searched for. Thef i nd method decides which of the other two methods to call
by determining if the object to search for implements the semantic interface Equal Byl denti ty.

/**
* Instances of this class are nodes of a linked list.
* Alinked list is a chain of objects that have two object references
* associated with them One is the head of the list, which is another
* data object. The other is the tail of the list, which is either null
* or another linked list.
*/
public class LinkedList inplements C oneable, java.io. Serializable {
private bject head,
private LinkedList tail;
private bool ean traversed = false; // true when this noed is being traversed

/**
* This constructor creates a LinkedList with the given head and a null tail.
* @aram head The object that will be the head of this Iist
*/
public LinkedList(Object head) {
thi s(head, null);
} /1 constructor(LinkedLi st)

/**
* This constructor creates a LinkedList with the given head and tail.
* @aram head The object that will be the head of this Iist
* @aramtail null or the rest of this linked list.
*/
public LinkedList(Object head, LinkedList tail) {
this. head = head;
this.tail = tail;
} /1 constructor(LinkedLi st)

/**
* Return the head of this linked list.
*/
public Object getHead() ({
return head;
} /] getHead()

14

/**
* Return the tail of this linked list.
*/
public LinkedList getTail () {
return tail;
} /1 getTail ()

/**

* Return the nunber of nodes in this linked |ist

*/
synchroni zed public int size() {
if (tail == null)
return 1;
try {
traversed = true;
if (tail.traversed)
return 1;
return 1 + tail.size();
} finally {
traversed = fal se;
Y I otry
Y 11 size()
/**

* Return an Enuneration of the data in this linked list (the
* heads).
*/
public Enuneration el ements() {
return new Li stEnuneration();
} /1 elenents()

/**
* private class to enunerate data of a linked list.
*/
private class ListEnuneration inplenments Enuneration {
private LinkedList thisNode = LinkedList.this;

/**

* Tests if this enuneration contains nore el enents.
* @eturn <code>true</code> if this enuneration contains nore

* el enent s;

*/

publ i c bool ean hasMoreEl enents() {
return thisNode !'= null;

} /1 hasMoreEl enent s()

/**

* Returns the next elenent of this enuneration.

* @eturn the next elenment of this enuneration.
* @xception NoSuchEl ement Exception if no nore el enents exist.
*/

public Object nextEl ement() {

if (thisNode == null)
t hr ow new NoSuchEl enent Excepti on();

oj ect next = thisNode. head;
t hi sNode = thisNode.tail;
return next;

} /1 nextEl ement ()

} /] class ListEnunmeration

/**

15

* Find an object in a linked list that is equal to the given

* object. Equality is normally determined by calling the given

* object’s equals nmethod. However, if the given object inplenments
* the Equal Byldentity interface, then equality will be determ ned
* by the == operator.

* @arans target The object to search for.

* @eturn a LinkedLi st whose head is equal to the given object or

* null if the target is not found.
*/
public LinkedList find(Qbject target) {
if (target == null || target instanceof Equal Byldentity)
return findEqg(target);
el se

return findEqual s(target);
} /1 find(Object)

/**
* Find an object in alinked list that is equal to the given
* object. Equality is deternined by the == operator.
* @arans target The object to search for.
* @eturn a LinkedLi st whose head is equal to the given object.
*/
private synchroni zed Li nkedLi st findEq(Object target) {
if (head == target)
return this;
if (tail == null)
return null;
try {
traversed = true;
if (tail.traversed)

return null;
return tail.findEq(target);
} finally {
traversed = fal se;
Y I otry

} /1 find(Object)

/**
* Find an object in alinked list that is equal to the given
* object. Equality is determined by calling the given
* object’s equal s method.
* @arans target The object to search for.
* @eturn a LinkedLi st whose head is equal to the given object.
*/
private synchroni zed Li nkedLi st findEqual s(Object target) {
i f (head. equal s(target))
return this;
if (tail == null)
return null;
try {
traversed = true;
if (tail.traversed)

return null;
return tail.findEqual s(target);
} finally {
traversed = fal se;
Y I otry

} /1 find(Object)
} /1 class LinkedLi st
Semantic InterfaceSemantic InterfaceSemantic InterfaceSemantic Interface

16

Proxy

Proxy isavery general pattern that occurs in many other patterns. Also, there are patterns that consist
entirely of a specialized application of proxy.

Synopsis

The Proxy pattern forces method calls to an object to occur indirectly through a proxy object that acts as
asurrogate for the other object, delegating method calls to that object. Classes for proxy objects are declared in a
way that minimizes client object’s awareness that they are dealing with a proxy.

Context

A proxy object is an object that receives method calls on behalf of another object. Client objects call the
proxy object’'s method. The proxy object’'s methods do not directly provide the service that its clients expect.
Instead, the proxy object's methods call the methods of the object that provides the actual service. Here is a
diagram showing that structure:

ﬂ)—p— SenriceP roxr ﬂL’-— Senvice
dolt) dalt])

Method Calls Through a Proxy

Though a proxy object’'s methods do not directly provide the service that its clients expect, the proxy
object may provide some management of those services. Proxy objects generally share a common interface or
superclass with the service providing object. That makes it possible for client objects to be unaware that the are
calling the methods of a proxy object rather than the methods of the actual service providing object. Transparent
management of another object’s services is the basic reason for using a proxy.

There many different types of service management that a proxy can be used to provide. Some of the more
important ones are documented elsewhere in this book as patterns in their own right. Here are some of the more
common uses for proxies:

« Make a method that can take a long time to complete appear to return immediately. This use of proxies is
documented as the Asynchronous Invocation pattern.

* Create the illusion that an object that exists on a different machine is an ordinary local object. This use of
proxies is documented as the Remote Proxy pattern.

e Control access to a service providing object. This use of proxies is called the Access Proxy pattern.

* Create the illusion that a service object exists before it actually does. That can be useful if a service
object is expensive to create and its services may not be needed. This use proxies is documented as the
Virtual Proxy pattern.

Forces
* ltis not possible for a service providing object to provide a service at a time or place that is
convenient.

« Gaining visibility to an object is non-trivial and you want to hide that complexity.

17

» Accessto aservice providing object must be controlled without adding complexity to the service
providing object or coupling the service to the access control policy.

* The management of a service should be provided in away that is transparent as possible to the clients
of that service.

Solution

Transgparent management of a service providing object can be accomplished by forcing all access to the service
providing object to be accomplished through a proxy object. In order for the management to be transparent, the
proxy object and the service providing object either must both be instances of a common superclass or implement
a common interface:

Abztact Senice Instead of hawing a common
R superclass, 3 service providing ol ass
ool] and its related proxies may implement

a common interface.

i

ServiceP roxy Sernvice

dolt) daltr 3

Proxy Class Diagram

The above diagram does not show any details for implementing any particular management policy.

Conseguences

The service provided by a service providing object is managed in a manner transparent to that object and its
clients.

Unless the use of proxiesintroduces new failure modes, thereis normally no need for the code of client classes to
reflect the use of proxies.

Implementation

Without any specific management policy, the implementation of the Proxy pattern simply involves creating a
class that shares a common superclass or interface with a service providing class and del egates operations to
instances of the service providing class.

JAVA API| Usage

The Java API does not use the vanilla Proxy pattern. Where proxies are used in the Java API, they are used to
provide a specific form of service management.

Example

The application of the Proxy pattern is not useful unless it includes some service management behavior.
The example for the Proxy pattern uses proxies to defer an expensive operation until it is actually needed. In the
cases that the operation turns out not to be needed, the operation is never performed.

18

Theexampleisasubclassof j ava. uti | . Hasht abl e that isfunctionally equivalent to Hasht abl e.
The different is the way that it handles the clone operation. Cloning aHasht abl e isan expensive operation.

One of the more common reasons for cloning an object like aHasht abl e isto avoid holding alock on
the object for along time when al that is desired is to fetch multiple key-value pairs. In a multi-threaded
program, to ensure that a Hasht abl e in a consistent state when you are fetching key-value pairs fromiit, you can
use a synchronized method to obtain exclusive access to the Hasht abl e. While that is going on, other threads
will wait to gain access to the same Hasht abl e, which may be unacceptable. In some other cases it may not be
possible to retain exclusive access. An example of that isthe Enurer at i on object returned by the Hasht abl e
class’ elements object.

Cloning aHasht abl e prior to fetching values out of it is a defensive measure. Cloningasta abl e
avoids the need to obtain a synchronization lock Has&t abl e beyond that time that it takes for the clone
operation to complete. When you have a freshly cloned copyadte abl e, you can be sure that no other
thread has access to the copy. Since no other thread as access to the copy, you will be able to fetch key-value
pairs from the copy without any interference with other threads.

If, after you clone &dasht abl e, there is no subsequent modification to the origHaalht abl e, then
the time and memory spent in creating the clone was wasted. The point of this example is to avoid that waste. It
does that by delaying the cloning ofi@sht abl e until a modification to it actually occurs.

The main class in the example is called geHasht abl e. Instances ofar geHasht abl e are a copy-
on-write proxy for eHasht abl e object. When a proxy's clone method is called, it returns a copy of the proxy but
does not copy theasht abl e object. At that point both the original and copy of the proxy refer to the same
Hasht abl ec object. When either of the proxies is asked to modify the Hashtable, they recognize that they are
using a sharedasht abl e and clone théfasht abl e before they make the modification.

The way that the proxies know that they are working with a shdreiat abl e object is that the
Hasht abl e object that the proxies work with is an instance of a private subcléssiofabl e called
Ref er enceCount edHashTabl e. A Ref er enceCount edHashTabl e object keeps a count of how many
proxies refer to it.

public class LargeHashtabl e extends Hashtabl e {
/1 The ReferenceCountedHashTable that this is a proxy for.
private ReferenceCountedHashTabl e t heHashTabl e;

publ i c LargeHashtabl e() {
t heHashTabl e = new Ref er enceCount edHashTabl e();
} // constructor()

/**
* Return the nunber of key-value pairs in this hashtable.
*/
public int size() {
return theHashTabl e. si ze();
Y 11 size()

/**

* Return the value associated with the specified key in this Hashtable.
* @aram key a key in the hashtable.
*/
public synchroni zed Obj ect get(Object key) {
return theHashTabl e. get (key);

} 11 get(key)

/**

* Add the given key-value pair to this Hashtable.

19

* @aram key the key.

* @aram val ue t he val ue.

* @eturn the previous value of the given key in this hashtable,
* or <code>null</code> if it did not have one.

* @xception MNullPointerException if the key or value is null.

*/

public synchroni zed Object put(Object key, Cbject value) {
copyOnWite();
return theHashTabl e. put (key, val ue);

} // put(key, value)

* Return a copy of this proxy that accesses the sanme Hashtable as this
* proxy. The first attenpt for either to mdify the contents of the
* Hashtable results in that proxy accessing a nodified clone of the
* original Hashtable.
*/
public synchroni zed Object clone() {
hj ect copy = super.clone();
t heHashTabl e. addPr oxy();
return copy;
} /1 clone()

/**
* This nethod is called before nodifying the underlying Hashtable. If it
* is being shared, then this nmethod clones it.
*/
private void copyOnWite() {
i f (theHashTabl e. get ProxyCount () > 1) {
/1 Synchroni ze on the original Hashtable to allow consistent
/] recovery on error.
synchroni zed (theHashTabl e) {
t heHashTabl e. renoveProxy();
try {
t heHashTabl e
= (Ref erenceCount edHashTabl e) t heHashTabl e. cl one();
} catch (Throwable e) {
t heHashTabl e. addPr oxy();
Y I otry
} 1/ synchronized
} /1 if proxyCount
} /] copyOnWite()

private class ReferenceCount edHashTabl e extends Hashtabl e {
private int proxyCount = 1;

publ i c Ref erenceCount edHashTabl e() {
super ();
} /] constructor()

/**
* Return a copy of this object with proxyCount set back to 1.
*/
public synchroni zed Object clone() {
Ref er enceCount edHashTabl e copy;
copy = (ReferenceCount edHashTabl e) super. cl one();
copy. proxyCount = 1;
return copy,;
} /1 clone()

/**

20

* Return the number of proxies using this object.
*/
synchroni zed int getProxyCount () {
return proxyCount;
} // getProxyCount ()

/**
* Increnent the nunmber of proxies using this object by one.
*/
synchroni zed voi d addProxy() {
pr oxyCount ++;
} // addProxy()

/**
* Decrenent the nunmber of proxies using this object by one.
*/
synchroni zed voi d renoveProxy() {
pr oxyCount - -;
} /1 renoveProxy()
} /1 class ReferenceCountedHashTabl e
} /1 class LargeHashtabl e

Related Patterns

Access Proxy
The Access Proxy pattern uses a proxy to enforce a security policy on access to a service providing

object.

Asynchronous Invocation
The Asynchronous Invocation pattern uses a proxy to create the illusion that a method that takes a long
time to compl ete returns immediately.

Broker
The Proxy pattern is sometimes used with the Broker pattern to provide a transparent way of forwarding
service requests to a service object selected by the Broker/Proxy object.

Facade
The facade pattern uses a single object as afrond end to a set of interrelated objects.

Remote Proxy
The Remote Proxy pattern uses a proxy to hide the fact that a service object is located on a different
machine than the client objects that want to useit.

Virtual Proxy
This pattern uses a proxy to create the illusion that a service providing object exists before it has actually
been created. li is useful if the object is expensive to create and its services may not be needed.

Wrapper
The Wrapper pattern is structurally similar to the Proxy pattern in that it forces access to a service
providing object to be done indirectly through another object. The difference is a matter of intent. Instead
of trying to manage the service the indirection object in some way enhances the service.

21

