Partitioning Patterns

In the analysis stage the entities that will make up a program, along with their
relationships and responsibilities, are identified. The patterns in this chapter
provide guidance on how to partition complex entities into multiple classes.

Layered Initialization
Synopsis

When specialized processing is required to implement an abstraction, the most
common solution is to define a class that encapsulates common logic and then
define subclasses that contain the different forms of specialized logic. That does
not work when some common logic must be used to decide which specialized
subclass to create. The Layered Initialization pattern solves this problem by
encapsulating the common and specialized logic in separate objects.

Context

Suppose that you are implementing a business rule server for an enterprise. This
business rule server will be asked questions like, “What format should we use to
display store numbers?” The answer to simple questions like that is hormally
embedded directly in one of the business rule manager’s rules. More complicated
questions may require the business rule manager to consult one or more
databases. Consider the question, “How far into the future can we guarantee a
price quote for this item?” To answer that question, there will likely be rules that
break it down into subquestions like:

« Do we have a price guarantee from our supplier and if so, when does the
guarantee expire?

* We don'’t have a price guarantee from out supplier. Based on how often the
item’s price has changed in the past and our sales projections, how long will
the amount of inventory we have of that item shield us from price changes?

Question such as these will require the business rule manager to query
information from one or more databases. Clearly, the set of rules will be
complex. Because of that, you will want to keep information about how to get
different kinds of data from a database separate from the business rules that

1

request the information. That way, changes to the organization of the database
that the business rule manager works with will not require changes to the
business rules themsel ves.

Having determined those requirements, during analysis you will likely identify a
set of entities that includes an inference engine to interpret the business rules and
adata query to fetch information requested by the inference engine. Designing
classes to implement the data query entity poses an interesting challenge.

Y ou will want to have a Dat aQuer y class that you can instantiate by passing its
constructor arequest for information. It will be up to the constructor to
determine which databases need to be queried to get the requested information.
Since the techniques for getting data from a database vary with the type of
database, we will want to have a class that corresponds to each type of supported
database. So there may be a class for accessing relational databases through
JDBC, additional classes for natively accessing relational database engines like
Oracle and Sybase and perhaps another class for accessing object oriented
databases. The obvious way to organize thisiswith aDat aQuer y classthat has
subclasses like this:

DataQuery

Thereis aproblem with using this organization. Using this organization, you
must decide which kind of Dat aQuer y object to create before you pass the
request for information to its constructor. Since you want to hide the details of
data queries from the business rule inference engine, requiring it to decide which
subclass of Dat aQuer y to useisnot agood thing.

To keep the business rule inference engine independent of which of database
will be used, you will have a separate object to encapsulate the logic used to
analyze the data request and determine the database that should be used. You
will aso want to have afactory method object that determines which classto use
to access that database. Here is a class diagram showing all this:

2

DataQuery

«interface» Requests
DataQueryFactorylF | requestee Creation requestor «constructor»
1 1 DataQuery(query:String)
createDataQueryImpl()

setFactory(DataQueryFactoryl

DataQueryImplFactory

createDateQueryImpl()

1 Creates ¥

* * * Uses ¥

JDBCQuery OracleQuery SybaseQuery

DataQueryImpl

DataQuery Factory

This design is an example of the Layered Initialization pattern. A datarequest is
passed into the constructor for aDat aQuer y object. The constructor analyzes
the data request to determine which database to consult to get the necessary
information. Using an object that implements the Dat aQuer yFact oryl F
interface, it creates instances of the appropriate classes that implement

Dat aQuer yl npl | F. Those Dat aQuer yl npl | F objects retrieve the data. The
Dat aQuer yFact or yl F is passed to the Dat aQuer y object at an earlier time
through itsset Fact or y method.

Y ou can use the Layered Initialization pattern in any situation where
preprocessing must be done on selection data before deciding which specialized
classto instantiate.

Forces

» A specidized class must be chosen to process complex data.

* Thelogic to choose a specialized class to process complex data
should be encapsulated so that it is transparent to the classes
providing data to process.

» Tomaintain low coupling, only one of the objects that participatein
the Layered Initialization pattern should be visible to the object that
provides the complex data.

» Putting the decision of which class to instantiate into a separate class
reduces the effort required to maintain the other classes. If a
database migrates to a different type of engine or anew class
becomes available that provides better accessto it, then the
corresponding change in the program is limited to the class that
decides what class to instantiate.

Solution

Objects that participate in the Layered Initialization pattern cooperate to provide
a service to objects outside the pattern.

The essence of the Layered Initialization pattern is that initialization of the
objects participating in the pattern happensin layers. First objects that perform
logic common to all cases areinitialized. That initialization concludes by
determining the type of objectsto create that will perform the next layer of more
specialized logic and creating those objects. Those objectsinitialize themselves
and create the next more specialized layer if thereis one.

After the objects that participate in the Layered Initialization pattern have
completed their initialization, there will be one top-level object whose methods
are called by objects outside the pattern. If amethod in that object requires any
specialized logic, it calls the appropriate method in an object one layer down.

Hereis aclass diagram that shows the participants of the Layered Initialization
pattern:

Layered Initialization

The preceding class diagram only shows two layers. However, using recursive
composition, each of theser vi cel, servi ce2, ... classes can be the top-level
class in another application of the Layered Initialization pattern.

Here are descriptions of the participants shown in the above class diagram:

Service
All the classes that participate in the Layered Initialization pattern
cooperate to provide the same service. Instances of the service class
contribute to thisin two ways:

* Instances of the service class are the only objects participating in
this pattern that are visible to objects outside this pattern.

« The service class encapsulates logic that is common to all of the
specialized cases that are supported. It delegates specialized
operations and specialized portions of common operations to classes
that implement th&er vi cel npl | F interface.

5

After a service object is sufficiently initialized to have gathered the
information needed to create a specialized object that implements the
Servicel npl | F interface, it passes that information to a
Ser vi ceFact ory object that is responsible for the creation of those
objects.

If the service class is intended to be reusable, the it will probably have a
static method, indicated in the class diagram as set Fact ory, that sets
the Ser vi ceFact ory object that al instances of the service class will
use. If that sort of reusability is not needed, then neither the
set Fact ory method nor the Ser vi ceFact oryl F interface is needed
and the service class can directly refer to aSer vi ceFact ory class.

ServicelmplIF
The service object accesses servicel, service2, ... objects of the lower
layer through this interface.

ServiceFactorylF
The service object uses this interface to acc&ssvi ceFactory
object.

ServiceFactory
This corresponds to any class that cre&mssvi cel npl objects and
implements th&er vi ceFact or yI F interface.

Servicelmpll, Servicelmpl2...
These classes implement t®er vi cel npl | F interface and provide the
specialized logic needed by methods of the service class.

Consequences

« The complexity of initializing an object using data that requires
analysis before the initialization can proceed is hidden from client
objects.

* Theclients of the service class do not have any dependencies on the
objects participating in the Layered Initialization pattern except for
the service object.

Implementation

Oneideain the Layered Initialization pattern is that out of the objects
participating in the Layered Implementation pattern, only the service object
should have clients that are outside the pattern. A way to enforce that is to put
the classes and interfaces that participate in an application of the Layered

6

Initialization pattern into a separate package, making only the service class and
Ser vi ceFact or yl F interface public.

Normally the service classet Fact ory method is called during a program’s
initialization. Once a factory object has been provided to the service class, it is
not normally necessary to provide it with another factory object. If you know
that changing the factory object will be unnecessary, then it is a reasonable
assertion that calling the service classt Fact ory method a second time is an
error. If that is the case, you can make the service class more robust by putting
code in theset Fact or y method that signals an error if a factory object was
previous set.

JAVA API| Usage

Thej ava. net . URL class uses the Layered Initialization pattern.

When you create ERL object, you can pass a string specifying a URL to the
object’s constructor. These strings can look like

http://ww. m ndspring. conl ~ngr and
or
nmai | t o: ngrand@n ndspri ng. com

The portion of the string before the first colon is the protocol to use for the URL.
The syntax of what follows the colon depends on the protocol specified before
the colon. Because thiRL object must parse the entire string before its
initialization is complete, it uses the Layered Initialization pattern.

TheURL class participates in the Layered Initialization pattern as the service
class. There is an abstract class that it uses daiest r eanHandl er . The

URLSt r earHandl er class participates in the Layered Initialization pattern as a
Ser vi ceFact oryl npl | F interface. To parse the portion of the URL string
after the colon, thelRL class creates an instance of the appropriate subclass of
the URLSt r eanHandl er class. It can pick the subclassUp St r eantHand| er

to instantiate using a default mechanism. Alternatively, if an object that
implements th&RLSt r eanHandl| er Fact or y interface is passed to the URL
class’set URLSt r eanHand! er Fact or y static method then all instances of

URL will use that object to indirectly create instances of the appropriate subclass
of URLSt r eantHandl er .

Example

The example for the Layered Initialization pattern is some skeletal code that
implements the data query design shown under the Context heading of this
pattern. Here is code for the Dat aQuer y class that takes adata query in its
constructor so that its instances can produce a result:

public class DataQuery {
/'l Factory object for creating DataQuerylnpl|F objects.
private DataQueryFactorylF factory;
/**
* Set the factory object
* @xception Error if this nethod is called after a factory has
* been set
*/
public void setFactory(DataQueryFactoryl F factory) {
if (this.factory !'= null)
throw new Error(OData query factory already definedO);
this.factory = factory;
} /I setFactory(DataQueryFactorylF)
/**
* Constructor
* @param query A string containing the query
*/
public DataQuery(String query) {

while (E) {
String dbName = null;

/I Construct a database specific query object
DataQuerylmplIF dg;
dqg = (DataQuerylmpliF)factory.createDataQuerylmpl(dbName);

} /1 while
/...
} /I Constructor(String)

} /I class DataQuery

Hereisthe declaration of the Dat aQuer yFact or yl F interface that al factory
objects that create database specific query objects must implement:
public interface DataQueryFactorylF {
/**

* Create a DataQuerylmplIF object that retrieves data from the

* specified database.

* @param dbName the name of the database that will be queried
* @return An instance of a class that that is specific to either

8

* JDBC or the physical database engine that the database

* runs on.

* If the specified database is not knowto this nethod, it
* returns null.

*/

publ i c Dat aQueryFactoryl F createDat aQueryl npl (String dbNane);

} // DataQueryFactorylF

Hereis a sample class that implements the Dat aQuer yFact or yl F interface:

cl ass MyDat aQueryFactory inplements DataQueryFactoryl F {
private static Hashtable classes = new Hashtabl e();

/1 popul ate the classes hashtable
static {

cl asses. put ("1 NVENTORY", dataQuery. Oracl eQuery. cl ass);
cl asses. put (" SALES", dat aQuery. SybaseQuery. cl ass);
cl asses. put ("PERSONNEL", dataQuery. Oracl eQuery. cl ass);

cl asses. put ("WHEATHER', dataQuery.JDBCQuery. cl ass);

}

/**

* Create a DataQuerylnpl | F object that retrieves data fromthe

* gspecified database.

* @aram dbNane the name of the database that will

be queried

* @eturn An instance of a class that that is specific to either

* JDBC or the physical database engine that the database
* runs on.

* If the specified database is not knowto this nethod, it
* returns null.

*/

publ i c DataQueryFactoryl F createDataQueryl npl (String dbNane) {

Class clazz = (d ass)cl asses. get (dbNan®) ;
try {

return (DataQueryFactoryl F)clazz. new nstance();

} catch (Exception e) {
return null;
Y I otry
} /1 createbDataQuerylnpl (String)
} /1 class MyDat aQueryFactory

Related Patterns
Delegation (When not to use Inheritance)

The service class delegates specialized operations to objects that

implement the Ser vi cel npl interface.

9

Facade
The Layered Initialization pattern uses the Facade pattern by hiding all
of the other objects participating in the pattern from clients of service
objects.

Factory Method
In situations where the choice of which kind of object to create does not
involve any significant preprocessing of data, the Factory Method
pattern may be a more appropriate choice.

Layered Architecture
The Layered Initialization pattern recognizes a division of
responsibilities into layers during design. The Layered Architecture
pattern recognizes a division of responsbilities into layers during
analysis.

Recursive Composition
When more than two layers of initialization are needed for initialization
you can combine the Layered Initialization pattern with the Recursive
Composition pattern to multiple perform initialization in as many layers
as needed. Layered InitidizationLayered InitializationLayered
InitializationLayered InitializationLayered InitializationLayered
Initialization

Filter
Synopsis

The Filter pattern allows objects that have compatible interfaces and perform
different transformations and computations on streams of data to be dynamically
connected to perform arbitrary operations on streams of data.

Context

There are many programs whose entire purpose is to perform computations on or
perform analysis of a stream of data. A program that performs simple
transformations on the contents of a data stream isthe UNIX uni g program. The
uni g program organizesitsinput into lines. The uni g program normally copies
al of thelinesthat it reads to its output. However, when it finds consecutive
lines that contain identical characters, it only copiesthe first to its output. UNIX
aso comes with aprogram called we that does a simple analysis of a data stream.
it produces a count of the number of characters, words and lines that were in the
data stream. Compilers perform a complex series of transformations and analysis
on their source code input to produce their binary output.

10

Since many programs perform transformations and analysis on data streams, it
would clearly be beneficial to define classes that perform the more common
transformations and analyses. Such classes will get alot of reuse.

Classes that perform simple transformations and analysis on data streams tend to
be very generic in nature. When writing such classes, it is nhot possible to
anticipate all the possible ways they will be used. Some applications will want to
apply some transformations and analyses to only selected parts of a data stream.
Clearly, these classes should be written in away that allows great flexibility in
how their instances can be connected together. One way to accomplish that
flexibility isto define a common superclass for al of these classes so an instance
of one can use an instance of another without have to care which class the object
is an instance of.

File Filters
Forces

» Classes that implement common data transformations and analyses
can be used in agreat variety of programs.

e It should be possible to dynamically combine data analysis and
transformation objects by connecting them together.

e Theuse of transformation/analysis objects should be tranparent to
other objects.

Solution

Through a combination of abstract classes and delegation, a solution can be
arrived at. The Filter pattern organizes the classes that participate in it as data

11

sources, data sinks and datafilters. The data filter classes perform the
transformation and analysis operations. There are two basic variations on the
Filter pattern. In one, data flows as aresult of a data sink object calling a method
in a data source object. In the other, data flows when a data source object passes
datato a method of adata sink object.

Hereisaclass diagram for the version of Filter where data sink objects get data
by calling methods in data sources.

AbstractSink AbstractSourceFilter
1 «constructor» 1 AbstractSource
create(AbstractSource)
1 getData()
getData()
¥ Gets Data From “4 Gets Data From
ConcreteSourceFilter ConcreteSource
1 | «constructors» 1 getData()

create(AbstractSource)

éétData()

Source Filter

Here are descriptions of how the classes in the above diagram participate in the
Filter pattern:

AbstractSource
This abstract class declares a method, indicated in the diagram as
getData, that returns datawhen it is called.

ConcreteSource
This corresponds to any concrete subclass of Abst ract Sour ce that is
primarily responsible for providing data rather than transforming or
analyzing data.

AbstractSourceFilter
This abstract class is the superclass of classes that transform and analyze
data. It has a constructor that takes an argument that is the instance of
the abstract source object class that instances of this class will delegate
the fetching of data to. Because instances of this class are also instances
of the abstract source class, instances of the abstract sink class can treat

12

instances of the Abstract Sour ceFi | t er class the same as instances
of a concrete source class.

The abstract source filter class defines a get Dat a method that simply
calls the get Dat a method of the abstract source object that was passed
to its object’s constructor.

ConcreteSourceFilter
This corresponds to any concrete subclagshef r act Sour ceFi l ter.

Subclasses ofbst r act Sour ceFi | t er should extend the behavior of
the get Dat a method that they inherit frombst r act Sour ceFi |l t er
to perform the appropriate transformation or analysis operations.

AbstractSink
Instances of abstract sink classes call tfee Data method of a

Abst ract Souce object. Unlike Concret eSourceFilter objects,
instances of abstract sink classes use the data without passing it on to
anotherAbst r act Sour ceFi | t er object.

Hereisaclass diagram for the version of Filter where data source objects pass
data to methods of data sink objects:

Sink Filter

AbstractSink
This abstract class declares a method, indicated in the diagram as

put Dat a, that takes data through one of its parameters.

13

ConcreteSink
This corresponds to any concrete subclass of Abstract Si nk that is
primarily responsible for receiving data rather than transforming or
analyzing data.

AbstractSinkFilter
This abstract class is the superclass of classes that transform and analyze
data. It has a constructor that takes an argument that is the instance of
the abstract sink object class that instances of this class will delegate the
putting of data to. Because instances of this class are also instances of
the abstract sink class, instances of the abstract source class can treat
instances of the Abst r act Si nkFi | t er class the same as instances of a
concrete sink class.

The AbstractSinkFilter class defines a put Data method that
simply calls the put Dat a method of the Abst r act Si nk object that was
passed to its object’s constructor.

ConcreteSinkFilter
This corresponds to any concrete subclassbat r act Si nkFi | ter.
Subclasses AAbst r act Si nkFi | t er should extend the behavior of the
put Data method that they inherit fronfbstract Si nkFilter to
perform the appropriate transformation or analysis operations.

AbstractSource
Instances ofAbstract Source call the put Data method of an
Abstract Sink object. Unlike ConcreteSinkFilter objects,
instances ofbst r act Sour ce provide the data without getting it from
anotherdbst r act Si nkFi | t er object.

Conseguences

The portion of a program the follows the Filter pattern can be structured as a set
of sources, sinks and filters.

Filter objects that do not maintain internal state can be dynamically replaced
while a program is running. This property of stateless filters allows dynamic
change of behavior and adaptation to different requirements at run time.

It is quite reasonable for a program to incorporate both versions of the Filter
pattern. However, it is unusual for the same class to participate in both versions.

14

Implementation

Filter classes should be implemented in away that does not assume anything
about the programs that they will be used in or with which other filter classes
they will be used. Because of that, it follows that filter objects should not have
side effects and should communicate with each other only through the date that
they exchange.

Making filter classes independent of the programs that they are used in increases
their reusability. However, in some cases there can be performance penaltiesif a
filter object is not allowed to use context-specific information. The best designis
sometimes a compromise between these considerations. For example, you could
define one or more interfaces that declare methods for providing context specific
information to afilter object. If a program detects that afilter object implements
one of those interfaces, it can use the interface to provide additional information
to thefilter.

JAVA API| Usage

Thej ava. i o packageincludestheFi | t er Reader classthat participatesin the
Filter pattern as an abstract source filter class. The corresponding abstract source
classis Reader. Concrete subclasses of theFi | t er Reader classinclude

Buf f er edReader , Fi | eReader and Li neNunber Reader .

Thej ava. i o packageincludestheFi | t er Wi t er class, which participatesin
the Filter pattern as an abstract sink filter class. The corresponding abstract sink
classis Writer. Concrete subclasses of theFi | t er Wi t er classinclude

Buf feredWiter,FileWiter andPrintWiter.

Hereis acommon arrangement of Fi | t er Reader objects for a program that
reads lines of text as a commands and needs to track line numbers for producing
error messages:

Li neNunber Reader i n;
void init(String fNane) {
Fi | eReader fin;
try {
fin = new Fi | eReader (f Nane) ;
in = new Li neNunber Reader (new Buf f er edReader (fin));
} catch (Fil eNot FoundException e) {
System out. println("Unable to open "+f Nane);

}

15

Example

For an example of classes that implement the Filter pattern, here are classes that
read and filter astream of bytes. Firstly, hereisaclass that participatesin the
Filter pattern as an abstract source:

] **

* Abstract class for reading a streamof bytes into an byte[].

*/
public abstract class InStream {
/**
* Read bytes froma streamof bytes and fill an array with those
* bytes.
* @aramarray The array of bytes to fill.
* @eturn If not enough bytes are available to fill the array
* then this method returns after having only put that nmany
* bytes in the array. This nethods returns -1 if the end
* of the data streamis encountered.
* @xception | CException if a I/Oerror occurs.
*/

public abstract int read(byte[] array) throws | COException;
} // class InStream

Hereis a concrete subclass of | nSt r eamthat participates in the Filter pattern as
aconcrete source:

/**
* This class reads a streamof bytes froma file.
*/
public class FilelnStream extends |InStream {
private RandomAccessFile file;
/**
* Constructor
* @aram f Name The nane of the file to read
*/
public FilelnStrean{String fNanme) throws | OException {
file = new RandomAccessFile(fName, Or0);
} /I Constructor(String)
/**
* Read bytes from a file and fill an array with those bytes.
* @param array The array of bytes to fill.
* @return If not enough bytes are available to fill the array

* then this method returns after having only put that
* many bytes in the array. This methods returns -1 if
* the end of the data stream is encountered.

* @exception IOException if a I/O error occurs.
*
public int read(byte[] array) throws IOException {

16

return file.read(array);
} // read(byte[])
} // class FilelnStream

The following class participates in the Filter pattern as an abstract source filter:
/**
* Abstract filter class for InStream objects.
* This class does no actual tranformation or analysis of data. It
* just provides a read nethod that del egates the actual read to
* anot her InStream object.
*/
public class FilterlnStream extends |nStream {
private InStreaminStream
/**
* Constructor
* @araminStream The InStreamthat this object should del egate

* read operations to.
*/
public FilterInStrean{InStreaminStrean) throws | OException {
this.inStream = i nStream
} // Constructor(lnStream
/**
* Read bytes froma streamof bytes and fill an array with those
* bytes.

* @aramarray The array of bytes to fill.
* @xception | CException if a I/Oerror occurs.
*/
public int read(byte[] array) throws | OException {
return inStreamread(array);
} // read(byte[])
} // class FilterlnStream

Finally, we will look at some classes that participate in the Filter pattern as a
concrete source filter. The first of these performs the simple analysis of counting
the number of bytesthat is has read:

public class ByteCountlnStream extends FilterlnStream {

private |ong byteCount = O;

/**
* Constructor
* @araminStream The InStreamthat this object should del egate
* read operations to.
*/

public ByteCount|InStrean{InStreaminStrean) throws | OException {

super (i nStrean);
} // Constructor(lnStream

] **

17

*

*

*

*

*/
public int
int count;

y 11

[**

Read bytes froma streamof bytes and fill an array with those

@aram array The array of bytes to fill.
@xception | OException if a |I/O error occurs.

read(byte[] array) throws | OException {

= super.read(array);

if (count >0)

byt eCount += count;
return count;
read(byte[])

* return the nunber of bytes that have been read by this object.

*/

public | ong getByteCount() {

return byteCount;

} /1 getByteCount()
} // class ByteCountlnStream

Lastly, hereisaclass that performs character code trandations of a stream of

bytes:

] **

* Filter class to performeight bit character translation.

*<p>

* This class treats the bytes in a bytes streamas eight bit character
* codes and translates themto other character codes using a
* translation table.

*/

public class Transl atel nStream extends FilterlnStream {
private byte[] transl ationTabl e;

] **

* Constructor

*

*

*/

@aram inStream The InStreamthat this object should del egate
read operations to.
@aramtable An array of bytes that is used to

determne translation values for character codes.

The value to replace charactr code n with is found in at
index n of the translation table. If the array is |onger
than 256 el ements, the additional elenents are ignored.
If the array is shorter than 256 el enents, the not
translation is done on character codes greater than or
equal to the length of the array.

public Transl atelnStrean{|lnStream i nStream

byte[] table) throws | OException {

super (i nStrean);

18

/1 Create translation table by copying translation data.
transl ati onTabl e = new byt e[256] ;
System arraycopy(table, 0, translationTable, O,

Mat h. m n(256, table.length));

for (int i =table.length; i < 256; i++) {
transl ationTable[i] = (byte)i;
Yy /1 for

} // Constructor(lnStream
/**
* Read bytes froma streamof bytes and fill an array with those
* bytes.
* @aramarray The array of bytes to fill.
* @xception | CException if a I/Oerror occurs.
*/
public int read(byte[] array) throws | OException {
int count;
count = super.read(array);
for (int i =0; i < count; i++) {
array[i] = translationTable[array[i]];
Yy /1 for
return count;
} // read(byte[])
} // class ByteCountl|nStream

Related Patterns

Composite
The Composite pattern can be an aternative to the Filter pattern when
the objects involved do not have a consistent interface and they can be
composed statically.

Layered Architecture
The Layered Architecture pattern is similar to the Filter pattern. The
most important difference is that the objects involved in the layered
Architecture pattern correspond to different levels of abstraction.

Pipes
The Pipes pattern is sometimes an aternative to the Filter pattern.
Wrapper/Decorator
The Filter pattern is usualy implemented as a special case of the
Wrapper pattern. FilterFilterFilterFilterFilterFilter

Recursive Composition

19

The Recursive Composition pattern is also known as the Composite
pattern.

Synopsis

The Recursive Composition pattern allows you to build complex objects
by composing similar objects in atree-like manner. The Recursive Composition
pattern also allows the objects in the tree to be manipulated in a consistent
manner, by requiring that all of the objectsin the tree have a common superclass.

The following description of the Recursive Composition pattern
describesit in terms of building a composite object from other objects. The
reason it appearsin this partitioning patterns chapter is that during the design
process the Recursive Composition pattern is often used to recursively
decompose a complex object.

Context

Suppose that you are writing a document formatting program. It formats
charactersinto lines of text organized into columns that are organized into pages.
However, a document may contain other elements. Columns and pages can
contain frames that can contain columns. Columns, frames and lines of text can
contain images. Here is a class diagram that shows those relationships:

Document Container Relationships

20

Asyou can see, thereis afair amount of complexity here. Page and
Frame objects must know how to handle and combine two kinds of elements.
Column objects must know how to handle and combine three kinds of elements.
The Recursive Composition pattern removes that complexity by allowing these
objectsto only know host to handle one kind of element. It accomplishes that by
insisting that document element classes all have a common subclass. Here is how
you can simplify the document element class relationships by using the
Recursive Composition pattern:

DocumentElement
Character Image DocumentContainer
Document Page Column Frame LineOfText

Document Container Recursive Composition

By applying the Recursive Composition pattern, you have introduced a
common superclass for all document elements and a common superclass for all
the document container classes. Doing that reduced the number of aggregation
relationships to one. Management of the aggregation is now the responsibility of
the Docunent Cont ai ner class. The concrete container classes (Docunent ,
Page, Col umm, ...) only need to understand how to combine one kind of

element.

Forces

* You have a complex object that you want to decompose into a part-
whole hierarchy of objects.

* You want to minimize the complexity of the part-whole hierarchy by
minimizing the number of different kinds of child objects that objects in
the tree need to be aware of.

21

Solution

Ab stractComponent

operation()

ConcreteComponentl

ConcreteComponent2

operation()

operation()

AbstractComposite

operation()
add(AbstractComponent)
remove(AbstractComonent)
getChild(int)

ConcreteCompositel

ConcreteComposite2

operation()
add(AbstractComponent)
remove(AbstractComonent)
getChild(int)

operation()

add(AbstractComponent)
remove(AbstractComonent)

getChild(int)

Y ou can minimize the complexity of acomposite object that is organized
into a part-whole hierarchies by providing an abstract superclassfor al of the
objectsin the hierarchy and an abstract superclass for all of the compositesin the
hierarchy. The class relationships for such an organization look like this:

Recursive Composition Class Relationships

Here are descriptions of the classes that participate in the Recursive
Composition pattern:

AbstractComponent
Abst r act Conponent isan abstract class and the common superclass of
al of the objects that are in the tree of objects that make up a composite
object. Composite objects normally treat the objects that they contain as
instances of Abstract Conponent. Clients of composite objects
normally treat them as instances of Abst r act Conponent .

22

ConcreteComponentl, ConcreteComponent2...
Instances of these classes are used as leaves in the tree organization.

AbstractComposite

Abst r act Conposi t e is the abstract superclass of all composite objects
that participate in the Recursive Composition pattern.
Abst r act Conposi t e defines and provides default implementations for
methods for managing a composite object’'s components. atide
method adds a component to a composite object.r €heve method
removes a component from a composite object. gehechi | d method
returns a reference to a component object of a composite object.

ConcreteCompositel, ConcreteComposite2, ...

Instances of these are composite objects that use other instances of
Abst ract Conponent .

Instance of these classes can be assembled in atree-link manner like

this:
~ Contains :ConcreteCompositel Contains ™
Contains Y
Contains~
ConcreteComponentl ConcreteComponent2 :ConcreteComposite2 ConcreteComponentl
Contains ™ ‘ ‘ Contains ™~
Contains™
ConcreteComponent2 ConcreteComponent2
ConcreteComponentl

Recursively Composed Object

Note that you don’t need to have an abstract composite class if there is
only one concrete composite class.

Conseguences

* You can create a tree-structured composite object that simply treats the
objects that comprise it as instance&iodt r act Conponent , whether
they are simple objects or composite.

23

Client objects of an Abst r act Conponent can simply treat it as an
Abst r act Conponent , without having to be aware of any subclasses of
Abst ract Conponent .

If aclient invokes a method of an Abst r act Conponent that is
supposed perform an operation and the Abst r act Conponent objectis
aAbst ract Conposi t e object, then it will delegate that operation to
the Abst r act Conponent objectsthat compriseit. Similarly, if aclient
object calls amethod of an Abst r act Conponent object that isnot a
Abst r act Conposi t e and the method requires some contextual
information, then the Abst r act Conponent delegates the request for
contextual information to its parent.

The Recursive Composition pattern allows any Abst r act Corrponent to
be a child of an Abst r act Conposi t e. If you need to enforce a more
restrictive relationship then you will have to add type aware code to

Abst r act Conposi t e or its subclasses. That reduces some of the value
of the Recursive Composition pattern.

Some components may implement operations that are unique to that
component. For example, under the context heading of this pattern isa
design for the recursive composition of a document. At the lowest level,

is has a document consisting of character and image elements. It isvery
reasonabl e for the character e ements of a document to have aget Font
method. A document’s image elements have no needdetr Ront

method. The main benefit that the Recursive Composition pattern
provides is to allow the clients of a composite object and the objects that
comprise it to be unaware of the specific class of the objects they deal
with. To allow other classes to be able to gall Font without being
aware of the specific class they are dealing with, all of the objects that
can comprise a document can inheritgbeFont method from

Docunent El el ement . In general, when applying the Recursive
Composition pattern, the class in the role ofAhst r act Conponent

class declares specialized methods if they are needed by any

Concr et eConponent class.

A principle of object oriented design is that specialized methods should
only appear in classes that need them. Normally, a class should have
methods that provide related functionality and form a cohesive set. That
principle is the essence of the High Cohesion analysis pattern. Putting a

24

specialized method in a general-purpose class rather than the specialized
class that needs the method is contrary to the principle of high cohesion.
It is contrary to that principle because it adds a method unrelated to the
other methods of the general purpose class. That unrelated method is
inherited by subclasses of the general purpose class that are unrelated to
the method.

Because simplicity through ignorance of classisthe basis of the
Recursive Composition pattern, when applying the pattern it is ok to
sacrifice high cohesion for simplicity.

Implementation

If classes that participate in the Recursive Composition pattern
implement any operations by delegating to their parent object, then the best way
to preserve speed and simplicity is by having each instance of
Abst r act Conponent contain areferenceto its parent. It isimportant to
implement the parent pointer in away that ensures consistency between parent
and child. It must always be the case that an Abst r act Conponent identifiesan
Abst r act Conposi t e asitsparent if and only if the Abst r act Conposite
identifies it as one of its children. The best way to enforce that isto only modify
parent and child references in the Abst r act Conposi t e class’ add and remove
methods.

Sharing components among multiple parents using the Flyweight pattern
is a way to conserve memory. However, it is difficult for shared components to
properly maintain parent references.

TheAbst r act Conposi t e class may provide a default implementation
of child management for composite objects. However, it is very common for
concrete composite classes to override that implementation.

If a concrete composite class delegates an operation to the objects that
comprise it, then caching the result of the operation may improve performance. If
a concrete composite class caches the result of an operation, then it is important
that the objects that comprise the composite notify the compaosite objects so that
it can invalidate its cached values.

JAVA API| Usage

Thej ava. awt package contains a good example of the Recursive
Composition pattern. ltSonponent class fills theAbst r act Corrponent role.

25

Its Cont ai ner classfillsthe Abst r act Conposi t e role. It has a number of
classesin the Concr et eConponent role, including Label , Text Fi el d and
But t on. The classesin the Concr et eConposi t e roleinclude Panel , Fr anme

and Di al og.

Example

The example of the applying the Recursive Composition patternisa
more detailed version of the document related classes that appeared under the
“context” heading. Here is a more detailed class diagram:

DocumentElement

getFont() : Font
setFont(font:Font)

getCharLength() : int
getParent() : DocumentElement

Character

Image

DocumentContainer

getCharLength() : int

getCharLength() : int

getChild(index:int) : DocumentElement

addChild(:DocumentElement)

removeChild(child:DocumentElement)

changeNotification()
getCharLength() : int

i

Document

Page

Column

Frame

LineOf Text

Detailed Document Recursive Composition

The above diagram shows some of methods. As you look through the

following code, you will see that thez=t Font method is an example of a
method that consults an object’s parent object.getehar Lengt h method

gathers information from an object’s children and caches it for later use. The

changeNot i fi cati on method is used to invalidate cached information.

* 26

*

Hereis code for the Docunent El enent class;

abstract class Document El ement {
/1 This is the font associated with this object. [|f the font
/1l variable is null, then this object’s font will be inherited
/1 through the container hierarchy froman encl osing object.
private Font font;

Docunent Cont ai ner parent; // this object’s container

/**
* Return this object’s parent or null if it has no parent.
*/
publ i c Docunent Cont ai ner getParent () {
return parent;
} // getParent()

* Return the Font associatiated with this object. |If there is no
* Font associated with this object, then return the Font
* associated with this object’s parent. If there is no Font
* associated with this object’s parent the return null.
*/
public Font getFont() {
if (font '= null)
return font;
else if (parent != null)
return parent.getFont();
el se
return null;
} /1 getFont()

/**

* Associate a Font with this object.
* @aramfont The font to associate with this object
*/
public void setFont(Font font) {
this.font = font;
} /] setFont(Font)

/**
* Return the nunber of characters that this object contains.
*/
public abstract int getCharLength()
} /1 class Docunent El enent
Here isthe code for the Docunent Cont ai ner class.

abstract class Docunent Contai ner extends Document El ement {
/1 Collection of this object’s children

27

private Vector children = new Vector();

/'l The cached value fromthe previous call to getCharlLength or -1
/1 to indicate that charLength does not contain a cached val ue.
private int cachedCharlLength = -1,

/**
* Return the child object of this object that is at the given
* position.
* @aramindex The index of the child.
*/
publ i c Docunent El enent get Chil d(int index) {
return (Docunent El enent) chil dren. el enent At (i ndex) ;
} 1/ getChild(int)

/**
* Make the given DocunentEl ement a child of this object.
*/
public synchroni zed voi d addChi | d(Docunent El enent child) {
synchroni zed (child) {
chi | dren. addEl enent (chil d);
child. parent = this;
changeNotification();
} // synchronized
} // addChil d(Docunent El enent)

/**
* Make the given Docunent El ement NOT a child of this object.
*/
public synchroni zed void renpveChil d(Docunent El enent child) {
synchroni zed (child) {
if (this == child.parent)
child. parent = null;
chil dren. renoveEl ement (chil d);
changeNotification();
} // synchronized
} // renoveChil d(Docunent El enent)

/**
* Acall to this method nmeans that one of this object’s children
* has changed in a way that invalidates whatever data this object
* may be cahcing about its children.
*/
public void changeNotification() {
cachedCharlLength = -1;
if (parent !'= null)
par ent . changeNoti fication();
} // changeNotification()

28

/**
* Return the number of characters that this object contains.
*/
public int getCharLength() {
int len = 0;
for (int i =0; i <children.size(); i++) {
Docunent El ement chi | d;
child = (Docunent El ement) children. el ement At (i);
I en += chil d. get Char Lengt h();
Yy /1 for
cachedCharLength = len;
return len;
} // getCharlLength()
} // class Docurent Cont ai ner

The Character classimplements get Char Lengt h in the obvious way:

class Character extends DocumentEl ement {

/**

* Return the nunber of characters that this object contains.
*/

public int getCharLength() {

return 1;
} // getCharlLength()
} // class Character

The Image class is an example of a class that implements a method so
that the other classes that comprise a document do not need to be aware of the
| mage class as requiring any special treatment.

cl ass | mage extends Docunent El ement {

/**
* Return the number of characters that this object contains.
* Though images don’t really contain any characters, for the sake
* of consistenecy, we will treat an image as if it is a character.
*/
public int getCharLength() {
return 1;
} // getCharlLength()
} // class |Inage

The other classes in the class diagram that are subclasses of
Docunent Cont ai ner do not have any features that are interesting with respect
to the Recursive Composition pattern. In the interest of brevity, just one of them
is shown below:

cl ass Page extends Document Contai ner {

29

} // class Page

Related Patterns

Chain of Responsihility
The Chain of Responsibility pattern can be combined with the
Recursive Composition pattern by adding child to parent links so
that children can get information from an ancestor without having
to know which ancestor the information came from.

High Cohesion
The High Cohesion analysis pattern discourages putting specialized
methods in general purpose classes, which is something that the
Recursive Composition pattern encourages.

Visitor
The Visitor pattern can be used to encapsulate operations in a single
class that would otherwise be spread across multiple classes.

30

