
* 1 *

Partitioning Patterns
In the analysis stage the entities that will make up a program, along with their
relationships and responsibilities, are identified. The patterns in this chapter
provide guidance on how to partition complex entities into multiple classes.

Layered Initialization
Synopsis
When specialized processing is required to implement an abstraction, the most
common solution is to define a class that encapsulates common logic and then
define subclasses that contain the different forms of specialized logic. That does
not work when some common logic must be used to decide which specialized
subclass to create. The Layered Initialization pattern solves this problem by
encapsulating the common and specialized logic in separate objects.

Context
Suppose that you are implementing a business rule server for an enterprise. This
business rule server will be asked questions like, “What format should we use to
display store numbers?” The answer to simple questions like that is normally
embedded directly in one of the business rule manager’s rules. More complicated
questions may require the business rule manager to consult one or more
databases. Consider the question, “How far into the future can we guarantee a
price quote for this item?” To answer that question, there will likely be rules that
break it down into subquestions like:

• Do we have a price guarantee from our supplier and if so, when does the
guarantee expire?

• We don’t have a price guarantee from out supplier. Based on how often the
item’s price has changed in the past and our sales projections, how long will
the amount of inventory we have of that item shield us from price changes?

Question such as these will require the business rule manager to query
information from one or more databases. Clearly, the set of rules will be
complex. Because of that, you will want to keep information about how to get
different kinds of data from a database separate from the business rules that

* 2 *

request the information. That way, changes to the organization of the database
that the business rule manager works with will not require changes to the
business rules themselves.

Having determined those requirements, during analysis you will likely identify a
set of entities that includes an inference engine to interpret the business rules and
a data query to fetch information requested by the inference engine. Designing
classes to implement the data query entity poses an interesting challenge.

You will want to have a DataQuery class that you can instantiate by passing its
constructor a request for information. It will be up to the constructor to
determine which databases need to be queried to get the requested information.
Since the techniques for getting data from a database vary with the type of
database, we will want to have a class that corresponds to each type of supported
database. So there may be a class for accessing relational databases through
JDBC, additional classes for natively accessing relational database engines like
Oracle and Sybase and perhaps another class for accessing object oriented
databases. The obvious way to organize this is with a DataQuery class that has
subclasses like this:

DataQuery
There is a problem with using this organization. Using this organization, you
must decide which kind of DataQuery object to create before you pass the
request for information to its constructor. Since you want to hide the details of
data queries from the business rule inference engine, requiring it to decide which
subclass of DataQuery to use is not a good thing.

To keep the business rule inference engine independent of which of database
will be used, you will have a separate object to encapsulate the logic used to
analyze the data request and determine the database that should be used. You
will also want to have a factory method object that determines which class to use
to access that database. Here is a class diagram showing all this:

* 3 *

DataQuery Factory
This design is an example of the Layered Initialization pattern. A data request is
passed into the constructor for a DataQuery object. The constructor analyzes
the data request to determine which database to consult to get the necessary
information. Using an object that implements the DataQueryFactoryIF
interface, it creates instances of the appropriate classes that implement
DataQueryImplIF. Those DataQueryImplIF objects retrieve the data. The
DataQueryFactoryIF is passed to the DataQuery object at an earlier time
through its setFactory method.

You can use the Layered Initialization pattern in any situation where
preprocessing must be done on selection data before deciding which specialized
class to instantiate.

Forces
• A specialized class must be chosen to process complex data.

«interface»
DataQueryFactoryIF

createDataQueryImpl()

DataQuery

«constructor»
DataQuery(query:String)
...
setFactory(DataQueryFactoryIF)

Requests
Creationrequestee requestor

1 1

DataQueryImplFactory

createDateQueryImpl()

JDBCQuery OracleQuery SybaseQuery ...

Creates 6

DataQueryImpl

1

** * Uses 6

* 4 *

• The logic to choose a specialized class to process complex data
should be encapsulated so that it is transparent to the classes
providing data to process.

• To maintain low coupling, only one of the objects that participate in
the Layered Initialization pattern should be visible to the object that
provides the complex data.

• Putting the decision of which class to instantiate into a separate class
reduces the effort required to maintain the other classes. If a
database migrates to a different type of engine or a new class
becomes available that provides better access to it, then the
corresponding change in the program is limited to the class that
decides what class to instantiate.

Solution
Objects that participate in the Layered Initialization pattern cooperate to provide
a service to objects outside the pattern.

The essence of the Layered Initialization pattern is that initialization of the
objects participating in the pattern happens in layers. First objects that perform
logic common to all cases are initialized. That initialization concludes by
determining the type of objects to create that will perform the next layer of more
specialized logic and creating those objects. Those objects initialize themselves
and create the next more specialized layer if there is one.

After the objects that participate in the Layered Initialization pattern have
completed their initialization, there will be one top-level object whose methods
are called by objects outside the pattern. If a method in that object requires any
specialized logic, it calls the appropriate method in an object one layer down.

Here is a class diagram that shows the participants of the Layered Initialization
pattern:

* 5 *

Layered Initialization
The preceding class diagram only shows two layers. However, using recursive
composition, each of the service1, service2, … classes can be the top-level
class in another application of the Layered Initialization pattern.

Here are descriptions of the participants shown in the above class diagram:

Service
All the classes that participate in the Layered Initialization pattern
cooperate to provide the same service. Instances of the service class
contribute to this in two ways:

• Instances of the service class are the only objects participating in
this pattern that are visible to objects outside this pattern.

• The service class encapsulates logic that is common to all of the
specialized cases that are supported. It delegates specialized
operations and specialized portions of common operations to classes
that implement the ServiceImplIF interface.

* 6 *

After a service object is sufficiently initialized to have gathered the
information needed to create a specialized object that implements the
ServiceImplIF interface, it passes that information to a
ServiceFactory object that is responsible for the creation of those
objects.

If the service class is intended to be reusable, the it will probably have a
static method, indicated in the class diagram as setFactory, that sets
the ServiceFactory object that all instances of the service class will
use. If that sort of reusability is not needed, then neither the
setFactory method nor the ServiceFactoryIF interface is needed
and the service class can directly refer to a ServiceFactory class.

ServiceImplIF
The service object accesses service1, service2, … objects of the lower
layer through this interface.

ServiceFactoryIF
The service object uses this interface to access ServiceFactory

object.

ServiceFactory
This corresponds to any class that creates ServiceImpl objects and
implements the ServiceFactoryIF interface.

ServiceImpl1, ServiceImpl2…
These classes implement the ServiceImplIF interface and provide the
specialized logic needed by methods of the service class.

Consequences
• The complexity of initializing an object using data that requires

analysis before the initialization can proceed is hidden from client
objects.

• The clients of the service class do not have any dependencies on the
objects participating in the Layered Initialization pattern except for
the service object.

Implementation
One idea in the Layered Initialization pattern is that out of the objects
participating in the Layered Implementation pattern, only the service object
should have clients that are outside the pattern. A way to enforce that is to put
the classes and interfaces that participate in an application of the Layered

* 7 *

Initialization pattern into a separate package, making only the service class and
ServiceFactoryIF interface public.

Normally the service class’ setFactory method is called during a program’s
initialization. Once a factory object has been provided to the service class, it is
not normally necessary to provide it with another factory object. If you know
that changing the factory object will be unnecessary, then it is a reasonable
assertion that calling the service class’ setFactory method a second time is an
error. If that is the case, you can make the service class more robust by putting
code in the setFactory method that signals an error if a factory object was
previous set.

JAVA API Usage
The java.net.URL class uses the Layered Initialization pattern.

When you create a URL object, you can pass a string specifying a URL to the
object’s constructor. These strings can look like

http://www.mindspring.com/~mgrand

or

mailto:mgrand@mindspring.com

The portion of the string before the first colon is the protocol to use for the URL.
The syntax of what follows the colon depends on the protocol specified before
the colon. Because the URL object must parse the entire string before its
initialization is complete, it uses the Layered Initialization pattern.

The URL class participates in the Layered Initialization pattern as the service
class. There is an abstract class that it uses called URLStreamHandler. The
URLStreamHandler class participates in the Layered Initialization pattern as a
ServiceFactoryImplIF interface. To parse the portion of the URL string
after the colon, the URL class creates an instance of the appropriate subclass of
the URLStreamHandler class. It can pick the subclass of URLStreamHandler
to instantiate using a default mechanism. Alternatively, if an object that
implements the URLStreamHandlerFactory interface is passed to the URL
class’ setURLStreamHandlerFactory static method then all instances of
URL will use that object to indirectly create instances of the appropriate subclass
of URLStreamHandler.

* 8 *

Example
The example for the Layered Initialization pattern is some skeletal code that
implements the data query design shown under the Context heading of this
pattern. Here is code for the DataQuery class that takes a data query in its
constructor so that its instances can produce a result:

public class DataQuery {

 // Factory object for creating DataQueryImplIF objects.

 private DataQueryFactoryIF factory;

 /**

 * Set the factory object

 * @exception Error if this method is called after a factory has

 * been set

 */

 public void setFactory(DataQueryFactoryIF factory) {

 if (this.factory != null)

 throw new Error(ÒData query factory already definedÓ);

 this.factory = factory;

 } // setFactory(DataQueryFactoryIF)

 /**

 * Constructor

 * @param query A string containing the query

 */

 public DataQuery(String query) {

 ...

 while (É) {

 String dbName = null;

 ...

 // Construct a database specific query object

 DataQueryImplIF dq;

 dq = (DataQueryImplIF)factory.createDataQueryImpl(dbName);

 ...

 } // while

 //...

 } // Constructor(String)

 ...

} // class DataQuery

Here is the declaration of the DataQueryFactoryIF interface that all factory
objects that create database specific query objects must implement:

public interface DataQueryFactoryIF {

 /**

 * Create a DataQueryImplIF object that retrieves data from the

 * specified database.

 * @param dbName the name of the database that will be queried

 * @return An instance of a class that that is specific to either

* 9 *

 * JDBC or the physical database engine that the database

 * runs on.

 * If the specified database is not know to this method, it

 * returns null.

 */

 public DataQueryFactoryIF createDataQueryImpl(String dbName);

} // DataQueryFactoryIF

Here is a sample class that implements the DataQueryFactoryIF interface:

class MyDataQueryFactory implements DataQueryFactoryIF {

 private static Hashtable classes = new Hashtable();

 // populate the classes hashtable

 static {

 classes.put("INVENTORY", dataQuery.OracleQuery.class);

 classes.put("SALES", dataQuery.SybaseQuery.class);

 classes.put("PERSONNEL", dataQuery.OracleQuery.class);

 classes.put("WHEATHER", dataQuery.JDBCQuery.class);

 ...

 }

 /**

 * Create a DataQueryImplIF object that retrieves data from the

 * specified database.

 * @param dbName the name of the database that will be queried

 * @return An instance of a class that that is specific to either

 * JDBC or the physical database engine that the database

 * runs on.

 * If the specified database is not know to this method, it

 * returns null.

 */

 public DataQueryFactoryIF createDataQueryImpl(String dbName) {

 Class clazz = (Class)classes.get(dbName);

 try {

 return (DataQueryFactoryIF)clazz.newInstance();

 } catch (Exception e) {

 return null;

 } // try

 } // createDataQueryImpl(String)

} // class MyDataQueryFactory

Related Patterns
Delegation (When not to use Inheritance)

The service class delegates specialized operations to objects that
implement the ServiceImpl interface.

* 10 *

Facade
The Layered Initialization pattern uses the Facade pattern by hiding all
of the other objects participating in the pattern from clients of service
objects.

Factory Method
In situations where the choice of which kind of object to create does not
involve any significant preprocessing of data, the Factory Method
pattern may be a more appropriate choice.

Layered Architecture
The Layered Initialization pattern recognizes a division of
responsibilities into layers during design. The Layered Architecture
pattern recognizes a division of responsibilities into layers during
analysis.

Recursive Composition
When more than two layers of initialization are needed for initialization
you can combine the Layered Initialization pattern with the Recursive
Composition pattern to multiple perform initialization in as many layers
as needed. Layered InitializationLayered InitializationLayered
InitializationLayered InitializationLayered InitializationLayered
Initialization

Filter
Synopsis
The Filter pattern allows objects that have compatible interfaces and perform
different transformations and computations on streams of data to be dynamically
connected to perform arbitrary operations on streams of data.

Context
There are many programs whose entire purpose is to perform computations on or
perform analysis of a stream of data. A program that performs simple
transformations on the contents of a data stream is the UNIX uniq program. The
uniq program organizes its input into lines. The uniq program normally copies
all of the lines that it reads to its output. However, when it finds consecutive
lines that contain identical characters, it only copies the first to its output. UNIX
also comes with a program called wc that does a simple analysis of a data stream.
it produces a count of the number of characters, words and lines that were in the
data stream. Compilers perform a complex series of transformations and analysis
on their source code input to produce their binary output.

* 11 *

Since many programs perform transformations and analysis on data streams, it
would clearly be beneficial to define classes that perform the more common
transformations and analyses. Such classes will get a lot of reuse.

Classes that perform simple transformations and analysis on data streams tend to
be very generic in nature. When writing such classes, it is not possible to
anticipate all the possible ways they will be used. Some applications will want to
apply some transformations and analyses to only selected parts of a data stream.
Clearly, these classes should be written in a way that allows great flexibility in
how their instances can be connected together. One way to accomplish that
flexibility is to define a common superclass for all of these classes so an instance
of one can use an instance of another without have to care which class the object
is an instance of.

File Filters
Forces

• Classes that implement common data transformations and analyses
can be used in a great variety of programs.

• It should be possible to dynamically combine data analysis and
transformation objects by connecting them together.

• The use of transformation/analysis objects should be tranparent to
other objects.

Solution
Through a combination of abstract classes and delegation, a solution can be
arrived at. The Filter pattern organizes the classes that participate in it as data

* 12 *

sources, data sinks and data filters. The data filter classes perform the
transformation and analysis operations. There are two basic variations on the
Filter pattern. In one, data flows as a result of a data sink object calling a method
in a data source object. In the other, data flows when a data source object passes
data to a method of a data sink object.

Here is a class diagram for the version of Filter where data sink objects get data
by calling methods in data sources.

Source Filter
Here are descriptions of how the classes in the above diagram participate in the
Filter pattern:

AbstractSource
This abstract class declares a method, indicated in the diagram as
getData, that returns data when it is called.

ConcreteSource
This corresponds to any concrete subclass of AbstractSource that is
primarily responsible for providing data rather than transforming or
analyzing data.

AbstractSourceFilter
This abstract class is the superclass of classes that transform and analyze
data. It has a constructor that takes an argument that is the instance of
the abstract source object class that instances of this class will delegate
the fetching of data to. Because instances of this class are also instances
of the abstract source class, instances of the abstract sink class can treat

AbstractSink AbstractSourceFilter

«constructor»
create(AbstractSource)
...
getData()

ConcreteSourceFilter

«constructor»
create(AbstractSource)
...
getData()

6Gets Data From

1

1

AbstractSource

getData()

ConcreteSource

getData()

5Gets Data From

1

1

* 13 *

instances of the AbstractSourceFilter class the same as instances
of a concrete source class.

The abstract source filter class defines a getData method that simply
calls the getData method of the abstract source object that was passed
to its object’s constructor.

ConcreteSourceFilter
This corresponds to any concrete subclass of AbstractSourceFilter.
Subclasses of AbstractSourceFilter should extend the behavior of
the getData method that they inherit from AbstractSourceFilter
to perform the appropriate transformation or analysis operations.

AbstractSink
Instances of abstract sink classes call the getData method of a
AbstractSouce object. Unlike ConcreteSourceFilter objects,
instances of abstract sink classes use the data without passing it on to
another AbstractSourceFilter object.

Here is a class diagram for the version of Filter where data source objects pass
data to methods of data sink objects:

Sink Filter
AbstractSink

This abstract class declares a method, indicated in the diagram as
putData, that takes data through one of its parameters.

* 14 *

ConcreteSink
This corresponds to any concrete subclass of AbstractSink that is
primarily responsible for receiving data rather than transforming or
analyzing data.

AbstractSinkFilter
This abstract class is the superclass of classes that transform and analyze
data. It has a constructor that takes an argument that is the instance of
the abstract sink object class that instances of this class will delegate the
putting of data to. Because instances of this class are also instances of
the abstract sink class, instances of the abstract source class can treat
instances of the AbstractSinkFilter class the same as instances of a
concrete sink class.

The AbstractSinkFilter class defines a putData method that
simply calls the putData method of the AbstractSink object that was
passed to its object’s constructor.

ConcreteSinkFilter
This corresponds to any concrete subclass of AbstractSinkFilter.
Subclasses of AbstractSinkFilter should extend the behavior of the
putData method that they inherit from AbstractSinkFilter to
perform the appropriate transformation or analysis operations.

AbstractSource
Instances of AbstractSource call the putData method of an
AbstractSink object. Unlike ConcreteSinkFilter objects,
instances of AbstractSource provide the data without getting it from
another AbstractSinkFilter object.

Consequences
The portion of a program the follows the Filter pattern can be structured as a set
of sources, sinks and filters.

Filter objects that do not maintain internal state can be dynamically replaced
while a program is running. This property of stateless filters allows dynamic
change of behavior and adaptation to different requirements at run time.

It is quite reasonable for a program to incorporate both versions of the Filter
pattern. However, it is unusual for the same class to participate in both versions.

* 15 *

Implementation
Filter classes should be implemented in a way that does not assume anything
about the programs that they will be used in or with which other filter classes
they will be used. Because of that, it follows that filter objects should not have
side effects and should communicate with each other only through the date that
they exchange.

Making filter classes independent of the programs that they are used in increases
their reusability. However, in some cases there can be performance penalties if a
filter object is not allowed to use context-specific information. The best design is
sometimes a compromise between these considerations. For example, you could
define one or more interfaces that declare methods for providing context specific
information to a filter object. If a program detects that a filter object implements
one of those interfaces, it can use the interface to provide additional information
to the filter.

JAVA API Usage
The java.io package includes the FilterReader class that participates in the
Filter pattern as an abstract source filter class. The corresponding abstract source
class is Reader. Concrete subclasses of the FilterReader class include
BufferedReader, FileReader and LineNumberReader.

The java.io package includes the FilterWriter class, which participates in
the Filter pattern as an abstract sink filter class. The corresponding abstract sink
class is Writer. Concrete subclasses of the FilterWriter class include
BufferedWriter, FileWriter and PrintWriter.

Here is a common arrangement of FilterReader objects for a program that
reads lines of text as a commands and needs to track line numbers for producing
error messages:

LineNumberReader in;

void init(String fName) {

 FileReader fin;

 try {

 fin = new FileReader(fName);

 in = new LineNumberReader(new BufferedReader(fin));

 } catch (FileNotFoundException e) {

 System.out.println("Unable to open "+fName);

 }

 ...

* 16 *

Example
For an example of classes that implement the Filter pattern, here are classes that
read and filter a stream of bytes. Firstly, here is a class that participates in the
Filter pattern as an abstract source:

/**

 * Abstract class for reading a stream of bytes into an byte[].

 */

public abstract class InStream {

 /**

 * Read bytes from a stream of bytes and fill an array with those

 * bytes.

 * @param array The array of bytes to fill.

 * @return If not enough bytes are available to fill the array

 * then this method returns after having only put that many

 * bytes in the array. This methods returns -1 if the end

 * of the data stream is encountered.

 * @exception IOException if a I/O error occurs.

 */

 public abstract int read(byte[] array) throws IOException;

} // class InStream

Here is a concrete subclass of InStream that participates in the Filter pattern as
a concrete source:

/**

 * This class reads a stream of bytes from a file.

 */

public class FileInStream extends InStream {

 private RandomAccessFile file;

 /**

 * Constructor

 * @param fName The name of the file to read

 */

 public FileInStream(String fName) throws IOException {

 file = new RandomAccessFile(fName, ÒrÓ);

 } // Constructor(String)

 /**

 * Read bytes from a file and fill an array with those bytes.

 * @param array The array of bytes to fill.

 * @return If not enough bytes are available to fill the array

 * then this method returns after having only put that

 * many bytes in the array. This methods returns -1 if

 * the end of the data stream is encountered.

 * @exception IOException if a I/O error occurs.

 */

 public int read(byte[] array) throws IOException {

* 17 *

 return file.read(array);

 } // read(byte[])

} // class FileInStream

The following class participates in the Filter pattern as an abstract source filter:

/**

 * Abstract filter class for InStream objects.

 * This class does no actual tranformation or analysis of data. It

 * just provides a read method that delegates the actual read to

 * another InStream object.

 */

public class FilterInStream extends InStream {

 private InStream inStream;

 /**

 * Constructor

 * @param inStream The InStream that this object should delegate

 * read operations to.

 */

 public FilterInStream(InStream inStream) throws IOException {

 this.inStream = inStream;

 } // Constructor(InStream)

 /**

 * Read bytes from a stream of bytes and fill an array with those

 * bytes.

 * @param array The array of bytes to fill.

 * @exception IOException if a I/O error occurs.

 */

 public int read(byte[] array) throws IOException {

 return inStream.read(array);

 } // read(byte[])

} // class FilterInStream

Finally, we will look at some classes that participate in the Filter pattern as a
concrete source filter. The first of these performs the simple analysis of counting
the number of bytes that is has read:

public class ByteCountInStream extends FilterInStream {

 private long byteCount = 0;

 /**

 * Constructor

 * @param inStream The InStream that this object should delegate

 * read operations to.

 */

 public ByteCountInStream(InStream inStream) throws IOException {

 super(inStream);

 } // Constructor(InStream)

 /**

* 18 *

 * Read bytes from a stream of bytes and fill an array with those

 * bytes.

 * @param array The array of bytes to fill.

 * @exception IOException if a I/O error occurs.

 */

 public int read(byte[] array) throws IOException {

 int count;

 count = super.read(array);

 if (count >0)

 byteCount += count;

 return count;

 } // read(byte[])

 /**

 * return the number of bytes that have been read by this object.

 */

 public long getByteCount() {

 return byteCount;

 } // getByteCount()

} // class ByteCountInStream

Lastly, here is a class that performs character code translations of a stream of
bytes:

/**

 * Filter class to perform eight bit character translation.

 *<p>

 * This class treats the bytes in a bytes stream as eight bit character

 * codes and translates them to other character codes using a

 * translation table.

 */

public class TranslateInStream extends FilterInStream {

 private byte[] translationTable;

 /**

 * Constructor

 * @param inStream The InStream that this object should delegate

 * read operations to.

 * @param table An array of bytes that is used to

 * determine translation values for character codes.

 * The value to replace charactr code n with is found in at

 * index n of the translation table. If the array is longer

 * than 256 elements, the additional elements are ignored.

 * If the array is shorter than 256 elements, the not

 * translation is done on character codes greater than or

 * equal to the length of the array.

 */

 public TranslateInStream(InStream inStream,

 byte[] table) throws IOException {

 super(inStream);

* 19 *

 // Create translation table by copying translation data.

 translationTable = new byte[256];

 System.arraycopy(table, 0, translationTable, 0,

 Math.min(256, table.length));

 for (int i = table.length; i < 256; i++) {

 translationTable[i] = (byte)i;

 } // for

 } // Constructor(InStream)

 /**

 * Read bytes from a stream of bytes and fill an array with those

 * bytes.

 * @param array The array of bytes to fill.

 * @exception IOException if a I/O error occurs.

 */

 public int read(byte[] array) throws IOException {

 int count;

 count = super.read(array);

 for (int i = 0; i < count; i++) {

 array[i] = translationTable[array[i]];

 } // for

 return count;

 } // read(byte[])

} // class ByteCountInStream

Related Patterns
Composite

The Composite pattern can be an alternative to the Filter pattern when
the objects involved do not have a consistent interface and they can be
composed statically.

Layered Architecture
The Layered Architecture pattern is similar to the Filter pattern. The
most important difference is that the objects involved in the layered
Architecture pattern correspond to different levels of abstraction.

Pipes
The Pipes pattern is sometimes an alternative to the Filter pattern.

Wrapper/Decorator
The Filter pattern is usually implemented as a special case of the
Wrapper pattern. FilterFilterFilterFilterFilterFilter

Recursive Composition

* 20 *

The Recursive Composition pattern is also known as the Composite
pattern.

Synopsis
The Recursive Composition pattern allows you to build complex objects

by composing similar objects in a tree-like manner. The Recursive Composition
pattern also allows the objects in the tree to be manipulated in a consistent
manner, by requiring that all of the objects in the tree have a common superclass.

The following description of the Recursive Composition pattern
describes it in terms of building a composite object from other objects. The
reason it appears in this partitioning patterns chapter is that during the design
process the Recursive Composition pattern is often used to recursively
decompose a complex object.

Context
Suppose that you are writing a document formatting program. It formats

characters into lines of text organized into columns that are organized into pages.
However, a document may contain other elements. Columns and pages can
contain frames that can contain columns. Columns, frames and lines of text can
contain images. Here is a class diagram that shows those relationships:

Document Container Relationships

* 21 *

As you can see, there is a fair amount of complexity here. Page and
Frame objects must know how to handle and combine two kinds of elements.
Column objects must know how to handle and combine three kinds of elements.
The Recursive Composition pattern removes that complexity by allowing these
objects to only know host to handle one kind of element. It accomplishes that by
insisting that document element classes all have a common subclass. Here is how
you can simplify the document element class relationships by using the
Recursive Composition pattern:

Document Container Recursive Composition
By applying the Recursive Composition pattern, you have introduced a

common superclass for all document elements and a common superclass for all
the document container classes. Doing that reduced the number of aggregation
relationships to one. Management of the aggregation is now the responsibility of
the DocumentContainer class. The concrete container classes (Document,
Page, Column, …) only need to understand how to combine one kind of
element.

Forces
• You have a complex object that you want to decompose into a part-

whole hierarchy of objects.

• You want to minimize the complexity of the part-whole hierarchy by
minimizing the number of different kinds of child objects that objects in
the tree need to be aware of.

Document Page Column Frame LineOfText

ImageCharacter

DocumentElement

DocumentContainer

* 22 *

Solution

You can minimize the complexity of a composite object that is organized
into a part-whole hierarchies by providing an abstract superclass for all of the
objects in the hierarchy and an abstract superclass for all of the composites in the
hierarchy. The class relationships for such an organization look like this:

Recursive Composition Class Relationships
Here are descriptions of the classes that participate in the Recursive

Composition pattern:

AbstractComponent
AbstractComponent is an abstract class and the common superclass of
all of the objects that are in the tree of objects that make up a composite
object. Composite objects normally treat the objects that they contain as
instances of AbstractComponent. Clients of composite objects
normally treat them as instances of AbstractComponent.

AbstractComponent

operation()

ConcreteComponent1

operation()

ConcreteComponent2

operation()

AbstractComposite

operation()
add(AbstractComponent)
remove(AbstractComonent)
getChild(int)

...

ConcreteComposite1

operation()
add(AbstractComponent)
remove(AbstractComonent)
getChild(int)

ConcreteComposite2

operation()
add(AbstractComponent)
remove(AbstractComonent)
getChild(int)

...

* 23 *

ConcreteComponent1, ConcreteComponent2…
Instances of these classes are used as leaves in the tree organization.

AbstractComposite
AbstractComposite is the abstract superclass of all composite objects
that participate in the Recursive Composition pattern.
AbstractComposite defines and provides default implementations for
methods for managing a composite object’s components. The add

method adds a component to a composite object. The remove method
removes a component from a composite object. The getChild method
returns a reference to a component object of a composite object.

ConcreteComposite1, ConcreteComposite2, …
Instances of these are composite objects that use other instances of
AbstractComponent.

Instance of these classes can be assembled in a tree-link manner like
this:

Recursively Composed Object
Note that you don’t need to have an abstract composite class if there is

only one concrete composite class.

Consequences
• You can create a tree-structured composite object that simply treats the

objects that comprise it as instances of AbstractComponent, whether
they are simple objects or composite.

:ConcreteComposite1

ConcreteComponent1 ConcreteComponent2 ConcreteComponent1:ConcreteComposite2

6Contains
Contains6

Contains6

Contains6

ConcreteComponent2

ConcreteComponent1

ConcreteComponent2

Contains6

Contains6

Contains6

* 24 *

• Client objects of an AbstractComponent can simply treat it as an
AbstractComponent, without having to be aware of any subclasses of
AbstractComponent.

• If a client invokes a method of an AbstractComponent that is
supposed perform an operation and the AbstractComponent object is
a AbstractComposite object, then it will delegate that operation to
the AbstractComponent objects that comprise it. Similarly, if a client
object calls a method of an AbstractComponent object that is not a
AbstractComposite and the method requires some contextual
information, then the AbstractComponent delegates the request for
contextual information to its parent.

• The Recursive Composition pattern allows any AbstractComponent to
be a child of an AbstractComposite. If you need to enforce a more
restrictive relationship then you will have to add type aware code to
AbstractComposite or its subclasses. That reduces some of the value
of the Recursive Composition pattern.

• Some components may implement operations that are unique to that
component. For example, under the context heading of this pattern is a
design for the recursive composition of a document. At the lowest level,
is has a document consisting of character and image elements. It is very
reasonable for the character elements of a document to have a getFont
method. A document’s image elements have no need for a getFont
method. The main benefit that the Recursive Composition pattern
provides is to allow the clients of a composite object and the objects that
comprise it to be unaware of the specific class of the objects they deal
with. To allow other classes to be able to call getFont without being
aware of the specific class they are dealing with, all of the objects that
can comprise a document can inherit the getFont method from
DocumentElelement. In general, when applying the Recursive
Composition pattern, the class in the role of the AbstractComponent
class declares specialized methods if they are needed by any
ConcreteComponent class.

A principle of object oriented design is that specialized methods should
only appear in classes that need them. Normally, a class should have
methods that provide related functionality and form a cohesive set. That
principle is the essence of the High Cohesion analysis pattern. Putting a

* 25 *

specialized method in a general-purpose class rather than the specialized
class that needs the method is contrary to the principle of high cohesion.
It is contrary to that principle because it adds a method unrelated to the
other methods of the general purpose class. That unrelated method is
inherited by subclasses of the general purpose class that are unrelated to
the method.

Because simplicity through ignorance of class is the basis of the
Recursive Composition pattern, when applying the pattern it is ok to
sacrifice high cohesion for simplicity.

Implementation
If classes that participate in the Recursive Composition pattern

implement any operations by delegating to their parent object, then the best way
to preserve speed and simplicity is by having each instance of
AbstractComponent contain a reference to its parent. It is important to
implement the parent pointer in a way that ensures consistency between parent
and child. It must always be the case that an AbstractComponent identifies an
AbstractComposite as its parent if and only if the AbstractComposite
identifies it as one of its children. The best way to enforce that is to only modify
parent and child references in the AbstractComposite class’ add and remove
methods.

Sharing components among multiple parents using the Flyweight pattern
is a way to conserve memory. However, it is difficult for shared components to
properly maintain parent references.

The AbstractComposite class may provide a default implementation
of child management for composite objects. However, it is very common for
concrete composite classes to override that implementation.

If a concrete composite class delegates an operation to the objects that
comprise it, then caching the result of the operation may improve performance. If
a concrete composite class caches the result of an operation, then it is important
that the objects that comprise the composite notify the composite objects so that
it can invalidate its cached values.

JAVA API Usage
The java.awt package contains a good example of the Recursive

Composition pattern. Its Component class fills the AbstractComponent role.

* 26 *

Its Container class fills the AbstractComposite role. It has a number of
classes in the ConcreteComponent role, including Label, TextField and
Button. The classes in the ConcreteComposite role include Panel, Frame
and Dialog.

Example
The example of the applying the Recursive Composition pattern is a

more detailed version of the document related classes that appeared under the
“context” heading. Here is a more detailed class diagram:

Detailed Document Recursive Composition
The above diagram shows some of methods. As you look through the

following code, you will see that the setFont method is an example of a
method that consults an object’s parent object. The getCharLength method
gathers information from an object’s children and caches it for later use. The
changeNotification method is used to invalidate cached information.

Document Page Column Frame LineOfText

DocumentElement

...
getFont() : Font
setFont(font:Font)
getCharLength() : int
getParent() : DocumentElement

DocumentContainer

getChild(index:int) : DocumentElement
addChild(:DocumentElement)
removeChild(child:DocumentElement)
...
changeNotif ication()
getCharLength() : int

Character

...
getCharLength() : int

Image

...
getCharLength() : int

* 27 *

Here is code for the DocumentElement class:

abstract class DocumentElement {

 // This is the font associated with this object. If the font

 // variable is null, then this object’s font will be inherited

 // through the container hierarchy from an enclosing object.

 private Font font;

 DocumentContainer parent; // this object’s container

...

 /**

 * Return this object’s parent or null if it has no parent.

 */

 public DocumentContainer getParent() {

 return parent;

 } // getParent()

 /**

 * Return the Font associatiated with this object. If there is no

 * Font associated with this object, then return the Font

 * associated with this object’s parent. If there is no Font

 * associated with this object’s parent the return null.

 */

 public Font getFont() {

 if (font != null)

 return font;

 else if (parent != null)

 return parent.getFont();

 else

 return null;

 } // getFont()

 /**

 * Associate a Font with this object.

 * @param font The font to associate with this object

 */

 public void setFont(Font font) {

 this.font = font;

 } // setFont(Font)

 /**

 * Return the number of characters that this object contains.

 */

 public abstract int getCharLength() ;

} // class DocumentElement

Here is the code for the DocumentContainer class.

abstract class DocumentContainer extends DocumentElement {

 // Collection of this object’s children

* 28 *

 private Vector children = new Vector();

 // The cached value from the previous call to getCharLength or -1

 // to indicate that charLength does not contain a cached value.

 private int cachedCharLength = -1;

 /**

 * Return the child object of this object that is at the given

 * position.

 * @param index The index of the child.

 */

 public DocumentElement getChild(int index) {

 return (DocumentElement)children.elementAt(index);

 } // getChild(int)

 /**

 * Make the given DocumentElement a child of this object.

 */

 public synchronized void addChild(DocumentElement child) {

 synchronized (child) {

 children.addElement(child);

 child.parent = this;

 changeNotification();

 } // synchronized

 } // addChild(DocumentElement)

 /**

 * Make the given DocumentElement NOT a child of this object.

 */

 public synchronized void removeChild(DocumentElement child) {

 synchronized (child) {

 if (this == child.parent)

 child.parent = null;

 children.removeElement(child);

 changeNotification();

 } // synchronized

 } // removeChild(DocumentElement)

...

 /**

 * A call to this method means that one of this object’s children

 * has changed in a way that invalidates whatever data this object

 * may be cahcing about its children.

 */

 public void changeNotification() {

 cachedCharLength = -1;

 if (parent != null)

 parent.changeNotification();

 } // changeNotification()

* 29 *

 /**

 * Return the number of characters that this object contains.

 */

 public int getCharLength() {

 int len = 0;

 for (int i = 0; i < children.size(); i++) {

 DocumentElement child;

 child = (DocumentElement)children.elementAt(i);

 len += child.getCharLength();

 } // for

 cachedCharLength = len;

 return len;

 } // getCharLength()

} // class DocumentContainer

The Character class implements getCharLength in the obvious way:

class Character extends DocumentElement {

...

 /**

 * Return the number of characters that this object contains.

 */

 public int getCharLength() {

 return 1;

 } // getCharLength()

} // class Character

The Image class is an example of a class that implements a method so
that the other classes that comprise a document do not need to be aware of the
Image class as requiring any special treatment.

class Image extends DocumentElement {

...

 /**

 * Return the number of characters that this object contains.

 * Though images don’t really contain any characters, for the sake

 * of consistenecy, we will treat an image as if it is a character.

 */

 public int getCharLength() {

 return 1;

 } // getCharLength()

} // class Image

The other classes in the class diagram that are subclasses of
DocumentContainer do not have any features that are interesting with respect
to the Recursive Composition pattern. In the interest of brevity, just one of them
is shown below:

class Page extends DocumentContainer {

...

* 30 *

} // class Page

Related Patterns
Chain of Responsibility

The Chain of Responsibility pattern can be combined with the
Recursive Composition pattern by adding child to parent links so
that children can get information from an ancestor without having
to know which ancestor the information came from.

High Cohesion
The High Cohesion analysis pattern discourages putting specialized
methods in general purpose classes, which is something that the
Recursive Composition pattern encourages.

Visitor
The Visitor pattern can be used to encapsulate operations in a single
class that would otherwise be spread across multiple classes.

