Temporal Patterns

The patterns in this chapter involve coordinating concurrent operations. These patterns primarily address
two different types of problems.

» Shared resources
When concurrent operations access the same data or other type of resource, there may be the possibility
that the operations may interfere with each other if they access the resource at the same time. To ensure
that such operations execute correctly, the operations must be constrained to access their shared resource
one at atime. However, if the operations are overly constrained, then they may deadlock and not be able
to finish executing.

Deadlock is a situation where one operation waits for another to do something before it proceeds.
Because each operation iswaiting for the other to do something, the wait forever and never do anything.

» Sequence of operations
If operations are constrained to access a shared resource one at atime, then it may be necessary to ensure
that the access the shared resource in a particular order. For example, an object cannot be removed from
adata structure before it is added to the data structure.

The Single Threaded Execution pattern is the most important pattern in this chapter to know. Most
shared resource issues can be resolved with just the Single Threaded Execution pattern. Situations where the
sequence of operations matters less common.

Single Threaded Execution [Grand98]

Synopsis

Some methods access data or other resourcesin away that produces incorrect results if there are
concurrent calls to a method and both calls access the data or other resource at the same time. The Single
Threaded Execution pattern solves this problem by preventing concurrent calls to the method from resulting in
concurrent executions of the method.

Context

Suppose you are writing software for a system that monitors the flow of traffic on amajor highway.
Sensorsin the road monitor the number of passing cars per minute at strategic locations on the highway. The
sensors send information to a central computer that controls electronic signs located near major interchanges. The
signs display messages to drivers, advising them of traffic conditions so that they can select alternate routes.

At the places in the road where sensors measure the flow of cars, there is a sensor for each traffic lane.
The sensor in each lane is wired to a controller that totals the number of cars that pass that place in the road each
minute. The controller is attached to a transmitter that transmits each minute’s total to the central computer.
Below is a class diagram that shows those relationships.

04/20/98 -- Grand -- UIUC Peatterns Group Draft -- 1

TrafficSensor

1.*
Notify-of-
passing-vehicle™

1

TrafficSensorController

vehicleCount:int

vehiclePassed()
getAndClearCount():int

1

Gets-traffic-counts «

1

TrafficTransmitter

Traffic Sensor Classes
The above diagram contains the following classes:

TrafficSensor
Each instance of this class corresponds to a physical sensor device. Each time a vehicle passes a physical
sensor device, the corresponding instance of the TrafficSensor class «cals a
TrafficSensor Control | er object'svehi cl ePassd method

TrafficTransmitter
Instances of this class are responsible for transmitting the number of vehicles that pass a place on the
road each minute. Araf fi cTransmi tt er object gets the number of vehicles that have passed a place
on the road Dby caling the getAndd earCount method of its corresponding
Traffi cSensor Cont rol | er object. TheTr af fi cSensor Control | er object’sget AndCl ear Count
method returns then number of vehicles that have passed the sensors since the previous call to the
get AndCl ear Count method.

TrafficSensorController
Instances of th@r af fi cSensor class and tha@rafficTransnmitter class call the methods of the
Traffi cSensor Cont rol | er class to update, fetch and clear the number of vehicles that have passed a
place on the road.

Itispossible for two Tr af f i cSensor objectsto call aTraf fi cSensor Cont rol | er object’s
vehi cl ePassed method at the same time. If both calls execute at the same time, they produce an incorrect
result. Each call to theehi cl ePassed method is supposed to increase the vehicle count by one. However, if
two calls to thevehi cl ePassed method execute at the same time, the vehicle count is incremented by one
instead of two. Here is the sequence of events that would occur if both calls execute at the same time:

* Both calls fetch the same valuewathi cl eCount at the same time.
* Both calls add one to the same value.

* Both calls store the same valuevighi cl eCount .

04/20/98 -- Grand -- UIUC Peatterns Group Draft -- 2

Clearly, alowing more than one call to the vehi cl ePassed method to execute at the same time will
result in undercounting of passing vehicles. Though a slight undercount of vehicles may not be a serious problem
for this application, thereis asimilar problem that is more serious.

ATrafficTransnitter object periodicaly callsaTraf fi cSensor Control | er object’s
get AndCl ear Count method. Theget Andd ear Count method fetches the value of the
Traf fi cSensor Cont rol | er object'svehi cl eCount variable and then sets it to zero. If a
Traf fi cSensor Cont rol | er object’'svehi cl ePassed method andet Andd ear Count method are called at
the same time, that creates a situation callet@condition.

A race condition is a situation whose outcome depends on the order in which concurrent operations
finishes. If theget AndCl ear Count method finishes last, then it sets the value of/#te cl eCount variable to
zero, wiping out the result of the call to thehi cl ePassed method. That is just another way for undercounts to
happen. However, the problem is more serious if/titeé cl ePassed method finishes last.

If the vehi cl ePassed method finishes last, it replaces the zero set bgéh@&ndC ear Count method
with a value one greater than the value it fetched. That means that the next cajetoAtiteCl ear Count
method will return a value that includes vehicles counted before the previous caljéo Aheld ear Count
method. An overcount like that could be large enough to convince the central computer that a traffic jam is
starting and that it should display messages on the electronic signs suggesting that drivers follow alternate routes.
An error like that could cause a traffic jam.

A simple way to avoid these problems is to require that no more than one thread at a time is executing a
TrafficSensor Cont rol | er object'svehi cl ePassed method oget AndCl ear Count method at the same
time. You can indicate that design decision by indicating that the concurrency of those methods is guarded: In a
UML drawing, indicating that a method’s concurrency is guarded is equivalent to declaring it synchronized in
Java.

TrafficSensor

1.*
Notify-of-
passing-vehicle™

1

TrafficSensorController

vehicleCount:int

vehiclePassed() {concurrency=guarded}
getAndClearCount():int {concurrency=guarded}

1

“ Gets-traffic-counts

1

TrafficTransmitter

Synchronized Traffic Sensor Classes

Any number of threads may call the guarded methods of the same object at the same time. However, only
one thread at a time is allowed to execute the object’'s guarded methods. While one thread is executing an
object’s guarded methods, other threads will wait until that thread is finished executing the object’s guarded
methods. That ensures single threaded execution of an object’s guarded methods.

04/20/98 -- Grand -- UIUC Patterns Group Draft -- 3

Forces

* A classimplements methods that update or set instance or class variables.

» A classimplements methods that manipulate external resourcesin away that will only work correctly if
the methods are executed by one thread at atime.

* The class’ methods may be called concurrently by different threads.

Solution

The Single Threaded Execution pattern ensures that methods that perform operations that cannot be
correctly performed concurrently are not performed concurrently. It accomplishes that by making methods that
should not be executed concurrently guarded. The class diagram below shows the general case.

Resource

safeOpl
safeOp2

unsafeOp1 {concurrency=guarded}
unsafeOp2 {concurrency=guarded}

Single Threaded Execution Pattern

The class in the above has two kinds of methods. It has unguarded methods named safeOp1, safeOp2...
that can be safely called concurrently by different threads. It has synchronized methods named unsafeOp1,
unsafeOp2... that cannot be safely called concurrently by different threads. When different threads call the
guarded methods ofResour ce object at the same time, only one tread at a time is allowed to execute the
method. The rest of the threads wait for that thread to finish.

Conseguences

» If a class has methods that access variables or other resources in a way that is not thread safe, making all
of its methods guarded that perform thread unsafe accesses to resources makes them thread safe.

« ltis often the case that it takes longer to call a guarded method than an unguarded method. Making
methods guarded that do not need to be can reduce performance.

« Making methods guarded can introduce the opportunity for threads to bdeanttmcked. Deadlock
occurs when two threads each have the exclusive use of a resource and each thread is waiting for the
other to release the other’s resource before continuing. Since each thread is waiting for a resource that
the other thread already has exclusive access to, both threads will wait forever without gaining access to
the resource they are waiting for. Consider the example in the below collaboration diagram.

04/20/98 -- Grand -- UIUC Patterns Group Draft -- 4

la: foo() {concurrency=guarded} 1b: bar() {concurrency=guarded}

—_—
la.1: bar() {concurrenty=guarded}

x:Class1 y:Class2

-
1b.1: foo() {concurrency=guarded}

Deadlock

In the above collaboration diagram, at the same time, thread 1a calls object x’s f oo method and thread

1b calls objecly’s bar method. Threada then calls object’s bar method and waits for thresd to

finish its call to that method. Thread calls objeck’s f oo method and waits for thregal to finish its

call to that method. At that point, the two threads are deadlocked. Each is waiting for the other to finish
its call.

Deadlock can also involve more than two threads.

Implementation

Guarded methods are implemented in Java by declaring methods to be synchronized. It usually takes
longer to call a synchronized method than an unsynchronized method. Consider the following collaboration
diagram.

la: foo() {concurency=guarded} L

A

la.1: dolt() {concurrency:guarded}i

B

Synchronization Factoring

The above diagram shows that a synchronized method inActadls clas®’s dol t method. Thelol t
method is synchronized. If thiml t method is called only from synchronized methods of dlafisen as an
optimization, it is possible to make thel t method an unsynchronized method. It will still be executed by only
one thread at a time because it is only called by methods that are only executed by one thread at a time.

This optimization is callegdynchronization factoring. Synchronization factoring is an unsafe
optimization in the sense that if the program is modified so that concurrent calls can be madelto the
method, it will stop working correctly. For that reason, if you decide that this optimization is worth doing, you
should put comments in the design diagrams and code to warn and remind people that the optimization has been
performed.

04/20/98 -- Grand -- UIUC Patterns Group Draft -- 5

JAVA API| Usage

Many of the methods of thej ava. uti | . Vect or class are synchronized to ensure single threaded access
to theinternal data structures of Vect or objects.

Code Example

Below is some of the code that implements the traffic sensor design discussed under the “Context”
heading. The first class shown is fiveaf f i cSensor class. Instances of tieaf fi cSensor class are
associated with a traffic sensor. A traffic sensor detects the passing of a vehicle over a place in a traffic lane.
When the traffic sensor associated with an instance afrthief i cSensor class detects a passing vehicle, the
instance'slet ect method is called. ltdet ect method is responsible for notifying other interested objects of the
passing vehicle.

public class TrafficSensor inplenents Runnable {
private TrafficCbserver observer;

/**
* Constructor
* @aram observer The object to notify when this object’s associated
* traffic sensor detects a passing vehicle.
*
/
public TrafficSensor(TrafficCObserver observer) ({
this. observer = observer;
new Thread(this).start();
} // constructor(TrafficObserver)

/**
* Top level logic for this object’s thread.
*/
public void run() {
noni t or Sensor () ;
} /1 run()

/1 This nethod is responsible for calling this object’s detect when
/1 its associated traffic sensor detects a passing vehicle.
private native void nonitorSensor() ;

/1 This nethod is called by the nonitorSensor nethod to report the
/1 passing of a vehicle to this object’s observer.
private void detect() {
observer. vehi cl ePassed();
} /1 detect()

/**
* C asses nust inplenment this interface to be notified of passing
* vehicles by a TrafficSensor object.
*/
public interface TrafficCObserver {
/**
* This is called when a TrafficSensor detects a passing vehicle.
*/
public void vehicl ePassed();
} // interface TrafficObserver
} // class TrafficSensor

The next class shown is theaf fi cTransni tt er class. Instances of theaf fi cTransni tter class
are responsible for transmitting the number of vehicles that have passed a place in the road every minute.

04/20/98 -- Grand -- UIUC Patterns Group Draft -- 6

public class TrafficTransmitter inplenents Runnable {
private TrafficSensorController controller;
private Thread nyThread;

/**
* constructor.
* @aramcontroller The TrafficSensorController that this object
* will get vehicle counts from
*/
public TrafficTransmitter(TrafficSensorController controller) {
this.controller = controller;
/...
nyThread = new Thread(this);
nyThread. start();
} // constructor(TrafficSensorController)

/**
* transnmit a vehicle count every minute
*/
public void run() {
while (true) {
try {
nmy Thr ead. sl eep(60*1000) ;
transmt(controller.get Andd ear Count ());
} catch (InterruptedException e) {
Yy I otry
} /] while
} /1 run()

/1 Transmit a vehicle count.
private native void transnit(int count)
} /] class TrafficTransmitter

Thefinal class shown hereisthe Tr af fi cSensor Cont rol | er class. Instances of the
Traffi cSensor Cont rol | er class maintain arunning total of the number of vehicles that have passed the
traffic sensors associated with the instance. Notice that its methods are implemented as synchronized methods.

public class TrafficSensorController
i npl enents TrafficSensor. TrafficCbserver {
private int vehicleCount = O;

/**
* This nethod is called when a traffic sensor detects a passing
* vehicle. It increnents the vehicle count by one.
*/
publ i c synchroni zed voi d vehicl ePassed() {
vehi cl eCount ++;
} /1 vehicl ePassed()

/**
* Set the vehicle count to O.
* @eturn the previous vehicle count.
*/
public synchroni zed i nt get Andd ear Count () {
int count = vehicleCount;
vehi cl eCount = 0;
return count;
} /1 get Andd ear Count ()
} /1 class TrafficSensorController

04/20/98 -- Grand -- UIUC Peatterns Group Draft -- 7

Related Patterns

Most other temporal patterns use the Single Threaded Execution pattern.

Guarded Suspension [Lea97]

Synopsis

Suspend execution of amethod call until a precondition is satisfied.

Context

Suppose that you have to create a class that implements a queue data structure. A queueisafirstin first
out data structure. Objects are removed from a queue in the same order that they are added. The following class
diagram shows a Queue class.

Queue

isEmpty():boolean
push(:Object) {concurrency=guarded}
pull():Object {concurrency=guarded}

Queue Class

The classin the above diagram has two methods. The push method adds objects to a queue and the pul |
method removes objects from the queue. When the queue is empty, you want the get method to wait until a call
to the add an object to the queue for it to return. The methods are synchronized to allow concurrent accessto a
Queue object. Simply making both methods synchronized creates a problem when thereis acall to aQueue
object’spul I method and the queue is empty. Pél method waits for a call to thish method to provide it
with an object to return. However, because they are both synchronized, callpuettheethod cannot execute
until thepul I method returns and thpal | method will never return until a call to thesh method executes.

A solution to the problem is to add a precondition toptlid method so that it does not execute when
the queue is empty. Consider the following collaboration diagram.

ila: pull() {concurrency=guarded|!q.isEmpty()} 1b: push() {concurrency=guarded} i

g:Queue

Queue Collaboration

The above collaboration diagram shows concurrent callte@e object’spush andpul | methods. If
thepul I method is called when tli@ieue object’si sEnpt y method returns true, then the thread waits until
i sSEnpt y returns false before executing fhd | method. Because it does not actually executepdahe method
while the queue is empty, there is no problem with a call tpubkl method being able to add objects to an

empty queue.

04/20/98 -- Grand -- UIUC Patterns Group Draft -- 8

Forces

e Aclass’ methods must be synchronized to allow safe concurrent calls to them.

* An object may be in a state that will make it impossible for one of its synchronized methods to
execute to completion. In order for the object to leave that state, a call to one of the object’s other
synchronized methods must execute. If a call to the first method is allowed to proceed it while the
object is in that state, it will never complete. Calls to the method that allows it to complete will have
to wait until it does complete, which will never happen.

Solution

Consider the following class diagram.

Widget

iSOK():boolean
foo() {concurrency=guarded}
bar(:int) {concurrency=guarded}

Unguarded Suspension Class

The above diagram shows a class nawietfjet that has two synchronized methods nafea and
bar . There is an exceptional state thdtiget objects can enter. WhenAadget object enters that exceptional
state, itd sOK method returns false; otherwise, it returns true. When a widget object enters the exceptional state,
a call to itsbar method may take it out of that state. There is no way to take it out of the exceptional state other
than a call tdar . Taking aw dget object out of its exceptional state is a side effect obthhemethod’s main
purpose, so it is not acceptable to calltihe method just to take a widget object out of its exceptional state.

A call to aw dget object’sf oo method cannot complete if tiédget object is in its exceptional state.
If that happens, because theo andbar methods are synchronized, subsequent calls tovtiiget object’sf oo
andbar methods will not execute until the callftoo returns. The call tboo will not return until a call to bar
takes than dget object out of its exceptional state.

The purpose of the Guarded Suspension pattern is to avoid the deadlock situation that can occur when a
thread is about to execute an object’s synchronized method and the state of the object prevents the method from
completing. If a method call occurs when an object is in a state that prevents the method from executing to
completion, the Guarded Suspension pattern suspends the thread until the object is in a state that allows the
method to complete. That is illustrated in the collaboration diagram below.

ila: foo(') {concurrency=guarded | 'w.isOK()} 1b: bar(:int) {concurrency=guarded} i

w:Widget

Guarded Suspension Collaboration

Notice that the above diagram indicates a precondition that must be satisfied before awalbtet a
object executes. If a thread tries to calValget object’'sf oo method when the¥ dget object’si sOK method
returns false, the thread will be forced to wait untitK returns true before it is able to executefthe method.
While that thread is waiting fars OK to return true, other threads are free to calbtiremethod.

04/20/98 -- Grand -- UIUC Patterns Group Draft -- 9

Conseguences

Using the Guarded Suspension pattern allows a thread to cope with an object that isin the wrong state to
perform an operation by waiting until the object isin a state that allows it to perform the operation.

Because the Guarded Suspension pattern requires synchronized methods, it is possible for multiple
threads to be waiting to execute a call to the same method of the same object. The Guarded Suspension pattern
specifically does not deal with selecting which of the waiting threads will be allowed to proceed when the object
isin astate that will allow the method to be executed. Y ou can use the Scheduler pattern to accomplish that.

A situation that can make it difficult or impossible to use the Guarded Synchronization pattern is nested
synchronization. Consider the following collaboration diagram.

ila:doThE(){concunency:guarded} lb:doThaant){concunency:guarded}l
:Thing
i la.1: foo() {concurrency=guarded | w.isOK()} 1b.1: bar(:int) {concurrency=guarded} i
w:Widget

Guarded Suspension under Nested Synchronization

In the diagram above, accessto the W dget abject is through the synchronized methods of a Thi ng
object. That means that when thread 1a callsthe W dget object’'sf oo method when the state of thiedget
object causes ifissOK method to return false, the thread will wait forever forwheéget object’si sOK method
to return true. The reason for that is that the methods dhihey object are synchronized without any
preconditions. That gives us the same problem that the Guarded Suspension pattern was intended to solve.

Implementation

The Guarded Suspension pattern is implemented usingitheandnot i f y methods like this:

cl ass Wdget {
synchroni zed void foo(){
while (1isOK()) {
wai t();

}
}

synchroni zed void bar(x int) {

Roiify();
}

The way that it works is that a method such @s that must satisfy preconditions before it begins

executing actually begins executing and then tests its preconditions. The very first thing that such a method does
is to test its preconditions in a while loop. While the preconditions are false, it calksi thenethod.

04/20/98 -- Grand -- UIUC Peatterns Group Draft -- 10

Every classinheritsthe wai t method from the Obj ect class. When a thread calls an objeatist
method, thevai t method causes the thread to release the synchronization lock it holds on the object. The method
then waits until it is notified that it may return. Then, as soon as the thread is able to recapture thewaick, the
method returns.

When thenai t method returns, control returns to the top of the while loop which tests the preconditions
again. The reason for testing the preconditions in a loop is that between the time that the thread first tries to
recapture the synchronization lock and the time that it captures it, another thread may have made the
preconditions false.

The call to thenai t method is notified that it should return when another method, sucr asalls the
object’snot i fy method. Such methods call thet i f y method after they have changed the state of the object
in a way that may satisfy a method’s preconditions.ridié f y method is another method that all classes inherit
from thebj ect class. What theot i f y method does is to notify another thread that is waiting fondihe
method to return that it should return.

If more than one thread is waiting, thet i f y method chooses one arbitrarily. Arbitrary selection works
well in most situations. It does not work well for objects that have methods with different preconditions.
Consider a situation in which multiple method calls are waiting to have their different preconditions satisfied.
Arbitrary selection can result in a situation where the preconditions of one method call are satisfied, but the
thread that gets notified has is trying to execute a method with different preconditions that are not satisfied. In a
situation like that it is possible for a method call to never complete because the method is never notified when its
preconditions are satisfied.

For classes where arbitrary selection is not a good way to decide which thread to notify, there is an
alternative. Their methods can call thet i f yAl | method. Rather than choosing one thread to notify, the
noti f yAl I method notifies all waiting threads. That avoids the problem of not notifying the right thread.
However, it may result in wasted machine cycles as a result of waking up threads waiting to execute method calls
whose preconditions are not satisifed..

Code Example

Below is code that implements theeue class design discussed under the “Context” heading.

public class Queue {
private Vector data = new Vector();

/**
* Put an object on the end of the queue
* @aramobj the object to put at end of queue
*/
synchroni zed public void put(Object obj) {
dat a. addEl enent (obj) ;
notify();
} /1 put(oject)

/**
* Get an object fromthe front of the queue
* |f queue is enpty, waits until it is not enpty.
*/
synchroni zed public Object get() {
while (data.size() == 0){
try {
wai t();
} catch (InterruptedException e) {
Y I otry
} /] while

04/20/98 -- Grand -- UIUC Peatterns Group Draft -- 11

Obj ect obj = data.elementAt(0);
dat a. renoveEl ement At (0) ;
return obj;

Y /1 get()
} // class Queue

Notice that in the above listing, the call to the wai t method iswrappedinat ry statement that catches
thel nt er rupt edExcept i on that calsto thewai t method may throw. Simply ignoring the
I nt errupt edExcepti on that thewai t method is declared to throw is the simplest thing to do for programs
that do not expect thewai t method to actually throw an | nt er r upt edExcept i on. See the discussion of the
Two-Phase Termination pattern for an explanation of when thewai t method throws an
I nt errupt edExcepti on and what you should do about it.

Related Patterns

Balking
The Balking pattern provides a different strategy for handling method calls to objects that are not in an
appropriate state to execute the method call.

Two-Phase Termination
Because the implementation of the Two-Phase Termination pattern usually involves the throwing and
handling of | nterruptedException, its implementation usually interacts with the Guarded
Suspension pattern.

Balking [Lea97]

Synopsis

If one of an object’'s methods is called when the object is not in an appropriate state to execute that
method, have the method return without doing anything.

Context

Suppose that you are writing a program to control an electronic toilet flusher. Such devices are intended
for use in public bathrooms. They have a light sensor mounted on the front of the flusher. When the light sensor
detects an increase in the light level, it assumes that a person has left the toilet and triggers a flush. Electronic
toilet flushers also have a button on them that can be used to manually trigger a flush. Below is a class diagram
showing classes to model that behavior.

LightSensor FlushButton

Requests-flush ™ Requests-flush™

Flusher

flush()

Flusher Classes

04/20/98 -- Grand -- UIUC Patterns Group Draft -- 12

Asshown in the diagram above, when aLi ght Sensor object or aFl ushBut t on object decide that
there should be aflush, they request the Fl usher object to start aflush. They do that by calling the Fl usher
object’sf | ush method. The | ush method starts a flush and then returns once the flush is started. That
arrangement raises some concurrency issues that need to be resolved.

You will need to decide what happens whenfthesh method is called while there is already a flush in
progress. You will also need to decide what happens when bdthgheSensor object and th&l ushBut t on
object call therl usher object’sf | ush method at the same time.

The three most obvious choices for how to handle a call tol tieh method while there is a flush in
progress are:

« Start a new flush immediately.
Starting a new flush while a flush is already in progress has the same effect as making the flush in
progress last longer than a normal flush. The optimal length of a normal flush has been determined
through experience. A longer flush would be a waste of water, so this is not a good option.

e Wait until the current flush finishes and immediately start another flush.
This option effectively doubles the length of a flush, so it is a bigger waste of water that the first option.

e Do nothing.
This option wastes no water, so it is the best choice.

When there are two concurrent calls to the flush method, allowing one to execute and ignoring the other
is also a good strategy.

Suppose that a call is made to an object’s method when the object is not in a state to properly execute the
method. If the method handles the situation by returning without performing its normal function, we say that the
method balked. UML does not have a standard way of indicating a method call with balking behavior. The
technique used in this book to represent a method call that exhibits balking behavior in a collaboration diagram is
an arrow that curves back on itself, as shown below.

> G

1A:flush() 1B:flush()

:LightSensor :Flusher

:FlushButton

Flusher Collaboration

Forces

« An object may be in a state in which it is inappropriate to execute a method call.

* Postponing execution of a method call until the object is in an appropriate state is an inappropriate
policy for the problem at hand.

« Calls made to an object’'s method when the object is not in an appropriate state to execute the method
may be safely ignored.

Solution

The following collaboration diagram shows objects collaborating in the Balking pattern.

04/20/98 -- Grand -- UIUC Patterns Group Draft -- 13

>

1:didIt:=dolt()

:Client :Service

Balking Collaboration

In the above diagram, ad i ent object callsthedol t method of a Ser vi ce object. The bent back arrow
indicates that the call may balk. If the Ser vi ce object’'sdol t method is called when ttger vi ce objectis in a
state that is inappropriate for executing a call tdatist method, then the method returns without have
performed its usual functions.

Thedol t method returns a result, indicated in the diagradi dst , that indicates if the method
performed its normal functions or balked.

Conseguences

* Method calls are not executed if they are made when their object is in an inappropriate state.

e Calling a method that can balk means that the method may not perform the functions that its caller
expects that it will, but do nothing instead.

Implementation

If a method can balk then, generally, the first thing that it does is to check the state of the object it
belongs to, to determine if it should balk. It may be possible for the object’s state to change to an inappropriate
state for a balking method to run while that method is running. If that is possible, then an application of the
Single Threaded Execution pattern can be used to prevent that inconsistency.

Instead of telling its callers if it balked by passing a return value, it is also reasonable for a method to
notify its callers that it balked by throwing an exception. If a method’s callers do not need to be interested in
whether or not it balked, the method does not need to return that information.

Code Example

Below is code for th€l usher class discussed under the “Context” heading.

public class Flusher {
private bool ean flushlnProgress = fal se;

/**
* This nmethod is called to start a flush.
*/
public void flush() {
synchroni zed (this) {
i f (flushlnProgress)
return;
flushl nProgress = true;
}

/1 code to start flush goes here.

}

/**
* This method is called to notify this object that a flush has conpl eted.
*/
voi d flushConpl eted() {
flushl nProgress = fal se;
} /1 flushConpl eted()

04/20/98 -- Grand -- UIUC Peatterns Group Draft -- 14

} /1 class Flusher

Notice the use of the synchronized statement in the f | ush method. It is there to ensure that if two calls to
the f | ush method occur at the same time, one of the calls will proceed normally and the other will balk.

Also, notice that the f | ushConpl et ed method is not synchronized. That is because there is never atime
when setting the f | ushl nPr ogr ess variable to false causes a problem.

Related Patterns

Guarded Suspension
The Guarded Suspension pattern provides an aternate way to handle method calls to objects that are not
in an appropriate state to execute the method call.

Single Threaded Execution
The Balking pattern is often combined with the Single Threaded Execution pattern to coordinate changes
to an object’s state.

Scheduler [Lea97]

Synopsis

Control the order in which threads are scheduled to execute single threaded code using an object that
explicitly sequences waiting threads.

Context

Suppose that you are designing software to manage a building’s physical security. The security system
will support security checkpoints that require a person to pass their identification badge through a scanner in
order to pass through the checkpoint. When someone passes their identification badge through a checkpoint
scanner, the checkpoint either allows the person to pass through or rejects the badge. Whenever someone passe:s
through a security checkpoint or a badge is rejected, an entry is to be printed on a hard copy log in a central
security office. Here is a diagram showing the basic collaboration.

—»

2:print(:ent uarded
:SecurityCheckpoint prin() {9 ! :Printer

i 1:create()

entry:JournalEntry|

Security Journal Collaboration

The above interaction diagram shoSes ur i t yCheckpoi nt objects creatingour nal Ent ry objects
and passing them toRai nt er object’'spri nt method. Simple though it is, there is a problem with that
organization. The problem occurs when people go through three or more checkpoints at the same time. While the
printer is printing the first of the log entries, the other print calls wait. After the first log entry is printed, there is
no guarantee which log entry will be printed next. That means that the log entries may not be printed in the same
order that the security checkpoints sent them to the printer.

04/20/98 -- Grand -- UIUC Peatterns Group Draft -- 15

To ensure that journal entries are printed in the same order that they happen, you could simple put each
journal entry in aqueue and then print the journal entries in the same order that the arrive in a queue. Though that
still leaves open the possibility of three or more journal entries arriving at the same time, the likelihood is greatly
reduced. It may take as long as a second to print ajournal entry. For the problem to occur, the other two journal
entries must both arrive within that time period. Queuing ajournal entry may only take about a microsecond.
That reduces likelihood of journal entries printing out of sequence by a factor of 1,000,000.

Y ou could make the queuing of journal entries to be printed the responsibility of the Pri nt er class.
However, the queuing of method calls to be executed sequentially is a capability that has alot of potential reuse
if it isimplemented as a separate class. The interaction diagram below shows how a printer object could
collaborate with another object to queue the execution of callstoitspri nt method.

«interface»
ScheduleOrdering

4 Schedules-ScheduleOrdering-
Objects-for-Processing

scheduleBefore(:ScheduleOrdering):boolean

1

Scheduler
1
4 Prints
JournalEntry
* “ Schedules-Journal-Entries-
* to-be-printed
Creates «
1 1 1
»
SecurityCheckpoint Uses Printer
* 1

Security Journal with Scheduler

The aboveinteraction, aSecuri t yCheckpoi nt object callsthepri nt er object’spri nt method. The
pri nt method begins by calling ttf8ehedul er object'sent er method. Thent er method does not return
until theSchedul er object decides that it should. When ghé nt method is finished, it calls tighedul er
object’'sdone method. Between the time that th& er method returns and thiene method is called, the
Schedul er object assumes that the resource it is managing is busy. No cabio éts method will return
while theSchedul er object believes that the resource it is managing is busy. That ensures that only one thread
at a time executes the portion of fireé nt method after its call to th&chedul er object’'sent er method until
it calls theSchedul er object'sdone method.

The actual policy that thechedul er object uses to decide when a call togheer method returns is
encapsulated in thechedul er object. That allows the policy to change without affecting other objects. In this
example, the policy that you would want when more than one call emtleg method is waiting to return is

« If the Schedul er object is not waiting for a call to itktone method, then a call to itsmt er method will
return immediately. Th&chedul er object then waits for a call to itone method.

« If the Schedul er object is waiting for a call to itdsone method, then a call to itsit er method will
wait to return until a call to thechedul er object'sdone method. When th8chedul er object'sdone
method is called, if there are any calls tceits er method waiting to return then one of these er
method calls is choose to return.

04/20/98 -- Grand -- UIUC Peatterns Group Draft -- 16

e Theent er method call chosen to return when the done method is called is the one that was passed a
Jour nal Ent ry object with the earliest timestamp. If more than one Jour nal Ent ry object has the same
earliest timestamp, then one of them is chosen arbitrarily.

In order for the Schedul er classto be able to compare the timestamps of Jour nal Ent ry objects and
still be reusable, the Schedul er class must not refer directly to the Jour nal Ent ry class. However, it can refer
to the Jour nal Ent ry class through an interface and still remain reusable. That organization is shown in the
class diagram below.

«interface»
ScheduleOrdering

4 Schedules-ScheduleOrdering-

scheduleBefore(:ScheduleOrdering):boolean Objects-for-Processing

1

Scheduler
1
< Prints
JournalEntry
* “ Schedules-Journal-Entries-
* to-be-printed
Creates ~
1 1 1
»
SecurityCheckpoint Uses Printer
* 1

Journal Entry Scheduling Classes

The Schedul er class does not know about the Jour nal Ent ry class. It merely knows that it schedules
processing for objects that implement the Schedul eOr der i ng interface. That interface declares the
schedul eBef or e method that the Schedul er class callsto determine which of two Schedul eOr deri ng
objectsit should schedule first. Though the Schedul er class encapsulates a policy governing when processing
will be allowed for a Schedul eOr der i ng object, it delegates the decision of what order they will be allowed to
processin to the Schedul eOr der i ng object.

Forces
* Multiple threads may need to access aresource at the same time and only one thread at a time may
access the resource.

« The program’s requirements imply constraints on the order in which threads should access the
resource.

Solution

TheSchedul er pattern uses an object to explicitly schedule concurrent requests by threads for non-
concurrent processing. The class diagram below shows the roles that classes play in the Scheduler pattern.

04/20/98 -- Grand -- UIUC Peatterns Group Draft -- 17

«interface»
ScheduleOrdering

4 Schedules-ScheduleOrdering-
Objects-for-Processing

scheduleBefore(:ScheduleOrdering):boolean

1

Scheduler

1

“ Schedules-Request-
objects for processing

1

]
Request Processes Processor

* 1

Scheduler Classes
Below are descriptions of the role the classes play in the Scheduler pattern.

Request
Classes in this role must implement the interface in the Schedul eOr deri ng role. Request objects
encapsulate arequest for aPr ocessor object to do something.

Processor
Instances of classes in this role perform a computation described by a Request object. They may be
presented with more that one Request object to process at a time, but can only process one at atime. A
Processor object delegates to a Schedul er object the responsibility for scheduling Request object
for processing, one at atime.

Scheduler
Instances of classes in this role schedule Request objects for processing by a Processor object. To
promote reusability, a Scheduler class does not have any knowledge of the Request class that it
schedules. Instead, it accesses Request objects through the Schedul eOr deri ng interface that they
implement.

ScheduleOrdering
Request objectsimplement an interface that isin thisrole. Interfacesin this role serve two purposes.

» By referringto aSchedul eOr der i ng interface, Processor classes avoid a dependency on a
Request class.

» By calling methods defined by the Schedul eOr der i ng interface, Pr ocessor classes are able to
delegate the decision of which Request object to schedule for processing next, which increases the
reusability of Processor classes. The above class diagram indicates one such method named
schedul eBef or e.

The interaction between aPr ocessor object and a Schedul er object occursin two stages, asis shown
by the interaction diagram below.

04/20/98 -- Grand -- UIUC Peatterns Group Draft -- 18

—»
1: dolt(r)

:Processor

i 2.1:enter(r) 2.2:done() L

This method call does not
return until the Scheduler

decides it should.

:Scheduler

i 2.1.1: ScheduleBefore(:Regest)

r:-Request

Scheduler Interaction

The above interaction begins with acall to aProcessor object’'sdol t method. The very first thing the
dol t method does is to call thet er method of theSchedul er object associated with tiRe ocessor object.
If there is no other thread currently executing the rest addhe method, then thent er method returns
immediately. After theent er method returns, théchedul er object knows that the resource that it is managing
is busy. While its resource is busy, any calls toStteedul er object’'sent er method will not return until the
resource is not busy and thehedul er object decides that it is that call’s turn to return.

After its enter method returnsSahedul er object considers the resource it manages to be busy until the
Schedul er object'sdone method is called. When one thread makes a valid calsttiedul er object'sdone
method, if any threads are waiting to return from3btieedul er object’'sent er method then one of them
returns.

If a call to aSchedul er object’'sent er method must wait before it returns and there are other calls
waiting to return from thent er method then th&chedul er object must decide with call will return next. It
decides by consulting thiRequest objects that were passed into those calls to decide which call will return next.
It does that indirectly by calling methods declared for that purpose I8¢ tieelul eOr der i ng interface and
implemented by thBequest object.

Conseguences

« The Scheduler pattern provides a way to explicitly control when threads may execute a piece of code.

» The scheduling policy is encapsulated in its own class and is reusable.

* Using the Scheduler pattern adds significant overhead beyond what is required to make a simple call to a
synchronized method.

Implementation

In some applications of the Scheduler patternsttredul er class implements a scheduling policy that
does not require it to constéquest objects to determine the order in which calls teitser method will
return. An example of such a policy is to allow calls toethieer method to return in the order in which they
were called. In such cases, there is no need toRegsest objects into thent er method or to have a
Schedul eOr deri ng interface. Another example of such a policy, is to not care about the order in which
requests are scheduled but require at least five minutes between the end of one task and the beginning of another

04/20/98 -- Grand -- UIUC Patterns Group Draft -- 19

Code Example

Below is some of the code that implements the print scheduling design discussed under the “Context”
heading. The first listing is of ther i nt er class that manages the printing of security checkpoint journal entries.

class Printer {
private Schedul er schedul er = new Schedul er();

public void print(Journal Entry j) {

try {
schedul er. enter(j);

} catch (InterruptedException e) {
Y Itry
schedul er. done();
} // print(Journal Entry)
} // class Printer

EachPri nt er object uses &chedul er object to schedule concurrent calls tguit$ nt method so that
they print sequentially in the order of their timestamps. It begins by callirggttealul er object’sent er
method, passing it thiour nal Ent ry object to be printed. The call does not return untilstieedul er object
decides that it is th&our nal Ent ry object’s turn to print.

Thepri nt method ends by calling ti8zhedul er object'sdone method. A call to thdone method
tells theSchedul er object that thdour nal Ent ry object has been printed and anothaur nal Ent ry object
can have its turn to be printed.

Below is the source for thechedul er class.

public class Schedul er {
private Thread runni ngThread

Ther unni ngThr ead variable isnul I when the resource thaahedul er object manages is not busy.
It contains a reference to the thread using the resource when the resource is busy.

private ArraylList waitingRequests = new Arraylist();
private ArraylList waitingThreads = new Arraylist();

An invariant for this class is that a request and its corresponding thread arewilyiimgRequest s
andwai t i ngThr eads while its call to theent er method is waiting to return.

Theent er method is called before a thread starts using a managed resoureet #henethod does
not return until the managed resource is not busy an@dhisdul er object decides it is the method call's turn
to return.

public void enter(Schedul eOrdering s) throws InterruptedException {
Thread thisThread = Thread. current Thread();

/'l For the case when the nanaged resource is not busy,
/1 synchronize on this object to ensure that two concurrent
/1 calls to enter do not both return i mediately.
synchroni zed (this) {
if (runningThread == null) {
runni ngThread = thi sThread
return;
YIS
wai ti ngThr eads. add(t hi sThread);
wai t i ngRequest s. add(s);
} // synchronized (this)
synchroni zed (thisThread) {
while (thisThread != runni ngThread) {

04/20/98 -- Grand -- UIUC Peatterns Group Draft -- 20

thi sThread. wai t();
} /] while

} // synchroni zed (thisThread)
synchroni zed (this) {

int i = waitingThreads.indexX (thisThread);
wai ti ngThr eads. renmove(i);
wai ti ngRequests. remove(i);

} /1 synchronized (this)
} // enter(Schedul eOr dering)

A call to the done method indicates that the current thread is finished with the managed resource.

synchroni zed public void done() {
i f (runningThread != Thread. current Thread())
throw new ||| egal St at eException("Wong Thread");
int waitCount = waitingThreads.size();
if (waitCount <= 0)
runni ngThread = nul | ;
else if (waitCount == 1) {

runni ngThread = (Thread)wai ti ngThr eads. get (0);
wai ti ngThr eads. renove(0);

} else {

int next = waitCount - 1;
Schedul eOrderi ng next Request;
next Request = (Schedul eOrderi ng)waitingRequests. get (next);
for (int i =waitCount-2; i>=0; i--) {
Schedul eOrdering r;
r = (Schedul eOrdering)waitingRequests.get(i);
i f (r.schedul eBefore(next Request)) {
next =i;
next Request = (Schedul eOrderi ng)wai ti ngRequest s. get (next);
YoILOf
Yy /1 for
runni ngThread = (Thread)wai ti ngThr eads. get (next);
synchroni zed (runni ngThread) {
runni ngThr ead. noti fyAll ();
} /1 synchroni zed (runni ngThread)

} // if waitCount
} // done()
} // class Schedul er

The done method usesthe not i f yAl | method to wake up athread, rather than the not i f y method,
because it has no guarantee that there will not be another thread waiting to regain ownership of the lock on the
runni ngThr ead object. If it used thenot i f y method, and there were additional threads waiting to regain
ownership of ther unni ngThr ead object’s lock, then theot i f y method could fail to wake up the right thread.

Related Patterns

Read/Write Lock

Implementations of the Read/Write Lock pattern usually use the Scheduler pattern to ensure fairness in

scheduling.

Read/Write Lock [Lea97]

04/20/98 -- Grand -- UIUC Patterns Group Draft -- 21

Synopsis

Allow concurrent read access to an object but require exclusive access for write operations.

Context

Suppose that you are devel oping software for conducting online auctions. The way that these auctions
will work isthat an item will be put up for auction. People will access the online auction to see what the current
bid for an item is. People can then decide to make a bid for anitem that is greater than the current bid. At a
predetermined time, the auction closes and the highest bidder at that time get the item at the final bid price.

Y ou expect that there will be many more requests to read the current bid for an item than to update it.
Y ou could use the Single Threaded Execution pattern to coordinate access to bids. Though that will ensure
correct results, it can unnecessarily limit responsiveness. When multiple users want to read the current bid on an
item at the same time, Single Threaded Execution means that only one user at atimeis allowed to read the
current bid. Users who just want to read the current bid are forced to wait for other users who just want to read
the current bid.

Thereis no reason to prevent multiple users from reading the current bid at the same time. Single
threaded execution is only required for updates to the current bid. Updates to the current bid must be processed
one at atime to ensure that updates that would not increase the value of the current bid are ignored.

The Read/Write Lock pattern avoids unnecessary waiting to read data by allowing concurrent reads of
data but only allowing single threaded access to datawhen it is being updated. Consider the following interaction
diagram.

‘ :UserlInterface

\
Calls to readLock wait to return U
when there are calls to writeLock Calls to writeLock wait
that have not returned or a call to . s to return while there are
A: getBid B: setBid(bid)
writeLock has returned but not i getBid() id(bid) i pending calls to readLock.
been followed by a call to done.
:Bid
l A.1l:readLock() lA.Z done() B.2 done() l B.1:writeLock() i
:readWriteLock

Bid Collaboration

The above collaboration diagram shows multiple user interface objects calling a bid @gjeBt’d and
set Bi d methods. Theget Bi d method waits until there are no callssta Bi d waiting to complete before it
returns the current bid. Thet Bi d method waits for any executing callsgiet Bi d or set Bi d to complete
before it updates the current bid. TrreadW i t eLock object encapsulates the logic that coordinates the
execution of thget Bi d and set Bi d methods to allow it to be reused.

All calls to ar eadW i t eLock object’sr eadLock method return immediately, unless there are any calls
to itswri t eLock method executing or waiting to execute. If any callsrteaalW i t eLock object’s
wri t eLock method are executing or waiting to execute, then calls ted$Lock method wait to return. They
wait until all thewr i t eLock calls have completed and there have been corresponding callddodatmethod.

04/20/98 -- Grand -- UIUC Peatterns Group Draft -- 22

CallstoareadWitelLock object'swit eLock method return immediately, unless one or more of the
following are true:

« Aprevious call towi t eLock is waiting to execute.

e A previous call towi t eLock has finished executing, but there has been no corresponding call to the
readW it eLock object'sdone method.

* There are any executing calls to treadW i t eLock object’sr eadLock method.

If a call to ar eadW i t eLock object is made when any of the above conditions are true, it will not return
until all of the above conditions are false.

Forces

* There is a need for read and write access to an object’s state information.

« Any number of reads operations may be performed on the object’s state information concurrently.
However, read operations are only guaranteed to return the correct value if there are no write
operations executing at the same time as a read operation.

« Write operations on the object’s state information need to be performed one at a time, to ensure their
correctness.

« There will be more read operations than write operations on the object’s state information. Many of
the reads will be initiated concurrently.

» Allowing concurrently initiated read operations to run concurrently will improve responsiveness and
throughput.

* The logic for coordinating read and write operations should be reusable.

Solution

The Read/Write Lock pattern organizes a class so that concurrent calls to methods that fetch and store its
instance information are coordinated by an instance of another class. The following class diagram shows the roles
that classes play in the Read/Write Lock pattern.

Data

getAttributel
setAttributel

Uses ¥

1

ReadWriteLock

readLock()
writeLock()
done()

04/20/98 -- Grand -- UIUC Peatterns Group Draft -- 23

Read-Write Lock Classes

A classin the Dat a role has methods to get and set itsinstance information. Any number of threads are
allowed to concurrently get aDat a object’s instance information, so long as no thread is setting its instance
information at the same time. On the other hand, its set operations must occur one at a time, while there are no
get operations being execut®dt a objects must coordinate their set and get operations so that they obey those
restrictions.

The abstraction thdlat a objects use to coordinate get operations is a read lobit A object’s get
methods do not fetch any information until they get a read lock. Associated witbaeachbject is a
ReadW i t eLock object. Before one of its get methods gets anything, it calls the assd@iatiat i t eLock
object’sr eadLock method, which issues a read lock to the current thread. While the thread has a read lock, the
get method can be sure that it is safe for it to get data from the object. That is because while there are any
outstanding read locks, tiReadw i t eLock object will not issue any write locks. If there are any outstanding
write locks when th®sadW i t eLock object’'sr eadLock method is called, it does not return until all the
outstanding write locks have been relinquished by calls tBethéW i t eLock object’'sdone method.
Otherwise, calls to thReadW i t eLock object’sr eadLock method return immediately.

When aDat a object’s get method is finished getting data from the object, it callRethd\W i t eLock
object’sdone method. A call to that method causes the current thread to relinquish its read lock.

Similarly, Dat a objects use a write lock abstraction to coordinate set operatidrs.a®object’s set
methods do not store any information until they get a write lock. Before oneathaobject’s set methods store
any information, it calls the associateehdW i t eLock object’'swri t eLock method, which issues a write lock
to the current thread. While the thread has a write lock, the set method can be sure that it is safe for it to store
data in the object. That is becauseRhadW i t eLock object only issues write locks when there are no
outstanding read locks and no outstanding write locks. If there are any outstanding locks when the
ReadW it eLock object’'swr it eLock method is called, it does not return until all of the outstanding locks have
been relinquished by calls to tReadW i t eLock object'sdone method.

The preceding constraints that govern when read and write locks are issued do not address the order in
which read and write locks are issued. The order in which read locks are issued does not matter, so long as get
operations can be performed concurrently. Since write operations are performed one at a time, the order in which
write locks are issued should be the order in which the write locks are requested.

The one remaining ambiguity occurs when there are calls to botReafd&V i t eLock object’s
readLock andw i t eLock methods waiting to return and there are no outstanding locks. If get operations are
intended to return the most current information, then that situation should resultn tlet.ock method
returning first.

Consequences

« The Read/Write Lock pattern coordinates concurrent calls to an object’s get and set methods so that calls
to the object’s set methods do not interfere with each other or calls to the object’s get methods.

« If there are many concurrent calls to an object’s get methods, using the Read/Write Lock pattern to
coordinate the calls can result in better responsiveness and throughput than using the Single Threaded
Execution pattern for that purpose. That is because the Read/Write Lock pattern allows concurrent calls
to the object’'s get methods to execute concurrently.

« If there are relative few concurrent calls to an object’s get methods, using the Read/Write Lock pattern
will result in lower throughput than using the Single Threaded Execution pattern. That is because the

04/20/98 -- Grand -- UIUC Peatterns Group Draft -- 24

Read/Write Lock pattern spends more time managing individual calls. When there are concurrent get
callsfor it to manage, that results in a net improvement.

Implementation

Since read locks and write locks do not contain any information, there is no need to represent them as
explicit objects. It is sufficient to just count them.

Code Example

Below is code the implements the design discussed under the “Context” heading. The first listing is the
Bi d class, which is rather straightforward.

public class Bid {
private int bid = O;
private ReadWitelLock | ockManager = new ReadWitelLock();

public int getBid() throws |nterruptedException{
| ockManager . r eadLock() ;
int bid = this.bid;
| ockManager . done() ;
return bid,
} /1 getBid()

public void setBid(int bid) throws |nterruptedException {
| ockManager . writ eLock();
if (bid > this.bid) {
this.bid = bid;
YILoif
| ockManager . done() ;
} /1 setBid(int)
} /] class Bid

As you can see, the methods of Bi@l class simply use ReadW i t eLock object to coordinate

concurrent calls. They begin by calling the appropriate lock method before getting or setting any values. When
they are finished, they call tiReadW i t eLock object'sdone method to release the lock.

TheReadW it eLock class is more complex. As you read through its listing, you will notice that there
are two main things it focuses on.

« It carefully tracks state information in a way that will be consistent for all threads.

* It ensures that all preconditions are met before its lock methods return.

Any other class that is responsible for enforcing a scheduling policy will have these implementation
concerns.

public class ReadWitelLock {
private int waitingForReadLock = O;
private int outstandi ngReadLocks = 0;
private ArraylList waitingForWiteLock = new ArraylList();
private Thread writelLockedThread;

A ReadW i t eLock object uses the above instance variables to keep track of threads that have requested
or been issued a read or write lock. It uses the list referred to lgithéngFor Wi t eLock variable to keep
track of threads that are waiting to get a write lock. Using that list, it is able to ensure that write locks are issued
in the same order that they are requested.

04/20/98 -- Grand -- UIUC Peatterns Group Draft -- 25

A ReadW it eLock object usesthewai t i ngFor ReadLock variable to count the number of threads
waiting to get aread lock. Simple counting is sufficient for this because all threads waiting for aread lock will be
allowed to get them at the same time. That means that there is no reason to keep track of the order in which
threads requested read locks.

A ReadW it eLock object usesthe out st andi ngReadLocks variable to count the number of read
locks that has issued but have not yet been relinquished by the threads they were issued to.

A ReadW it eLock object usesthewr i t eLockedThr ead variable to refer to the thread that currently
has awrite lock. If no thread currently has awrite lock from the ReadW i t eLock object then the value of the
wri t eLockedThr ead variableisnull. By having a variable that refers to the thread that has been issued the
write lock, the ReadW i t eLock object can tell whether it awaked the thread to receive awrite lock or the thread
was awaked for another reason.

TheReadW it eLock class’r eadLock method appears below. It issues a read lock and returns
immediately, unless there is an outstanding write lock. All that is does to issue a read lock is to increment the
out st andi ngReadLocks variable.

synchroni zed public void readLock() throws InterruptedException {
wai t i ngFor ReadLock++;
while (witelLockedThread != null) {
wai t();

} /1 while
wai ti ngFor ReadLock- - ;
out st andi ngReadLocks++;

} /1 readLock()

A listing of thewr i t eLock method appears below. The first thing you will notice is that it is longer than
ther eadLock method. That is because it manages threads and a data structure. It begins by checking for the case
in which there are no outstanding locks. If there are no outstanding locks, it issues a write lock immediately.
Otherwise, it adds the current thread to a list thatiéhe method uses as a queue. The current thread waits until
it thedone method issues it a write lock and thenwhéet eLock method finishes by removing the current
thread from the list.

public void witelLock() throws InterruptedException {
Thread thi sThread;
synchroni zed (this) {
if (witelLockedThread==null && outstandi ngReadLocks==0) ({
writeLockedThread = Thread. current Thread();
return;
Y ILoif
thi sThread = Thread. current Thread();
wai ti ngFor Wit eLock. add(t hi sThr ead);
} // synchronized(this)
synchroni zed (thisThread) {
while (thisThread != witelLockedThread) ({
thi sThread. wait();
} /] while
} /1 synchronized (thisThread)
synchroni zed (this) {
int i = waitingForWiteLock.indexX (thisThread);
wai ti ngFor Wit eLock. renove(i);
} /1 synchronized (this)
} /1 witelLock

The final part of th&ReadW i t eLock class is thelone method. Threads callReadW i t eLock
object’sdone method to relinquish a lock that tReadW i t eLock object previously issued to them. Tdwne
method considers three cases:

04/20/98 -- Grand -- UIUC Peatterns Group Draft -- 26

e Thereare outstanding read locks, which implies that there is no outstanding write lock.
It relinquishes the read lock by decrementing the out st andi ngReadLocks variable. If there are no
more outstanding read locks and threads are waiting to get awrite lock, then it issues awrite lock to the
thread that has been waiting the longest to get awrite lock. Then it wakes the waiting thread up.

e Thereisan outstanding write lock.
It causes the current thread to relinquish the write lock. If there are any threads waiting to get the write
lock, it transfers the write lock to the thread that has been waiting the longest by having the
wri t eLockedThr ead refer to that thread instead of the current thread. If there are no threads waiting to
get awrite lock and there are threads waiting to get aread lock then it grants read locks to al of the
threads that are waiting for aread lock.

e Thereare no outstanding locks.
If there are no outstanding locks then the done method has been called at an inappropriate time, so it
throwsan |11 egal St at eExcepti on.

synchroni zed public void done() {
i f (outstandi ngReadLocks > 0) {
out st andi ngReadLocks- - ;
i f (outstandi ngReadLocks==0
&& wai tingForWitelLock. size()>0) {
writeLockedThread = (Thread)waitingForWitelLock. get(0);
writeLockedThread. noti fyAll();
YILoif
} else if (Thread.currentThread() == witelLockedThread) {
i f (outstandi ngReadLocks==0
&& wai tingForWitelLock. size()>0) {
writeLockedThread = (Thread)waiti ngForWitelLock. get(0);
writeLockedThread. noti fyAll();
} else {
writeLockedThread = null;
i f (waitingForReadLock > 0)

notifyAll();
YoILoif
} else {
throw new |11 egal St at eException(" Thread does not have | ock");
YoILoif
} /1 done()

} /] class ReadWitelLock

One last detail to notice about the done method isthat isusesthenot i f yAl | method, rather than the
not i f y method. When it wants to allow read locks to be issued, it callsthe ReadW i t eLock object’s
noti f yAl I method to allow all of the threads waiting to get a read lock to proceed. When it issues the write lock
to a thread, it calls that threadist i f yAl | method. Calling itsot i f y method will work in most cases.
However, in the case that another thread is waiting to gain the synchronization lock of the thread to be issued the
write lock, using thexot i f y method could cause the wrong thread to wake up. Usingthég yAl | method
guarantees that the write thread will wake up.

Related Patterns

Single Threaded Execution
The Single Threaded Execution pattern is a good and simpler alternative to the Read/Write Lock pattern
when most of the accesses to data are write accesses.

Scheduler
The Read/Write Lock pattern is a specialized version of the Scheduler pattern.

04/20/98 -- Grand -- UIUC Peatterns Group Draft -- 27

Producer-Consumer

Synopsis

Coordinate the asynchronous production and consumption of information or objects.

Context

Suppose that you are involved in designing atrouble ticket dispatching system. Customers will enter
troubl e tickets through web pages. Dispatchers will review the trouble tickets and forward them to the person or
organization best suited to resolve the problem.

Any number of people may be submitting trouble tickets through the web page at any given time. There
will usually be multiple dispatchers on duty. When a trouble ticket comesiin, if there are any dispatchers who are
not busy, the system immediately gives the trouble ticket to one of them. Otherwise, it places the trouble ticket in
a queue where the troubl e ticket waits its turn to be seen by a dispatcher and dispatched. Below is a class diagram
that shows a design for classes that implement that behavior.

Client

0.*
Queue-trouble-tickets-for-dispatching

1

Queue

push(:TroubleTicket)
pull():TroubleTicket
size():int

queue| 1

Dispatches-trouble-tickets-from-queu&

dispatcher | 0..*

Dispatcher

Trouble Ticket Classes

The above class diagram showsad i ent class whose instances are responsible for getting trouble
ticketsfilled out by users and placed in a Queue object. Trouble tickets stay in the Queue object until a
Di spat cher object pullsthem out of the Queue object.

The Di spat cher classisresponsible for displaying trouble tickets to a dispatcher and then forwarding
them to the destination selected by the dispatcher. When an instance of the Di spat cher classisnot displaying a
trouble ticket or forwarding it, it calls the Queue object’'spul I method to get another trouble ticket. If there are
no trouble tickets in theueue object, thepul | method waits until it has a trouble ticket to return.

Below is a collaboration diagram that shows the interactions described above.

04/20/98 -- Grand -- UIUC Peatterns Group Draft -- 28

1
:Client J

A: push(:TroubleTicket) i

g:Queue

B: pull(') {concurrency=guarded | g.size()>0} T

1
:Dispatcher J

Trouble Ticket Collaboration

Forces

e Objects are produced or received asynchronously of their use or consumption.

* When an object isreceived or produced, there may not be any object available to use or consumeit.

Solution

The class diagram below show the roles in which classes participate in the Produce-Consumer pattern.

Producer

0.*
Queue-produced-objects”

1

Queue

push(:Object)
pull():Object
size():int

queue| 1

Consume-queued-objects”

comsumer | 0.*

Consumer

Producer-Consumer Classes
Here are descriptions of the roles that classes can play in the Consumer-Producer pattern.

Producer
Instances of classes in this role supply objects that are used by Consunmer objects. Instances of

Producer classes produce objects asynchronously of the threads that consume them. That means that
sometimes a Pr oducer object will produce an object when all of the Consuner objects are busy
processing other Consuner objects. Rather than wait for a Consuner object to become available,

04/20/98 -- Grand -- UIUC Patterns Group Draft -- 29

instances of Producer classes put the objects that they produce in a queue and then continue with
whatever they do.

Queue
Instances of classes in this role act as a buffer for objects produced by instances of Pr oducer classes.

Instances of Pr oducer classes place the objects that they produce in an instance of a Queue class. The
objects remain there until a Consuner object pulls them out of the Queue object.

Consumer
Instances of Consuner classes use the objects produced by Pr oducer objects. They get the objects that
they use from a Queue object. If the Queue object is empty, a Pr oducer object that wants to get an
object from it must wait until a consumer object puts an object in the Queue object.

The collaboration diagram below shows the interactions between objects that participate in the Producer-
Consumer pattern.

1
:Producer J

A: push(:Object) i

g:Queue

B: pull(') {concurrency=guarded | g.size()>0} T

1
:Consumer J

Producer-Consumer Collaboration

Conseguences

e Producer objectsare able to deliver the objects they produce to a Queue object without having to wait
for aConsurner object.

* When there are abjectsin the Queue abject, Consuner objects are able to pull an object out of the queue
without waiting. However, when the queue is empty and a Consuner object calls the Queue object’s
pul I method, theul | method does not return untiPaoducer object puts an object in the queue.

Implementation

In some implementations of the Producer-Consumer pattern, the queue cannot grow beyond a maximum
size. If that is the case, it implies that there is a special case to consider when the queue is at its maximum size
and a producer thread wants to put an object in the queue. The usual way to handle that is for the queue to use th
Guarded Suspension pattern to force the producer thread to wait until a consumer thread has removed an object
from the queue. When there is room in the queue for the object that the producer wants to put in the queue, the
producer thread is allowed to finish putting the object in the queue and proceed with whatever else it does.

04/20/98 -- Grand -- UIUC Patterns Group Draft -- 30

JAVA API| Usage

The core Java API includesthe classesj ava. i 0. Pi pedl nput St r eamand
java. i o. Pi pedQut put St r eam Together, they implement a variant of the Producer-Consumer pattern called
the Pipe pattern. The Pipe pattern only involves one Pr oducer object an only one Consuner object. The Pipe
pattern usually refersto the Pr oducer object as a data source and the Consumer object as a data sink.

Thej ava. i o. Pi pedl nput Streamandj ava. i 0. Pi pedQut put St r eam classesjointly fill the role of
Queue class. They allow one thread to write a stream of bytes to one another thread. The threads are able to
perform their writes and read asynchronously of each other, unlessthe internal buffer that they useis empty or
full.

Code Example

The listings below show code the implements the design discussed under the “Context” heading: The
first two listings shown are skeletal listings of ttieé ent andDi spat cher classes.

public class dient inplenents Runnable {
private Queue queue;
/...
public void run() {
Troubl eTi cket tkt = null
/...
queue. push(tkt);
} /1 run()
} // class dient

public class Dispatcher inplenents Runnable {
private Queue queue;
/...
public void run() {
Troubl eTi cket tkt = queue.pull();
/...
} /1 run()
} // class Dispatcher

The last listing is of the Queue class.

public class Queue {
private ArraylList data = new Arraylist();

/**
* Put an object on the end of the queue
* @aramobj the object to put at end of queue
*/
synchroni zed public void push(Troubl eTi cket tkt) {
data. add(tkt);
notify();
} // put(Troubl eTi cket)

/**
* Get an Troubl eTicket fromthe front of the queue
* |f queue is enpty, wait until it is not enpty
*/
synchroni zed public Troubl eTicket pull () {
whil e (data.size() == 0){
try {
wai t();
} catch (InterruptedException e) {

04/20/98 -- Grand -- UIUC Patterns Group Draft -- 31

Yy Il otry
Y} /1 while
Troubl eTi cket tkt = (Troubl eTi cket)data. get (0);
dat a. renmove(0);
return tkt;

Y 11 get()

/**
* Return the nunber of trouble tickets in this queue.
*/
public int size() {
return data.size();
Y 11 size()
} // class Queue

Related Patterns

Guarded Suspension
The Producer-Consumer pattern uses the Guarded Suspension pattern to manage the situation of a
Consuner object wanting to get an object from an empty queue.

Pipe
The Pipe pattern is a special case of the Producer-Consumer pattern that involves only one Pr oducer
object an only one Consuner object. The Pipe pattern usually refers to the Pr oducer object as a data
source and the Consuner object as adata sink.

Scheduler
The Producer-Consumer pattern can be viewed as a special form of the Scheduler pattern that has
scheduling policy with two notable features.

* The scheduling policy is based on the availability of aresource.

» The scheduler assigns the resource to a thread but does not need to regain control of the resource
when the thread is done so it can reassign the resource to another thread.

Two Phase Termination [Grand98]

Synopsis

Provide for the orderly shutdown of athread or process through the setting of alatch. The thread or
process checks the value of the latch at strategic pointsin its execution.

Context

Suppose that you are responsible for writing a server that provides middle tier logic for a stock trading
workstation. A client connects to the server. The client then indicates that it isinterested in certain stocks. The
server sends the current price of those stocks to the client. When the server receives information that shares of a
stock have been traded, it reports the trade to clients who are interested in the stock.

Part of the internal mechanism that the server uses to provide that serviceisto create athread for each
client. That thread is responsible for delivering information about stock tradesto the client that it serves.

04/20/98 -- Grand -- UIUC Peatterns Group Draft -- 32

Aside from its core functions, there are some administrative commands that the server must respond to.
One of those commands is a command that forces the disconnection of a client. When the server is asked to
disconnect aclient, from an internal point of view that means shutting down the thread that is servicing that client
and the releasing the related set of resources that thread is using.

Another administrative command that the server must respond to is a command to shut down the entire
server.

Both commands are similar in what they do. The main difference istheir scope. One command shuts
down a single thread. The other command shuts down an entire process. In both cases, the implementation
techniques are similar. Below is a collaboration diagram that show how a server thread could be organized to shut
down cleanly on request.

1A: run() »
1A.3: shutDown()
—
1B: interrupt()
s:Session «self»
«self»
1A.1: initialize() 1A.2*Is.isInterrupted()]: sendTransactionsToClient()L
—

:Portfolio

Server Thread Shut Down

The above collaboration beginswith acall to aSessi on object’sr un method. The un method first
calls theSessi on object’si ni ti al i ze method. It then repeatedly calls e t f ol i 0 object’s
sendTr ansacti onsTod i ent method. It keeps calling that method as long asélsei on object’s
i sl nterrupted method returns false. Ti8essi on object’si sl nt er r upt ed method returns false until the
Sessi on object’si nt err upt method is called.

The normal sequence of events that shuts down a session begins with a different thread than the one that

called ther un method. That other thread calls ®essi on object’si nt er r upt method. The next time that the
Sessi on object calls its un method, it returns true. Thein method then stops calling tRer t f ol i o object’s
sendTr ansacti onsTod i ent method. It then calls thgessi on object’sshut Down method, which performs
any necessary cleanup operations.

The technique for shutting down a process in an orderly manner is similar to the technique for threads.
When a command is received to shut down an entire process, it sets a latch that causes every thread in the proce:

to shut down.

Forces

« Athread or process is designed to run indefinitely.

* There could be unfortunately results if a thread or process is forcibly shut down without first having

the chance to clean up after itself.

* When a thread or process is asked to shut down, it is acceptable for the thread or process to take a

reasonable amount of time to clean up before shutting down.

04/20/98 -- Grand -- UIUC Patterns Group Draft -- 33

Solution

There are two basic technigques for shutting down athread or a process. One way isto immediately
terminate them. The other way is to ask the thread or process to terminate and then expect it to comply with the
reguest by first performing any necessary clean up and then terminating.

The following class diagram shows a class that you might use to coordinate the shutdown of a process:

Terminator

-shutDownRequested:boolean = false

+doShutDown()

+isShutdownRequested():boolean

Process Shutdown

A class, such asthe one above, is used to allow a process to receive a request to shut down and then clean
up after itself before shutting down. Each of the process’ threads call $het downRequest ed method at
strategic points in their execution. If it returns true, the thread cleans up and shuts down. When all the application
threads have died, the process exits.

Shutting down an individual thread involves using a thread specific latch. Every Java thread has one
because it is part of thehr ead class. It is set to true by calling the threadis er r upt method. It is queried by
calling the thread’'ss| nt er r upt ed method.

Conseguences

« Using the Two Phase Termination pattern allows processes and threads to clean up after themselves
before they terminate.

e Using the Two Phase Termination pattern can delay the termination of a process or thread for an
unpredictable amount of time.

Implementation

After a process or thread has been requested to shut down, it can be difficult or impossible to determine
if the process or thread will actually terminate until it does. For that reason, if there is any uncertainty that the
thread or process will terminate after it has been requested to do so, after a predetermined amount of time the
thread or process should be forcibly terminated.

A thread can be forcibly terminated by callingdtop method. The mechanism for forcible terminating
a process varies with the operating system.

Methods that set a termination latch to true do not need to be synchronized. Flag setting is idempotent.
The operation can be performed by one or more threads, concurrently or not, and the result is still that the
termination latch is set to true.

JAVA API| Usage

The core Java API does not make use of the Two Phase Termination pattern. However, it does have
features to support the Two Phase Termination pattern.

04/20/98 -- Grand -- UIUC Patterns Group Draft -- 34

To support the two phase termination of threads, the Thr ead class providesthei nt er r upt method to
request a thread’s terminatiorhr ead class also provides theal nt er r upt ed method to allow a thread to find
out if its termination has been requested.

There are some methods that suchlasep that are known to put a thread in a wait state. There is an
assumption that if a thread is asked to shut down while its is waiting for one of those methods to return, the
thread will detect the request for its termination and comply as soon as the waiting method to returns. To help
insure the timeliness of a thread’s shutdown, some methods that cause a thread to wait for something throw an
I nt errupt edExcepti on if a thread is waiting for one of those methods to return whémitsr r upt method
is called. The methods that can throm aner r upt edExcept i on includeThr ead. sl eep, Thread. j oi n and
Obj ect . wai t. There are a number of others.

To support the shutdown of a process, when a thread dies, if there are no threads still alive that are not
daemon threads then the process shuts down.

Note that Java does not provide any direct way of detecting or catching signals or interrupts from an
operating system that cause a process to shut down.

Code Example

The listing below shows code that implements the design discussed under the “Context” heading.

public class Session inplenents Runnable {
private Thread nmyThread
private Portfolio portfolio;
private Socket mySocket;

public Session(Socket s) {
nyThread = new Thread(this);
nySocket = s;

} // constructor()

public void run() {
initialize();
while (!'nyThread.interrupted()) {
portfolio.sendTransacti onsToC i ent (mySocket);
} /1 while
shut Down() ;
} /1 run()

/**
* Request that this session term nate
*/
public void interrupt() {
nyThread. interrupt();
} /] interrupt()

/**

* Initialize ths object.

*/

private void initialize() {
/...

Y /1 initialize()

/**

* performcleanup for this object.
*/

private void shut Down() ({

04/20/98 -- Grand -- UIUC Patterns Group Draft -- 35

/...
} /1 shut Down()

} // class Session

04/20/98 -- Grand -- UIUC Patterns Group Draft -- 36

