
Organising Patterns into Languages

Towards a Pattern Language for Object Oriented Design

James Noble

Microsoft Research Institute

Macquarie University

Sydney, Australia

kjx@mri.mq.edu.au

April 14, 1998

Abstract

Since the publication of theDesign Patternsbook, a large number of design patterns have been

identified and codified. Unfortunately, these patterns are mostly organised in an ad hoc fashion,

making it hard for programmers to know which pattern to apply to any particular problem. We

have organised a large number of existing object oriented design patterns into a pattern language,

by analysing the patterns and the relationships between them. Organising patterns into languages

has the potential to make large collections of patterns easier to understand and to use.

1 Introduction

A design pattern is a “description of communicating objects and classes that are customised to solve a

general design problem in a particular context” [19, p.3]. Designers can incorporate patterns into their

programs to address general problems in the structure of their programs’ designs.

Before they can apply a pattern to solve their design problem, programmers must select an appro-

priate design pattern. An expert programmer may have learnt tens or hundreds of patterns, and will

intuitively select the correct pattern for a given problem. Novice programmers will know far fewer

patterns, and will have to search pattern catalogues such asDesign Patterns[19], Patterns of Software

Architecture[8], or thePattern Languages of Program Designseries [11, 35, 26] to select a pattern.

1



To address this problem, Christopher Alexander organised his architecture and construction pat-

terns into apattern language. A pattern language finesses thepattern selection problem, because a

pattern language is organised from the most general large-scale patterns to the most specific small-scale

patterns, based on the relationships between the patterns. By applying the patterns in a language, a

programmer should be able to generate a design from scratch, with the appropriate pattern to apply next

being determined by the organisation of the patterns in the language, that is, by the interrelationships

between them [1, 2]. In effect, the patterns in a pattern language simultaneously solve design problems

and pattern selection problems.

In this paper, we describe how the patterns from theDesign Patternscan be organised into a pattern

language. Section 2 briefly reviews patterns, pattern catalogues, and pattern languages, and discusses

why catalogues such asDesign Patternsdo not form pattern languages. Section 3 then outlines the

architecture of theFound Objectspattern language which we have constructed, based uponDesign

Patterns, and Section 4 briefly describes the process we used to organise the patterns into the language.

Finally, Section 5 discusses our work, and Section 6 presents our conclusions.

2 Patterns, Catalogues, and Languages

A design pattern is an abstraction from a concrete recurring solution that solves a problem in a certain

context [19, 8]. Typically, a design pattern has a name, a description of problems for which the pattern

is applicable, an analysis of theforces(the important considerations and consequences of using the

pattern) the pattern addresses, a sample implementation of the pattern’s solution, references to known

uses, and a list of patterns which are related to this pattern. To use a design pattern, a designer must

first recognise a problem within their design, locate a design pattern which resolves the problem, and

then design (or redesign) their program to incorporate the pattern.

Design patterns were first applied to software by Kent Beck and Ward Cunningham [5]. They were

popularised by theDesign Patternscatalogue, which described twenty-three general purpose patterns

for object oriented design. Since the publication ofDesign Patternsa large number of other patterns

have been identified [11, 35, 26].

2.1 Pattern Catalogues and Systems

A single design pattern generally addresses a single design problem. To provide a greater coverage of

the problems faced by software development, patterns are often collected into catalogues or systems.

2



For example,Design Patternsis structured as a pattern catalogue. The patterns are placed into three

chapters, containing creational patterns, structural patterns, and behavioural patterns, based on the pat-

terns’ scope. Other pattern catalogues have different organisational structures. For example,Patterns of

Software Architecturestructures patterns into a system with three main categories (architecture patterns,

design patterns, and programming patterns) based on the scale of the patterns. Patterns have also been

catalogued based on the roles objects play in the patterns [31], patterns’ internal structure [39], and the

purpose of the patterns [34].

However they may be organised, pattern catalogues do not really address the pattern selection prob-

lem. First, a programmer needing to use a pattern must understand the classification scheme used by

the catalogue. Second, they must search that part of the catalogue to find the pattern(s) which are appli-

cable to their problem. Finally, although the patterns within the catalogue may point the programmer to

other possible patterns which could be applied next, or could be alternatives to a particular pattern, this

guidance is only at the level of the patterns, and is not part of the structure of the catalogue itself.

2.2 Pattern Languages

A pattern catalogue contains a collection of patterns which provide solutions to a collection of problems.

In contrast, apattern languageis a collection of interrelated patterns organised into a coherent whole,

which provides a detailed solution to a large-scale design problem [10, 22, 1]. In a pattern language,

the patterns are organised by the relationships between the patterns, whereas in an pattern catalogue the

patterns are organised by classification schemes originating outside the patterns themselves.

The structure of a pattern language is a rooted, directed graph, generally with few cycles, where

nodes represent patterns and links the relationships between patterns. Theinitial pattern at the root

of the graph addresses the large-scale problem addressed by the whole language, and broadly outlines

the solution the language provides. This pattern provides a partial solution to the problem, resolving

some of the forces acting on the problem, but leaving some forces unresolved and exposing smaller-

scale subproblems. The initial pattern is related to (ituses) smaller-scale patterns in the language, in

particular, it will use those patterns which address the subpatterns and forces exposed by the initial

pattern. These patterns will in turn provide solutions, exposing further subproblems, and use smaller-

scale patterns to solve them.

This organisation gives a pattern language its overall shape and is why pattern languages may

provide more leverage than single patterns or pattern catalogues. Unlike a catalogue, a pattern language

can be traversed by following theusesrelationship from larger-scale to smaller-scale patterns, which

3



each pattern both describing a solution to a subproblem, and indicating subsequent applicable patterns.

In Alexander’s terminology, traversing the pattern languagegeneratesa design [2, 1, 10]. Because of

this structure, it is more difficult to organise patterns into a language than into a catalogue.

The progression from larger to smaller scale patterns defines the large scale structure of a pattern

language, with theusesrelationship between patterns defining the small scale structure. Larger pattern

languages also have medium scale structure. Alexander’s pattern language [1] is actually made up of

thirty six pattern language fragments— groups of between four and ten patterns which are tightly

interrelated. Also,A Pattern Languageis subtitled “Towns� Buildings� Construction”, as the patterns

(and pattern language fragments) are organised at three different scales — town planning, architecture

and construction and interior decoration.

A number of pattern languages have been written for software, but these mostly apply to particular

application domains, such as user interfaces [12], connecting relational databases to object oriented

systems [21, 7], or software process [9, 13]. Only a few of these “languages” contain more than ten or

twelve patterns, that is, they would be better described as pattern language fragments rather than full

pattern languages. To the best of our knowledge, no substantial pattern language organising general-

purpose software design patterns exists.

3 A Pattern Language for Object Oriented Design

We have organised a pattern language for object oriented design derived from the twenty three patterns

from Design Patterns, and including a number of other patterns drawn from the general patterns liter-

ature [8, 4, 11, 35, 26]. The resulting pattern language,Found Objects[30], contains over 90 patterns,

so space does not permit us to present the language in full detail here. Although our language includes

approximately three times as many patterns as theDesign Patternscatalogue, the language is not three

times as complex, because the patterns in the language are smaller than those inDesign Patterns. As

part of organising the patterns into a language, we have subdivided the larger patterns, so that each

pattern focuses on addressing one particular problem, and to explicate latent information in the pattern

descriptions.

In this section, we begin by presenting the large scale structure of the pattern language. We then

describe the language’s small scale structure, and present some of the more important architectural and

design fragments making up the language.

4



3.1 Large Scale Structure

The Found Objectspattern language is constructed out of a number ofpattern language fragments.

Each pattern language fragment contains a number of related patterns, and the relationships between

patterns in different language fragments determines the structure of the language as a whole. Figure 1

illustrates the structure of the fragments in the language, and shows how the fragments can be loosely

organised into three main categories — architectural patterns, design patterns, and programming idioms

— following Patterns of Software Architecture[8]. The links between the language fragments in Fig-

ure 1 represent the major dependencies between the patterns in the fragments — patterns in the higher

level fragments use the patterns in the lower-level fragments. Most fragments contain between five and

ten patterns, although some (in particular, Interpreter) contain only a single pattern. Figure 3.1 gives an

overview of the patterns in each fragment.

The language has three architectural pattern fragments. The most important fragment is the OO

Program fragment. This is the initial fragment, and it contains the initial pattern which is also called OO

Program. The other architectural fragments describe architectural composite patterns which define large

parts of a program’s architecture — the GUI Program fragment contains high-level patterns for building

user interfaces based on the Model-View-Controller pattern, and the Interpreter fragment contains only

the Interpreter pattern, the sole larger-scale pattern fromDesign Patterns,

The majority of the patterns in the language address problems in OO design. This is unsurprising,

since we have developed the language to organise theDesign Patterns. The design section begins

with five major fragments (Part/Whole, Normalisation, Protocols, Collaborations, and Coordination)

containing patterns about designing objects’ structures, interfaces, and relationships. The Part/Whole

fragment is based upon the Part/Whole pattern [8], and leads to separate fragments which describe the

Composite, Iterator, and Visitor patterns and their commonly occurring variants. The Normalisation

fragment contains patterns about decomposing objects into subobjects, such as State, Type Object [20],

and Method Object [4]. The Protocol and Collaboration fragments contain patterns about objects’

interfaces and relationships [28, 29], the Coordination fragment contains patterns such as Mediator and

Observer which coordinate or distribute control over multiple objects in programs, and the Shearing

fragment contains patterns such as Strategy, Facade, and Adaptor, which help programs handle multiple

rates of change within their structure.

The pattern language also includes a number of other OO design fragments named after a particular

pattern or class. These fragments are related to the larger design patterns after which they are named,

and typically contain that pattern, plus a number of smaller-scale patterns which describe how that

5



UnitaryCreation Inheritance Messages

Visitor

Iterator

Composite

Part/Whole Normalisation

Collection State

Protocols

Shearing

Adaptor

Proxy

Collaborations Coordination

InterpreterGUI Program

OO Program Architectural Fragments

Programming Fragments

Design Fragments

Figure 1: The Structure of the Pattern Language

design pattern can be implemented or alternative ways it can be used. For example, the Composite,

Iterator, Visitor, and Adaptor fragments include several variants of each pattern, and the Collections

fragment contains patterns which describe how collection classes can be used [4, Chapter 5].

Finally, the programming fragment contains lower level patterns which are used by many other pat-

terns in the language, including patterns which rest solely upon inheritance, the creational patterns, and

patterns which relate to unitary, self contained objects. The most interesting fragment here is probably

the Creation fragment, which organises the Creational patterns fromDesign Patterns, in addition to

other creational patterns like Product Trader [33].

6



Fragment Patterns

Architectural Fragments

OO Program OO program, Objects, Responsibilities, Collaborations [36]

GUI Program MVC, View Handler, Command Processor [8]

Interpreter Interpreter [19]

Design Fragments

Part/Whole Aggregation, Composition, Sharing [8]

Normalisation Type Object [20], Method Object [4], State [14]

Protocols Patterns on protocol design [28]

Collaborations Patterns on relationship design [29]

Coordination Chain of responsibility, Observer, Mediator [19]

Collection Patterns on collections [4, Chapter 5]

Shearing Facade, Bridge, Adaptor, Decorator, Strategy, Extension [18]

Programming Fragments

Creation Factory method, Abstract factory, Prototype, Builder [19]

Unitary Singleton, Memento, Flyweight [19], What If [3], Null Object [38]

Inheritance Abstract class [37], Template method, Hook method [19]

Messages Delegation, OO Recursion [3], Double Dispatch [19]

Figure 2: The Major Fragments of the Language

3.2 Small Scale Structure

The small scale structure of the pattern language is determined by the relationships between the patterns,

and the kinds of patterns in the language.

3.2.1 Relationships between Patterns

We have organised the language using three relationships between patterns. The dominant relationship

is whether one patternusesanother pattern, but patterns can alsoconflict in providing differing solutions

to common problems, and one pattern canrefine, or be a specialisation of, another pattern [27].

Uses Theusesrelationship is the most important and most common relationship between the patterns.

The usesrelationship guides the programmer through the language, indicating which patterns may

7



be applicable at any stage. Theusesrelationship is the only explicit relationship between patterns

in A Pattern Language[1], and most software pattern forms also explicitly record this relationship

— typically in a section titledRelated Patterns[19] or See Also[8]. Some pattern forms, including

Alexander’s, also record the inverseused-byrelationship to give the context of more general patterns

within which a particular pattern is likely to be instantiated.

Conflicts Two or more patterns canconflict, that is, provide mutually exclusive solutions to similar

problems. For example, theDecorator pattern conflicts with theStrategy pattern in that both patterns

can (and have been) be used to add graphical borders or icons to window objects in window systems

[19, p.180]. Most pattern forms do not provide an explicit section to record this relationship, but it is

often expressed in the related pattern section along with theusesrelationship or it may be discussed

elsewhere in the pattern form.

Refines One pattern canrefineanother pattern, that is to say, one pattern is a specialisation of another

pattern. For example, in our pattern languageFactory Method refinesHook Method, and inA Pattern

LanguagetheSequence of Sitting Spacespattern refines theIntimacy Gradient pattern [1]. A specific

pattern refines a more abstract pattern if the specific pattern’s full description is a direct extension of

the more general pattern. That is, the specific pattern must deal with a specialisation of the problem

the general pattern addresses, must have a similar (but more specialised) solution structure, and must

address the same forces as the more general pattern, but may also address additional forces. To make

an analogy with object oriented programming, theusesrelationship is similar to composition, while the

refinesrelationship is similar to inheritance.

3.2.2 Kinds of Patterns

We also analysed the kinds of patterns we wished to incorporate into the language. Since the publi-

cation ofDesign Patterns, many other kinds of patterns have been described — process patterns [9],

analysis patterns [17], subpatterns [14], composite patterns [32], variant patterns [8], self-applicative

pattern tilings [23], and abstract patterns [3]. Some of these are patterns about particular domains — in

particular, analysis patterns describe analysis, and process patterns describe organisational structures.

The other kinds of patterns are domain independent, so they can describe the design of object oriented

programs and so need to be incorporated into the pattern language.

8



Composite Patterns Riehle recently defined composite patterns as “. . . any design pattern which is

best described as the composition of further patterns” [32]. TheseComposite Patternsare distinct from

theCompositepattern inDesign Patterns— wherethe Composite pattern composes objects,a com-

posite pattern composes other patterns. For example, the Model-View-Composer pattern is composed

from the Composite, Strategy, and Observer patterns. A composite patternusesthe patterns from which

it is composed.

Abstract Patterns An abstract patternis a generalisation of one or more other patterns in a pattern

language. TheDesign Patterns Smalltalk Companionintroduces a number of abstract patterns, such as

Sharable which generalises Flyweight [3, p. 197], and Recursive Delegation which generalises Chain

of Responsibility [3, p. 231]. An abstract patternrefinesthe patterns it generalises.

Variant Patterns A pattern is different every time it is used, because it is instantiated to suit the

particular problem it solves. Some kinds of problems occur more regularly than others, so some ways of

instantiating patterns are more common than others. These common patterns of instantiation are called

variant patterns [8]. To organise variant patterns into the pattern language, we treat each major variant

as a separate pattern, which typicallyrefinesthe main pattern andconflictswith mutually exclusive

variants. This decomposition is important, because it helps ensure that each pattern in the language is

providing one particular solution to one particular problem. In particular, we are careful to decompose

patterns which provide a number of variant solutions to similar problems into separatesolution variants,

and patterns which provide similar solutions to a number of different problems intoproblem variants.

Tiling Variants Some patterns can be applied repeatedly to solve a single problem. Lorenz has

identified some particular examples of this asPattern Tilings[23]. We treat repeated applications of

design patterns as additional solution variants, that is, a tiling variantrefinesandusesthe main pattern.

Subpatterns Patterns and pattern language fragments have been written to describe how other design

patterns can be implemented. We call these patternssubpatterns. For example, Dyson and Anderson

have written a small pattern language of subpatterns which describe in more detail how to apply the

State pattern [14]. A larger scale patternusesthe subpatterns which describe how it is implemented.

9



3.3 The Architectural Fragments

The pattern language proper begins with the initial pattern from the initial fragment (see Figure 3).

This is the OO Program pattern, which describes the single largest artifact produced by the language,

by analogy with theIndependent Regions (1)pattern fromA Pattern Language. The OO Program

pattern leads to more basic conceptual patterns which describe how programs are built from objects,

their collaborations, and their relationships, and which in turn lead to more specific patterns. The OO

Program pattern also leads to the composite patterns Model-View-Controller and Interpreter (in the

GUI Program fragment and the Interpreter fragment respectively) to generate the overall structure of

the program.

Responsibilities

Collaborations

(Part/Whole, Normalisation)

(Normalisation, Protocols)

(Collaborations, Coordination)

(Intrepreter)

(GUI Program)

OO Program Objects

Figure 3: The OO Program fragment

Although the initial fragment is the capstone of the pattern language, it was one of the last parts

of the language we completed, and it was the only fragment where we had to compile all the patterns

specifically for the language. Once the other patterns were organised, the language needed a “starting

point” for reading or working through the patterns, so we introduced the OO Program pattern to fill

this need, and the Objects, Responsibilities, and Collaborations patterns to fill it out. These patterns

describe the basics ofResponsibility Driven Design[36]. Together, these patterns provide an object

oriented context in which the rest of the language can operate, and lead the reader into the more detailed

design patterns.

This section also includes some composite architectural patterns. The GUI Program fragment is

based around the Model-View-Controller composite pattern [8, 32], and includes the Command Proces-

sor and View Handler patterns [8]. The Model-View-Controller pattern also uses a number of smaller-

scale patterns from other fragments in the language — these are shown parenthesised in the figure.

The interpreter fragment contains only one pattern, Interpreter. We have placed this pattern into

the architectural level of the language because it is at a higher level than the other patterns inDesign

Patterns— in particular, it can be described as a composite pattern which uses the Composite and

10



GUI Program Model-View-Controller (Strategy)

(Observer)

(Composite)
Command Processor

View Handler

Figure 4: The GUI Program Fragment

Visitor patterns.

These fragments provide examples of how composite patterns can be incorporated into a pattern

language. A composite patternusesthe smaller-scale patterns of which it is composed, and should

precede these in the sequence of the language. A composite pattern is typically a much larger-scale

pattern than the patterns it uses, so the patterns will often be in different fragments.

3.4 The Design Fragments

The Part/Whole fragment, illustrated in Figure 5, is the first fragment of the design patterns, and de-

scribes how larger objects can be composed from smaller parts. This fragment is based around the

Part/Whole pattern fromPatterns of Software Architecture, and is a complex fragment, because the pat-

terns it contains have complex interrelationships. The main Part/Whole pattern is refined by three other

patterns. The Assembly pattern [8] describes how aggregate objects can be assembled from smaller ob-

jects. The Collection pattern describes how collection (or container) objects can be used to hold groups

of objects, and it pattern refers the reader to a language fragment describing a particular Collection

library — Beck [4, Chapter 5] provides a good set for Smalltalk. The OO Trees pattern [3] describes

how trees of objects can be assembled recursively using the very common Composite pattern, and also

other patterns like Decorator and Visitor. Finally, the Sharing pattern [8, 3] describes how one Whole

may share its Parts with other Wholes, and leads to its common specialisation, Flyweight, which is part

of the Unitary programming fragment.

The Part/Whole fragment illustrates how abstract patterns can be incorporated into a larger pattern

language. In particular, Part/Whole is an abstract pattern, so itrefinesthe more specific patterns it

generalises, and proceeds these in the language. The Assembly, OO Trees, and Collection patternscon-

flict with each other, because, in refining Part/Whole, each provides a different solution to the general

problem of decomposing an object.

11



Part/Whole

Assembly

OO Trees Composite (Composite variants)

(Decorator)

Visitor Iterator

Collection (Array, List, Set, Dictionary)

(Flyweight)Sharing

Uses Refines Conflicts

Figure 5: The Part/Whole fragment

3.4.1 Shearing Fragment

The Shearing Fragment organises a number ofDesign Patterns, plus a number of patterns identified

more recently. All the patterns in this fragment provide ways help programs remain flexible when

different parts of their structure much change at different rates — the fragment takes its name from the

Shearing Layersidentified in buildings inHow Buildings Learn[6]. Although other patterns also have

this effect, the Shearing patterns address this problem most directly.

The fragment begins with an abstract pattern, also called Shearing, which identifies the general

problem, and is refined by two conflicting patterns (Skin and Guts) which capture the dynamics of the

two main solutions — “Changing the skin of an object versus changing its guts” [19, p. 179], that

is, changing an objects interface versus changing its implementation. These two patters are refined by

more detailed patterns which provide concrete solutions in particular contexts, including the Bridge

pattern, which allows both Skin and Guts to vary independently.

3.4.2 Adaptor Fragment

The Shearing fragment uses the Adaptor pattern which itself has a number of solution variants — two

major variants, Class Adaptor and Object Adaptor [19, p. 141], and two minor variants, Pluggable

Adaptor and Two-way Adaptor [19, p. 142-143]. Figure 7 shows how the Adaptor pattern and its

variants are incorporated into the pattern language. The main Adaptor pattern introduces a common

problem — adapting the interface of an object — and the four solution variants are linked to it by

the refinesrelationship, because they provide more specific solutions to that general problem. Class

and Object Adaptor are conflicting patterns because they offer mutually exclusive solutions to any

12



Shearing 

Guts

Abstract Class

Strategy

Bridge

Adaptor

Decorator

Extension

(Inheritance)

Skin

(Product Trader)

Figure 6: The Shearing Fragment

given adaption problem. Two-way Adaptor alsousesthe Class Adaptor pattern — this is discussed in

section 3.4.4 below.

Adaptor

Object Adaptor Pluggable Adaptor

Two-way AdaptorClass Adaptor

Figure 7: The Adaptor Fragment

3.4.3 Proxy Fragment

The Proxy pattern is described inDesign Patternsand Patterns of Software Architecture, and each

description introduces a number of major variants — four inDesign Patterns, and these four plus

another three inPatterns of Software Architecture. Basically, Proxy describes a solution — replace an

object with a surrogate object — but does not describe any single problem this solution resolves. Rather,

the many variants of the Proxy pattern each describe a different problem to which Proxy provides

solution. Patterns of Software Architecturemakes the problem variations explicit in its introduction to

the Proxy Pattern — “Introducing such a placeholder can serve many purposes, including enhanced

efficiency, easier access and protection from unauthorised access” [8, p. 263].

Figure 8 shows the overall structure of the Proxy fragment. We have decomposed the monolithic

13



Proxy pattern so that each variant problem is captured as a separate pattern (on the left of the figure), and

the main pattern then introduces the common solution. This decomposition is particularly important as

it helps ensure the patterns in the resulting language focus on problems at least as much as solutions.

Remote Proxy
Protection Proxy
Cache Proxy
Synch Proxy
Counting Proxy
Virtual Proxy
Firewall Proxy

Member Access Proxy
DoesNotUnderstand Proxy
Delegating Proxy

Interprocess Proxy
Intermachine Proxy

Proxy

Figure 8: The Proxy Fragment

In the figure, each problem variantusesthe basic pattern — we do not record aconflictsrelationship

between the different problem variants, or arefinesrelationship between the variant and main patterns,

because these patterns all addressdifferentproblems.

The full Proxy Fragment shown in Figure 8 is more complex than we have described here, because

it also includes a number ofsolutionvariants (on the right) whichrefinethe base Proxy pattern, in the

same way the Adaptor solution variantsrefineadaptor.

3.4.4 Composite Fragment

Some patterns can be applied repeatedly to solve a single problem. Lorenz has identified some partic-

ular examples of this asPattern Tilings[23]. For example, the two-way adaptor variant described in

Section 3.4.2 above can be seen as a tiling of the adaptor pattern, because the Class Adaptor pattern is

applied twice to the same Target and Adaptee interfaces [19, p. 143].

We treat repeated applications of design patterns as additional solution variants, that is, a tiling

variantrefinesthe main pattern, however a tiling variant alsousesthe main pattern. With this approach,

repeated application does not need to be treated as a “fundamental reflexive relationship” within the

pattern language [23], rather, a tiling pattern is simply a pattern which uses itself.

Recording repeated applications as tiling variants has the advantage that complex patterns can be

applied repeatedly in a number of different ways, each of which is described as a separate variant .

For example, Figure 9 shows part of the Composite fragment of our pattern language, including four

tiling variants of the Composite pattern. Briefly, a Two-Way Composite describes a graph structure

with pointers in both directions, which can be used in dataflow programming [25]; a Cascade is tree

of composites where each layer in the tree contains different types of objects [16]; a Two-dimensional

14



composite is a composite where every Component node acts as a Root node in a second composite,

as in a tree of heavyweight widgets each containing a tree of lightweight gadgets [15]; and a Lambda

Composite involves two superimposed composites, where one composite provides a more abstract view

of the second composite, as used in the Trestle window system [24]. Each of these variants bothrefines

andusesthe main Composite pattern.

Two-way Composite

Cascade

Two-Dimensional Composite

Lambda Composite

Composite

Figure 9: The Composite Fragment

3.4.5 State Fragment

The State fragment incorporates Dyson and Anderson’sState Patternspattern language fragment [14]

directly into our larger pattern language (see Figure 10). In this fragment, the State pattern captures

the core of the State pattern fromDesign Patterns, and the other patterns act as subpatterns of State,

describing how to apply it in more detail. In particular, the State Member and Exposed State patterns

describe how to design the subsidiary state objects, the Owner Drive Transitions and State Driven Tran-

sitions patterns describe two alternative design for managing transitions between states, and the Pure

State pattern describes how and when state objects can be shared. Because it is quite self-contained, this

fragment can be directly incorporated into our pattern language — the patterns and their relationships

are taken directly from the original description [14].

The state fragment illustrates two points about building pattern languages. First, subpatterns can

be incorporated simply by organising the language so that the that the main patternusesall the top-

level subpatterns. Second, well-conceived pattern language fragments can sometimes be incorporated

wholesale into larger pattern languages.

15



State Member Pure State (Flyweight)

Exposed State

State Owner Driven Transitions

Default State

State Driven Transitions

Figure 10: The State Fragment

3.5 The Programming Fragments

The Creation fragment is the most interesting of the Programming fragments, so it is the only one we

present here (see Figure 11). This fragment incorporates all theDesign Patternscreational patterns,

the Product Trader pattern [33], and two abstract patterns — Natural Creation and Direct Creation —

which introduced to structure the fragment [27]. Natural Creation address the basic question of how

objects should be created, and Direct Creation describes the two basic mechanisms for creating objects

provided by programming languages — instantiating a class or cloning a prototype.

Natural
Creation

Direct
Creation

Abstract
Factory Factory

Method Class

Prototype

Product Trader

Builder

Figure 11: The Creation Fragment

4 Organising A Pattern Language

We used a simple, bottom-up, iterative process to organise patterns into a language. This process had 4

stages:

1. We began by collecting all the patterns we wished to include in the language.

16



2. We analysed each pattern to determine its relationships with other patterns, and decomposed it

into a series of smaller patterns if necessary.

3. We constructed pattern language fragments from the patterns, their sub-patterns, and closely

related patterns.

4. We combined the fragments into a whole pattern language.

Generally, we found the first two stages relatively easy. For the first stage, we were able to draw

upon a wealth of patterns now available in the literature. Analysing the patterns was also quite straight-

forward, once we had identified the common kinds of patterns and their characteristic decompositions.

The second two stages, organising patterns into fragments and fragments into languages, were more

difficult, and several iterations were required on each fragment at these stages. Indeed, the difficulty

of organising all theDesign Patternsfrom scratch motivated us to work in two stages, first organising

fragments, and then organising a language from the fragments.

At the third stage, some fragments were quite obvious from the source patterns. When we decom-

posed monolithic patterns with many variants into a main pattern and a number of variant patterns, we

would generally place all these patterns into the same fragment — the State fragment is an example

of this approach. Fragments built up by including a number of related patterns were more difficult to

organise, often requiring us to iteratively introduce (and then analyse) abstract patterns, requiring in-

sight about the underlying structure of the patterns in the fragment — the Shearing fragment is a prime

example of this approach.

Similarly, the fourth stage also required us to iterate to find and introduce new patterns to tie the

patterns together into the language — including all the high-level patterns in the initial fragment, as the

Design Patternsdo not address low-level analysis and design. We also needed to move patterns between

fragments, particularly to organise major patterns and the subpatterns or solution variants which needed

to follow them in the language. In this we followed Alexander — inasmuch asA Pattern Languagede-

composes patterns into tightly coupled subpatterns, the subpatterns are placed into a separate fragment

following the main pattern.

Finally, at the end of the fourth stage, we produced a linear sequence for the whole language,

by sorting the patterns within the fragments into a topological order based on theusesrelationships

between the patterns, and then sorting the fragments based on the aggregate relationships between them.

As much as possible, we ensured that larger scale patterns would come before smaller scale patterns, and

that patterns appear before the patterns they use, although like most other pattern languages including

17



Alexander’s, we could not avoid backwards references completely.

5 Discussion

Design Patternscontains an analysis of why pattern catalogues arenot pattern languages:

1. People have been making buildings for thousands of years, and there are many classic examples

to draw upon. We have been making software systems for a relatively short time, and few are

considered classics.

2. Alexander gives an order in which his patterns should be used; we have not.

3. Alexander’s patterns emphasise the problems they address, whereas design patterns describe the

solutions in more detail.

4. Alexander claims his patterns will generate complete buildings. We do not claim that our patterns

will generate complete programs.

Design Patterns[19, p. 356], Gamma, Helm, Johnson, Vlissides.

In order to organise theDesign Patternsinto a language we must address these four points. We

have not addressed the first point directly — there are still very few programs which are considered

classics, and we have not tried to write or unearth any! In spite of this, theDesign Patternsdo seem

to capture many of the important features of the design of those extant object oriented programs which

are considered classics, and the patterns are becoming widely recognised as good software engineering

practice.

The second point is the most important consideration for organising patterns into a language.Design

Patternsis a pattern catalogue, so the patterns are organised into three chapters based on the pattern’s

scope, and within each section the sequence is alphabetical — essentially ad-hoc. In our pattern lan-

guage, we have explicitly provided an order for the patterns, based on the relationships between the

patterns, and the scale at which each pattern applies, to guide the programmer through the patterns.

The third point is also quite important, because although the bulk of the pattern descriptions we

have drawn upon do concentrate upon the proposed solutions, all patterns include a description of the

problem they solve — although in theDesign Patternsform, it is split between the Intent, Motivation,

and Applicability sections. In constructing our pattern language, we have analysed the patterns to

18



identify the problems that each pattern solves, and where necessary decomposed monolithic patterns to

highlight the problems the patterns address.

Finally, the fourth point is important, although less so than the second point. In particular,Design

Patternscontains no larger-scale patterns to act as starting points for a pattern language, and there

is certainly no initial pattern. The patterns also stop short of capturing lower-level knowledge about

object oriented programming. For organising a pattern language, the lack of higher-level patterns is

more important, since they group the patterns into the whole language, and so we have introduced a

number of large scale patters to start the language. Fortunately, a large number of other general-purpose

design patterns have been identified and codified since the publication ofDesign Patterns, and we have

been able to organise many of these into the language. As a result, a programmer can begin with the

initial OO Program pattern, and traverse through the language to design a program.

The pattern language we have constructed is intentionally initial, partial, and open to extension.

Although a complete pattern language, in the sense that a path can be traced through the sequence of

patterns to generate a program design, the language still requires many more patterns — in particular,

subpatterns for the more complex design patterns, more composite patterns, and more abstract patterns.

6 Conclusion

In this paper, we have described how the design patterns fromDesign Patternscan be organised into

a pattern language, along with other patterns from the literature. We have described the structure of

the resultingFound Objectspattern language [30], and outlined the contents of the major fragments in

the language. We have also described how this language is made up of a variety of kinds of patterns

— composite patterns, abstract patterns, problem and solution variants, tiling variants, and subpatterns

— and how these kinds of patterns can be identified and organised via their relationships with other

patterns. We have also described the way in which we constructed the pattern language — by collecting

patterns, analysing the relationships between them, grouping them into fragments and the fragments

into a language.

Practitioners and researchers need to experiment with the resulting pattern language, to evaluate the

benefits and liabilities of presenting patterns using a pattern language vis-a-vis a pattern catalogue or

pattern system. At this time, it is not clear whether pattern catalogues or pattern languages will prove

to be the better approach for organising a practical handbook for software engineering. Organising

the Design Patternsinto a pattern language demonstrates that at least some kind of pattern language

19



can be constructed for general, domain-independent software design patterns, and is an important step

enabling more detailed comparisons to be carried out.

References

[1] Christopher Alexander.A Pattern Language. Oxford University Press, 1977.

[2] Christopher Alexander.The Timeless Way of Building. Oxford University Press, 1979.

[3] Sherman R. Alpert, Kyle Brown, and Bobby Woolf.The Design Patterns Smalltalk Companion.

Addison-Wesley, 1988.

[4] Kent Beck.Smalltalk Best Practice Patterns. Prentice-Hall, 1996.

[5] Kent Beck and Ward Cunningham. Using pattern languages for object-oriented programs. Tech-

nical report, Tektronix, Inc., 1987. Presented at the OOPSLA-87 Workshop on Specification and

Design for Object-Oriented Programming.

[6] Steward Brand.How Buildings Learn. Penguin Books, 1994.

[7] Kyle Brown and Bruce G. Whitenack. Crossing chasms, a pattern language for object-RDBMS

integration. In Vlissides et al. [35].

[8] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.Pattern-

Oriented Software Architecture. John Wiley & Sons, 1996.

[9] James O. Coplien. A generative development-process pattern language. InPattern Languages of

Program Design. Addison-Wesley, 1994.

[10] James O. Coplien.Software Patterns. SIGS Management Briefings. SIGS Press, 1996.

[11] James O. Coplien and Douglas C. Schmidt, editors.Pattern Languages of Program Design.

Addison-Wesley, 1996.

[12] Ward Cunningham. The CHECKS pattern language of information integrity. InPattern Languages

of Program Design. Addison-Wesley, 1994.

[13] Ward Cunningham. EPISODES: a pattern language of competitive development. In Vlissides

et al. [35].

20



[14] Paul Dyson and Bruce Anderson. State objects. In Martin et al. [26].

[15] Paula Ferguson and David Brennan.Motif Reference Manual. O’Reilly & Associates, Inc., 1993.

[16] Ted Foster and Liping Zhao. Cascade. InPLOP Proceedings, 1997.

[17] Martin Fowler.Analysis Patterns. Addison-Wesley, 1997.

[18] Erich Gamma. Extension object. In Martin et al. [26].

[19] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides.Design Patterns. Addison-

Wesley, 1994.

[20] Ralph Johnson and Bobby Woolf. Type object. In Martin et al. [26].

[21] Wolfgang Keller. A pattern language for relational databases. Submitted to Europlop’98.

[22] Doug Lea. Christopher alexander: An introduction for object-oriented designers.ACM Software

Engineering Notes, January 1994.

[23] David H. Lorenz. Tiling design patterns — a case study. InECOOP Proceedings, 1997.

[24] Mark S. Manasse and Greg Nelson. Trestle reference manual. Technical Report 68, DEC Systems

Research Center, 1991.

[25] Dragos-Anton Manolescu. A data flow pattern lanuguage. InPLOP Proceedings, 1997.

[26] Robert C. Martin, Dirk Riehle, and Frank Buschmann, editors.Pattern Languages of Program

Design, volume 3. Addison-Wesley, 1998.

[27] Gerard Meszaros and Jim Doble. A pattern language for pattern writing. In Martin et al. [26].

[28] James Noble. Arguments and results. InPLOP Proceedings, 1997.

[29] James Noble. Basic relationship patterns. InEuroPLOP Proceedings, 1997.

[30] James Noble. Found objects. Technical report, Microsoft Research Institute, Macquarie Univer-

sity, 1998.

[31] Dirk Riehle. A role based design pattern catalog of atomic and composite patterns structured by

pattern purpose. Technical Report 97-1-1, UbiLabs, 1997.

[32] Dirk Rielhe. Composite design patterns. InECOOP Proceedings, 1997.

21



[33] Dirk Rielhe. Product trader. In Martin et al. [26].

[34] Walter F. Tichy. A catalogue of general-purpose software design patterns. InTOOLS USA 1997,

1997.

[35] John M. Vlissides, James O. Coplien, and Norman L. Kerth, editors.Pattern Languages of Pro-

gram Design, volume 2. Addison-Wesley, 1996.

[36] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener.Designing Object-Oriented Software.

Prentice-Hall, 1990.

[37] Bobby Woolf. The abstract class pattern. InPLOP Proceedings, 1997.

[38] Bobby Woolf. Null object. In Martin et al. [26].

[39] Walter Zimmer. Relationships between design patterns. InPattern Languages of Program Design.

Addison-Wesley, 1994.

22


