
UIUC PATTERNS GROUP VERSION –  12 February 1998

* 1 *

A Catalogue of General-Purpose Software Design Patterns

Walter F. Tichy
University of Karlsruhe

Karlsruhe, Germany

Abstract
Software design patterns describe proven solu-

tions to recurring software design problems. Knowl-
edge of these patterns increases designers’ abilities,
leads to cleaner and more easily maintained soft-
ware, speeds up implementation and test, and helps
programmers document and communicate their de-
signs.

This paper catalogues over 100 general-purpose
design patterns. The organizing principle of the
catalogue is the use of patterns, i.e., the problems
they solve. Other considerations, such as whether a
pattern is behavioral or structural, how it is imple-
mented, or whether it is high or low level, are secon-
dary, because these aspects are less important for a
designer looking for a solution to a design problem.

The catalogue collects general-purpose patterns
from a variety of sources. It includes older patterns
such as Module and Layers as well as modern, ob-
ject-oriented patterns such as Observer and Visitor.

Introduction

A software design pattern describes a family of
solutions to a software design problem.  It consists of
one or several software design elements (such as in-
terfaces, classes, objects, methods, functions, proc-
esses, threads, etc.), relationships among the elements
(for example association, inheritance, delegation,
invocation, and creation), and a behavioral descrip-
tion.  Example design patterns are Layered System
and Model-View-Controller,

The purpose of design patterns is to capture de-
sign know-how and make it reusable.  Design patterns
can improve the structure of software, speed up im-
plementation, simplify maintenance, and help avoid
architectural drift. Design patterns also improve
communication among software developers and can

empower less experienced developers to produce
high-quality designs.

Over the past few years, the number of docu-
mented software design patterns has increased
greatly. Multitude brings with it a need to organize
and classify. This document catalogues a large num-
ber of software design patterns from a variety of
sources.  In particular, it includes all patterns from
[Gamma 95] and [Shaw 95], a selection of patterns
from [Buschmann 96], [PLOP 95], and [PLOP 96],
and some other sources. The “classics” such as Lay-
ered System, Pipes and Filters, Module, Event Chan-
nel, and Repository are also included. We selected
only general-purpose patterns, i.e., patterns that can
be used in many systems regardless of application
domain.  The catalogue is organized according to the
purpose of these patterns.

Related Work

A number of classifications of software design
patterns exist. Gamma et al. [Gamma 95] use two
orthogonal dimensions. The first dimension, purpose,
differentiates between creational, structural, and be-
havioral patterns. The second dimension, scope, dis-
tinguishes whether a pattern applies primarily to
classes or to objects. The distinction between behav-
ioral and structural patterns is problematic when
searching for patterns, because whether a pattern has
one or the other property is difficult to determine
when the pattern itself is not known. Scope exhibits
the same problem and is not suitable for non-object-
oriented patterns.

Buschmann et al. [Buschmann 96] distinguish
architectural patterns, design patterns, and idioms.
Within each of those categories, patterns are loosely
organized according to purpose. Architectural pat-
terns provide a top-level structural division of soft-
ware, while design patterns refine components at a



UIUC PATTERNS GROUP VERSION –  12 February 1998

* 2 *

medium level, and idioms are low-level, language-
specific code sequences. The problem with these
categories is that it is difficult to place patterns con-
sistently. The authors themselves seem to have trou-
ble with this. For example, Model-View-Controller
(MVC) appears as an architectural pattern. However,
MVC builds on the Observer pattern, which is catego-
rized under design. Noexplanation for this discrep-
ancy is given. In fact, there are several patterns which
could be placed into at least two categories. For ex-
ample, Pipes and Filters is listed as an architectural
pattern. However, one can easily imagine a situation
in which this pattern appears somewhere deep inside
the overall system, perhaps even at the detailed code
level. For instance, buffered I/O uses Pipes and Fil-
ters and can appear at any level. Conversely, most of
the patterns in the design category could also struc-
ture the top level of an architecture, in particular
Whole-Part, Master-Slave, and Command Processor.
Finally, the subordinate categorization according to
purpose seems arbitrary and shows inconsistencies of
its own. For example, Pipes and Filters appears under
distributed systems, even though it works in central-
ized systems as well. Furthermore, the distinction of
the distributed systems and communication categories
is unclear. The interactive systems category seems to
indicate incorrectly that patterns in other categories
are not suitable for interactive systems. While we
have found (and our own categorization shows this)
that it is not always possible to place a pattern into
exactly one category, it appears that the classification
by Buschmann et al. suffers from an excessive num-
ber of these problems.

Zimmer [Zimmer 95] analyzes the internal
structure of the patterns in [Gamma 95]. While such
an analysis is extremely valuable for a deeper under-
standing of pattern relationships, the resulting classi-
fication tends to obscure the purpose of patterns.

In the following, we propose a classification
scheme in which the top-level categories are the
problem classes solved by patterns. A word of caution
to the reader is in order: The descriptions of the pat-
terns are too brief to be clear to the uninformed. So
the catalogue is only useful to those who are already
familiar with most patterns or willing to follow up the
references.

The Catalogue

Concentrating on the problems solved by pat-
terns leads to the following top-level categories:

1. Decoupling: dividing a software system into in-
dependent parts in such a way that the parts can be

built, changed, replaced, and reused independ-
ently.

2. Variant Management: treating different objects
uniformly by factoring out their commonality.

3. State Handling: generic manipulation of object
state.

4. Control: control of execution and method selec-
tion.

5. Virtual Machines: simulated processors.

6. Convenience Patterns: simplified coding.

7. Compound Patterns: patterns composed from
others, with the original patterns visible.

8. Concurrency: controlling parallel and concurrent
execution.

9. Distribution: problems germane to distributed
systems.

Categories should be mutually exclusive, with
few exceptions. Subcategories are strict subsets of the
parent category, also mutually exclusive as far as pos-
sible. It is not necessary for the categories to be “bal-
anced,” i.e., of approximately equal size. This can be
seen in the decoupling category: It is the largest sin-
gle category, reflecting the importance of dividing a
system into independent units.

Similarities in implementation of patterns are ig-
nored for categorization, although certain techniques
such as inheritance and virtual functions tend to ap-
pear in clusters.

For each pattern, we provide its name and a ref-
erence, followed by three short paragraphs outlining
the purpose of the pattern, what flexibility it provides,
and how it is implemented.

1 Decoupling

Decoupling patterns divide a software system
into several independent parts in such a way that they
can be built, changed, and replaced independently as
well as reused and recombined in unforeseen combi-
nations. An important advantage of decoupling is
local change, i.e., a system consisting of decoupled
parts can be adapted and extended by modifying or
adding a single or only a few parts, instead of modi-
fying everything.  The idea of decoupling is quite old.
It goes back at least to the late 1950s, when pro-
grammers began to use each other’s programs and
write software libraries. A substantial number of de-
coupling patterns has evolved. Many of these patterns
actually include an identifiable coupling component,



UIUC PATTERNS GROUP VERSION –  12 February 1998

* 3 *

so it would be more appropriate, though more cum-
bersome, to call this category “coupling/decoupling”.

Decoupling patterns differ greatly in their range
of applicability. The patterns Module, Abstract Data
Type, and Hierarchical Layers, for example, have
extremely broad applicability, whereas Iterator,
Proxy, and Facet apply in much narrower design
situations.

1.1 Module (Encapsulation, Information
Hiding) [Parnas 72]

Purpose: cluster data structures and operations
that change together and hide them behind a change-
insensitive interface, so that changes to these compo-
nents affect nothing outside the module.

Flexibility: change or replace implementation,
hardware, I/O, OS, memory resources, network, etc.,
without affecting clients.

Implementation: make interface independent of
likely changes.

Note: Examples of support for Modules are
Modula’s modules, C’s header files, and Ada’s pack-
ages. Normally, it is not possible to instantiate a
module more than once in a single program. Instead,
compiling and linking a module statically allocates
the data for it.

1.2 Abstract Data Type (ADT, Class) [Dahl
68]

Purpose: hide data structure and access algo-
rithms behind a change-insensitive interface.

Flexibility: change or replace implementation,
hardware, I/O, OS, memory resources, network, etc.
without affecting clients.

Implementation: make interface independent of
likely changes.

Note: The purpose of ADT is similar to that of
Module, but an ADT is typically smaller, containing a
single data type. It is also possible to create multiple
instances of an ADT. For a Module, there is normally
only one instance. A Module, however, may combine
several related ADTs.

There are numerous examples of ADTs. Some
follow below.
1.2.1 Repository (Database) [Shaw 95]

Purpose: provide a central data structure with an
access interface for multiple clients.

Flexibility: clients are independent of each other;
add/remove clients; change implementation of data
structure.

Implementation: get/set or query/update methods
plus synchronization for parallel access (locks or
transaction mechanism).

See also: Blackboard

 

Decoupling
Module (Encapsulation)
Abstract Data Type (Class)

Repository (Database)
Client/Server

Manager (Collection)
Iterator
Other Instances of ADT

Layers
Sandwich
Façade
Mediator
Bridge
Adapter (Wrapper)
Proxy (Surrogate)

Decorator
Buffer Proxy
Logging/Counting Proxy
Firewall
Synchronization Proxy
Remote Access Proxy

Facet (Extension Object)
Pipeline (Pipes and Filters)

Synchronous Pipe
Push Pipe
Pull Pipe

Asynchronous (Buffered) Pipe
Event Notification

Catch and Throw
Callback
Event Loop
Event Channel
Propagator

Strict Propagator
Lazy Propagator
Adaptive Propagator
Observer

Framework

Figure 1: Decoupling Patterns

1.2.1.1 Client-Server [Shaw 95]
Purpose: clients and repository (=server) run

potentially on separate computers connected by a
network.



UIUC PATTERNS GROUP VERSION –  12 February 1998

* 4 *

1.2.2 Manager (Collection) [PLOP 96]
Purpose: place collection-related functions such

as creation/deletion, registration, search, layout and
display into a manager class, separate from the ob-
jects in the collection.

Flexibility: change, replace, or reuse manager.
Implementation: a large variety of data structures

for implementing collections exist; they differ mainly
in the speeds of update and lookup.
1.2.3 Iterator (Robust Iterator) [Gamma 95]

Purpose: provide an interface for sequentially
accessing components in an aggregate/container.

Flexibility: vary internal structure of aggre-
gate/container; multiple iterators may operate simul-
taneously on the same object.

Implementation: separate iterator state from ag-
gregate/container; standardize interface for iteration.
1.2.4 Other Examples of ADT

Many more examples of abstract data types exist
(container classes, graphs, matrices, etc.).

1.3 Layers (Hierarchical Layers) [Dijkstra
68, Shaw 95]

Purpose: a (software) layer provides an interface
and an implementation of this interface. Layers are
partially ordered with respect to the “Uses”-relation.
The implementation of a layer may only use layers
beneath itself in the partial order.

Flexibility: extension, contraction (partial reuse),
replacement, combination, incremental build and test.

Implementation: the uses-relation among layers
must be acyclic.

Examples:
• Operating system kernel
• Protocol stack
• Information system (layers are database, com-

munication layer, core application, user inter-
face).

1.3.1 Sandwich [Habermann76]
Purpose: break up cycle in “Uses”-relation between
modules, classes, or objects by factoring out mutually
used components and placing them into a separate
module, class or object at a lower level. This process
results in a three- or four-level “sandwich” structure.
Flexibility: Same as for layers.
1.3.2 Façade [Gamma 95]

Purpose: provide unified, convenient interface to
a set of existing interfaces that are too “rich” or com-
plicated to be exported in their entirety; also, hide
some components.

Flexibility: change or replace “hidden” compo-
nents including their interfaces.

Implementation: façade calls hidden component
interfaces.
1.3.3 Mediator [Sullivan96, Gamma 95]

Purpose: encapsulate how sets of objects inter-
act.

Flexibility: interacting objects do not know
about each other (loose coupling); therefore it is easy
to change objects and mediator.

Implementation: use separate classes for objects
and mediator; objects inform mediator of significant
events by direct call (upcall) or through event notifi-
cation; mediator then invokes appropriate actions on
other objects.
1.3.4 Bridge [Gamma 95]

Purpose: let abstraction and implementation lay-
ers evolve separately.

Flexibility: abstraction and implementation may
evolve independently; it is possible to add a new ab-
straction or change the implementation without af-
fecting the other.

Implementation: separate layers for abstraction
and implementation, fixed interface of implementa-
tion.
1.3.5 Adapter (Wrapper) [Gamma 95]

Purpose: convert a given interface into another
given interface.

Flexibility: no need to rewrite adaptee and its
clients.

Implementation: adapter translates one interface
into another.
1.3.6 Proxy (Surrogate) [Gamma 95]

Purpose: add or withdraw unplanned functional-
ity transparently.

Flexibility: add or withdraw functionality with-
out affecting original object or clients, without sub-
classing.

Implementation: proxy has the same interface as
original; delegates request to original before/after
adding functionality.

Variations:
♦ Decorator (Cascading Proxies)
♦ Buffer Proxy (Cache Proxy)
♦ Logging Proxy, Counting Proxy
♦ Firewall (Protection Proxy)
♦ Synchronization Proxy
♦ Remote Access Proxy
1.3.7 Facet (Extension Object) [PLOP 96]

Purpose: add new interfaces to existing classes
without changing the classes; provide multiple views.

Flexibility: extend interface, extend functional-
ity.

Implementation: An object registers its exten-
sions and returns them if queried.



UIUC PATTERNS GROUP VERSION –  12 February 1998

* 5 *

1.4 Pipeline (Pipes and Filters) [Shaw 95,
Buschmann 96]

Purpose: pass data through a sequence of trans-
formations (filters) connected by channels (pipes).

Flexibility: transformations do not depend on
each other; stages may be replaced, added, or deleted;
topology may be changed.

Implementation: defined input/output format and
data passing protocol: add adapters to match filters.

1.5 Event Notification

Purpose: let independent parts interact by an-
nouncing and responding to events (loose coupling).

Flexibility: announcers and respondents are in-
dependent; the choice and number of respondents to
an event is dynamic.

Implementation: respondents register their inter-
est in an event.
1.5.1 Catch and Throw

Purpose: register error or event handlers dy-
namically; raising an event invokes the most recently
registered handler for the given event type.

Flexibility: dynamically select handlers; an event
may pass through any number of procedure or
method invocations until an appropriate handler is
found.

Implementation: supported by some program-
ming languages directly, such as Common Lisp and
Java.
1.5.2 Callback
Purpose: register an event handler (the callback) on
an object. When the object receives an event, it calls
the registered handler.

Flexibility: Associate different handlers with different
objects for the same event; avoid cascaded if-
statements to determine how to react to an event.

Implementation: The object receiving the event
delegates to the callback. The callback can be a single
function or an object containing several handlers.
1.5.3 Event Loop

Purpose: process events that are being posted on
an event queue by other system components.

Flexibility: add/remove event posting compo-
nents.
1.5.4 Event Channel [Barret96]

Purpose: let independent parts communicate in-
directly, without knowing of each other.

Flexibility: integrate parts that know nothing of
each other.

Implementation: participants register at common
channel for events or data; notification sends event

and data to channel; channel multicasts event and data
to participants registered for the event.
1.5.5 Propagator [Feiler 98]

Purpose: propagate changes through a network
of dependent objects.

Flexibility: extend/shrink network, add new
classes of objects to network.

Implementation: registration and notification in-
terface; direct notification through call or indirect
notification through event channel.
1.5.5.1 Strict Propagator with/without failure

Purpose: propagate changes forward to the net-
work all the way to the leaves.
1.5.5.2 Lazy Propagator

Purpose: Mark changed objects, but don’t
propagate until an object is accessed and then bring it
up to date; or perform periodic updates.
1.5.5.3 Adaptive Propagator

Combination of Strict and Lazy Propagator: out-
of-date markers are propagated strictly, but the up-
dates themselves lazily.
1.5.5.4 Observer [Gamma 95]

Purpose: propagator limited to one level of de-
pendents.

1.6 Framework [Lewis 95]

Purpose: provide a complete or nearly complete
application layer that can be extended by subclassing.

Flexibility: add new subclasses where permitted,
without changing application logic in framework.

Implementation: use subclassing, template
methods, factory methods, builders, and abstract fac-
tories.

2 Variant Management

Variant management patterns treat different but
related objects uniformly by factoring out their com-
monality. The variant patterns rely strongly on fea-
tures found in object-oriented programming lan-
guages.

2.1 Superclass (Family)

Purpose: provide uniform treatment of variant
classes by placing common interface into a super-
class; variants are subclasses.

Flexibility: add new subclasses as variants with-
out changing client programs.

Implementation: subclassing, inheritance, over-
riding.

Note: the difference between an ADT and sub-
classing is as follows. With an ADT it is possible to



UIUC PATTERNS GROUP VERSION –  12 February 1998

* 6 *

change its implementation without affecting the cli-
ents of the ADT. However, it is not possible to have
several variants of an ADT in a single program at the
same time; the decision of which one to use is made
at compile or link time. With superclasses, however, a
client program, can treat instances of different sub-
classes uniformly and in the same program.

Variant Management
Superclass(Family)

Strategy
Composite

Visitor
Default Visitor
Extrinsic Visitor
Acyclic Visitor

Template Method
Factory Method
Builder

Abstract Factory

Figure 2: Variant Management Patterns

2.1.1 Strategy [Gamma 95]
Purpose: dynamically exchange algorithm vari-

ants.
Flexibility: replace or add algorithms used.
Implementation: common interface or superclass

for algorithm variants, multiple implementations of
algorithms, delegation of implementation.

Note: could also be listed under Control.
2.1.2 Composite [Gamma 95]

Purpose: handle parts-whole hierarchies; clients
treat atomic objects and composites uniformly.

Flexibility: multiple atomic objects and compos-
ites.
Implementation: common interface for composites
and atoms defined in superclass.

2.2 Visitor [Gamma 95]

Purpose: add new variations of operations to sta-
ble class hierarchy (e.g. a parts hierarchy, see Com-
posite) without changing the class hierarchy.

Flexibility: adding or removing operation vari-
ants by touching only one class.

Implementation: use a common accept interface
in classes; one visitor class per variant collects the
methods for all classes in the hierarchy.

Note: Instead of extending all classes with a new
operation, these operations are collected in one class.

So this pattern has a dual role as a decoupling pattern:
it decouples operations that exist in variants for many
classes from those classes.

Variations:
♦ Default Visitor
♦ Extrinsic Visitor
♦ Acyclic Visitor

2.3 Template Method [Gamma 95]

Purpose: specify algorithm skeleton using
primitives; vary primitives in subclasses or by dele-
gation.

Flexibility: multiple families of primitives.
Implementation: define common interface for

primitives across families as abstract functions, im-
plement them in subclasses.
2.3.1 Factory Method [Gamma 95]

Purpose: specify creation skeleton using con-
structor primitives; vary primitives in subclasses.

Flexibility: multiple families of constructor
primitives.

Implementation: common constructor interface
across families as abstract functions, implementation
in subclasses.
2.3.2 Builder [Gamma 95]

Purpose: Same as Factory Method, but uses
delegation instead of subclassing to choose construc-
tion primitives.

Flexibility: multiple families of constructor
primitives; add variants of skeleton without sub-
classing.

2.4 Abstract Factory [Gamma 95]

Purpose: bundle the constructors of a family of
related objects into one object (the factory).

Flexibility:  supply multiple families of con-
structors.

Implementation: common constructor interface
across families; multiple implementations. Factory
invokes creation operations directly from chosen
family (delegation).

3 State Handling

State Handling patterns manipulate the state of
objects generically. This means that these patterns
work on the state of any object or class, independent

3.1 Singleton [Gamma 95]

Purpose: guarantee single instance of a class.



UIUC PATTERNS GROUP VERSION –  12 February 1998

* 7 *

Implementation: record existence of instance in
static member. of their actual purpose.

State Handling
Singleton
Prototype (Cloneable)
Flyweight
Memento

   Persistent Object

Figure 3: State Handling Patterns

3.2 Prototype (Cloneable) [Gamma 95]

Purpose: create new objects by cloning an ex-
isting one (the prototype).

Flexibility: prototype’s content can be deter-
mined dynamically.

Implementation: interface for cloning.

3.3 Flyweight [Gamma 95]

Purpose: save space by sharing common state
among objects.

Implementation: differentiate between extrinsic
state and intrinsic state; share intrinsic (common)
state.

3.4 Memento [Gamma 95]

Purpose: save and restore an object’s internal
state.

Flexibility: vary pack and unpack routines.
Implementation: write pack and unpack routines

for externalizing and restoring state.
Variation: save object state in persistent store

(deep or shallow copy).

4 Control

Control patterns deal with control of execution
and selecting the right methods at the right time.

4.1 Blackboard [Shaw 95]

Purpose: dynamically decide which transformers
(“knowledge sources”) to apply to a shared data
structure.

Flexibility: add and replace transformers; replace
controller.

Implementation: use the following components:
shared data structure, set of transformers, controller
that selects transformers.

See also: Repository

4.2 Command (Command Processor)
[Gamma 95]

Purpose: separate composition of a request from
the time it is executed.

Flexibility: multiple commands; add functional-
ity such as undo or redo, scheduling.

Implementation: encapsulate command with ad-
ditional state (the objects on which to operate); add
command processor.

Control
Blackboard
Command
Chain of Responsibility
Strategy
Control State
Master/Slave
Process Control

Open-loop system
Closed-loop system

Feedback control
Feedforward control

Figure 4: Control Patterns

4.3 Chain of Responsibility [Gamma 95]

Purpose: pass a request down a chain of objects
until an object handles it.

Flexibility: a) decoupling handler from request
(handler is determined dynamically); b) add new han-
dlers.

Implementation: common interface for handlers,
delegation along chain.

Note: could also be listed under decoupling.

4.4 Strategy [Gamma 95]

See Strategy under Variant Management.
Though strategy has to do with control (choosing the
right algorithm), it fits more naturally under variants.

4.5 Control State (State) [Gamma 95]

Purpose: choose behavior according to state of
an object.



UIUC PATTERNS GROUP VERSION –  12 February 1998

* 8 *

Flexibility: add/remove states.
Implementation: distributed form of a finite state

machine: uniform interface for actions; each state
object implements behavior appropriate for given
state.

4.6 Master-Slave

Purpose: dynamically distribute work over sev-
eral subordinate processes (slaves).

Flexibility: add and remove slaves, e.g. to speed
up completion, scale parallelism, balance load.

Implementation: master process creates slave
processes, supplies tasks, waits for completion, then
supplies additional tasks or may destroy slaves.

4.7 Process Control [Shaw 95]

Purpose: regulate a physical (continuous) proc-
ess.

Flexibility: adjust or replace controller.
Implementation: contains controller, process

variables, input variables, controlled variables, ma-
nipulated variables, sensors, set point.

Variations:
4.7.1 Open-loop system (process variables not
used to adjust system)
4.7.2 Closed-loop system
♦ Feedback control (controlled variables are used

to adjust system)
♦ Feedforward control (input or intermediate

variables are used to adjust system)

5 Virtual Machines

A virtual machine simulates a processor. It is soft-
ware that interprets a program written in a specific
language.

Virtual Machines
Interpreter

Emulator
Rule-based Interpreter

Figure 5: Virtual Machine Patterns

5.1 Interpreter [Shaw 95]

Purpose: execute a program written in the inter-
preter’s language.

Flexibility: replace interpreter (for portability,
efficiency), extend language.

Implementation: contains program store, work-
ing memory, program counter, and methods to exe-
cute the instructions in the language.

Note: [Gamma 95] describes an object-oriented
implementation of an interpreter without an explicit
program counter.
5.1.1 Emulator

Purpose: simulate the instruction set of a hard-
ware unit in software.

Flexibility: modifying emulator is easier than
changing hardware.

5.2 Rule-based Interpreter [Shaw 95]

Purpose: execute a rule set using a fact base.
Flexibility: extend rules, replace interpreter.
Implementation: use components rule store, fact

base, working memory, rule matcher (instead of pro-
gram counter), and a rule interpreter.

Note: layer and facade could also be viewed as
virtual machines, but lack a program counter.

6 Convenience Patterns

Convenience patterns simplify code by concen-
trating often-repeated code sequences in one place.

Convenience Patterns
Convenience Method
Convenience Class
Default Class
Null Object

Figure 6: Convenience Patterns

6.1 Convenience Method [PLOP 95]

Purpose: simplify method invocations by sup-
pressing parameters whose values are the same for
many calls.

Implementation: define specialized methods that
call more general methods and supply frequently used
parameter combinations.

6.2 Convenience Class

Purpose: simplify method invocations by storing
parameter values in the class.

Implementation: define a class containing con-
venience methods plus variables to store the values of



UIUC PATTERNS GROUP VERSION –  12 February 1998

* 9 *

the suppressed parameters. Special operations change
the parameter values.

6.3 Default Class

Purpose: provide a default implementation of a class
that normally must be reimplemented by the client.
Subclasses override only the methods for which the
defaults are inappropriate.

6.4 Null Object (Stub) [PLOP 96]

Purpose: eliminate frequent tests for null refer-
ences by replacing null references with a reference to
the null object.

Implementation: a null object is an instantiation
of a class with pseudo implementations of its meth-
ods. These methods do nothing or return default val-
ues appropriate for null references.

7 Compound Patterns

Compound patterns are composed from others,
with the original patterns visible to the client pro-
grams. Most patterns are actually composed of others,
but if a particular combination takes on a different
purpose, then it is categorized according to this pur-
pose.

Because compound patterns consist of several
other patterns, they can usually be classified into sev-
eral categories at once. To avoid the duplication, they
are placed in this category.

Compound Patterns
Model/View/Controller
Bureaucracy
Active Bridge

Figure 7: Compound Patterns

7.1 Model-View-Controller (MVC)

Purpose: provide multiple, dynamic views on
shared data and dynamically change responses to user
input.

Flexibility: add and remove views, change re-
sponse, add and remove components.

Implementation: combination of observer, strat-
egy, and composite.

7.2 Bureaucracy [PLOP 96]

Purpose: organize objects in a hierarchical
structure such that it maintains its inner consistency
by itself.

Flexibility: extend and shrink hierarchy, extend
and shift responsibilities.

Implementation: combination of composite, ob-
server, and chain of responsibility.

7.3 Active Bridge [Riehle 97]

Purpose: Connect an application to event-driven
resouces in a portable way.

Flexibility: replace platform, change event han-
dling, let platform and application evolve independ-
ently.

Implementation: combination of Bridge, Proxy,
Observer, Abstract Factory, Factory Method.

8 Concurrency

Concurrency patterns control parallel and con-
current execution. The following patterns are in use
(without further explanation).

Concurrency
Semaphore
Critical Region
Conditional Critical Region
Monitor
Double-Checked Locking
Thread Management
Event Loop
Send/Receive
Reactor
Rendezvous
Listener
Daemon
Readers/Writers
Bounded Buffer
Active Object (Future)
Asynchronous Completion Token
Half-Sync/Half-Async
Transaction and Rollback

Figure 8: Concurrency Patterns

9 Distribution

Distribution patterns solve problems that arise in
distributed systems, e.g. problems with communica-



UIUC PATTERNS GROUP VERSION –  12 February 1998

* 10 *

tion and cooperation, finding resources, dealing with
network outages, or the low bandwidth of network
links. Patterns that deal with parallelism, but not nec-
essarily with distribution appear under Concurrency.

Distribution
Protocol Stack
Remote Procedure Call
Router
Acceptor and Connector
Gateway
Forwarder/Receiver
Client/Server
Client/Dispatcher/Server
Broker
Distributed State
(Recoverable Distributor)

Figure 9: Distribution Patterns

Conclusions

Software design patterns collect the growing body of
knowledge about software design. While experienced
developers know many (though usually not all) of the
patterns, organizing and systematizing this knowl-
edge is important to make it accessible to future gen-
erations of software developers. This paper is a first
attempt at such an organization. It needs input from
many viewpoints on software design before it can
evolve into a catalogue of patterns.
Acknowledgements: Many people from the pattern
community have contributed comments to this work.
The most detailed critique came from Ralph Johnson,
who helped me understand a number of different
viewpoints and thoroughly discussed the categoriza-
tion of a number of patterns.

Bibliography

[Barrett 96] Daniel J. Barrett et al., A frame-
work for event-based software inte-
gration, ACM Trans. on Software
Engineering and Methodology 5(4),
Oct. 1996, 378-421.

[Bloss 93] Adrienne G. Bloss and J.A.N. Lee,
Language Processors, Encyclopedia
of Computer Science, Van Nostrand
Reinhold, New York, 1993, 727-
733

 [Buschmann 96] F. Buschmann et al., A System of
Patterns, John Wiley & Sons, 1996.

 [Dahl 68] O.-J. Dahl, B. Myhrhaug, and K.
Nygaard, The Simula 67 Common
Base Language, Norwegian Com-
puting Center, Oslo, Norway, 1968.

[Dijkstra 68] Edsger W. Dijkstra, The structure of
the THE multiprogramming system,
Communications of the ACM 11(5),
May 1968, 314-346.

[Feiler 98] Peter Feiler and Walter Tichy,
Propagator -- A Family of Patterns,
Proc. TOOLS USA 97, IEEE 1998.

[Gamma 95] E. Gamma et al., Design Patterns:
Elements of Reusable Object Ori-
ented Software, Addison-Wesley
Professional Computing Series.
1995.

[Habermann76] A. Nico Habermann, Lawrence
flon, and Lee W. Cooprider,
Modularization and hierarchy in a
family of operating systems, Com-
munications of the ACM, 19(5), ay
1976, 266-272.

[Islam 96] Nayem Islam and Murthy Devara-
konda, An essential design pattern
for fault-tolerant distributed state
sharing, Communications of the
ACM, 39(10), Oct. 1996, 65-74.

 [Lewis 95] Ted Lewis, Object-Oriented Appli-
cation Frameworks, Manning, 1995.

 [Parnas 72] David L. Parnas, On the criteria do
be used in decomposing systems
into modules, Communications of
the ACM 15(2), Dec. 1972,1053-
1058.

[PLOP 95] James O. Coplien and Douglas C.
Schmidt (eds.), Pattern Languages
of Program Design, Addison-
Wesley, 1995.

[PLOP 96] Douglas C. Schmidt (ed.), Pro-
ceedings of the 3rd Annual Confer-
ence on the Pattern Languages of
Programs, University of Illinois at
Urbana-Champaign, Sept. 1996.

[Riehle 97] Dirk Riehle, Composite Design
Patterns, Proc. OOPSLA’97, ACM
SIGPLAN Notices 32(10), Oct.
1997, 218-228.

[Shaw 95] Mary Shaw and David Garlan,
Software Architecture, Prentice Hall
1995.

[Sullivan 96] K.J. Sullivan et al., Evaluating the
Mediator Method: Prism as a case
study, IEEE Trans. on Software En-



UIUC PATTERNS GROUP VERSION –  12 February 1998

* 11 *

gineering 22(8), Aug. 1996, 563-
579.

[Zimmer 95] Walter Zimmer, Relationships be-
tween design datterns, in [PLOP
95], 346-36S4.


