
D
R

A
FT

A controlled experiment in maintenance

comparing design patterns to simpler solutions

| D R A F T |

Lutz Prechelt (prechelt@ira.uka.de)

Barbara Unger (unger@ira.uka.de)
Walter F. Tichy (tichy@ira.uka.de)

Fakult�at f�ur Informatik, Universit�at Karlsruhe
D-76128 Karlsruhe, Germany

+49/721/608-4068, Fax: +49/721/608-7343

Peter Br�ossler

(Peter.Broessler@sdm.de)
sd&m GmbH & Co KG
Thomas-Dehler-Str. 27

80737 M�unchen, Germany

March 9, 1998

Abstract

Software design patterns package proven solu-
tions to recurring design problems in a form
that simpli�es reuse. We are seeking empirical
evidence whether using design patterns is ben-
e�cial. In particular, one may prefer using a
design pattern even if the actual design prob-
lem is simpler than that solved by the pattern,
i.e., if not all of the functionality o�ered by the
pattern is actually required.

Our experiment investigates software mainte-
nance scenarios that employ various design pat-
terns and compares to simpler alternative de-
signs. The subjects were professional software
engineers.

We �nd that programs using design patterns
can be more di�cult to maintain than more
conventional solutions, or can be simpler to
maintain (even where the speci�c core advan-
tages of the pattern solution are not relevant),
or can be neutral. Carefully applied common
sense is a good discriminator between these
cases. One should consider alternatives and
rely on judgment even when design patterns
are applicable.

1 Design patterns and
exibil-

ity

Object-oriented design patterns in the sense of
Gamma et al. [5] are becoming increasingly
popular. Their purpose is capturing design
knowledge in such a form that it can be reused
easily, even by less experienced designers.

Most design patterns collected in the popular
book by Gamma et al. [5] aim at reducing cou-
pling and increasing
exibility within systems.
For instance, many of these patterns delay de-
cisions until run time that would otherwise be
made at compile time or they factor function-
ality into separate classes. As a consequence,
they often allow adding new functionality with-
out changing old code.

Besides being proven solutions, using patterns
purportedly provides additional advantages:
Design patterns provide precise terminology
that improves communication among designers
[1] or from designers to maintainers [5, page 2].
They purportedly also make it easier to think
clearly about a design and encourage the use of
\best practices".

Given the popularity of (in particular) the
Gamma et al. design patterns, one can expect
that they will often be used in situations where

1

D
R

A
FT

not their whole
exibility is needed: The pat-
tern solves the problem at hand, but is more
powerful than required.

In such situations there will be two competing
forces: On the one hand, applying the pattern
might be a good idea because of the above-
mentioned pattern advantages of common ter-
minology, proven solutions, and best practices.
On the other hand, it may be a bad idea be-
cause the solution applied is more complicated
than necessary and may thus make understand-
ing and change more di�cult. For instance, [1]
warns that \a design pattern is not a rule to
be followed blindly". Another aspect of this
tradeo� is delibarately ignored in the present
experiment: Even if the pattern solution is
overly powerful right now, its
exibility may
be needed later on, even if this is not currently
expected.

1.1 Experiment overview

The controlled experiment described herein as-
sesses design patterns versus alternative de-
signs in the context of program maintenance.
We consider four di�erent programs with dif-
ferent design patterns. Among the several
ex-
ibility and functionality properties of the de-
sign pattern solution of each program at least
one is not actually required for the original pro-
gram and for the given maintenance tasks an-
alyzed in the experiment. For each program,
the experiment compares the performance of
two groups of subjects on these maintenance
tasks. Two di�erent baseline program versions
are used: Version Pat applies design patterns
in a standard fashion whereas version Alt em-
ploys a simpler solution, which does exhibit
only the functionality and
exibility actually
required.

The programs are well-documented, modestly-
sized, arti�cial programs; they contain imple-
mentations of the design patterns Abstract
Factory, Composite, Decorator, Facade, Ob-
server, and Visitor as described in the book
[5]. The subjects are professional software en-
gineers.

1.2 Structure of this article

We now shortly discuss related work and then,
in Section 3, summarize the experiment design
and conduct, including a short statement of the
experiment objective, a description of the sub-
jects' background, the division into groups, the
environment, the measurement, and discussion
of the internal and external validity of the ex-
periment. Section 4 describes the programs
used in the experiment, the work tasks, the
expectations, and the actual results. We will
assume the reader understands the relevant de-
sign patterns and their properties; we will thus
not describe them in detail. The conclusion
sketches the common denominator of the re-
sults, possible consequences for proper program
design, and further research questions to be in-
vestigated.

2 Related work

A lot of work is currently being done in both
scienti�c and industrial context towards identi-
fying design patterns, writing them up, teach-
ing them, using them, building support tools,
etc. [1, 2, 3, 4]. Reports on the e�ects of pat-
terns are available in anecdotal form from var-
ious practitioners [1], but there is little work
done yet in a quantitative fashion, let alone in
a controlled environment.

In fact the only quantitative, controlled exper-
iment on patterns reported so far seems to be
[7] (see [6, 8] for details). It investigates com-
munication improvements through patterns in
a maintenance situation. Maintenance can be
done quicker and with fewer errors for software
that documents its use of design patterns ex-
plicitly as opposed to the same software with-
out the pattern documentation. This result
con�rms some of the purported positive e�ects
on communication but does not describe e�ects
of patterns on actual software structure.

2

D
R

A
FT

3 Description of the experi-

ment

3.1 Experiment objectives

It is tempting to use design pattern solutions
even if the actual design problem is simpler
than the one solved by the pattern. In this ex-
periment, we consider the case that not all of
the properties of a particular design are needed
in a program. Therefore the solution based on
patterns could be replaced by a simpler one.
We want to test whether still using the design
pattern in such cases is helpful, harmful, or
neutral. In detail the objectives of the experi-
ment were:

� to test whether using design patterns in
programs is advantageous even if the
exi-
bility provided by the design pattern is not
required;

� to test whether the above e�ect depends
on the particular program (or pattern);

� to test how the above e�ect depends on
the amount of pattern knowledge of the
software engineers.

3.2 Design

Our experiment design uses three independent
and two dependent variables. The independent
variables are the program (and change tasks),
the program version, and the amount of pat-
tern knowledge; the dependent variables are
cost and correctness.

� Independent variable \program and
change tasks" (4 values): We use four
di�erent programs. Each has a di�erent
purpose, uses di�erent design patterns,
and involves very di�erent maintenance
tasks. Both, programs and tasks, will be
described in detail in Section 4.

� Independent variable \program version"
(binary): There are two di�erent, func-
tionally equivalent versions of each pro-
gram. One version (named \pattern ver-
sion", Pat) employs one or more design

patterns, the other (named \alternative
version", Alt) represents a somehow sim-
pler design using fewer design patterns or
simpli�ed versions of them.

� Independent variable \amount of pattern
knowledge" (binary): This is the di�erence
between pretest and posttest. The experi-
ment had two parts on two di�erent days.
The �rst part (the pretest) was performed
in the morning of the �rst day. Then a
pattern course was taught during the rest
of the day and the morning of the next
day. In the afternoon of day 2 the second
part of the experiment (the posttest) was
performed.
Before the experiment, the participants
had only little pattern experience; about
half of the participants had no pat-
tern knowledge at all. Therefore, the
posttest represents subjects with signi�-
cantly higher pattern knowledge than the
pretest, although we cannot quantify the
knowledge levels or their di�erence.

� Dependent variable \cost" (continuous):
The maintenance cost is represented by
the time (in minutes) taken for each main-
tenance task. Subsequently we will always
call this variable \time".

� Dependent variable \correctness" (bi-
nary): We decided whether the partici-
pants' solutions ful�lled the requirements
of the task or not. Minor defects were ig-
nored. For many tasks all groups achieved
near-perfect correctness, so we will often
ignore this variable.

We divided the subjects into four groups. In
both pretest and posttest each group main-
tained one Pat program and one Alt program,
with two or three work tasks for each. Overall,
each subject worked on all four programs. The
design is summarized in Table 1.

3.3 Subjects and groups

The 29 subjects are all professional software
engineers. On average, they had worked as

3

D
R

A
FT

group A group B group C group D

1st problem ST Pat GR Pat CO Alt BO Alt

2nd problem GR Alt ST Alt BO Pat CO Pat

pattern course

3rd problem CO Alt BO Alt ST Pat GR Pat

4th problem BO Pat CO Pat GR Alt ST Alt

Table 1: Order of programs per group. ST, BO, CO, and GR are the programs and Alt or Pat
indicates which program version was used. See descriptions in the text.

software professionals for 4.1 years and their
C++ experience was 2.4 years and 21.1 KLOC.
This is how, on average, they claimed they
spend their working time: 14.8% requirements
analysis, 15.3% design of new software, 17.9%
coding new software, 6.8% design for main-
tenance tasks, 11.4% coding for maintenance
tasks, 18.1% testing.

15 subjects had previous pattern knowledge, 13
of them on at least one of the patterns used in
the experiment.

Data about programming and working experi-
ence was gathered by a questionnaire weeks be-
fore the course. Based on the questionnaire's
results the prospective 32 subjects were care-
fully assigned into four groups so as to balance
as good as possible the professional experience,
C++ experience, and in particular the level of
knowledge of the relevant patterns.

Four registered subjects did not appear at the
experiment. One actual participant submit-
ted his questionnaire only when the experiment
started and was assigned ad-hoc. The result-
ing actual group sizes were 6 to 8 subjects in
each group, with 3 to 5 having theoretical or
practical pattern knowledge before the course.

3.4 Experiment conduct

The experiment was performed in November
1997 in a software company located in Munich.
Both, course and experiment, were performed
in a conference room. The pretest started at
9:30h in the morning, the posttest at 12:40h
the next day. Both parts lasted approximately
three hours.

The subjects received all documents printed on
paper: general instructions, a program descrip-
tion, a program listing, work task descriptions,
and a postmortem questionnaire.

The solutions were delivered in handwriting.
Subjects had to �ll in line numbers of the pro-
gram listing where changes or additions were
required and they had to specify what to add or
change. If classes or methods had to be added
the subjects were only asked to specify the sig-
nature of the method or class, not its body.
Still, though, almost all of the solutions con-
tained method bodies as well.

At various points during the experiment, in
particular immediately before and after each
task, the subjects recorded the time of day.
From this information we computed the time
required for each subtask.

Each subject worked in his or her own pace.
Although the overall time for the experiment
was limited, all participants were able to �nish
in the allotted time.

3.5 Threats to internal validity

Internal validity is the degree to which the
observed e�ects depend only on the intended
experimental variables. Due to the small
group sizes, we must be concerned whether
groups di�ered signi�cantly. Relevant aspects
of similarity are overall software capabilities,
C++ capabilities, and previous pattern experi-
ence. We have reduced di�erences by balanc-
ing the groups explicitly, based on the substi-
tute measures of capability available from the
pre-experiment questionnaire, as described in
Section 3.3. We feel the resulting groups were

4

D
R

A
FT

group A group B group C group D

group size 7 8 8 6
pattern knowledge 3 4 5 3

Table 2: Group size. First row: Group size overall. Second row: Number of subjects having
pattern experience before the pattern course.

reasonably similar and our results give no rea-
son to believe the opposite.

A second consideration is the precision and ac-
curacy of the time stamps recorded by the sub-
jects. We found these data to be highly ac-
curate and reliable: Of over 600 time stamps,
only a single one was missing and about a dozen
were found to be incorrect. All of them could
be detected and reconstructed based on inter-
nal consistency within the large number of in-
terdependent timestamps provided.

3.6 Threats to external validity

External validity is the degree to which the re-
sults are generalizable, i.e., transfer to other
situations. There are several sources of di�er-
ences between the experimental and real soft-
ware maintenance situations that limit the gen-
eralizability of this experiment: First, the origi-
nal designers and implementors maybe the ones
who maintain the program. This was not the
case in our experiment and our results do not
apply to such cases. The maintainers may also
have more practical pattern knowledge, com-
pared to the theoretical knowledge of many
of our participants. The consequences of this
di�erence are unclear; but we do not believe
them to be dramatic. Second, real programs
will often be less well documented than the
experiment programs, real programs are typ-
ically larger, and change tasks rarely revolve
closely around a design pattern. The e�ects of
such di�erences probably di�er from one case
to the next. Third, real maintainers implement
and test their solutions (instead of only writ-
ing them on paper), which will typically trade
some of the incorrectness observed in the exper-
iment against additional time. Furthermore, it
is unclear in which manner the results obtained
here transfer to other design patterns and their

alternatives.

4 Results

It turns out that the e�ects of Pat versus Alt
and of pretest versus posttest are very di�er-
ent for the four di�erent programs. Hence the
results are discussed program-by-program. For
each of the programs we describe

� the size and functionality of the program,

� the use of design patterns,

� the work tasks and the solutions,

� our expectations for each work task,

� and the actual results.

The expectations represent a common-sense
judgement of whether and why the Pat or
the Alt version may be better for this par-
ticular task (such expectations are indexed P ,
for `Pat vs. Alt') and/or what in
uence the
level of pattern knowledge may have (i.e., com-
paring pretest to posttest, such expectations
are indexed k, for `knowledge'). The expecta-
tions form the basis of our discussion and inter-
pretation of the quantitative results. Statisti-
cal tests were performed using the percentile
method (one-sided) after 10000 iterations of
bootstrap resampling of the di�erence of arith-
metic means.

The original documents including the
programs and the work tasks are avail-
able at http://wwwipd.ira.uka.de/~un-

ger/exp/Munich/materials.html

5

D
R

A
FT

4.1 Observer: Stock Ticker (ST)

Program description: Stock Ticker (or ST,
for short) is an (incomplete) program for direct-
ing a continuous stream of stock trades (title,
volume, unit price) from a stock market to one
or more displays which are also part of the pro-
gram. The displays advertise the information
or part of the information.

Both versions of Stock Ticker consist of seven
classes. The Pat version contains an Ob-

server. The displays are implemented as ob-
server classes and must register at the Ob-

server's subject once; the subject noti�es the
displays each time the data have changed and
the displays fetch the new data on noti�cation.
Four of the seven classes are employed in the
pattern (the subject providing the data and
registering the displays, the superclass of the
displays, and two concrete displays.) This ver-
sion of the program has 343 lines of code where
lines of code is de�ned as all lines including
comments and blank lines. The Alt version of
the program includes one class that contains an
instance variable for each display and updates
the displays when the data changes. No ex-
ternal generation and dynamic registration of
observers is implemented. This version has 279
lines.

4.1.1 Work task 1

\In the given program listing only one of the

two concrete display types is used. Enhance

the program such that a second display (of

the yet unused display type) is shown." The
Pat groups only had to invoke the method
subscribe with a new instance of the display.
The Alt groups had to introduce a new dis-
play instance variable and invoke the display-
ing of new data on each data update. The main
work in this task is to comprehend the struc-
ture of the program, in particular how the dis-
plays receive data. Once this understanding is
achieved, the task becomes small and simple.

Expectations: We expected that most of the
time is required for understanding the program
structure. The structure of the Pat version ap-

pears to be more complicated than the struc-
ture of the Alt program version. When sub-
jects do not have knowledge about the Ob-

server pattern they have to �nd out how the
Observer mechanism works. In this case sub-
jects probably require more time than for the
Alt version. Given su�cient pattern knowl-
edge, on the other hand, the Pat group may
understand the program structure more quickly
than the Alt group. With these considerations
we pose the following expectations for this task:

Expectation ST1P;k: Groups with-
out pattern knowledge are slower for
the Pat program than for the Alt

program.

Expectation ST2P;k: Groups with
su�cient pattern knowledge are faster
for the Pat program than for the Alt
program.

Results: Figure 1 supports expectation
ST1P;k: pretest subjects require more time (2.5
times more!) if they are working on the Pat
version (signi�cance p = 0:000). Expectation
ST2P;k is not supported: Even in the posttest
the Pat subjects required more time than the
Alt subjects (p = 0:023), although they were
twice as fast as in the pretest. We conclude
that for this application and this type of main-
tenance tasks the use of the Observer pattern
is harmful, in particular if no pattern knowl-
edge is present.

4.1.2 Work task 2

\Change the program so that new displays can

be added dynamically at runtime." The Pat
groups only had to realize that nothing needed
to be done. The Alt groups had to add the
functionality of an Observer (at least two
lines had to be changed, one line had to be
deleted, and one method had to be added.)

Expectations: In contrast to all other tasks
in the experiment, this task is clearly unfair
in that it requires something that the Pat ver-
sion already provides, but the Alt version does
not. Therefore, we expect the Alt version to

6

D
R

A
FT0 20 40 60 80

Pretest•B1•B2•B3•B4 •B5•B6 •B7 •B8 •A1 •A2•A3•A4•A5 •A6 •A7

Posttest•D1•D2 •D3•D4 •D5•D6 •C1•C2•C3 •C4•C5 •C6•C7•C8

ALT•B1•B2•B3•B4 •B5•B6 •B7 •B8•D1•D2 •D3•D4 •D5•D6

PAT•A1 •A2•A3•A4•A5 •A6 •A7•C1•C2•C3 •C4•C5 •C6•C7•C8

Pretest ALT•B1•B2•B3•B4 •B5•B6 •B7 •B8

Pretest PAT•A1 •A2•A3•A4•A5 •A6 •A7

Posttest ALT•D1•D2 •D3•D4 •D5•D6

Posttest PAT•C1•C2•C3 •C4•C5 •C6•C7•C8

Figure 1: Time required for program Stock Ticker work task 1. Each dot marks one subject,
the square is the arithmetic mean, the line indicates plus/minus one standard error of the mean.
The top area (4 lines) shows the four individual groups. The mid area (2 lines) shows the same
but with the pretest and posttest groups of Pat combined and the pretest and posttest groups
of Altcombined. Likewise, the bottom area (2 lines) shows Pat and Alt groups combined.

be clearly at disadvantage. In the Pat version
of the program the subjects need to know that
the Observer already implements the func-
tionality required. In the posttest the subjects
ought to have this knowledge; in the pretest
it might be missing. In the Alt version the
subjects may have to re-invent the Observer
solution (in the pretest) and in any case have
to implement it. This leads to the expectation
that:

Expectation ST3P : The Alt ver-
sion requires much more time for this
maintenance task than the Pat ver-
sion.

Expectation ST4k: With pattern
knowledge both versions of the pro-
gram can be maintained faster than
without.

Results: Expectation ST3P is supported by
the data in Figure 2. The unfair task is com-
pleted on average 29% faster on the Pat version
(signi�cance of di�erence p = 0:045).

Expectation ST4k is not con�rmed by the re-
sults. the Alt group was even slightly slower
in the posttest than in the pretest. There
are three possible explanations: First the Alt
subjects may have expected a pattern-relevant
exercise after the course and they may have
spent time searching for a pattern. Second,
the posttest was performed in the afternoon
after 4 hours of pattern course in the morn-
ing whereas the pretest was performed in the
morning. So some subjects may have had dif-
�culty concentrating. The Pat posttest group
was faster than the pretest group, as expected,
but the di�erence is not signi�cant (p = 0:217).

4.2 Composite and Visitor: Boolean

Formulas (BO)

Program description: The program Boolean

Formulas (or BO, for short) contains a library
for representing boolean formulas (composed
from n-ary AND, n-ary OR, binary XOR,
unary NOT, and variables) and for printing the
formulas in two di�erent styles. Furthermore,
it contains a small main program which gener-

7

D
R

A
FT0 10 20 30 40 50

Pretest•B1 •B2•B3 •B4 •B5•B6•B7 •B8•A1•A2 •A3 •A4•A5 •A6•A7

Posttest•D1 •D2•D3 •D4 •D5•D6 •C1•C2 •C3 •C4•C5 •C6 •C7•C8

ALT•B1 •B2•B3 •B4 •B5•B6•B7 •B8•D1 •D2•D3 •D4 •D5•D6

PAT•A1•A2 •A3 •A4•A5 •A6•A7 •C1•C2 •C3 •C4•C5 •C6 •C7•C8

Pretest ALT•B1 •B2•B3 •B4 •B5•B6•B7 •B8

Pretest PAT•A1•A2 •A3 •A4•A5 •A6•A7

Posttest ALT•D1 •D2•D3 •D4 •D5•D6

Posttest PAT•C1•C2 •C3 •C4•C5 •C6 •C7•C8

Figure 2: Time required for program stock ticker work task 2.

ates a formula and invokes both printing rou-
tines.

The Pat version of Boolean Formulas con-
sists of 11 classes spanning 470 lines. The
boolean formulas are represented by a Com-

posite where the AND, OR, XOR, and NOT
classes are composites (containers) and the
variable classes are leafs. The printing routines
are implemented as Visitors, inheriting from
an abstract superclass. For each concrete class
of the Composite a printing method is imple-
mented in each of the two Visitors. Each class
of the Composite provides a dispatch method
for the Visitors.

The Alt version of the program is shorter: 8
classes spanning 374 lines. It has almost the
same structure as the Pat version except for
the Visitor pattern, which is completely miss-
ing. The di�erent printing routines are located
directly in each Composite class instead. The
real-world advantage of the Visitor solution
is its
exibility for adding new visitors without
changing the Composite classes.

4.2.1 Work task 1

\Enhance the program to evaluate the boolean

formulas, i. e., to determine the result for a

given formula represented by a Composite and

values of the variables." The printing rou-
tines serve as structural examples. The Pat
groups had to create a new Visitor and the
Alt groups had to add new methods to each
concrete class of the Composite.

Expectations: It might in principle be easier
to create a new class similar to another rather
than adding methods to a bunch of classes,
which would prefer the Pat groups, but the
Visitor pattern is technically quite di�cult to
understand. So we expect that it will take some
more time for the Pat groups to understand
the Visitor pattern than for the Alt groups
to �nd where to add the methods. Gaining
pattern knowledge should help all groups be-
cause even in theAlt program a Composite is
present, so in the posttest the subjects presum-
ably understand the structure of the formula
representation faster. The Pat group might
pro�t more from the pattern course than the
Alt group because the working mechanism of
the Visitor is particularly confusing before-
hand.

Expectation BO1P : The Pat

groups will be slower than the Alt

groups.

Expectation BO2k: Increased pat-

8

D
R

A
FT

tern knowledge helps to understand
both versions faster.

Expectation BO3k: The Pat group
will pro�t more from the pattern
course than the Alt group.

Results: As one can see from Figure 3, ex-
pectation BO1P is supported by the posttest,
but not by the pretest: In the pretest, the Pat
group is slightly (but nonsigni�cantly) faster
than the Alt group (p = 0:299). In the
posttest the Alt group is faster than the Pat
group, as expected (p = 0:034). This is an in-
conclusive result. Probably the expectation is
violated because in the pretest the Visitor is
largely just taken for granted and imitated by
the subjects (instead of analyzed and under-
stood) and thus does not increase complexity
for the Pat group, but still exhibits its advan-
tage of centralization. The same reasoning may
apply to BO3k, which is also not supported.
Taken together, these explanations mean that
an unrequired Visitor, although it appears
complicated, is not necessarily harmful.

Expectation BO2k is supported by the data
analysis: The posttest groups are signi�cantly
faster (mean di�erence: 28 percent, p = 0:034).
The Alt posttest group (with only the Com-
posite pattern) requires 43 percent less time
than the corresponding pretest group (signi�-
cance p = 0:004). An improvement in the Pat
groups is also present, but not signi�cant (10
percent, p = 0:26). This rejects expectation
BO3k.

4.2.2 Work task 2

For the second task of this program our in-
structions were insu�ciently clear. As a result,
most subjects completely misunderstood their
job and delivered something very di�erent from
what we had intended. We therefore ignore the
task here.

4.3 Decorator: Communication

Channels (CO)

Program description: Communication

Channels (or CO, for short) is a program
for con�guring and running a packet-switched
data transmission line. Such a channel estab-
lishes a connection for transparently transfer-
ring arbitrary-length packets of data and one
can turn on additional logging, data compres-
sion, and encryption functionality. The library
does not implement the functionality itself, in-
stead it calls a system library providing the
functionality and implements only a uni�ed in-
terface for the combination of the parts. Both
versions of the program thus realize a Facade
pattern, but this is irrelevant for the experi-
ment.

The Pat version is designed with a Decora-
tor for adding the functionality to a bare chan-
nel. The bare channel is a component class, the
classes for logging, data compression, and en-
cryption are decorator classes.

The Alt version comprises but a single class,
which uses
ags and if-sequences for turning
functionality on or o�; the
ags can be set when
creating a channel. The Pat program consists
of 365 lines in six classes and the Alt program
version consists of 318 lines in only one class.
Communication channels is the only program
where the Alt program has a modular (as op-
posed to object-oriented) design.

4.3.1 Work task 1

\Enhance the functionality of the program such

that error-correcting encoding (bit redundancy)

can be added to communication channels." The
underlying functionality is again provided by a
given class, so the subjects only had to inte-
grate the new functionality into the program.

The Pat subjects had to add a new Decora-

tor class while the Alt subjects had to make
additions and changes at various points in the
existing program.

Expectations: We expect two in
uences of
the Decorator on the subjects' behavior.

9

D
R

A
FT0 20 40 60 80 100

Pretest•D1 •D2•D3•D4•D5 •D6•C1 •C2•C3•C4•C5 •C6•C7 •C8

Posttest•B1•B2 •B3•B4 •B5•B6 •B7 •B8•A1 •A2•A3 •A4•A5 •A6•A7

ALT•D1 •D2•D3•D4•D5 •D6•B1•B2 •B3•B4 •B5•B6 •B7 •B8

PAT•C1 •C2•C3•C4•C5 •C6•C7 •C8•A1 •A2•A3 •A4•A5 •A6•A7

Pretest ALT•D1 •D2•D3•D4•D5 •D6

Pretest PAT•C1 •C2•C3•C4•C5 •C6•C7 •C8

Posttest ALT•B1•B2 •B3•B4 •B5•B6 •B7 •B8

Posttest PAT•A1 •A2•A3 •A4•A5 •A6•A7

Figure 3: Time required for program Boolean Formulas work task 1.

First the Alt version is easier to understand
because its behavior is not delocalized as in the
multiple decorator classes. This would lead to
the conclusion that the Alt groups are faster
than the Pat groups, especially in the pretest.
The second in
uence results from the struc-
ture of the Decorator: the functionality is
encapsulated in classes and one need hardly
care about mutual in
uences. In particular, in
the Alt version the subjects have to ensure
they add the new functionality at the correct
places in the program for proper sequencing of
the various switchable functionalities; this may
not only consume time but also lead to omis-
sions and mistakes. We expect the second in-

uence to be stronger than the �rst, especially
at higher levels of pattern knowledge.

Expectation CO1P : Subjects
working on the Pat version are faster
than subjects working on the Alt

program version.

Expectation CO2P : Working on
the Alt program is more error-prone.

Expectation CO3P;k: On a Pat

program subjects become faster with
more pattern knowledge. For the Alt
program there is no di�erence.

Results: As one can see from Figure 4 the Pat

groups are indeed signi�cantly faster than Alt
groups, supporting CO-PA (p = 0:000). The
pattern-solution is clearly preferable.

Expectation CO3P;k is not con�rmed. There
is hardly any di�erence between pretest and
posttest for the Alt groups, as expected (p =
0:46), but also none for the Pat groups (p =
0:29). This means the positive e�ect of pattern
use is even independent of pattern knowledge
in this case!

The pattern-solution is not only superior in
terms of speed, but also in terms of correct-
ness, supporting CO2P : The number of errors
made by the subjects is much higher in the Alt
groups: Errors were made by 7 out of 8 subjects
in the pretest and by 6 out of 7 subjects in the
posttest while in the Pat group no errors oc-
curred at all.

4.3.2 Work task 2

A communication channel has di�erent states
(opened, closed, failed) and its operations have
di�erent result codes (OK, failure, impossible).
Work task 2 called to \determine under which

conditions a reset() call will return the `impos-

sible' result". To do this the subjects had to
�nd the spots where the states were changed.

10

D
R

A
FT0 20 40 60 80

Pretest•C1 •C2•C3•C4 •C5 •C6•C7•C8•D1 •D2•D3•D4 •D5 •D6

Posttest•A1 •A2 •A3•A4 •A5 •A6•A7•B1 •B2•B3 •B4•B5 •B6•B7•B8

ALT•C1 •C2•C3•C4 •C5 •C6•C7•C8•A1 •A2 •A3•A4 •A5 •A6•A7

PAT•D1 •D2•D3•D4 •D5 •D6•B1 •B2•B3 •B4•B5 •B6•B7•B8

Pretest ALT•C1 •C2•C3•C4 •C5 •C6•C7•C8

Pretest PAT•D1 •D2•D3•D4 •D5 •D6

Posttest ALT•A1 •A2 •A3•A4 •A5 •A6•A7

Posttest PAT•B1 •B2•B3 •B4•B5 •B6•B7•B8

Figure 4: Time required for program Communication Channels work task 1.

In the Pat version these spots are spread over
the di�erent decorator classes.

Expectations: Program understanding is
gained in the �rst working task. So only the
new details relevant for this task need to be
understood now. This will be easier for the
more localized Alt program.

Expectation CO4P : The Alt

group will be faster than the Pat

group.

Expectation CO5P : The Pat

group commits more errors than the
Altgroup.

Results: The results as shown in Figure 5 are
inconclusive with respect to CO4P , because the
Alt group is much faster in the pretest than
in the posttest. This is unexpected except if
we assume the subjects could not concentrate
well enough in the (afternoon) posttest. How-
ever, this assumption is not well supported by
the correctness of the solutions, which was just
as high in the posttest (8 out of 15) as in the
pretest (8 out of 14). Although overall (pretest
plus posttest) Alt is indeed faster than Pat

(p = 0:086), the di�erence stems mainly from
the pretest (p = 0:000), whereas Alt is slower

than Pat in the posttest (p = 0:409). There-
fore, we can not clearly decide CO4P .

CO5P is also not clearly supported. The error
rate in the Alt groups is almost as high as in
the Pat groups.

4.3.3 Work task 3

\Create a channel object that performs com-

pression and encryption". The Alt subjects
had to create only a single object, giving pa-
rameters for the functionality
ags, while Pat
subjects had to determine the proper nesting of
the decorators to get the required functionality
in the right order. (A similar sequence problem
plagued the Alt subjects in task 1.)

Expectations: Regarding the work task
above, we have the following expectations:

Expectation CO6P : The time re-
quired for the Pat group is higher
than the time required for the Alt

group.

Expectation CO7P : The Pat

group commits more errors than the
Altgroup.

11

D
R

A
FT0 2 4 6 8 10 12

Pretest•C1•C2•C3 •C4•C5•C6 •C7•C8 •D1 •D2•D3 •D4 •D5•D6

Posttest•A1 •A2 •A3•A4•A5•A6•A7 •B1•B2 •B3 •B4•B5 •B6•B7 •B8

ALT•C1•C2•C3 •C4•C5•C6 •C7•C8 •A1 •A2 •A3•A4•A5•A6•A7

PAT•D1 •D2•D3 •D4 •D5•D6•B1•B2 •B3 •B4•B5 •B6•B7 •B8

Pretest ALT•C1•C2•C3 •C4•C5•C6 •C7•C8

Pretest PAT•D1 •D2•D3 •D4 •D5•D6

Posttest ALT•A1 •A2 •A3•A4•A5•A6•A7

Posttest PAT•B1•B2 •B3 •B4•B5 •B6•B7 •B8

Figure 5: Time required for program Communication Channels work task 2.

Results: CO6P is supported (see Figure 6):
Overall, the Alt group is signi�cantly faster
(p = 0:000) than the Pat group.

Expectation CO7P is also supported. While
in the Alt groups no errors were observed, we
counted 6 wrong solutions (out of 14) for Pat.
Comparing these results to those of CO2P we
�nd that for the CO program the Alt prob-
lems during program extension are compen-
sated by Pat problems during object creation
(which is more frequent in practical program-
ming). However, the object creation problem
could be overcome by a suitable convenience
method. Summing up all three tasks we con-
clude that the pattern use in this program was
entirely bene�cial.

4.4 Composite and Abstract Fac-

tory: Graphics Library (GR)

Program description: Graphics Library (or
GR, for short) contains a library for creat-
ing, manipulating, and drawing simple types
of graphical objects (lines and circles) on dif-
ferent types of graphical output devices (al-
phanumeric display, pixel display). In a cen-
tral class, the generator, the output device is
selected. Depending on the output device the
corresponding types of graphical objects are

created. Some basic graphical objects (lines
and points) are implemented identically for all
graphical output devices but the implementa-
tion of complex objects like circles or the graph-
ical context depends on the graphical output
device. Furthermore, graphical objects can be
collected in groups, which can be manipulated
like individual objects.

Patterns used in the Pat version of this pro-
gram are Abstract Factory and Compos-

ite. The Abstract Factory creates the
corresponding products depending on the se-
lected graphical output device by instantiating
the desired concrete factory. The concrete fac-
tory instantiates only those classes that the se-
lected graphical device can handle. The Com-
posite combines graphical objects (including
groups) into groups hierarchically and manip-
ulates groups transparently.

The Alt version of the program realizes the in-
stantiation of the appropriate classes for each
graphical output device by switch-statements
in a single generator class. The combination
and manipulation of graphical object groups
are realized with a quasi-Composite. The
only di�erence is that groups are special and
are not treated as graphical objects as in the
Composite. As a result, a group B is included
in another group A by adding each element of

12

D
R

A
FT0 5 10 15 20 25 30

Pretest•C1•C2 •C3 •C4 •C5•C6 •C7•C8 •D1•D2•D3•D4 •D5 •D6

Posttest•A1 •A2•A3•A4•A5 •A6•A7 •B1•B2•B3 •B4 •B5 •B6•B7 •B8

ALT•C1•C2 •C3 •C4 •C5•C6 •C7•C8•A1 •A2•A3•A4•A5 •A6•A7

PAT•D1•D2•D3•D4 •D5 •D6•B1•B2•B3 •B4 •B5 •B6•B7 •B8

Pretest ALT•C1•C2 •C3 •C4 •C5•C6 •C7•C8

Pretest PAT•D1•D2•D3•D4 •D5 •D6

Posttest ALT•A1 •A2•A3•A4•A5 •A6•A7

Posttest PAT•B1•B2•B3 •B4 •B5 •B6•B7 •B8

Figure 6: Time required for program Communication Channels work task 3.

B individually to A.

This program pair has the smallest structural
di�erence between the Pat and Alt version
of all four pairs in the experiment. The Pat
version consists of 13 classes and 682 lines. The
Alt version consists 11 classes and 663 lines.

4.4.1 Work task 1

\Add a third type of output device (plotter)."

Subjects maintaining the Pat program had to
introduce a new concrete factory class, extend
the factory selector method, and add two con-
crete product classes. Subjects in the Alt

groups had to enhance all methods of the gener-
ator class in which a switch-statement decides
what product is instantiated. The appropriate
classes of graphical objects for the new output
device had to be added as for Pat.

Expectations: Regarding the maintenance
task, the time for �nding the changes and addi-
tions is expected almost equal for the Pat and
the Alt groups. So the main di�erence in time
required for this task will be caused by pro-
gram understanding. Here we expect the Alt
program to be slightly easier to understand.

Pattern knowledge will help both groups be-
cause of the composite structure in both pro-

grams. The pattern group may pro�t a little
more from the pattern course, because it eases
understanding the structure of the Abstract
Factory.

Expectation GR1P : Subjects
working on the Alt program version
are slightly faster than subjects work-
ing on the Pat version.

Expectation GR2k: For both pro-
gram versions the posttest groups will
be faster than the pretest groups.

Results: The results shown in Figure 7 sup-
port GR1P . Both groups maintaining the Alt
program were faster than the corresponding
Pat groups with the same pattern knowledge
level (together: signi�cance p = 0:10).

Expectation GR2k is also supported. The im-
provement from the pretest to the posttest is
17.3% (p = 0:17) for the Pat group and 22.8%
(p = 0:031) for the Alt group. That is 21.2%
overall (p = 0:021).

4.4.2 Work task 2

This work task was a simple understanding
test concerning the Composite structure. The

13

D
R

A
FT0 20 40 60 80

Pretest•A1•A2 •A3•A4 •A5 •A6•A7 •B1•B2 •B3•B4 •B5 •B6•B7•B8

Posttest•C1•C2•C3•C4 •C5•C6•C7 •C8 •D1•D2•D3•D4 •D5•D6

ALT•A1•A2 •A3•A4 •A5 •A6•A7•C1•C2•C3•C4 •C5•C6•C7 •C8

PAT•B1•B2 •B3•B4 •B5 •B6•B7•B8 •D1•D2•D3•D4 •D5•D6

Pretest ALT•A1•A2 •A3•A4 •A5 •A6•A7

Pretest PAT•B1•B2 •B3•B4 •B5 •B6•B7•B8

Posttest ALT•C1•C2•C3•C4 •C5•C6•C7 •C8

Posttest PAT•D1•D2•D3•D4 •D5•D6

Figure 7: Time required for program Graphics Library work task 1.

question was whether or not a certain sequence
of operations would result in an x-shaped �g-
ure. Subjects of both groups had to examine
the Composite structure; the key to the an-
swer was �nding out that only references to
graphical objects (not copies of objects) are
stored in an object group.

Expectations: The structure of both pro-
grams is quite similar at the spot of interest.
So we do not expect to observe signi�cant dif-
ferences between the Alt and the Pat groups.
But we expect a di�erence between pretest and
posttest: subjects without pattern knowledge
are slower than subjects with pattern knowl-
edge because subjects with pattern knowledge
are familiar with the structure of the Compos-
ite.

Expectation GR3P : There is no
di�erence between the Pat and Alt

groups.

Expectation GR4k: Subjects in
the posttest are faster than subjects
in the pretest.

Results: As we see in Figure 8, the di�er-
ence between Pat and Alt (p = 0:085) is very
similar to the di�erence between pretest and

posttest (p = 0:091). Both are only weakly sig-
ni�cant. In particular, both depend on whether
the large value of one subject in theAlt pretest
group is an outlier or not. Given the structure
of the programs and comparing the individual
results within the pretest Pat and Alt groups,
we tend to consider it an outlier. In this case
GR3P would be supported and GR4k would
not, meaning that the Composite (compared
to the given alternative solution) and the Ab-
stract Factory are just as good as their al-
ternatives in program GR and do not depend
on pattern knowledge.

5 Conclusion

We investigated the question whether (with re-
spect to maintenance) it is useful to design pro-
grams with design patterns even if the actual
design problem is simpler than that solved by
the design patterns, i.e., whether using pat-
terns which over-kill the problem at hand is
useful, harmful, or neutral.

We found that all of this can be the case, de-
pending on the situation. Software engineering
common sense turned out to be a pretty ac-
curate predictor of these e�ects for three out
of the four programs considered in this exper-

14

D
R

A
FT0 10 20 30 40 50

Pretest•A1 •A2•A3•A4 •A5 •A6•A7•B1 •B2•B3•B4 •B5•B6•B7 •B8

Posttest•C1•C2 •C3•C4•C5 •C6 •C7 •C8•D1 •D2•D3•D4 •D5 •D6

ALT•A1 •A2•A3•A4 •A5 •A6•A7•C1•C2 •C3•C4•C5 •C6 •C7 •C8

PAT•B1 •B2•B3•B4 •B5•B6•B7 •B8•D1 •D2•D3•D4 •D5 •D6

Pretest ALT•A1 •A2•A3•A4 •A5 •A6•A7

Pretest PAT•B1 •B2•B3•B4 •B5•B6•B7 •B8

Posttest ALT•C1•C2 •C3•C4•C5 •C6 •C7 •C8

Posttest PAT•D1 •D2•D3•D4 •D5 •D6

Figure 8: Time required for program Graphics Library work task 2.

iment. Summarizing the individual expecta-
tions versus actual observed results for these
programs and tasks yields the following picture:

� Program \Stock Ticker (ST)" (Ob-
server):
Expectation: The pattern solution is more
complicated and thus harmful, unless its

exibility is really required.
Actual result: A negative e�ect from un-
necessary application of the pattern, in
particular for subjects with low pattern
knowledge.

� Program \Boolean Formulas (BO)"
(Composite, Visitor):
Expectation: The Visitor is di�cult to
understand and thus harmful.
Actual result: The Visitor is neutral.

� Program \Communication Channels
(CO)" (Decorator):
Expectation: Due to the isolation of dif-
ferent parts of the functionality (and thus
delocalization of the overall functionality)
the pattern solution is easier to change,
but more error-prone to call.
Actual result: Just that.

� Program \Graphics Library (GR)" (Com-
posite, Abstract Factory):

Expectation: The two versions are quite
similar and should not make much of a dif-
ference.
Actual result: They did not make much of
a di�erence.

We suggest the following four lessons learned.
First, it is not always useful to use a design
pattern if there are simpler alternatives, but,
second, patterns are sometimes superior to the
simpler solutions in non-obvious ways. Third,
use software engineering common sense to de-
cide which design solution to prefer. Fourth,
a thorough understanding of design patterns
often helps when maintaining programs using
them, even if these programs are neither very
large nor very complicated.

We add, however, that unless there is a clear
reason to prefer the simpler solution, it is prob-
ably wise to choose the
exibility provided
by the design pattern solution, because unex-
pected new requirements often occur.

Further research should address the following
questions: Are there alternative simpler solu-
tions for specialized applications of other (kinds
of) design patterns as well? Are the trade-
o�s involved similar to the ones discussed here?
What are the e�ects of pattern versus non-
pattern designs for long term maintenance in-

15

D
R

A
FT

volving many interacting changes? How does
the use or non-use of patterns in
uence activi-
ties other than pure maintenance, e.g. inspec-
tions or code reuse? Can we characterize the
situations in which our common sense will mis-
lead us? Or, put the other way round: What
facts and rules need to be added to our com-
mon sense to make it more accurate for design
decisions?

Acknowledgements

We thank Ernst Denert for making the experi-
ment possible and all our subjects for being so
interested in it.

References

[1] K. Beck, J.O. Coplien, R. Crocker, L. Do-
minick, G. Meszaros, F. Paulisch, and
J. Vlissides. Industrial experience with de-
sign patterns. In 18th Intl. Conf. on Soft-

ware Engineering, pages 103{114, Berlin,
March 1996. IEEE CS press.

[2] F. J. Budinsky, M. A. Finnie, J. M. Vlis-
sides, and P. S. Yu. Automatic code gen-
eration from design patterns. IBM Systems

Journal, 35(2):., . 1996.

[3] Frank Buschmann, Regine Meunier, Hans
Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architec-

ture | A System of Patterns. John Wiley
and Sons, Chichester, UK, 1996.

[4] Gert Florijn, Marco Meijers, and Pieter van
Winsen. Tool support for object-oriented
patterns. In Mehmet Aksit, editor, 11th Eu-
ropean Conference on Object-Oriented Pro-

gramming (ECOOP), LNCS 1241, pages
472{495, Jyv�askyl�a, Finland, June 1997.
Springer Verlag.

[5] Erich Gamma, Richard Helm, Ralph John-
son, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Soft-

ware. Addison-Wesley, Reading, MA, 1995.

[6] Lutz Prechelt. An experiment on the use-
fulness of design patterns: Detailed de-
scription and evaluation. Technical Re-
port 9/1997, Fakult�at f�ur Informatik, Uni-
versit�at Karlsruhe, Germany, June 1997.
ftp.ira.uka.de.

[7] Lutz Prechelt, Barbara Unger, Michael
Philippsen, and Walter F. Tichy. Two
controlled experiments assessing the useful-
ness of design pattern information during
program maintenance. Empirical Soft-

ware Engineering, .(.):., . 1998. Submitted.
http://wwwipd.ira.uka.de/~prechelt/Biblio/.

[8] Lutz Prechelt, Barbara Unger, and Douglas
Schmidt. Replication of the �rst controlled
experiment on the usefulness of design pat-
terns: Detailed description and evaluation.

16

D
R

A
FT

Technical Report wucs-97-34, Washington
University, Dept. of CS, St. Louis, Decem-
ber 1997.

17

