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ABSTRACT 
Current software development tools let developers model a soft-
ware system and generate code from the models to execute the 
system. However, generating code and installing a non-trivial 
system induces a time delay between changing the model and 
executing it that makes rapid model prototyping awkward if not 
impossible. This paper presents the architecture of a virtual ma-
chine for UML that interprets UML models without any interme-
diate code-generation step. As its main contribution, the paper 
shows how to embed UML in a metalevel architecture so that a 
key requirement of model-based systems, the causal connection 
property between models and model instances, is always guaran-
teed. With this architecture, changes to a model have immediate 
effects on its execution, providing users with rapid feedback about 
the model’s structure and behavior. This approach supports model 
innovation better than today’s code-generation approaches. 

Categories and Subject Descriptors 
D.1.5 [Programming Techniques]: Object-oriented Program-
ming—metalevel architectures; D.2.2 [Software Engineering]: 
Design Tools and Techniques—Evolutionary prototyping, Rapid 
prototyping, Object-oriented design methods; D.2.11 [Software 
Engineering]: Software Architectures—Languages, UML; D.3.3 
[Programming Languages]: Language Constructs and Fea-
tures—Classes and objects, Frameworks; D.3.4 [Programming 
Languages]: Processors—Code generation, Interpreters, Run-
time environments, Virtual machines. 

General Terms 
Design, Languages. 

Keywords 
Metamodeling, Causal connection, UML virtual machines. 

1  INTRODUCTION 
Traditionally, object-oriented modeling languages like UML and 
OPEN have served to describe the design of a software system 

[27, 18]. The implementation of the system is carried out as a 
separate frequently time-consuming step, in which detail is added 
to the design-level models. The separation of design from imple-
mentation poses a significant problem, because implementing a 
system can take a long time and its design and implementation can 
easily get out of sync. Long time-to-market, missing documenta-
tion, and hard-to-change systems are the consequence. 

With the industry-wide adoption of UML, a new breed of soft-
ware development tools is gaining prominence. These tools gen-
erate code directly from the models. Users of a tool ideally model 
their domains using UML and then publish the models in the form 
of generated code into a runtime system. The runtime system con-
nects the code with its environment, for example, databases or 
web-servers. 

Model-driven code-generation has several advantages over the 
traditional approach, including: 

• Shorter time-to-market. Users model their domains rather 
than implement them. A modeling language like UML is bet-
ter suited to express domain models than a programming 
language like Java or Smalltalk. 

• Increased reuse and fewer bugs. The tools hide the details of 
how the models are hooked up into the runtime system, free-
ing users from knowing intricate details about used frame-
works or system components. 

• Easier-to-understand system and up-to-date documentation. 
Because design and implementation are always in sync, so is 
the documentation. The system is easier to understand and 
better documented. 

However, code-generation does not solve all the problems. In 
particular, it has the following drawback: 

• Delay between model change and model instance execution. 
Generating code from models, compiling this code, shutting 
down the existing system, installing and configuring the new 
system, and starting it up can take from minutes to hours. 

This time delay makes exploration and simulation of new models 
with immediate user feedback awkward if not impossible, thereby 
significantly hindering the innovative exploration of the model 
solution space. The resulting models easily become sub-optimal. 

This paper presents the architecture of a virtual machine for UML. 
The virtual machine represents the modeling language (UML), the 
models described using UML, and the model instances as first-
class entities. For executing a model, the virtual machine instanti-
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ates and interprets the model according to UML semantics. With 
all models on all levels being explicitly represented, changing a 
system’s model leads to immediate (controlled) effects on the 
running system. As a result, the system provides short feedback 
cycles and allows for simulation and rapid exploration of model 
variants, better supporting innovation than possible with code-
generation approaches. 

The virtual machine has a logical architecture that is based on the 
UML four-level modeling architecture and a physical architecture 
that realizes the logical architecture as an object-oriented frame-
work [23]. The logical architecture is a metalevel architecture, and 
the physical architecture implements it. As the paper’s main con-
tribution, we discuss how the logical and physical architecture 
fulfill the causal connection requirement that seamlessly and re-
cursively integrates a model with its instances. Thus, our discus-
sion focuses on the structural aspects of the architecture, leaving a 
discussion of the behavioral aspects to further papers. We discuss 
the changes we applied to the UML specification and the en-
hancements that we added to UML to overcome its limitations. 

The architecture of the virtual machine has been explored in two 
projects at UBS and has been consolidated as a core piece of the 
flagship product of SKYVA International. The virtual machine is 
part of a system that combines a modeling environment with a 
model execution environment, much like CLOS, Smalltalk, or 
Self systems provide both a programming environment and a pro-
gram execution environment [19, 7, 28]. We report about our 
experiences of using SKYVA’s system in industry projects. 

Section 2 reviews the architecture of UML-based systems in gen-
eral. Section 3 presents the architecture of the virtual machine and 
how it realizes the requirements set up in Section 2. Section 4 
reviews key implementation aspects. Section 5 reviews changes 
and additions we have applied to the UML specification. Section 
6 then reports about our experiences with the virtual machine. 
Section 7 finally lists related work and Section 8 shows how this 
work will proceed further and what challenges we see ahead. 

2  MODEL-BASED SYSTEMS 
The UML specification defines four logical levels of modeling, 
called the M0, M1, M2, and M3-level (M stands for model) [27, 
16]. These four levels define the logical architecture of any UML-
based system and therefore form the requirements for a virtual 
machine that is capable of representing and executing such a sys-
tem. 

• The M0-level contains objects that represent the currently 
running system. These objects are also called user objects or 
domain objects. 

• The M1-level contains objects that represent a model of the 
currently running system. These objects are also called user 
classes or domain classes. 

• The M2-level contains objects that represent the modeling 
language, in our case UML. This level is also called the 
metamodel level. 

• The M3-level contains objects that represent the language in 
which UML is represented. This level is the also called the 
meta-metamodel level. 

Every level provides the means to describe the next lower level, 
so the M3-level is used to describe the M2-level (UML), the M2-
level is used to describe the M1-level (system models), and the 
M1-level describes the M0-level (running systems). In theory, the 
number of levels is unbounded, but for most practical purposes, 
four levels are sufficient. 

2.1  Causal Connection 
The four-level architecture is an object architecture that helps us 
understand a system’s logical object structure (as opposed to its 
physical architecture, see Section 3). Effectively, the logical archi-
tecture serves as a high-level explanation of how objects relate to 
each other (which object models which other object; which object 
is an instance of which other object). 
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M2-Level (UML) M1-Level (User Classes) M3-Level (MOF) M0-Level (User Objects)

 

Figure 1: Four-level modeling architecture with Bank Account example. (Dotted lines, right to left, show an instance-of relationship.) 
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Figure 1 displays these four levels and an example. The examples 
are bank accounts. Each rectangle represents an object (using 
UML as the design notation). The dependency arrows, from right 
to left, indicate a logical “instance-of” relationship. 

During development, software developers use UML objects (M2-
level objects) to define user classes (M1-level objects). In the 
example, developers define three types of bank accounts, Check-
ing-, Savings-, and ForeignCurrencyAccount. At run-time, the 
user classes are instantiated, displayed in Figure 1 as the user 
objects checking12345, savings12345, etc. These user objects are 
M0-level objects.1 

For a system of this architecture to be in a valid state, we define 
the causal connection property, as known from metalevel archi-
tectures [29]: 
                                                      
1 M0-level user objects are different from M1-level Instance 
objects. Instances of the UML Instance concept add to the specifi-
cation of an M1-level class, typically by participating in an illus-
trating scenario of how instances of the class behave. However, 
they do not directly represent an instance of the class. 

DEFINITION: CAUSAL CONNECTION 
A modeling level is causally connected with the next 
higher modeling level, if the lower level conforms to 
the higher level and if changes in the higher level lead 
to according changes in the lower level. 

In a model-based system, in which modeling levels are causally 
connected, changes to a model cause the structure and behavior of 
all model instances to change accordingly. 

2.2  Code-generation Approach 
Current software development tools use a code-generation ap-
proach to causally connect modeling levels. Typically using 
graphical editors, M2-level objects (UML classes) are instantiated 
to give users M1-level objects, representing domain classes. For 
example, inside such a software development tool, the checking-
Account object logically represents what users of the tool perceive 
as their CheckingAccount class. Users of such tools design a do-
main model consisting of M1-level objects, which are instances of 
the M2-level UML classes. 
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Figure 2: Separation of modeling from runtime environment in code-generation approaches. 
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To create and handle user objects like checking12345, the tool 
creates a programming-language-level class for each M1-level 
object. The checking12345 object becomes an instance of the 
programming-language-level class corresponding to the checking-
Account object. Typically, there is a one-to-one correspondence 
between a model-level class and a programming-language-level 
class or interface [8]. This code-generation approach fully sepa-
rates the modeling-language M1-level objects from the M0-level 
objects. This separation corresponds to the two types of environ-
ments in which the objects are handled: M1-level objects solely 
exist in a modeling environment, and M0-level objects solely exist 
in a runtime environment. 

Figure 2 illustrates this separation. M1-level objects in the model-
ing environment are mapped on the corresponding M1-level 
classes of the runtime environment. The causal connection be-
tween model and model instances is maintained by the code-
generator. Only if the modeling environment generates code, do 
the model changes carry over into the runtime environment, lead-
ing to the execution of the model instances according to the 
changed model. 

A single round-trip between the modeling environment and the 
runtime environment can take several minutes if not hours. For 
non-trivial systems, the delay between model change and model 
execution makes rapid exploration of new models impossible, 
because the time delay between model change and execution is 
too long. Users, who may have to wait for hours until a model 
change becomes executable, tend not to explore a wide range of 
model options but go the easiest possible path, not exploring pos-
sibly better alternatives. 

2.3  Virtual Machine Approach 
An interpreter approach avoids the intermediate step of generating 
M1-level classes out of M1-level objects. Rather, the runtime 
system directly interprets the M1-level objects. All objects exist in 
the same memory space, making the causal connection between a 

model and its instances immediate. Modeling and runtime envi-
ronment converge, letting users explore new models with rapid 
feedback on how these models execute. Simulation results can be 
immediately at hand, allowing for a rapid prototyping style on the 
modeling level as known from interpreted object systems. 

Figure 3 shows how modeling and runtime environment converge. 
Users can now interactively explore model behavior and model 
variants in real-time. This leads to a working style as known from 
Smalltalk and Self where users incrementally define and explore 
models. This working style supports the innovative creation of 
new models in their respective application domain. 

We have designed and implemented a system that directly sup-
ports the logical four-level architecture and embeds it in a com-
bined modeling and runtime environment. The centerpiece of this 
system is a virtual machine that directly interprets UML models. 

A UML virtual machine, like any virtual machine, is an abstract 
computing machine. It provides an instruction set and a memory 
model for representing objects [12, 6]. 

As the instruction set of the virtual machine, we use UML itself. 
UML provides several behavior modeling capabilities that can be 
used to describe the behavior of a model (including itself).2 Mod-
els are persistently represented using XMI, the OMG standard for 
representing UML models using XML [AA, AB]. 

For the memory model of the virtual machine, we use the memory 
management facilities of our implementation language, Java. 
Every logical object from any M-level is represented as a Java 
object. As Section 6 shows, we add additional capabilities for 
model and model instance management and garbage collection. 
                                                      
2 The current UML specification (UML 1.3) is so imprecise 
that it is unlikely that two different UML virtual machine imple-
mentations behave the same. We address this question in Section 
3.5, 6, and 7. 
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Figure 3: Convergence of modeling and runtime environment. 
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3  VIRTUAL MACHINE ARCHITECTURE 
The architecture of the virtual machine has two parts: a logical 
architecture and a physical architecture. 

• The logical architecture describes the logical structure of 
how objects relate; it is an extension of the architecture of 
UML-based systems as discussed in Section 2. 

• The physical architecture realizes the logical architecture; it 
takes the form of an object-oriented framework that imple-
ments the logical objects. 

The logical architecture defines how to achieve the causal connec-
tion property, and the physical architecture implements how to 
achieve this property. There can be different physical implementa-
tion architectures, driven by different needs. Our architecture 
focuses on the efficient representation of model instances. This 
section discusses the architecture and how it fulfills the causal 
connection property. 

3.1  Logical Architecture 
The logical architecture is a pure object architecture: everything is 
a first-class object, including classes and their specification of 
instance behavior. Thus, there are objects representing the UML 
classes, objects representing user classes, and objects representing 
user objects. This part of the logical architecture conforms to the 
architecture of UML-based systems as discussed in Section 2. 
Figure 4 shows the logical architecture in its upper half. In the 
logical architecture layer, we can see classes like element, mod-
elElement, classifier, etc. (Logical objects are set in italics.) 

Because these classes are objects and not programming-language-
level classes, the only way of connecting them are object links. 
Hence, we represent relationships like inheritance and association 
using objects. For example, Figure 4 shows some inheritance 
relationships, represented as objects named g1, g2, g3, etc. Using 
UML terminology, any such object is a generalization object, and 
it connects a parent class with its child class. 

 

ModelElement Element

ClassMetaClass

Classifier
-instance0..*

-type

1

metaClass : MetaClass class : MetaClass checkingAccount : Class checking12345 : Element

classifier : MetaClass

modelElement : MetaClass element : Class

g1 : Generalization

g2 : Generalization

g3 : Generalization

instancetype

parent

parent

child

child

g5 : Generalization

g4 : Generalization

child parent

parentchild

type : AssociationEnd

a1 : Association

instance : AssociationEnd

type instance instancetype

parent

child

 

Physical Classes 
(Physical Architecture) 

Logical Objects and Classes 
(Logical Architecture) 

 

Figure 4: Structure of logical and physical architecture. 
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The root class of all classes in the logical architecture is called 
element. It specifies the properties common to all objects in the 
logical architecture. A prominent subclass of element is mod-
elElement, the root class of all UML classes. A class in the logical 
architecture defines which attributes its instances may have and 
with which elements its instances may be associated. 

The logical architecture defines the association a1 between the 
element class and the class class. This association specifies the 
link between a logical object and its describing logical class. An 
element object in an instance of this association plays the instance 
role and a class in an instance of this association plays the type 
role. This association links every element with its class and is the 
primary means for fulfilling the causal connection property. 

The logical architecture is a single rooted class hierarchy. Thus, 
every object is a direct or indirect instance of element. Figure 4 
shows several instances of the instance/type association between 
element and class: checking12345 is an instance of checkingAc-
count, checkingAccount is an instance of class, and class is an 
instance of metaClass, just like the four-level modeling architec-
ture for UML-based systems requires. 

Summarizing, the logical architecture mirrors the architecture of 
UML-based systems as described in Section 2. It also adds several 
classes like element, and several new associations like the in-
stance/type association that specifies how to logically connect an 
object with its class. 

3.2  Physical Architecture 
The physical architecture is a set of programming-language-level 
classes that interact in well-defined ways; they form an object-
oriented framework [23]. The physical architecture provides the 
physical classes for the logical objects. 

Every object in the logical architecture has both a logical class 
and a physical class. The logical class defines its model-relevant 
properties and the physical class is the programming-language-
level class from which the object is physically instantiated. 

In its lower half, Figure 4 shows the physical architecture. It 
shows the five programming-language-level classes Element, 
ModelElement, Classifier, Class, and MetaClass. Element is the 
physical class of all logical M0-level objects, Class is the physical 

class of all logical M1-level classes, and MetaClass is the class of 
all logical M2-level classes. ModelElement and Classifier are 
superclasses that are usually not instantiated. 

The logical architecture provides a logical class for every class in 
the UML specification. Thereby, the full UML specification is 
provided as first-class objects. Many of these logical classes have 
a corresponding physical class, but not all. If a physical class ex-
ists, its instances are used as instances of the corresponding logi-
cal class. If no immediately corresponding physical class exists, 
the closest physical superclass in the inheritance hierarchy is used. 

Figure 5 shows examples of physical and logical instance-of rela-
tionships. The physical instance-of relationship exists between a 
physical class and a logical object. The logical instance-of rela-
tionship exists between a logical class and its logical instances. 
For example, the checking12345 object has the physical class 
Element and the logical class checkingAccount. The checkingAc-
count object has the physical class Class and the logical class 
class. The class object has the physical class MetaClass and the 
logical class metaClass. 

The logical class of an object defines the properties of the object 
from a logical modeling perspective: it defines its attributes and 
associations; it defines its state model and runtime behavior. At 
any given point in time during the execution of the system can an 
object ask its class about its properties and may the class change 
the properties of its instances. 

The implementation of physical classes like Element and Class 
makes sure that their instances behave according to their logical 
classes. Element is the root class of all model-relevant physical 
classes (except for the data type implementations), including Class 
and MetaClass. It provides a generic attribute and association 
handling mechanism (and more) that is discussed in Section 3.4. 

3.3  Model Representation 
Representing models using this architecture is straightforward. 
Figure 6 shows a domain model of a Customer and some Account 
classes. Figure 7 shows this model’s representation using logical 
objects as defined in the UML specification. 

The model representation in Figure 7 represents every detail of the 
UML model in Figure 6 as an object, following the UML specifi-
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cation. For example, the inheritance arrow between Account and 
CheckingAccount is represented as an instance of the UML Gen-
eralization class. 

The class name given for an object in Figure 7 is the name of the 
physical class. The logical class is not shown. For example, ac-
count is physically an instance of Class. Logically it is an instance 
of class. The generalization g7 is physically an instance of Gener-
alization (a physical class) and logically an instance of generaliza-
tion (a logical class object). 

The same mechanism that lets us represent M1-level domain 
models also lets us represent M2-level models, including UML 
itself. Figure 8 shows a small excerpt from the UML specification, 
and Figure 9 shows its object representation. 

The physical class of a UML class is MetaClass and the logical 
class is metaClass. For example, the logical classes generalization 
and association are instances of MetaClass. The relationships are 
represented using UML, which is a defined operation, because 
metaClass is a subclass of class. Hence, all modeling functionality 
applicable to class is also applicable to metaClass. 

3.4  Physical Class Model 
The structural backbone of the architecture is repeated in Figure 
10. It takes the structure of a metalevel architecture [29, 10]. 

The following two classes are of particular importance: 

• Element. This is the physical (super-)class of any logical 
object in the system. 

• Class. This is the physical (super-)class of all logical objects 
representing classes in the system. 

We discuss these two classes in turn. 

3.4.1  Element 
UML defines the modeling capabilities with which an M1-level 
user class can be described. Consequently, an M0-level object 
must provide capabilities to do whatever its M1-level class speci-
fies. Thus, the UML specification indirectly determines the capa-
bilities of any M0-level object and hence the interface and imple-
mentation of the Element class. 

The structural capabilities include: 

• It may have attributes. 

• It may have links to other elements, where linked-to elements 
are conceptually different from attributes. 

• It may provide association objects for a given link, if so 
specified in the model. 

• It may be a node in an object composition hierarchy. 

From this feature set, we derive the core functionality of the Ele-
ment class. We add functionality that supports handling of ele-
ments for the virtual machine. Listing 1 shows this functionality, 
reduced to the essentials. 

The Element class makes some simplifying assumptions, for ex-
ample, it does not support multi-valued attributes and it pragmati-
cally distinguishes associations of multiplicity 0..1 from those of 
multiplicity 0..n. Section 5 discusses some of these simplifica-
tions. Section 4 discusses some efficiency considerations for im-
plementing the Element class. 

With these capabilities, any physical Element instance can suc-
cessfully play the role of a logical instance of a logical class. 
Whatever is modeled for that class, Element provides the func-
tionality to represent it. 

Customer Account

SavingsAccount CheckingAccount ForeignCurrencyAccount

-owner

1

-account

0..*

 

Figure 6: Domain model of Customer and Accounts. 

checkingAccount : Class

account : Class

savingsAccount : Class foreignCurrencyAccount : Class

a2 : Associationowner : AssociationEnd account : AssociationEndcustomer : Class

g6 : Generalization g7 : Generalization g8 : Generalization

 

Figure 7: Logical class representation of Customer and Accounts domain model. 
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3.4.2  Class 
The single Element class is fully sufficient to represent all logical 
objects and hence the whole logical architecture. Element in-
stances can play the role of the checking12345 object and the role 
of the checkingAccount, class, and metaClass classes. 

However, this is hard to program with and not very efficient. It is 
hard to program with, because tool implementers and infrastruc-
ture classes have to program against a generic interface rather than 
a more specific interface that expresses the functionality of the 
class of the object. It is not very efficient because a generic im-
plementation cannot take advantage of constraints that a specific 
class may be aware of. 

For this reason, we implement large parts of the UML as sub-
classes of Element. By making them subclasses of Element, they 
inherit its capabilities and hence become full-fledged UML-
specified objects themselves. Many of the methods, specifically 
for attribute and association access, are mere convenience wrap-
pers around the generic methods inherited from Element. How-
ever, every such class is free to add functionality that makes using 
it easier. One such class is Class. Listing 2 shows its interface. 

The Class interface provides methods that are derived from the 
UML specification. For every known feature and association, 
query and mutation methods exist. As mentioned, these methods 
are convenience wrappers of the more generic Element methods. 
Listing 3 shows the implementation of two such methods. 

Of more interest is implementation functionality specific to class 
Class. A prime example is the provision of keys that unambigu-
ously identify attributes and associations. For modeling the attrib-
utes and associations of a class, UML provides dedicated Attrib-
ute and Association classes. While suitable for modeling, they are 
too heavy for executing models, and hence we have replaced them 
with more lightweight key objects for attribute and association 
access. These keys provide essential typing information and make 
attribute and association access more efficient. Section 4 discusses 
these and other implementation considerations. 

3.4.3  Data types 
The implementation of primitive data types like integer and string 
and non-primitive data types like money and currency is outside 
the scope of the Element class hierarchy. Their classes, however, 
are represented as UML DataType instances. For their implemen-
tation, we use the standard Java classes Integer, String, etc. and 
the data type framework JValue [22]. 

3.4.4  Match Between Logical and Physical Model 
Every physical class is represented as a logical class in the logical 
architecture. The physical model mirrors (parts of) the logical 
model. The class model of Figure 10 exists both on the physical 
and logical level. Therefore, we have both a physical and logical 
class Element. The same holds true for MetaClass. 

Classifier AssociationEnd+type

1 *

GeneralizableElement Generalization
+child

1

+generalization

*

+parent1 +specialization *

 

Figure 8: Small and simplified excerpt from the UML specification. 

classifier : MetaClass associationEnd : MetaClass

generalizableElement : MetaClass generalization : MetaClass

ae1 : AssociationEndtype : AssociationEnd a5 : Association

g9 : Generalization

child : AssociationEnd a3 : Association generalization : AssociationEnd

parent : AssociationEnd a4 : Association specialization : AssociationEnd

 

Figure 9: Object representation of the model excerpt from Figure 8. 
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We match the physical with the logical model, because it reduces 
the intellectual burden for programmers that implement modeling 
tools. Programming with a statically typed interface is easier and 
less error-prone than programming with a generic interface. 

3.5  Model Execution 
The discussion so far has focused on how to represent models 
across modeling levels. This subsection discusses how we execute 
these models. We can only provide a partial solution, as we make 
several restricting assumptions about model execution based on 
our runtime architecture. As far as we know, every existing tool 
with claims similar to ours makes restricting assumptions about 
the runtime architecture and therefore constrains what and how to 
model. There are two main reasons for this: first, UML is not 
defined precisely enough to allow for unambiguous model execu-
tion, and second, even if UML was defined precisely enough, one 
still needs a dedicated runtime architecture on top of which the 
models run and with which they are integrated. This runtime ar-
chitecture necessarily imposes constraints on what can be exe-
cuted and what cannot be executed. In this section, we therefore 
only demonstrate that model interpretation is possible, and leave 
the details to further papers. 

UML provides several modeling techniques for specifying the 
behavior of classes. Most of these techniques focus on illustrating 
behavior rather than completely specifying it. Examples of these 
techniques are object collaboration diagrams and message se-
quence diagrams. Illustrating behavior means that any such dia-
gram illustrates one specific case of object interaction and behav-
ior, but it does not specify the overall possible set of interactions. 
While helpful to communicate design intent to human readers, 
these techniques are not sufficient for fully specifying object be-
havior as needed by a virtual machine to execute model instances. 

The one modeling technique that strives for complete behavior 
modeling is UML state charts. We use them as the primary tool 
for modeling object behavior. Every class has a state chart that 
describes the state space of its instances and the possible transi-
tions that may occur. Each instance interprets the state chart 
whenever it receives an event in its mailbox. It then reacts accord-
ingly by possibly changing its state and sending out events that 
represent the state transitions. The state machine interpretation is 
part of the Element class implementation. 

We further enrich class descriptions using OCL to ensure con-
straints like business rules between elements. State charts serve 
well to describe the behavior of individual objects, but they do not 
scale up to describe the behavior of larger parts of a system. We 
use OCL to describe inter-object dependencies as constraints be-
tween objects. This way, state transitions in one object are trans-
lated into events relevant to other objects that are not connected 
with the originating object through a state chart. 

Finally, UML is a modeling language and not a programming 
language, so we add algorithmic detail through hand-programmed 
policy classes that fit into a well-defined extension architecture 
[23] (also known as plug-in architecture [15]). This extension 
architecture is part of our runtime architecture. It both supports 
and constrains developers in what is possible in terms of model 
execution. Developers of a model do not only use UML to de-
scribe system behavior, but also implement policy classes (using 
the Strategy design pattern [4]) and hook them up into the model. 
This approach is a common pattern: all tools we have seen that 
promise to generate executable systems from models make as-
sumptions about specific runtime environments and thereby con-
strain developers and the model space. 

Hand-programmed policy classes do not contradict the idea of a 
UML virtual machine. First, UML is not fully executable; hence 
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Figure 10: Key classes from the physical architecture. 
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we need something like policies to add algorithmic detail. Second, 
UML is not a programming language but rather a modeling lan-
guage. Until an executable Action semantics specification for 
UML is available, UML cannot also play the role of a program-
ming language, and hence has to be complemented by one. 

The need for more complete behavior specification and executable 
semantics of UML models has been recognized. The OMG issued 
a Request for Proposals (RFP) for executable Action semantics 
and several groups have responded to it [17]. One of the most 
important uses of such executable Action semantics will be its 
application to UML itself, effectively providing a formal and as 
complete as possible UML virtual machine specification. 

3.6  Causal Connection 
We need to show that the presented architecture fulfills the causal 
connection property so that changes in a model lead to immediate 
changes in the model instances. 

As Figure 4 shows, the element class is logically the superclass of 
all other logical classes. Every instance of element (independently 
of on which modeling level it resides) has a link to its class. Thus, 
every element is connected with the specification of its behavior. 

The Element class implementation makes use of this link to de-
termine how an element is to behave and then makes it behave 
that way. This ensures that every element behaves according to its 
specification. 

In UML, a model is defined as a package of interconnected 
classes. In the discussed architecture, changes to a class and hence 
to a model immediately affect any model instance. Thus, a model 
is causally connected with its model instances. 

Schema evolution remains a difficult topic. SKYVA’s system lets 
users specify how instances of an old class version are to be con-
verted into instances of the new class version. These bridges be-
tween model versions are one of our extensions to UML. They 
integrate configuration management with model evolution with 
instance upgrading. 

4  IMPLEMENTATION 
At its primitive level, the implementation of the Element class and 
its related classes draws on the access of attributes and associa-
tions. Getting the implementation of these primitives right deter-
mines the overall performance more than any other factor. 

All publicly available UML implementations that we have seen 
use string-based access to attributes and associations. We use key-
based rather than string-based access to attributes and associa-
tions. This made our virtual machine implementation perform 
significantly faster and removed dynamic typing problems that 
occur when attributes or associations are named using potentially 
misspelled strings. 

A key object indicates a specific attribute or association. Effec-
tively, it is a shallow representation of the corresponding Attribute 
or AssociationEnd object. For attribute access, we provide dedi-

public interface Element {
// UML: attributes (single-valued)
// The FeatureKey identifies the attribute.
public Object getAttributeValue(FeatureKey fk);
public void setAttributeValue(FeatureKey fk, Object value);
...

// UML: associations with 0..1 multiplicity
// The AssociationKey identifies the association.
public boolean hasLinkedElement(AssociationKey ak);
public Element getLinkedElement(AssociationKey ak);
public void setLinkedElement(AssociationKey ak, Element e);

// UML: associations with 0..n multiplicity
// The AssociationKey identifies the association.
public Iterator allLinkedElements(AssociationKey ak);
public void addLinkedElement(AssociationKey ak, Element e);
public void removeLinkedElement(AssociationKey ak, Element e);
...

// UML: association object access (functionally dependent on association)
// The AssociationKey identifies the association.
public boolean hasAssociationElement(AssociationKey ak);
public AssociationElement getAssociationElement(AssociationKey ak);
...

// VM model: access to type object
// With respect to its class, this element plays the instance role.
public Class getElementClass();
...

// VM implementation: backpointer
// Provides list of objects linked to this element.
public Iterator backpointer();
...

}

Listing 1: Element interface, reduced to the essentials. 
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cated feature key objects, and for association access, we provide 
dedicated association key objects, as illustrated in Listings 1, 2, 
and 3. For every attribute of a class, one feature key is created and 
updated whenever the attribute’s definition changes. The same is 
done for associations and association keys. Because a class 
changes less frequently than its instances, creating and updating 
the keys does not pose a significant runtime overhead. 

Every key provides a unique index into an array for efficient ac-
cess to the attribute’s value or linked-to element. The class man-
aging the keys has a complete overview of all its keys and can 
therefore compute a perfect distribution of indices for the keys. 
Every element manages its attribute values and linked-to elements 
in an array. Looking up an attribute’s value or a referenced ele-
ment is as simple and fast as the access to a field in the array. 

A key does not only provide an index into an array but also pro-
vides typing information. Effectively, type information is copied 
from the model into the key and transformed with the goal of 
speeding up type checking. 

Whenever an attribute or association is accessed, it must be 
checked whether the key is actually a valid key identifying an 
attribute and association that really exists for the given object. 
This type checking is necessary to protect against bugs in the 
virtual machine implementation and in the policy implementations 
by which users add programmatic behavior to models. 

A sequence of checks ensures integrity of access: the owner of the 
key and the class of the element must be identical, and the typing 

information found in the key must match the meta-information 
stored directly in the element, for example, whether a linked-to 
element is truly a composed element or merely a regularly associ-
ated element. 

Finally, key objects are shared immutable objects. A managing 
object controls their instantiation (see the Flyweight design pat-
tern [4]). This way, no client code can create key objects. This lets 
the system maintain control over typing information. No typing 
information ever enters the system from the outside without being 
checked at the system boundaries. Client code like policies re-
quest key objects, they do not create them. While this cannot pre-
vent that a message is being sent to the wrong object, it at least 
ensures that the message is always a valid message. 

We discuss further implementation considerations and optimiza-
tions in a related paper [24]. 

5  UML EXTENSIONS 
In Section 3 on the virtual machine architecture, we describe how 
we make UML part of a larger logical architecture. In this section, 
we discuss some of our extensions to UML and some of the sim-
plifications we applied. 

5.1  Technical Domain Models 
For executing application domain models, users need a means to 
express how to present the model instances in user interfaces for 
user interaction, how to represent them for persistence in data-

public interface Class extends Classifier {
// UML: a class has features that can be accessed by name
public boolean hasFeature(String featureName);
public Feature getFeature(String featureName);
public Iterator allFeatures();
public void addFeature(String featureName, Feature f);
public void removeFeature(String featureName);
...

// UML: a class has association ends that link it to associations
public boolean hasAssociationEnd(String roleName);
public AssociationEnd getAssociationEnd(String roleName);
public Iterator allAssociationEnds();
public void addAssociationEnd(AssociationEnd ae);
public void removeAssociationEnd(AssociationEnd ae);
...

// VM implementation: provide access to keys
public Iterator allFeatureKeys();
public FeatureKey getFeatureKey(String attributeName);
public Iterator allAssociationKeys();
public AssociationKey getAssociationKey(String roleName);
...

}

Listing 2: Class interface (showing inherited Classifier methods for convenience). 

public Feature allFeatures() {
return allLinkedElements(FEATURE_KEY);

}

public void addFeature(Feature f) {
addLinkedElement(FEATURE_KEY, f);

}

Listing 3: How Class uses the generic methods of Element. 
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bases, and how to distribute them across different processes and 
computer systems. 

This information is cast as technical domain models that exist next 
to the application domain models (technical meaning a technical 
(infrastructure) application domain as opposed to a business ap-
plication domain).3 Users can extend and configure the technical 
domain models as much as they can define and then extend and 
configure the application domain models. Default models may 
apply, but users can always customize them. 

The first user of these technical domain models is the modeling 
environment. It uses models to describe user interface layouts, 
database schema mappings, and system distribution. These models 
are specific to a given runtime environment and can differ widely 
from implementation to implementation. 

One common need, however, that is likely to be found in any 
system implementation, is the need to organize model instances in 
packages and applications. We therefore extend the UML package 
and project concepts to apply to every element, not just UML 
model elements. Figure 11 shows the resulting model. 

Figure 11 shows two Package classes. On left, it shows the tradi-
tional UML Package class, which is a subclass of Namespace and 
which is reserved to contain only model elements. On the right, 
Figure 11 shows a general Package class that can contain any kind 
of element, be it a UML model element or a regular non-UML 
element. 

The semantics of the general Package class are weaker than those 
of the UML Package class: it accepts different elements with the 

                                                      
3 These technical domain models are equivalent to the class 
libraries and frameworks that come with Smalltalk and Java. 

same name and it does not support package inheritance. This shift 
in semantics is the reason why we decided to introduce the gen-
eral Package class rather than to extend the existing UML Pack-
age class to contain any type of element. 

A special subclass of the general Package class is Application. Its 
instances are the root objects for a given running application. 

5.2  UML Simplifications 
In our UML implementation, we have applied a number of simpli-
fications. Structural simplifications include: 

• No multi-valued attributes of elements. 

• Attributes of elements are always UML data types. 

• Only binary associations between classes. 

So far, we have not encountered any problems due to these re-
strictions. 

6  EXPERIENCES 
We have built three systems with this type of architecture, two at 
UBS, and one at SKYVA International. 

The two systems built at Ubilab, the late IT research laboratory of 
UBS, were a research prototype that provided a full-fledged 
metalevel architecture as described in this paper, and a produc-
tion-level system that let users model, represent and edit corporate 
loans. The research prototype was used to explore and demon-
strate the idea of model-driven software systems based on a dy-
namic object model, as we called it at that time. The production-
level system is used in UBS’ corporate customer business. Its 
primary functionality is in capturing and presenting corporate 
loans. Effectively, it is an object-oriented product data manage-
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ment system. Both systems did not use UML on the M2-level but 
rather a simpler proprietary metamodel. Both systems worked well 
for their purpose. However, both systems focussed primarily on 
representing and editing structure, which is much simpler than 
representing and executing behavior. 

The UML virtual machine built at SKYVA International is part of 
SKYVA’s main product for supply chain management and col-
laborative e-commerce. It has been used in a number of industry 
projects and is the most extensive base of our implementation 
experience. The system exhibits most characteristics discussed in 
this paper. It has a full-fledged UML-based metalevel architec-
ture. It lets users model their application domain and execute 
these models. Feedback on model changes is immediate and sup-
ports users in exploring domain models. 

Still, it is a hybrid system: for innovative model exploration and 
system configuration, we use an interpreted approach, and for 
production-level system execution, we use a code-generation ap-
proach. Hence, we have two runtime environments: one UML 
virtual machine that is embedded in the modeling environment 
and that allows for lightweight model execution, and one that is a 
separate system capable of carrying high volume transactions and 
mass data persistence. 

Our biggest remaining problem is modeling of behavior and exe-
cution of the modeled behavior. At the time of writing, we still 
have to implement a significant amount of code (policies) to add 
behavior to the models. UML’s behavior modeling features are 
not sufficient to completely describe desired behavior and our 
behavior modeling extensions and implementations have not fully 
overcome this problem. However, other companies, for example 
Project Technology [20] and Kennedy Carter [AC] have shown 
that precise behavior modeling is possible with (an extended form 
of) UML. Their systems allow the execution of models based 
purely on modeled rather than implemented behavior. Key to their 
approach as well as our approach is knowledge about the target 
runtime architecture. 

SKYVA’s system comprises significantly more components than 
the virtual machine discussed in this paper. The modeling envi-
ronment provides an elaborate repository-based infrastructure that 
supports model persistence, configuration management, collabora-
tion in a team and more. The system provides not only technical 
domain models but generic application domain models as well, 
targeted at supply-chain management and e-commerce. 

We have found that generic domain models are best supported by 
UML extensions that reflect the domain concepts. Similarly, we 
have found that UML extensions without a complementing ge-
neric domain model are of limited use, because we cannot inte-
grate separately developed domain models. This is in contrast to 
industry’s current attempts to provide standards by extending 
UML only without providing (generic M1-level) domain models. 
Also, we view the lack of a standardized Element class as a major 
hindrance for integrating independently developed domain models 
in UML-based modeling. 

7  RELATED WORK 
We discuss related work on virtual machines, metalevel architec-
tures, model-driven software systems and UML-based software 
development tools. 

Virtual machines for programming languages like Smalltalk [6], 
Self [28, 9], and Java [1, 12] have both inspired this work as a 
metaphor and provided solid implementation advice. Like Small-
talk and Self, and unlike Java, we fully represent the modeling 
language using the system’s own capabilities. 

The architecture of the virtual machine, however, probably owes 
most to CLOS [2, 19, 5]. CLOS’ simple yet elegant metalevel 
architecture directly influenced how we extended UML with M1 
and M3-level classes to turn the logical model into a reflective 
system. 

While the described architecture shares structural and behavioral 
properties with the CLOS metalevel architecture and related re-
flective architectures [13, 29, 10, 21], we address a problem that 
has not been addressed by any such programming-language cen-
tric architecture: the modeling of application domains using a 
dedicated modeling language and the execution of the resulting 
models. To the best of our knowledge, we are the first to combine 
a modeling language with a metalevel architecture with a virtual 
machine approach. 

Others have recognized the need for model-driven software sys-
tems that provide an explicit model of themselves. Most notably, 
Tilman provides an account of an object-oriented framework that 
is used to capture models and model instances and to persist them 
between instantiations [26]. Tilman’s application domain is form-
based workflow-oriented business applications. A similar system 
is discussed by Kovacs [11]. Kovacs and his colleagues built a 
system for product configuration and workflow management of 
large high-energy physics detectors. Similarly, Manolescu dis-
cusses a system that explicitly represents workflow descriptions 
next to the actual workflows [14]. Common to these systems is 
that they all have a descriptive layer next to an instance layer. 
However, in all three cases, the modeling language is specific to 
that system. 

Currently, a lot of industry research and development is invested 
into UML-based modeling tools. As discussed in the introduction, 
the common pattern is to model a system using UML and then to 
generate code and publish the code into a runtime system [8]. A 
few systems have enhanced UML with precise behavior modeling 
so that no programming by hand is necessary. An example is Pro-
ject Technology’s BridgePoint system [20], originally based on 
the Shlaer Mellor methodology [25]. BridgePoint lets users model 
embedded systems using an enhanced form of UML that supports 
precise behavior modeling. From the models, code is generated. 
Another example is Kennedy Carter’s iUML tool suite that sup-
ports modeling of embedded systems using UML with precise 
action semantics [AC]. iUML also let’s users simulate the mod-
eled system, providing feedback about the system. Project Tech-
nology and Kennedy Carter have worked together on one of the 
submissions to the OMG RFP for precise action semantics for 
UML. 

8  CONCLUSIONS 
This paper presents the architecture of a virtual machine for UML. 
The virtual machine consists of a logical extension of the UML 
four-level modeling architecture plus an object-oriented frame-
work that implements this architecture. The virtual machine ex-
plicitly represents UML, UML models, and UML model instances 
(actual instances of running systems). This approach lets users 
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immediately see the effects of model changes. This feedback sup-
ports rapid model prototyping and innovative exploration of mod-
els better than possible with today’s code-generation approaches. 

While we use rapid user feedback as the motivation to choose an 
interpreted approach over a code-generation approach, other ad-
vantages of the UML virtual machine approach weigh in as well. 
For example, it is significantly easier to develop a 24x7 always-on 
system, because the availability of explicit models makes system 
evolution easier. We have documented this and other business 
drivers behind our approach in [AD]. 

We see several areas for further research: the execution speed of 
the virtual machine, better precise behavior modeling, the defini-
tion and integration of modeling language extensions to integrate 
otherwise unrelated domain models in a coherent system, and 
model evolution support. Our experience indicates that all of these 
areas are important and must be addressed, contributing signifi-
cantly to the usefulness of the virtual machine approach. 

We have found many shortcomings in the UML specification that 
limit its usefulness. However, these shortcomings are being rec-
ognized. Future specifications of UML and related technologies 
will provide a basis on top of which UML virtual machines can be 
standardized. Then models will become exchangeable between 
virtual machines and lead to the same system behavior. 
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9  NOTES 
Brian Foote. “Object, Reflection, and Open Languages.” Relationship between reflection, extensibility (and frameworks?) 

Discuss need for specialized target architecture. 

Abstract syntax trees as representation form. 

Change class names to recursive but first Capital letter? 

The next sections discuss the structural aspects of the architecture of the virtual machine and its implementation. 
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