
© Siemens AG 1998, all rights reserved

3 Building Software with

Patterns

Within this process, every individual act of building
is a process in which space gets differentiated.

It is not a process in which pre-formed parts
are combined to create a whole: but a process of

unfolding, like the evolution of an embryo,
in which the whole precedes its parts,

and actually gives birth to them, by splitting.

Christopher Alexander, The Timeless Way of Building

Many important aspects of building software systems with patterns
are not addressed by today’s pattern descriptions, such as how to in-
tegrate a pattern into a partially existing design. Yet we want to use
these patterns in our architectures, designs, and implementations.
Complementary to pattern-specific implementation guidelines we
therefore need general guidelines that support a pattern-based soft-
ware construction.

38 Building Software with Patterns

© Siemens AG 1998, all rights reserved

3.1 Introduction

Every well-described pattern provides information about its own im-
plementation [GHJV95] [POSA1]. Many such patterns also provide
information about their refinement and combination with other pat-
terns. However, almost all these guidelines are pattern-specific. They
do not address aspects of specifying whole software architectures
with patterns. Examples of such aspects include the integration of
patterns into a partial design, the order in which a number of given
patterns should be applied, and the resolution of problems that can-
not be solved by a single pattern in isolation.

Answering such questions is important for using patterns effectively.
Otherwise we apply patterns, but the resulting design will likely ex-
pose unnecessary complexity. Even worse, the architecture under
construction may not provide the properties we need. For example,
many patterns introduce a level of indirection to resolve a design
problem. Connecting several of such patterns in a row may, however,
result in an inefficient indirection cascade. Instead we want to com-
bine the patterns without introducing multiple levels of indirection,
but in a way such that the essence of each pattern still remains.
Section 1.4, Roles, Not Classes illustrates another example, where a
specific combination of two Observer [POSA1] structures introduces
more complexity than it resolves.

The above discussion reveals that the application of patterns is not a
mechanical task. It needs some experience to compose them to large
structures in a meaningful way. The reason for this is obvious. Large-
scale software architectures introduce problems and forces just
because of their sheer size and inherent complexity. These problems
and forces are often independent of the design issues addressed by
individual patterns. Consequently, pattern-specific implementations,
as useful they are when specifying the details of a particular pattern,
are insufficient for applying patterns in general—when building large-
scale and complex real-word software systems.

A pattern language for software architecture is one approach for sup-
porting the effective use of patterns (see Chapter 4, Towards Pattern
Languages). Its constituent patterns would not only provide solutions
to specific design problems. The language would also provide a pro-

Introduction 39

© Siemens AG 1998, all rights reserved

cess—embedded in the patterns—that helps applying them: when,
how, and in which order. A good example for such a language is Kent
Beck’s ‘Smalltalk Best Practise Patterns’ [Bec97]. On the other hand,
we neither have such a pattern language for software architecture at
hand, nor is it likely that such a language could be provided in the
near future. There are still many aspects of software architecture for
which no patterns are documented, and almost every existing pattern
must be re-written in order to fit into such a language. Today, most
patterns for software architecture are organized in pattern catalogs
and pattern systems [GHJV95] [POSA1] [PLoP94] [PLoP95] [PLoP96].
Unfortunately, these do not provide the support for using patterns
that we need.

To use patterns of a pattern catalog or pattern system effectively in
software development therefore calls for appropriate guidelines.
These should enable us to act like an expert software architect who
has designed systems with patterns for years. At least they should
help us being aware of the problems that may arise when applying
patterns, and the pitfalls into which we can stumble. In addition, they
should integrate with the steps and activities defined by existing anal-
ysis and design methods. For these reasons, the kinds of guidelines
we are looking for cannot be simple one- or two-line statements. We
need more information. What problem in using patterns does a spe-
cific guideline address? When does this problem occur? And how do
we apply patterns correctly in the presence of the problem?

Consequently, guidelines which support pattern-based software de-
velopment are patterns by themselves: exposing a context, a problem
that arises in that context, and a solution that resolves the problem.
They therefore should be documented as patterns, using an appropri-
ate pattern form.

In this chapter we present 11 patterns for pattern-based software de-
velopment. Most of them were mined over the past years and reflect
what we, and our colleagues world-wide, have learned when using
patterns to design and implement commercial and industrial soft-
ware systems.

The initial set of patterns was developed while we were building a
system for factory automation [Bus98], by self-observation of our
design activities. They were completed with insights documented in
the available body of literature on software design, such as [Gab96]

40 Building Software with Patterns

© Siemens AG 1998, all rights reserved

and [Fow97], and with experiences gained in the development of a hot
(steel) rolling mill process automation framework [BGHS98]. Some
patterns also build on Christopher Alexander’s work [Ale79]
[ANAK87]. Altogether they complement and complete the specific
implementation guidelines that accompany well-described patterns
for software architecture, for example the ones in [Cope92] [GHJV95]
[POSA1] [POSA2] [PLoP94] [PLoP95] [PLoP96].

The patterns were also applied in the development of TAO, the ACE
ORB, a configurable, CORBA compliant, high-performance, real-time
Object Request Broker. We describe its architecture and design in
TAO: The St. Louis - Munich Experiment [POSA4], the fourth volume of
the Pattern-Oriented Software Architecture series.

For the description of our patterns for pattern-based software
development we adopt Christopher Alexander’s pattern form: Name-
Context-Problem-Solution-Example and extend it with a Consequences
section.

3.2 Patterns for Pattern-Based Software Development

Before we describe our patterns for pattern-based software develop-
ment in full detail we briefly summarize their intents:

• Piecemeal Growth (43) outlines the overall process for constructing
software systems with patterns. It is a jo-jo like process of top-
down refinement and bottom-up refactoring, in which a software
architecture grows and changes continuously until it is complete
and consistent in all its parts.

• Architectural Vision (47) defines the first activity in the process of
piecemeal growth: specifying the system’s base-line architecture.
Wherever useful, the pattern takes advantage of analysis and ar-
chitectural patterns that help with the specification.

• Step-wise Refinement (53) defines the top-down design activities of
the process of piecemeal growth. It describes how to resolve con-
crete design problems by detailing and extending the given

Patterns for Pattern-Based Software Development 41

© Siemens AG 1998, all rights reserved

software architecture, if possible with help of analysis and design
patterns.

• Refactor Instead of Large Lump Design (59) specifies the bottom-up
activities of the process of piecemeal growth. It defines how to
proceed if the optimal solution of a design problem does not
integrate with the part of the existing design in which this solution
must be contained.

• Stable Design Center (63) addresses how to specify designs that al-
low for extension and adaptation, but without the need to modify
their key elements and abstractions. The pattern lists several con-
crete design patterns which help with this activity.

• Plan for Growth (67), outlines how a software architecture can be
prepared for its own evolution over time. The pattern lists several
architectural and design patterns that address this aspect.

• Component-Oriented Legacy Integration (71) defines how to take
advantage of design patterns when integrating 3rd party or legacy
components into an application.

• Enforce the Architectural Vision (75) supports the application of glo-
bal design principles consistently in every part of a software archi-
tecture and at every level of detail.

• One Pattern at a Time (78) helps with combining several patterns
which together should define the design of a specific system part.

• Design Integration Precedes Implementation (81) introduces a pro-
cess for implementing a pattern in the context of a given software
architecture.

• Merge Similar Responsibilities (85) shows how to combine patterns
with existing design elements which partly provide similar or relat-
ed responsibilities as the patterns’ participants.

Our patterns for pattern-based software development strongly de-
pend on each other. You start with the first pattern—Piecemeal
Growth (43)—and will be directed to the patterns that apply thereaf-
ter. These complete the idea outlined in Piecemeal Growth (43) and
also reference those patterns which are needed for their own comple-
tion. Every pattern thus makes most sense in the context of the
patterns it precedes and completes. In other words, our patterns for
pattern-based software development form a pattern language.

42 Building Software with Patterns

© Siemens AG 1998, all rights reserved

The diagram below briefly illustrates how the patterns in the language
build upon each other—if a pattern uses another pattern, it points to
it with an arrow.

You may keep this overview in mind when reading the patterns. It al-
lows you to recall the purpose and solution idea of a pattern you have
not yet read, but which is referenced by the pattern you are reading.
The diagram provides you with an overview of the language’s struc-
ture.

Piecemeal Growth

Stable
Design Center

Merge Similar
Responsibilities

Enforce the
Architectural

Vision

Refactor Instead
of Large Lump

Design

Component-
Oriented Legacy

Integration

Design Integration
Precedes

 Implementation

Plan for Growth

Architectural
Vision

Step-wise
Refinement

One Pattern
at a Time

43

© Siemens AG 1998, all rights reserved

Piecemeal Growth
Context We want to design a new software system.

Problem How can we ensure that the system is well-structured and organized?
In particular, that its architecture meets specific functional and non-
functional requirements [POSA1], and that its architects, designers,
and programmers feel habitable in it [Gab96]. Three forces are to be
balanced:

• The software architecture should model the structural organization
of the system’s application domain in a way such that domain-spe-
cific tasks can be executed as required. In addition, it should sup-
port the system’s adaptation, maintenance, and evolution.

• The solutions to particular design problems must meet these prob-
lems’ own requirements, integrate with the higher-level parts of the
design in which they are contained, and must allow for the optimal
resolution of lower-level design problems.

• Assembling an application’s architecture bottom-up will likely re-
sult in a system structure where many parts will be designed
according to different design principles that do not match, such as
strict information hiding and open implementations [POSA1]. On
the other hand, when following a pure top-down approach, higher-
level design structures will often be inappropriate for resolving low-
er-level design problems effectively, since these are mostly un-
known until they arise.

Solution Create the architecture of the system in a process of piecemeal growth
[Gab96]. It is a jo-jo like process of top-down refinement and bottom-
up refactoring, in which a software architecture grows and changes
continuously until it is complete and consistent in all its parts.

Define a basic1
architecture that Refine a2

Refine3

given part

another part

Adjust existing4
parts, if needed

represents the system

A B

C C a

b c d
bU

X Y Z

44 Building Software with Patterns

© Siemens AG 1998, all rights reserved

The process begins with specifying an Architectural Vision (47): what
is the fundamental subsystem structure of the application and what
are the general design principles that should govern its refinement.
The subsystem structure provides the basis for the process of piece-
meal growth. It defines the core components of the application
domain and outlines the infrastructure components the system needs
for its proper operation, for example, to interact with its users. The
design principles, such as separation of concerns and separation of
interface and implementation [POSA1], address the system’s non-
functional requirements, for example, extensibility and adaptability.

For every aspect of the Architectural Vision (47) that requires a more
detailed specification, unfold its given design by Step-wise Refinement
(53). Unfolding means extending and detailing the existing architec-
ture with new components and relationships. These should always
reflect the structural organization of the domain or infrastructure
concept they are representing, but in accordance to the general de-
sign principles defined by the Architectural Vision (47). Every part that
we add to the design then serves as a new ‘micro-architecture’ that
can be unfold, until the whole architecture is complete.

It will likely happen, however, that the optimal decomposition of a
given system aspect does not integrate with the part of the
application’s design in which its specification is to be contained.
When this happens, recursively Refactor Instead of Large Lump
Design (59), to adjust the existing architecture before continuing with
its further refinement.

Consequences The process of piecemeal growth helps creating a coherent software
architecture. Due to a balanced interplay between Step-wise Refine-
ment (53) and Refactor Instead of Large Lump Design (59) we look onto
every design aspect from three perspectives: the system view, the view
of the aspect itself, and the view of lower-level issues that may impact
its specification. At every level of abstraction the design of the system
will correctly model the application domain. Domain-specific services
the system offers to its users can be executed effectively. In addition,
the architecture follows common design principles that ensure its
non-functional requirements, from the coarse-grained structure
down to the very details of its implementation. By this we explicitly
consider the needs of the software engineers who must develop and
maintain the system.

Piecemeal Growth 45

© Siemens AG 1998, all rights reserved

Example Suppose we want to design a warehouse management system1. Basi-
cally, such an application manages physical storage in a warehouse
as well as the items stored, takes care for storing, fetching and com-
missioning items, organizes replenishment of production lines,
controls the underlying process automation equipment, and keeps
book of all its activities. In short, it organizes the whole warehouse op-
eration.

Warehouse management systems are highly distributed and interac-
tive. There are central servers for the database, the system’s function-
al core, and the automation equipment control. Multiple clients,
many of which are mobile, are connected to the servers. These clients
often provide specialized user interfaces, such as for item receiving
and commissioning, quality assurance, working-off item transport or-
ders, and system administration. Finally, the system receives input
from many sensors which listen for events to occur within the auto-
mation equipment. Each client of the system operates independently
of other clients. Inputs are usually delivered concurrently, and must
be coordinated and interpreted to trigger the ‘right’ operations in the
system. Likewise, results of operations must be re-submitted to the
users of the system and the warehouse basic automation.

According to the process of piecemeal growth the first step to perform
is the definition of the system’s Architectural Vision (47): what are its
basic subsystems, their responsibilities and relationships, and, very
importantly, their collaborations. A second aspect to consider is infra-
structure, such as the mechanisms needed for inter-component
communication in a distributed application. For the warehouse man-
agement system we will end up with subsystems that implement the
warehouse management core functionality, the controlling and mon-
itoring of the warehouse automation equipment, the warehouse’s
administration, the user interface, the database, and the location
transparent inter-process communication.

Once the system’s base-line architecture is defined we can refine the
subsystems that it introduces, for example, the subsystem providing
the warehouse management core functionality. By Step-wise Refine-
ment (53) we specify and detail the subsystem’s design: beginning

1. We will use the warehouse management system as a running example through-
out all patterns in this chapter. By this we are able to show in detail how a concrete
software architecture emerges by applying patterns in a process of piecemeal growth.

46 Building Software with Patterns

© Siemens AG 1998, all rights reserved

with the structure for representing physical storage in a warehouse,
continuing with integrating the functionality that operates on this
structure, and ending with preparing the design for extension and ad-
aptation.

As it happens in real life, the design of this subsystem will not expose
the desired quality right away. For example, if the original specifica-
tions for representing physical storage and the transport ways
between them are not appropriately integrated with each other, it is
hard to provide a straight-forward design and implementation of an
item transport service. In such cases, we need to refactor existing
design structures so that they become suitable for integrating the so-
lutions to design problems that were unknown when specifying the
original design.

This interplay between refinement and refactoring will continue until
the whole subsystem design provides its required quality. Similarly,
we then can specify other parts of the application, such as the user
interface subsystem.

Step by step the software architecture of the system will grow until it
is completely specified and defined. The architecture gets differenti-
ated with every design step we take, but always according to the
design principles pre-scribed by the larger structure whose parts we
are refining and the needs that arise from lower-level design aspects.

47

© Siemens AG 1998, all rights reserved

Architectural Vision
Context We are at the beginning of the process of Piecemeal Growth (43).

Problem How can we define a base-line architecture that captures an applica-
tion’s fundamental subsystem structure? Four forces arise:

• The base-line architecture must provide a global view onto the sys-
tem: all relevant core components of the application domain must
be present, and also the infrastructure components the system
needs for its proper operation, such as for inter-component
communication within a distributed computing environment. The
relationships and collaborations of these components must allow
for a correct and effective implementation of all services the system
must offer to its users. On the other hand, the base-line architec-
ture should be as simple as possible: essential design ideas must
not be hidden within overly fine-grained design specifications. Fur-
thermore, we cannot anticipate all future extensions to the system
at the time it’s base-line architecture is defined.

• The system’s underlying design principles, such as separating user
interface from service processing, must be clearly exposed, so that
further refinement of the base-line architecture can follow these
principles.

• The system may build upon 3rd party or legacy software.

• We want specify the base-line architecture with help of patterns.

Solution Create an architectural vision: a coarse-grained subsystem design
which governs the specification of the application down to its imple-
mentation.

Select1
architectural

Integrate4
the functional

Combine the2
architectural

C

BA
patterns

patterns

subsystems

Identify functional3
subsystems

UML

A

B

C

48 Building Software with Patterns

© Siemens AG 1998, all rights reserved

First, specify the system’s infrastructure: how does it interact with
users, how do components cooperate, how its persistence managed,
and how does application functionality integrates with this environ-
ment.

To define this infrastructure, identify all system-wide non-functional
properties the application must expose, for example that it is distrib-
uted and interactive. According to the guidelines given in [POSA1],
then select architectural patterns [POSA1] that address these proper-
ties—by providing corresponding system structures and their under-
lying design principles. If it is a requirement to follow a specific design
philosophy for achieving a non-functional property, select an archi-
tectural pattern that implements this philosophy. For example, GUI
builders often pre-scribe a particular way for connecting the user in-
terface with the application’s core functionality. For properties which
are not addressed by the available architectural patterns, implement
suitable structures by using a conventional design method. Or, use
patterns that guide the process of specifying such structures, like the
ones presented in [Coad95].

Consider that it is next to impossible to anticipate all extensions to
the system customers might require over its life time. Therefore Plan
for Growth (67) such that the system can evolve without a re-defini-
tion of its base-line architecture. Apply the selected architectural
patterns, One Pattern at a Time (78), with descending order of impor-
tance of the system properties they address.

Second, identify the functional subsystems of the software under con-
struction, including their relationships and collaborations. These
should model the core structure of the system’s application domain.
Do not try to define a ‘master-plan’ that intends to capture every pos-
sible functionality the system might must expose in the future. Focus
only on the requirements known by today. Since the infrastructure is
prepared for growth, the specification of additional functionality can
be deferred to the point in time it is requested.

If possible, use analysis patterns to support the specification of func-
tional subsystems. Select these patterns according to the guidelines
given in [POSA1]. Patterns for domains such as health care, account-
ing, and telecommunication, can be found in [Fow97], [PLoP94],
[PLoP95], and [PLoP96]. If no analysis patterns are available for the
system’s application domain, use a conventional analysis and design

Architectural Vision 49

© Siemens AG 1998, all rights reserved

method to define the functional subsystems. Or, use patterns that
guide the process of identifying such subsystems [Coad95]. For 3rd

party or legacy software that must be used, provide a Component-Ori-
ented Legacy Integration (71). You are set if for every major functional
responsibility which the application must provide a corresponding
subsystem is defined, or if such a responsibility can be provided by
several subsystems in collaboration.

Finally, integrate the functional subsystems with the system’s infra-
structure. Substitute its ‘placeholders’ for application functionality
with concrete functional subsystems, and map their relationships
onto the communication facilities the infrastructure defines.

The architectural vision represents a fundamental design decision
that will govern every other design activity that follows. Thus, consid-
er carefully which functional subsystems the application should
provide and in which infrastructure they should live. Double-check
the final specification with the system’s requirements before calling
the architectural vision done. Changes and adjustments to a system’s
base-line architecture at later points in time, when parts of its de-
tailed design and implementation are already developed, will result in
significant and cost intensive modification efforts.

Consequences We will receive the base-line architecture of the application under de-
velopment: its relevant subsystems, their responsibilities and collab-
orations, and also the design principles that guide its further specifi-
cation and refinement. Since we only focus on the application’s de-
composition into major functional and infrastructural subsystems,
the base-line architecture is not overly detailed. However, the prepa-
ration of the base-line architecture for growth ensures the system’s
future evolution. The base-line architecture also adopts proven de-
sign concepts, due to the use of analysis and architectural patterns.

The architectural patterns also support the integration of functional
with non-functional aspects: all services of the system can be effec-
tively implemented, but under consideration of non-functional as-
pects that positively impact the system’s development, maintenance,
evolution, and adaptation [POSA1]. By applying the architectural pat-
terns in their order of importance, it is ensured that design structures
and design principles that help with implementing a more important
non-functional system property will govern the system’s base-line ar-

50 Building Software with Patterns

© Siemens AG 1998, all rights reserved

chitecture more than design structures and design principles that ad-
dress a less important property. The analysis and architectural pat-
terns further help with communicating the architectural vision: what
kind of subsystem structure is it, why is it exactly this structure,
what are its underlying design ideas, and how is it built. We have cre-
ated an architectural vision.

Example An analysis of the non-functional requirements for the warehouse
management system reveals the following four factors that impact its
base-line architecture:

• Distribution. The system is highly distributed across a computer
network. Core functionality is located on a central server, with
many clients accessing this functionality, from PCs to small hand-
held terminals on forklifts.

• Human-computer interaction. Users communicate with the applica-
tion using a huge variety of user interfaces. Examples include
form-based interfaces, hand-held terminals with buttons to press,
and menus and dialog boxes for event-driven interaction.

• Platform independence. The system must run on multiple hardware
and operating systems. For example, we might want to use PCs
with Windows NT for user interface clients and a UNIX server for
the system’s core functionality.

• Integration. Wherever useful we want to integrate 3rd party prod-
ucts, such as databases, or existing legacy software, such as for
resource planning.

There are three architectural patterns that help with resolving above
non-functional requirements. The Broker pattern [POSA1] supports
distribution and integration, the Model-View-Controller pattern
[POSA1] human-computer interaction, and the Layers pattern
[POSA1] platform independence.

Let us assume, in the context of this example, that distribution is the
most important system property. Thus, we apply Broker first. The
resulting structure basically consists of clients and servers, and a
broker for routing messages across process and machine boundaries.
The Model-View-Controller pattern is then integrated into this struc-
ture, with the servers representing the different parts of the model,
and the clients the view and controller components. The Layers

Architectural Vision 51

© Siemens AG 1998, all rights reserved

pattern is applied in third place. It helps with splitting the broker
component into two parts: the plain communication logic and a com-
ponent which abstracts from low-level operating system features that
implement basic communication mechanisms.

In terms of the warehouse management system this means that we
develop user interfaces as thin clients, and the functional behavior of
the system—the model component in terms of Model-View-
Controller—as servers, all on top of a Broker-based communication
infrastructure. Due to the Broker architecture we are able to
distribute the system in a computer network. If we further use a
‘standard’ Broker implementation, such as a CORBA [OMG98] Object
Request Broker, we can also integrate all 3rd party components that
follow its communication model. Due to MVC’s separation of human-
computer interaction from application functionality we are able to
provide multiple user interfaces for controlling the system: forms,
menus, dialog boxes, windows, panels, command lines—whatever is
needed. Layers, finally, keeps the communication logic independent
from operating system specifics, and thus supports the system’s
portability to other hardware platforms.

The result of applying Broker, Model-View-Controller, and Layers is
the basic component-communication and component-cooperation in-
frastructure for the warehouse management system. Broker defines

Model

Controller

ViewBroker

Bridge

ProxyProxy

Client Server

Cummuni

Bridge

ProxyProxy

View ModelController

Client

Model-
View-
Controller

Broker

User Interfaces

Warehouse Management

Communication

Functionality

Layer N

Layer 1

Layers

OS
Infrastructure

*
* *

*

** cation

Broker

0..1

*
* *

*

**

0..1

*

*

52 Building Software with Patterns

© Siemens AG 1998, all rights reserved

how clients can access remote servers. Model-View-Controller speci-
fies how user interface components interact with the functional core,
and Layers how the general communication functionality exploits the
corresponding mechanisms of the underlying operating system. The
patterns further define the two general design principles for the sys-
tem: separation of application from communication functionality and
separation of the application functionality from the system’s user in-
terface.

For the functional decomposition of the warehouse management
application we have no domain-specific patterns available. A ‘conven-
tional’ analysis results in the following four subsystems:

• The warehouse management core functionality implements a repre-
sentation of the warehouse’s physical structure and all services
that operate on this structure. Examples of such services include
storing and fetching items.

• A subsystem for controlling and monitoring the warehouse automa-
tion equipment provides sensors which allow to acquire the actual
state of the warehouse automation equipment, as well as actors for
controlling its further behavior.

• The warehouse administration allows to configure the warehouse
management system and to monitor its current state.

• The database is responsible for keeping and maintaining persis-
tent data in the application.

We integrate the four functional subsystems into the system’s infra-
structure such that each becomes its own server component.

The architectural vision of the warehouse management system is
complete.

Cummuni

Bridge

Proxy

Proxy

View CoreController

Client

User Interfaces

Warehouse Management Functionality

Communication OS
Infrastructure

*
*

* cation

Broker

0..1

Auto-
mation DatabaseAdmin

Proxy Proxy Proxy

53

© Siemens AG 1998, all rights reserved

Step-wise Refinement
Context We are specifying a software architecture in a process of Piecemeal

Growth (43). The Architectural Vision (47) of the system is defined.

Problem How can we resolve a given design problem most effectively? Four
forces must be considered:

• The solution to the design problem must meet this problem’s own
requirements, but must also obey to the global design principles
defined by the Architectural Vision (47).

• In order to avoid unnecessary system complexity, we do not want
to resolve similar design problems completely differently.

• The system may build upon 3rd party or legacy software.

• We like to solve the problem with help of patterns.

Solution Resolve the design problem by step-wise refinement. Extend the soft-
ware architecture with new components and relationships, and
decompose existing design elements with finer-grained components
and relationships, such that both the functional and non-functional
aspects of the design problem are addressed.

First, specify domain-specific components, their relationships, and
corresponding collaborations that will address the functional aspects
of the design problem at hand. Use analysis patterns for this specifi-
cation, if possible, such as those described in [Fow97], [PLoP94],
[PLoP95], and [PLoP96]. With help of design patterns then provide an
infrastructure for integrating the domain-specific components, rela-
tionships and collaborations into the existing software architecture.
The selected design patterns should not only address the non-func-
tional aspects of the original design problem but should also obey to

Identify a problem1
in the existing design

Select a pattern that2
resolves the problem Refine the design by3

applying the pattern

A

C

A B

C

54 Building Software with Patterns

© Siemens AG 1998, all rights reserved

the design principles pre-scribed by the higher-level design that is
refined. Select the analysis and design patterns according to the
guidelines given in [POSA1]. If you are refining a part of the architec-
ture that was specified by a pattern in a previous refinement step, you
may also consult this pattern’s implementation guidelines. These of-
ten reference further patterns which may also help in the current re-
finement step.

Split complex problems that cannot be resolved by a single pattern
into smaller subproblems that can be solved by several patterns in
combination. Always Enforce the Architectural Vision (75): ensure that
solutions to specific design problems consistently follow the system’s
global design principles. Provide a Component-Oriented Legacy Inte-
gration (71) if 3rd party or legacy software must be used. If several pat-
terns are selected to refine a specific part of the system, apply these
patterns One Pattern at a Time (78), with descending order of impor-
tance of the aspects they address. When refining subsystems and
large components, each of these should define a Stable Design Center
(63).

If no patterns are available for resolving the design problem, create
the solution by using an appropriate analysis and design method. Or,
even better, use patterns that guide the analysis and solution of the
problem, such as the patterns presented in [Coad95].

If the optimal solution of the design problem does not integrate with
the design part you are detailing, Refactor Instead of Large Lump
Design (59), to adjust the existing architecture before continuing with
its further refinement

Recursively refine the components and relationships that were added
to the design, if they give rise to new design problems. Stop the refine-
ment when all design problems are resolved or if they can be imple-
mented in a straight-forward manner without further decomposing
existing design elements or extending the given software architecture.

Consequences We receive a pattern-based design that is coherent and complete in
all its parts. The use of analysis patterns helps integrating the func-
tional aspects of the design problems that arise during the refine-
ment, and the use of design patterns their non-functional aspects.
The resolution of design problems that share a common problem core
with the same design principles avoids complex and patch-work-like

Step-wise Refinement 55

© Siemens AG 1998, all rights reserved

design structures. Legacy or 3rd party software fits seamlessly into
the existing design, since we provide a system-oriented integration of
such artifacts rather than using them as they are. By applying the se-
lected patterns in their order of importance, design structures that
help with implementing a more important design problem will govern
the system’s architecture more than design structures that address a
less important design problem. Designing subsystems as stable de-
sign centers supports us in specifying software architectures that al-
low for extension and adaptation, but without the need to modify their
key elements and abstractions.

Example When specifying the subsystem that provides the functional core of
our warehouse management system, a major aspect to consider is
how to represent physical storage.

Unfortunately, there are no analysis patterns for the warehouse man-
agement domain available. To resolve the problem of storage repre-
sentation we therefore follow an object-oriented analysis and design
method.

Warehouses typically expose a hierarchical storage organization.
They may consist, for example, of a certain number of aisles, with
each aisle comprising two sides, each side a number of racks and
each rack a number of bins. In addition, there is special-purpose stor-
age, such as quality assurance, transfer bins, doors, and dump area.
From a general perspective, each part of such a structure is a ware-
house for itself. It is possible to store an item in an aisle, a side of an
aisle, a rack, and a bin, or at a door. We can also fetch an item from
each of these kinds of storage.

While this general schema underlies almost all warehouse structures,
actual ‘instances’ vary significantly, for example in their number of
aisles, racks per side, transfer bins, dump areas, and so forth.

The challenge here is to provide a design that captures this huge
variety of possible storage organizations and configurations under a
single ‘warehouse’ view. At the same time, the design should also be
open for adaptation, modification, and extension. Furthermore, we do
not want client components of our system to be dependent on this
structure. Whether a storage is an aisle or a bin should be hidden
from them.

56 Building Software with Patterns

© Siemens AG 1998, all rights reserved

The Composite pattern [GHJV95] seems to fit well for resolving our
problem. It provides an extensible design for representing arbitrary
hierarchical object structures, while hiding the details of concrete
structures from clients. We therefore model the physical warehouse
structure as a hierarchy of composite classes: with a class
AbstractStorage at its top, a class CompositeStorage for repre-
senting aisles, sides and other compound storages, and separate leaf
classes for each ‘atomic’ storage such as bin, transfer bin, door, qual-
ity assurance, and dump area. Interfaces of operations that are
shared by all kinds of storages are integrated into the AbstractStor-
age class, such as for storing and fetching an item.

However, even though all kinds of storage share a common interface,
it is impossible to implement these methods in the corresponding
classes of the hierarchy, as proposed by ‘traditional’ object-oriented
design guidelines. Different kinds of storage that are represented by
class CompositeStorage , such as aisles and racks—or even different
instantiations of the same kind of storage—may differ in their con-
crete behavior with respect to these functions. For example, when
storing items, there might be different bin selection strategies for dif-
ferent racks in the warehouse. There is only commonality in the in-
terfaces and semantics of above functions, but not in their detailed
behavior.

We therefore need to detail and extend the given design such that it
supports the configuration of individual storage with individual
behavior, for example with search strategies for free storage locations.
However, we do not want to lose the common view onto the storage as
a whole, which is provided by the current architecture. This is a case
for the Strategy pattern [GHJV95].

We introduce an AbstractStrategy class which provides common
interfaces for all configurable aspects of a physical storage and con-
nect it with the AbstractStorage class of our existing storage hier-

Door

Abstract

Bin

Storage

Composite
StorageDump

Transfer
Bin

*

Step-wise Refinement 57

© Siemens AG 1998, all rights reserved

archy. The methods of concrete storage classes are then refined to
delegate the execution of all storage-specific behavior to a Con-
creteStrategy , and the whole design is extended with the corre-
sponding strategy hierarchy.

The refined design provides us much flexibility in configuring con-
crete warehouses—both with respect to physical storage structures
as well as their configuration with concrete behavior.

In addition to storage-individual services, we must also implement
services that operate on the whole warehouse structure, such as cal-
culating free storage capacity. However, we like to integrate such ser-
vices without giving up our current design.

Addressing this problem is the intent of the Visitor pattern [GHJV95].
Visitor provides a mechanism for ‘hopping’ over a given object
structure in order to perform certain services. Thus, Visitor seems the
be the candidate for refining our design.

We detail our current design as follows. A class AbstractVisitor
provides the general interface for starting an operation on a given ob-
ject. The class AbstractStorage is refined with a method for ‘accept-
ing’ a Visitor for performing an operation on a storage structure. Con-
creteVisitor classes then implement these operations. We have
added even more flexibility to the design of our warehouse structure
and the services that operate on it.

Abstract
Strategy

Concrete
StrategyDoor

Abstract

Bin

Storage

Composite
StorageDump

Transfer
Bin

*
*

Abstract
Strategy

Concrete
StrategyDoor

Abstract

Bin

Storage

Composite
StorageDump

Transfer
Bin

Abstract
Visitor

Concrete
Visitor

*
*

*

58 Building Software with Patterns

© Siemens AG 1998, all rights reserved

Further patterns apply for specifying other aspects of the subsystem,
such as Flyweight [GHJV95] for providing properties for storages and
Iterator [GHJV95] for supporting different traversal strategies for vis-
itors.

Once the subsystem is completely defined we can turn our attention
to other, not yet specified subsystems of the warehouse management
system. Step by step, by applying patterns and governed by the
design principles prescribed by the Architectural Vision (47), we refine
the original base-line architecture, until its details are fully unfold.

59

© Siemens AG 1998, all rights reserved

Refactor Instead of Large Lump Design
Context We are developing a software system in a Piecemeal Growth (43)

fashion, being in the process of Step-wise Refinement (53).

Problem How can we deal with design problems that arise later in the design
process, but which solutions don’t integrate with the system’s
existing software architecture? For example, problems due to ‘add-
this-feature-immediately’ requests by our customers. Or, when the
programming language constraints the design solution space, due to
features it does not offer. Resolving this conflict means to balance two
forces:

• Aspects of the design problem that have an impact on already ex-
isting parts of the software architecture cannot be ignored. Rather
the software architecture has to be specified under consideration
of these aspects.

• The solution to the design problem at hand should integrate with
the existing design. It should also be consistent to the global design
principles defined by the Architectural Vision (47).

Solution Refactor the existing architecture [Opd92] [Fow97]. Do not constrain
the optimal solution to the design problem at hand by inappropriate
larger structures and global design principles.

Identify all aspects of the solution to the design problem that impact
the existing software architecture—specifically the part which will

If the solution to a problem1
does not integrate

... repair the existing2
architecture

... and integrate3
the solution into

with the existing
design ...

the revised design

60 Building Software with Patterns

© Siemens AG 1998, all rights reserved

contain the solution to this problem. Adjust this part of the design ac-
cording to the identified aspects. Similarly, revise the specification of
all sub-parts of the changed design which are affected by the adjust-
ment. We may need to modify these as well. Then embed the solution
to the design problem into the revised software architecture.

In other words, we resolve—by Step-wise Refinement (53)—those
higher-level design problems again which lead to the structure that
is inappropriate for integrating the solution to the design problem at
hand. However, this time we do not just take into account these high-
er-level problems’ own requirements and the global design principles
defined by the Architectural Vision (47). We also consider explicitly the
needs of the lower-level design problem we are currently facing.

When adjusting a given structure, avoid violating even more design
principles, if possible. Otherwise recursively repair the affected de-
sign structures—if necessary up to the Architectural Vision (47).

Consequences The software architecture under construction is not a product of large
lump design [ANAK87]: a fixed construct where each part, once being
specified, stays untouched forever. Rather the architecture changes
and grows continuously all the time, and at all levels of granularity,
to stay coherent and consistent. Thus, the aspect of refactoring is a
vital principle of the process of Piecemeal Growth (43).

Example Suppose that the integration of transport ways and transport equip-
ment into the structure for the warehouse management system has
lead to the following design.

For each transport way between a pair of storage we introduce a sep-
arate TransportWay object that represents this relationship. If this
object connects with a compound storage, such as an aisle, we
assume that all lower-level storage is connected as well, in our exam-
ple both sides within the aisle, and also its racks and bins. For each

Transport
Way

Door

Abstract

Bin

Storage

Composite
StorageDump

Transfer
Bin

*
*

*
Transport
Equipment

Refactor Instead of Large Lump Design 61

© Siemens AG 1998, all rights reserved

transport way we can further specify the transport equipment that
can serve it. This structure allows us to initiate and perform item
transports within the warehouse.

However, even though this design represents the physical world quite
well, it does not seem to fit for our software model. The reason is sim-
ple. Organizing transports requires to involve three kinds of objects:
storage, transport ways and transport equipment. Clients must
distinguish between these objects explicitly; they cannot be treated
uniformly. Neither they are organized in a single class hierarchy, nor
do they provide uniform interfaces.

On the other hand, at least two of these classes share parts of their
‘semantics’. Transport equipment, such as forklifts, can store and re-
lease items, like a storage. The difference is that transport equipment
is mobile, compared to a fixed location of a storage, and that it ex-
poses pro-active behavior, compared to a storage’s re-active behavior.

As a result the item transport service implementation exposes some
overhead to map between the two ‘worlds’, even though storage and
transport equipment provide similar behavior from a general perspec-
tive. In other words, the existing design is not appropriate for a
straight-forward integration of an item transport service.

However, there is a very simple and elegant solution for this conflict.
Rather than providing separate class structures for storage and
transport equipment, we integrate the equipment into the storage
class hierarchy.

By this we can treat storage and transport equipment uniformly. The
differences in their concrete behavior, such as mobile versus fixed
and pro-active versus re-active, are factored out into strategies, which
we have specified already (see Step-wise Refinement (53)).

transport way

Door

Abstract

Bin

Storage

Composite
StorageDump

Transfer
Bin

Concrete
Strategy

*
*

Transport
Equipment

*
Abstract
Strategy

62 Building Software with Patterns

© Siemens AG 1998, all rights reserved

Transport ways also degenerate to a single reference between storage.
Attached to the base class of the class hierarchy we can form, in ad-
dition to arbitrary storage hierarchies, chains of storage. This means,
that from a client perspective, an item transport can be seen as pass-
ing an item along a storage chain, with ‘real’ storage and ‘transport’
storage in alteration, until the item arrives at its final destination.
This view allows a ‘lean’ approach to implementing item transport
functionality.

We refactor our original design accordingly.

63

© Siemens AG 1998, all rights reserved

Stable Design Center
Context We are specifying a software architecture by Step-wise Refinement

(53).

Problem How can we ensure that a design is coherent and stable on the one
hand while being open to adaptation and evolution on the other hand?
Software development organizations cannot afford building separate
systems for every single customer—if these systems have the same
purpose and share a common core. Too many resources would be
bound: manpower, time, and money. Rather today’s market forces re-
quire to continuously reduce development and maintenance costs of
systems as well as their time-to-market [BGHS98]. However, systems
that are sold to many customers must be adaptable to their specific
needs. Almost no two sets of requirements to a particular application
are identical. For example, every warehouse has its unique physical
structure and its operation often follows company-specific strategies.
Two forces further complicate this problem:

• The more that a system’s design cannot be modified, the more
stable it stays over its lifetime, but the less adaptable to customer-
specific requirements it is. On the other hand, the more that a
software architecture supports its evolution, the more likely a mod-
ification will break its coherency.

• Fundamental aspects of a software architecture should not be sub-
ject to change. Rather its structural and behavioral integrity
should be preserved over the system’s lifetime. Otherwise we may
lose its Architectural Vision (47).

Solution Create stable design centers for every subsystem or component of the
application that provides services which are needed in every system
version or structures on which many services operate. Examples
include the fundamental domain model or the system’s communica-
tion infrastructure.

‘Frozen’ core
Customer-specific
adaptations

A stable
design center

*

64 Building Software with Patterns

© Siemens AG 1998, all rights reserved

First, perform a Commonality/Variability Analysis [Cope98] to iden-
tify which aspects of such a subsystem or component stay invariant
across different implementations and which aspects can vary. As-
pects that commonly stay invariant include the subsystem’s or
component’s general responsibility, its interface to clients, the com-
munication protocols for using the interface, but also its basic
structural decomposition and the principles of how these internal
components cooperate. Aspects that typically vary are algorithms for
processing particular operations, add-on behavior to specific servic-
es, and its user look-and-feel, if there is any.

Capture the invariant aspects of each analyzed subsystem or compo-
nent in a so called design center, a micro-architecture which is in-
tended to stay stable over the system’s whole lifetime. Such parts of
a software architecture are also referred to as frozen spots [Pree95].
To specify the design center, follow the guidelines defined by Step-
wise Refinement (53).

Refine the design center with components and relationships that
capture those aspects of the subsystem or component which—over
the lifetime of the system—are likely to be modified or adapted to
customer-specific requirements. Such parts of the design are also
called hot spots [Pree95]. Integrate each variant aspect in a way that
the resulting architecture supports the required kind of variability.

Several patterns help with this. For example, filtering existing service
behavior, or adding new behavior to a service, is supported by the
Decorator pattern [GHJV95]. In general, a decorator allows to execute
additional operations before and/or after invoking an invariant
service. Template Method and Strategy [GHJV95] help implementing
multiple versions of a specific service. Both patterns define a so called
template method [Pree95], which captures the invariant parts of a
service and delegate the execution of variant behavior to hook
methods [Pree95], which can be implemented in an application
specific manner. The Acceptor-Connector pattern [POSA2] allows to
vary the strategies for connection establishment between remote
components in a distributed system, since it decouples connection
establishment from service processing.

Avoid direct dependencies between client subsystems and compo-
nents of the system part we are specifying, and the internal structure
of the design center we have created. The Facade pattern [GHJV95],

Stable Design Center 65

© Siemens AG 1998, all rights reserved

for example, supports a defined access to services of a design center
without exposing its internal structure. Abstract Factory and Builder
[GHJV95] free clients from details of how to instantiate the design
center by introducing special components that implement the cre-
ation process. Service Configurator [POSA2] helps with the design
center’s initial configuration and subsequent run-time re-configura-
tions. The pattern defines a component which allows to dynamically
load and execute abstract factories and builders.

Consider that the design center will likely grow over time, due to
evolving and also new requirements. Therefore Plan for Growth (67)
such that extensions to the design center can be integrated without
modifications of existing parts.

Consequences We get a design that is stable over the lifetime of the system. It has
defined boundaries and responsibilities, and it is well-specified how
it is to be used. Parts of the system that depend on the design center
can rely on this stability. Yet the design center is open for its own evo-
lution. Details can be adapted to specific requirements without the
need to change the center’s key elements or any other part of the soft-
ware architecture. Future extensions can be attached with only few
and local modifications to the existing structure of the design center.

In other words, we have created a product-line architecture [BCK98].
Every running version of a system appears to be hand-crafted, since
it reflects requirements that are specific to a particular customer, but
in reality all versions share a common architecture. We are thus able
to balance the main conflict of our original problem: meeting the re-
quirements of both the customers of a system and the organization
that develops it. If such a product-line architecture is completed with
pre-defined implementations for all ‘frozen’ aspects, we end up with
an (application) framework [POSA1].

If, however, we must change an aspect of a design center that is visi-
ble to its client components—and though minimizing this need we
cannot completely exclude it for the whole lifetime of the system—this
modification will be expensive. Such a change will affect almost all
parts of the system that depend on that aspect. This is the major lia-
bility of creating stable design centers.

Example The design we developed for the warehouse management core func-
tionality2 forms a stable design center and which can be completed to

66 Building Software with Patterns

© Siemens AG 1998, all rights reserved

an application framework. The Composite hierarchy [GHJV95] for
representing storages provides—by the two classes AbstractStor-
age and CompositeStorage —a stable, but extensible, adaptable,
and modifiable infrastructure for composing arbitrary physical stor-
age configurations. Customer-specific storage implementations are
completely encapsulated in the leaf classes of the structure.

The Strategy pattern [GHJV95] supports the configuration of storage
objects with specific behavior. Class AbstractStrategy provides the
infrastructure. Customer-specific behavior is implemented in the
ConcreteStrategy classes.

Concrete configurations of this structure with customer-specific stor-
age, storage behavior, and new ‘general’ services, do not break its
design, neither its fundamental organization, nor its interfaces to
clients. Customer-specific parts can also be added and changed inde-
pendently.

With patterns like Abstract Factory [GHJV95] and Service Configura-
tor [POSA2], we can further free clients from dependencies on how to
actually configure a warehouse. They are totally shielded from the de-
sign center’s internals.

2. Se the example sections of the patterns Step-wise Refinement (53) and Refactor
Instead of Large Lump Design (59).

Abstract
Strategy

Concrete
StrategyDoor

Abstract

Bin

Storage

Composite
StorageDump

Transfer
Bin

*
*

Transport
Equipment

transport way *

67

© Siemens AG 1998, all rights reserved

Plan for Growth
Context We are specifying a system’s Architectural Vision (47) or one of its

Stable Design Centers (63).

Problem How can we prepare a software system for its evolution, after the
original development and customer-specific adaptation has finished?
Two forces arise:

• The evolution of the software system should neither affect its base-
line architecture nor its various design centers.

• A software system rarely completes: features are added or modi-
fied, bugs are fixed, performance is tuned, and environments are
exchanged. However, it is next to impossible to foresee most chang-
es and extensions which customers will require over the system’s
lifetime. It is also impossible to anticipate the evolution of its envi-
ronment, such as hardware platforms and operating systems.

Solution Plan for Growth. Prepare the system’s base-line architecture for add-
ing, replacing and removing subsystems. Allow to extend subsystems
and large components with new features, and support to change ex-
isting ones. However, protect the system’s base-line architecture and
the core structures of its design centers from any such modification:
they should stay stable over the whole lifetime of the system. Similar-
ly, shield clients of evolving subsystems or large components from
changes, specifically if they do not depend on the evolving parts.

All architectural patterns address aspects of change and evolution.
Broker and Microkernel [POSA1] provide so called ‘plug and play’ in-

System Infrastructure

Subsystem

Subsystem

Subsystem Subsystem

Extension
Hooks for adding
extensions

Plug and Play
mechanism

68 Building Software with Patterns

© Siemens AG 1998, all rights reserved

frastructures: registration services allow to integrate new subsystems
with the application, and also to replace and remove existing sub-
systems. Model-View-Controller [POSA1] supports to replace and
change user interface subsystems without affecting the system’s
functional core. Pipes and Filters [POSA1] supports the replacement
of any subsystem in a data driven processing pipeline. Layers
[POSA1] enables the replacement of whole sets of functions which
share a particular general responsibility, for example access services
to the operating system. Presentation-Abstraction-Control [POSA1]
allows to exchange all parts of a system which form a ‘micro-applica-
tion’ of their own. Blackboard and Reflection [POSA1], finally, provide
infrastructures that allow for changing almost any aspect of a system,
for example, service-specific behavior, principles of subsystem inter-
action and collaboration, and the physical distribution of compo-
nents. Use the architectural patterns when defining the system’s
Architectural Vision (47), to prepare its infrastructure for growth.

Many design patterns support adding services to Stable Design
Centers (63) which cannot be foreseen by today. Visitor [GHJV95]
provides an infrastructure that allows arbitrary and yet unknown
services to traverse a given object structure, perform operations on
this structure, accumulate data, and compute a result on the
information and data acquired during the traversal. Extension Object
[PLoP96] and Extension Interface [POSA2] define infrastructures that
allow to implement service extensions to a design center as separate
components. The extensions are accessible through the design
center’s original interface. It offers a special method to return the
specific interface of an extension. Clients that do not use the new
services are not affected by the design center’s evolution.

The evolution of a design center’s existing services is supported by all
patterns that help adapting a system to customer-specific needs, as
described in Stable Design Centers (63).

Consequences The system can grow. It can respond to any new or evolving require-
ment and also to changes in its environment. Yet the fundamental
architecture of the system stays stable, due to the use of architectural
and design patterns. They take care that evolution happens in a de-
fined and controlled manner.

Plan for Growth 69

© Siemens AG 1998, all rights reserved

However, if for some reason the base-line architecture or a design
center is affected by such a change, this will result in major cost and
time effective, modifications to the whole application or the design
center, respectively.

Example The base-line architecture of the warehouse management system is
prepared for growth with respect to three aspects. The Broker pattern
[POSA1] allows to integrate new subsystems that follow the compo-
nent model defined by its concrete implementation, in case of the
warehouse management system this is the CORBA [OMG98] model.
Model-View-Controller [POSA1] prepares the system for user inter-
face evolution. Layers [POSA1] keeps the whole system independent
from the specifics of the underlying operating system platform.

When specifying the structure for representing physical storage in a
warehouse, an important aspect we must consider is the integration
of functionality which we do not know by today. On the other hand,
anticipating customer requests from tomorrow is next to impossible.
The problem we are facing is: can we define a structure that allows us
to integrate new services on demand, without the need to change
existing code? Fortunately, we do not need to modify anything in our
current design in order to address this requirement. An interesting
property of the Visitor pattern [GHJV95] we have applied to
implement functionality that operates on the whole warehouse
structure3 is that we do not need to know the services in advance that
we connect to the visited object structure—neither their name, nor

3. See the example section of Step-wise Refinement (53) for further details.

Cummuni

Bridge

ProxyProxy

View ModelController

Client

Subsystem
Integration

OS

*
* *

*

** cation

Broker

0..1

Operating System
Access

User Interface
Evolution

70 Building Software with Patterns

© Siemens AG 1998, all rights reserved

their semantics, interface and object structure traversal strategies.
So we are set with this aspect.

Abstract
Strategy

Concrete
StrategyDoor

Abstract

Bin

Storage

Composite
StorageDump

Transfer
Bin

Abstract
Visitor

Concrete
Visitor

* * *

Transport
Equipment

transport way *

71

© Siemens AG 1998, all rights reserved

Component-Oriented Legacy Integration
Context We are specifying a system’s Architectural Vision (47) or detailing its

design by Step-wise Refinement (53).

Problem How can 3rd party or legacy software be integrated into the applica-
tion? Four forces must be considered:

• The 3rd party or legacy artifact must integrate with the existing
software architecture such that the system’s domain-specific ser-
vices can be executed as required and the global design principles
defined by the Architectural Vision (47) are met.

• We cannot modify the legacy or 3rd party software. It has to be used
as is. Unfortunately, interfaces of such artifacts often do not match
with the view the application needs onto them.

• The 3rd party or legacy component may offer more services than
needed, or less, or groups of services that are needed in different
parts of the application.

• The implementation of the 3rd party or legacy software may follow
different programming paradigms and may be implemented with
different programming languages than the application.

Solution Provide a component-oriented legacy integration. Define the view the
application needs onto the 3rd party or legacy artifact and map
between this view and the actual interface the 3rd party or legacy soft-
ware offers.

First, specify the application’s desired view onto the 3rd party or leg-
acy component. Identify all services and collaboration protocols the
system expects from that component in order to operate as required.
Do not focus on whether or not the 3rd party or legacy artifact already

If a 3rd party or1
legacy component
must be integrated
into the system ...

?
LegacyLegacy

... define a mapping2
between the interface
the system desires and
the interface the
component provides.

72 Building Software with Patterns

© Siemens AG 1998, all rights reserved

provides these services and collaboration protocols. Rather let the
specification be governed by the part of the existing design in which
the 3rd party or legacy component must be integrated, and the global
design principles defined by the Architectural Vision (47).

If the interface of the 3rd party or legacy artifact already matches with
the interface the application desires, you are set. The component can
be integrated as is. Otherwise map between the specified interface
and the interface the 3rd party or legacy software provides. Several
design patterns help with this.

The Adapter pattern [GHJV95] helps converting between the two in-
terfaces. To the application, the adapter offers the services it needs,
as specified in the first step. These, however, only delegate to the cor-
responding services of the 3rd party or legacy component that actually
provides their implementations. The adapter also performs all bi-di-
rectional data transformations for parameters and return results as
well as all conversions between programming paradigms and lan-
guages that are necessary to implement the mapping. If a service that
the application requires can only be provided by several 3rd party or
legacy services in combination, the adapter further implements their
coordination. The adapter finally hides all services offered by the 3rd

party or legacy component which the application does not need.

Provide a separate adapter for every different role the 3rd party or leg-
acy component implements. For example, if such a component allows
both to control and to monitor a telecommunication network or ware-
house automation equipment, provide two adapters: one for the mon-
itoring and one for the controlling services.

If the 3rd party or legacy software has a complex internal structure on
which the application should not depend, the adapter is also a Facade
[GHJV95] that shields the application from this structure. Service
requests are transparently delegated to the corresponding sub-
component of the 3rd party or legacy artifact.

If the 3rd party or legacy component provides less services than re-
quired by the application, several patterns can apply. Decorator
[GHJV95], which is often referred to as Wrapper, allows to attach ad-
ditional features to the services the 3rd party component or legacy
software provides. For example, if a legacy component for fault man-
agement only returns cryptic descriptions of the errors it detects, a

Component-Oriented Legacy Integration 73

© Siemens AG 1998, all rights reserved

decorator could add the corresponding human-readable descriptions
of these errors before it returns to the client. Likewise, the decorator
could remove features from these services, if the application does not
need them.

Extension Interface [POSA2] and Extension Object [PLoP96], finally,
support adding services to an existing component which it does not
yet provide, but which are needed by the system. These services may
not even be known by today. The missing or new services are imple-
mented separately from the original component and can be linked
dynamically to the system using the infrastructure the patterns pro-
vide for registering new service extensions. The new services are
accessible through the original component’s application-side inter-
face. It offers a method that returns the interface of the service
extension which then can be used by the application to activate the
new services.

Integrate the mapping you have specified with the system’s Architec-
tural Vision (47) or the part of the software architecture you are
detailing by Step-wise Refinement (53).

Consequences The 3rd party or legacy component is integrated into the application
without being modified, but also without violating the perspective the
application needs onto this component.

Example We must integrate one 3rd party component and one legacy compo-
nent into our warehouse management system: the database and the
warehouse automation. The database to be used is a commercial
product. Unfortunately, it is a relational database—in contrast to the
application, which design an implementation follows the object-ori-
ented paradigm. The decision in favor for this product is purely based
on business factors rather than on technological aspects. From the
previous generation of warehouse management applications we have
to reuse the subsystem that implements the controlling and monitor-
ing functionality for the warehouse automation equipment. It is im-
plemented in C rather than C++, the programming language we use
to code the application. However, it allows full monitoring and control
of the automation equipment and has been bug-free for years.

Integrating the controlling and monitoring subsystem is relatively
straight forward. We introduce two adapters, one for controlling and
one for monitoring the automation equipment. On the application

74 Building Software with Patterns

© Siemens AG 1998, all rights reserved

side each adapter offers an object-oriented interface to the sub-
system’s functionality. Every service in this interface represents a
service of equal semantics in the legacy subsystem. The adapters con-
vert between the corresponding interfaces, thereby mapping from the
object-oriented view in C++ that the application takes to the function-
al view in C that is taken by the legacy subsystem, and vice versa.

Much more complicated is the mapping between the object-oriented
system and the relational database. Aspects we must consider are, for
example, the mapping of objects, object relationships and inheritance
hierarchies to tables. Our adapter ends up as a subsystem by itself,
placed between the system and the database. We design it with help
of the pattern language Object/Relational Access Layers [KCR99].

When mapping the objects of our class hierarchy for representing
physical storage and transport equipment to tables, we follow the For-
eign Key Aggregation pattern: if an object contains a data member
that denotes another object, we store the referenced object in a sepa-
rate table. In the table that contains the data for the original object
we maintain a foreign key for the table and row that maintains the
data of the referenced object. For mapping the class hierarchy we ap-
ply the One Inheritance Path One Table pattern: objects of different
kinds of storage are stored in separate tables. These do not only keep
the attributes of the concrete storage we maintain, however, but also
the inherited attributes from class AbstractStorage . The interface
of our adapter encapsulates all these issues, so that the application
just can store and load an object.

Door Bin
Composite

StorageDump
Transfer

Bin
Transport
Equipment

BinsEquipment

X Y Z ref A B C
D E F

Foreign Key

Inherited
Attributes

transport way

Abstract
Storage

*

*

Own
Attributes

75

© Siemens AG 1998, all rights reserved

Enforce the Architectural Vision
Context A software architecture is detailed by Step-wise Refinement (53).

Problem How can we support that a software architecture follows the design
principles defined by its Architectural Vision (47) consistently? If we do
not support the application of the system’s global design principles its
architecture may become hard to understand and maintain: solu-
tions to specific design problems may interpret the principles in mul-
tiple ways, or even follow completely different and contradictory de-
sign principles. The following force complicates this problem:

• Multiple groups may be responsible for developing the system. For
example, each subsystem of the application could be designed and
implemented by a different group, or person. The consistency of
such independently developed designs must be ensured.

Solution Enforce the Architectural Vision (47). Ensure that the concrete design
and coding principles selected for resolving specific design and pro-
gramming problems are compliant with the global design principles
defined by the system’s architectural vision. For implementing the so-
lutions to these problems select only design patterns and idioms
which follow these specific principles.

For example, if separation of concerns is one of the global design prin-
ciples and the design problem at hand requires to support the
exchangeability of a component’s implementation, the concrete de-
sign principle to apply is separation of interface and implementation.
The design pattern that supports implementing this principle is
Bridge [GHJV95]

For concrete1
design problems ...

... select solution2
principles and
corresponding patterns ...

... that are compliant3
to the system’s
architectural vision.

76 Building Software with Patterns

© Siemens AG 1998, all rights reserved

Solve related design problems similarly—by using the same or related
design principles and patterns. Implement their solutions according
to the same coding principles and idioms. If such problems arise at
the same level of abstraction, detail their solutions to the same level
of granularity. Note, that this does not mean to use identical designs
or implementations for resolving related problems. Each concrete
design and implementation must meet the specific needs of the
problem to be resolved. Using the same principles and patterns
means to base solutions of related problems on the same core ideas.
Their actual implementation will likely vary.

Let the software architect(s) of the system supervise and coordinate
the activities of the design and development groups. This ensures
that the groups interpret and ‘refine’ the global design principles con-
sistently and that related problems resolved by different groups follow
the same design principles, patterns, coding principles, and idioms.
Apply the organizational patterns by Jim Coplien in [PLoP94] to define
the appropriate project organization for this.

Sometimes it may be impossible, however, to resolve a problem with
principles which are consistent to the architectural vision. For exam-
ple, when its solution requires to address an additional force which
does not need to be considered elsewhere in the system. Even a refac-
toring of the existing design, as proposed by the pattern Step-wise Re-
finement (53), may not help. In such cases, explicitly document the
deviation from the ‘standard’ design and coding principles. By this
the ‘special purpose’ design becomes visible. Developers who are
maintaining the system at a later point in time thus will know what
was done and why the design does not follow the general principles
that apply for the rest of the system.

Consequences Parts of the architecture that deal with related system aspects expose
similar finer-grained design structures and implementations. This
makes a system easier to understand and change. Its architecture be-
comes balanced and coherent. There is a common vision behind the
solutions to design problems of a similar kind. Exceptions from this
rule are marked explicitly and a rational for each is given.

Example The global design principles selected for our warehouse management
system4 include that the application’s functional core is to be sepa-
rated from human-computer interaction. The base-line architecture

Enforce the Architectural Vision 77

© Siemens AG 1998, all rights reserved

reflects this principle by applying the Model-View-Controller pattern
[POSA1].

To keep the system even more flexible we also want the user interface
implementation to be independent of the concrete input and output
devices used, such as mouse, scanners, buttons on hand-held termi-
nals, displays, and printers. A close analysis reveals that the Adapter
pattern [GHJV95], specifically its Sensor and Display variants, help
with resolving this problem. In short, a sensor provides an unidirec-
tional adaptation from a specific to a general interface. Likewise a
display provides an unidirectional adaptation from a general to a spe-
cific interface.

4. See the example section of pattern Architectural Vision (47).

Proxy

ViewController

Base-line architecture
for the warehouse
management system

ViewController

Client

DisplaySensor

OutputInput

Use the display variant of
Adapter to decouple output
devices, and the sensor
variant to decouple input
devices.

Cummuni

Bridge

Proxy

Proxy

Core

Client

User Interfaces

Warehouse Management

Communication

Functionality

OS
Infrastructure

*
*

* cation

Broker

0..1

Auto-
mation DatabaseAdmin

Proxy Proxy

**

78 Building Software with Patterns

© Siemens AG 1998, all rights reserved

One Pattern at a Time
Context We are specifying an Architectural Vision (47) or—by Step-wise Refine-

ment (53)—the details of a given software architecture. Several pat-
terns were selected to help with this specification.

Problem How can we combine a set of patterns which together should specify
a particular part of a software architecture? Three forces arise:

• The part of the architecture we are specifying may play multiple
functional roles in the system. Each such role must be correctly de-
fined, but some roles are more important than others. The same
holds for the non-functional properties that must be met.

• The design should reflect the essence of the patterns that we apply.

• The more patterns we apply at the same time, the more aspects
regarding their optimal implementation, combination, and integra-
tion arise. Dealing with many of such aspects may, however, may
distract our attention from resolving the original problem.

Solution Apply one pattern at a time [Ale79]. Begin with the pattern which ad-
dresses the most important design aspect that must be considered.
Incrementally refine and complete the initial design by applying the
patterns that address the less important aspects. For all patterns
that are applied, their Design Integration Precedes Implementation
(81).

When specifying a base-line architecture, infrastructural aspects are
generally more important than functional aspects. Even the best

Order the1
patterns that
should be applied

1 2

3

Apply the ordered2
patterns, one pattern
at a time

One Pattern at a Time 79

© Siemens AG 1998, all rights reserved

functional design will not work well within an insufficiently specified
infrastructure, such as for distributed object computing, database
access, and human-computer interaction. When refining a given de-
sign, on the other hand, functional aspects are often more important
than non-functional aspects, since components and relationships
that do not provide the required roles and behavior cannot be used.

Some patterns already specify which other patterns help refining and
completing them, as well as in which order and how the referenced
patterns should be applied. Examples include the patterns in
[POSA1] and [POSA2]. For instance, the Model-View-Controller
pattern [POSA1] suggests to use the Observer pattern [GHJV95] for
specifying the general relationships and collaborations between the
model, the views, and the controllers in an MVC architecture. Follow
such guidelines wherever a referenced pattern helps specifying an as-
pect that must also be considered in the software architecture under
construction.

Consequences By applying one pattern at a time with descending order of impor-
tance, the resulting design will most likely provide the functional and
non-functional properties that are required. Also, the design will
reflect the essence of the patterns we apply. We can follow their im-
plementation guidelines more easily, since aspects of other, not yet
applied patterns, do not need to be considered. All patterns together
form a coherent structure which effectively specifies the system part
at hand.

Example When specifying the Architectural Vision (47) for the warehouse man-
agement system we selected three patterns: Broker, Model-View-Con-
troller, and Layers [POSA1]. Broker addresses the most important as-
pect of the system, namely how to provide a communication infra-
structure for distributed systems. We thus applied Broker first.

Broker

Bridge

ProxyProxy

Client Server

*
* *

*

**

0..1

Communication
Infrastructure

80 Building Software with Patterns

© Siemens AG 1998, all rights reserved

Into this infrastructure we embedded Model-View-Controller. User in-
terface clients are split into a view and controller part, the model of
MVC is specified as a server.

Layers was applied thereafter to further separate high-level commu-
nication services from the low-level network programming interfaces.

Broker

Bridge

ProxyProxy

View ModelController

Client

User Interfaces

Warehouse Management

Communication

Functionality

Infrastructure

*
* *

*

**

0..1

Cummuni

Bridge

ProxyProxy

View ModelController

Client

User Interfaces

Warehouse Management

Communication

Functionality

OS
Infrastructure

*
* *

*

** cation

Broker

0..1

81

© Siemens AG 1998, all rights reserved

Design Integration Precedes Implementation
Context We are defining a specific part of a software architecture with patterns

by applying One Pattern at a Time (78).

Problem How can a pattern be implemented such that it optimally resolves a
particular design problem in the context of a given software architec-
ture? Two forces arise:

• Applying a pattern means integrating new roles into a software
architecture. Distinctions are made where no distinctions were be-
fore. Yet we want to preserve the general structure and behavior of
the design part we are refining.

• Specifying the details of a pattern before integrating it with the ex-
isting software architecture may result in an inappropriate pattern
implementation. You may create a design pearl, which is perfect
and beautiful by itself, but which is not usable for the application
under development. On the other hand, the essential structure and
behavior of the pattern should not be violated.

Solution Integrate the coarse-grained structure of the pattern into the existing
software architecture before unfolding and coding its details.

First, tailor and adapt the pattern’s general structure such that it fits
into the existing software architecture. To define where the pattern is
to be integrated, identify which components of the software architec-
ture must collaborate with which of the pattern’s participants. To
specify how the pattern must be integrated, assign the roles which
the pattern introduces to components and connect collaboration
partners by appropriate relationships. ‘Merge Similar Responsibilities

First integrate1
a pattern into

... then refine2
and program

the architectore

its details.

An architecture

A Pattern

int f(){
return 42;

}

82 Building Software with Patterns

© Siemens AG 1998, all rights reserved

(85), if components of the existing architecture must or should pro-
vide roles that the pattern introduces. Define new components only
for those roles which cannot be integrated with existing components.

Then implement each pattern role and their collaborations to resolve
the original design problem. Specify the required functional aspects
and implement them according to the pattern’s implementation
guidelines.

Aspects that are too complex to be programmed directly should be
further refined. For example, if a component plays multiple complex
roles in the system, each role could be encapsulated in a separate
subcomponent. Commonly used decomposition guidelines can be
found in [Boo94], [Coad95], [Fow97] and [Kar95], and often also in the
pattern’s implementation guidelines. Follow the process of Piecemeal
Growth (43) to unfold such aspects appropriately.

Aspects that can be coded in a straight forward fashion—according to
the decomposition guidelines you are using—should not be further
refined. For example, the set and get methods offered by a value
component that maintains a single non-hierarchical data structure
can often be implemented with just a few lines of code each. In gen-
eral, an overly fine-grained decomposition will only result in a com-
plex pattern implementation. The more that a component is split into
subcomponents, for example, the harder it becomes to understand,
implement and maintain. Furthermore, you may introduce perfor-
mance penalties, due to additional communication and coordination
between the subcomponents.

Consequences A pattern implementation is governed by the existing architecture
with respect to its coarse-grained structure, and by the requirements
of the design problem at hand concerning its detailed specification
and concrete behavior. Yet the pattern’s essential solution idea is still
present in the software architecture, since the integration process al-
ways obeys to the implementation guidelines which the pattern de-
fines.

Example In the warehouse management system we apply the Model-View-Con-
troller pattern [POSA1] to separate human-computer interaction from
the system’s functional core. When refining the controller part of
MVC, we specify concrete controllers for collecting user input and
triggering application services, such as menu items and dialog boxes

Design Integration Precedes Implementation 83

© Siemens AG 1998, all rights reserved

for initiating transports. To connect these controllers with the func-
tional core, we refine the controller-model relationship with help of
the Command Processor pattern [POSA1].

The implementation of the Command Processor pattern suggests us
to specify controller components that receive user input, create so-
called command components, and pass these command components
to a command processor component for execution. However, we do
not specify completely new controllers when implementing the Com-
mand Processor pattern. Rather we extend the controllers that were
defined when applying Model-View-Controller with the two latter re-
sponsibilities from above.

New kinds of components are the command processor and the com-
mands. Their detailed specification, on the other hand, is constraint
by specific functional requirements. For example, when providing
undo/redo and logging services, we must define appropriate interfac-
es for both the command components and the command processor.

After integrating the Command Processor pattern with the existing
design we can proceed with specifying its details. Two patterns help
with this. Composite [GHJV95] can be used for providing macro com-
mands. Singleton [GHJV95] ensures that the command processor
can be instantiated only once. These patterns as well as the relation-
ships between the introduced components can—with one exception—
be programmed straight forward and without further refinement. The
exception is the relationship between the macro command and the
abstract command components. Here we have to provide an infra-

Proxy ControllerComProcACom

Com1

Com2

Macro

Proxy Controller

Integration of Command Processor by
connecting it with the model’s proxy
and existing controller components

Model

Model

*

*

84 Building Software with Patterns

© Siemens AG 1998, all rights reserved

structure for maintaining the contents of a macro command. The It-
erator pattern [GHJV95] helps with this refinement.

Another example for a more detailed and a straight forward imple-
mentation of a pattern is the use of Observer [GHJV95] when refining
the model-view relationship in a Model-View-Controller structure.
The model plays the role of the subject, the views the role of observ-
ers. The concrete implementation of this structure must be able to
handle multiple views effectively. For maintaining these multiple
views, we refine the model with a registry component. To notify views
about changes to the model, we apply the Iterator pattern [GHJV95]:
an iterator iterates over all registered views to let the change propa-
gation mechanism call their update method.

For reasons of robustness, we need to notify the iterator about every
unsubscription of a view from the model’s view registry. Otherwise,
the iterator might try to notify a view that does not exist. To resolve
this problem, we can apply Observer a second time: with the view reg-
istry as subject and the iterator as observer. However, this time we
can implement the pattern straight forward. An analysis reveals that
at any given point in time not more than about 50 views are registered
with the model. We thus only need one iterator to notify views about
changes in the model. There is no need for multiple iterators to
increase system performance by notifying several views simulta-
neously. Therefore, the view registry maintains a defined hard-coded
reference to the singleton iterator and notifies it directly whenever a
view registered or unregistered with the model.

Refinement of Command Processor with
Composite and Singleton

Proxy ControllerComProcACom

Com1

Com2

Macro

Model
*

*

Composite

Singleton

85

© Siemens AG 1998, all rights reserved

Merge Similar Responsibilities
Context Design Integration Precedes Implementation (81) of every pattern we

apply.

Problem How can we optimally integrate a pattern into a partially existing soft-
ware architecture? Five forces must be considered:

• The existing software architecture should govern the pattern’s im-
plementation.

• Components and relationships of the software architecture may al-
ready provide responsibilities that are defined by the pattern.

• Responsibilities of pattern participants may complement or com-
plete responsibilities of existing components and relationships.

• Adding new components or relationships to the design likely in-
creases the structural complexity of the software architecture.

• Assigning overly many and distinct responsibilities to a component
or relationship will likely break the principle of separation of con-
cerns. The resulting software architecture becomes hard to under-
stand, change, and extend.

Solution Assign responsibilities of pattern participants to elements of the exist-
ing software architecture wherever it is useful and simplifies the sys-
tem’s structure and complexity.

If a design element of the structure into which we are integrating the
pattern must, or should, play the role of a specific pattern partici-
pant, three situations are possible:

An architecture

A Pattern

Assign responsibilities of1
pattern participants to
existing design elements
wherever useful

Add new components2
and relationships
for new roles

86 Building Software with Patterns

© Siemens AG 1998, all rights reserved

• The design element already provides all responsibilities of the
pattern participant. In this case we are set. Otherwise we would
implement the same responsibilities twice.

• The design element provides parts of the pattern participant’s
responsibilities. In this situation extend and complete the design
element’s specification with the missing parts. Otherwise we
separate aspects that belong together.

• The design element does not provide any responsibility of the
pattern participant. In this case, assign the responsibilities to the
design element. Do not introduce a new component or relationship.
Otherwise we increase the structural complexity of the system.

If responsibilities of a pattern participant and an existing design ele-
ment complement each other, it may be useful to attach the pattern
participant’s responsibilities to the design element. However, this de-
pends on the concrete context of the system.

On the one hand, combining roles can avoid communication overhead
between otherwise strongly coupled components—and thus perfor-
mance penalties. For example, when separating an interface from its
possible implementations with the Bridge pattern [GHJV95] it may be
useful to also attach authorization services to the interface, as de-
fined by the Protection Proxy pattern [POSA1].

On the other hand, overloading a component with responsibilities
may introduce inefficiency. If such a component plays distinct roles
in several different contexts, it may become a performance bottle-
neck. For example, a peer component in a distributed system may
play both the role of a client and a server. Thus, the peer has three
responsibilities: processing services, initiating connections to remote
servers if it plays the client role, and accepting connection requests
from remote client components if it plays the server role. Keeping the
three responsibilities separate from each other as suggested by the
Acceptor-Connector pattern [POSA2], is more effective than combin-
ing them in a single component.

However, do not assign responsibilities of a pattern participant to an
existing design element which—according to the pattern’s implemen-
tation guidelines—must be implemented separately. Specify these as
components or relationships of their own and integrate them with the

Merge Similar Responsibilities 87

© Siemens AG 1998, all rights reserved

existing software architecture. Otherwise we would break the princi-
ple of separation of concerns.

If a component plays multiple roles in the system which can be sum-
marized by a single implementation, use the Extension Interface
pattern [POSA2] to define role-specific views onto the component. For
example, a component that maintains data which one component is
allowed to modify, and all others only to read, could define two inter-
faces: one read/write interface and one read-only interface.

Consequences In general, assigning responsibilities of pattern participants to exist-
ing design elements helps reducing the structural complexity of a
software architecture. It also ensures that the implementation of the
pattern is tailored to the needs of the system, and not vice versa.

Example In the user interface subsystem of the warehouse management appli-
cation we encapsulate service requests as objects by applying the
Command pattern [GHJV95]. However, this supports the encapsula-
tion of ‘atomic’ requests only. For providing macro commands, such
as for initiating an item transport with an intermediate stop at the
quality assurance, we need additional infrastructure. The Composite
pattern [GHJV95] helps with solving this problem.

The responsibilities of the abstract command component in the Com-
mand pattern and those of the component component in the Compos-
ite pattern complement each other. Clients would not need to distin-
guish between macro commands and ‘atomic’ commands—they
would just execute a command. Thus, we attach the responsibilities
of the component component to the abstract command component.
The concrete commands in the Command pattern already provide the
roles of leafs in the Composite pattern. We do not need to do anything
here.

In our design context, the composite component of the Composite
pattern plays the role of a macro command. This responsibility, how-
ever, must be kept separate from atomic commands. Otherwise we
lose flexibility in composing macro commands. We therefore imple-
ment a separate macro command component and integrate it into the
design according to the guidelines of the Composite pattern.

88 Building Software with Patterns

© Siemens AG 1998, all rights reserved

Another example of merging similar responsibilities is the integration
of transport equipment classes into the composite class hierarchy for
representing physical storages. See Refactor Instead of Large Lump
Design (59) for details.

ACom

Com1 Com2 Macro

ACom

Com1 Com2

Comp

Leaf Composite

Extend the abstract
command with the
responsibilities of
component

Concrete
commands
are leafs

Add a new macro
command that plays
the role of a composite

Integrating Composite
into a Command
structure to provide
macro commands

*

*

89

© Siemens AG 1998, all rights reserved

3.3 Discussion

Now that we have presented the pattern language for building soft-
ware systems with patterns in detail, we can step back to reflect upon
its goals as well as the pre-conditions under which it works best.

The overall objective of the pattern language is, as we have motivated,
to guide the use of patterns from pattern catalogs and pattern sys-
tems. From a technical perspective this means that we want to sup-
port developers in defining architectures which meet the needs of the
systems they are building. In particular, that patterns help them to
create the most effective solutions for the design problems at hand,
under the constraints that must be considered. From a human per-
spective the intent of the pattern language for pattern-based software
development is to enable developers to understand and control the
process of building systems with patterns, to be creative when con-
structing these systems, and to feel habitable in their design and
code.

The language works best under the following three conditions:

• There is an evolutionary development process in place that allows
to adjust the design and implementation of the system whenever
necessary; rather than a waterfall-like process, in which the sys-
tem is constructed in a strictly top-down fashion.

• A software architect or a team of architects is in control and charge
of the system’s design.

• Specific patterns are selected according to the guidelines given in
[POSA1].

In the following, we discuss the goals and pre-conditions in depth.

Technical and Human Aspects

A technical aspect—with respect to using patterns—is related either
to a specific design goal, such as keeping a design flexible, or to the
implementation of a given pattern. In the first case, the pattern lan-
guage lists concrete kinds of patterns for software architecture that
help with achieving the goal. For example, that the Broker architec-
tural pattern [POSA1] defines a flexible infrastructure for distributed

90 Building Software with Patterns

© Siemens AG 1998, all rights reserved

systems. In the latter the language provides appropriate implementa-
tion guidelines. For example, that a pattern should be integrated with
the existing design first before it is implemented in full detail. Seven
patterns of the pattern language address such technical aspects:

• Architectural Vision (47) tells us what kind of patterns help best
with defining a system’s basic structure and how these patterns
are to be used.

• Stable Design Center (63) names specific patterns for software ar-
chitecture which support us in keeping a design stable and flexible
at the same time.

• Plan for Growth (67) lists several architectural and design patterns
that enable a software architecture to grow and evolve over time.

• Component-Oriented Legacy Integration (71) references concrete de-
sign patterns which help integrating an existing software artifact
into a new application, specifically its software architecture.

• One Pattern at a Time (78), Design Integration Precedes Implemen-
tation (81) and Merge Similar Responsibilities (85) complement pat-
tern-specific implementation guidelines with aspects of their inte-
gration into an existing design structure.

Human issues deal, in general, with specific needs of developers when
constructing software systems, for example, how they can be sup-
ported in tackling a design problem effectively, but without being
swamped with overly many aspects that impact its solution.

Human aspects are very important for a software development
project, more than they tend to be on a first look. The reason for this
is simple. Software was built by humans in the past, it is built by hu-
mans today, and it still will be built by humans in the future—despite
the numerous attempts to automate software construction. Thus, if
we do not address the many human aspects that arise in a software
development project, we neglect an important success factor.

The pattern language for pattern-based software development ad-
dresses several human aspects that are specifically related to using
patterns for software architecture:

• One Pattern at a Time (78) supports developers in keeping their
focus on the original design problem when solving it with patterns,

Discussion 91

© Siemens AG 1998, all rights reserved

rather than on issues of handling the details of their combination
and integration to more complex structures.

• Keeping a software architecture understandable is supported by
Merge Similar Responsibilities (85) and Enforce the Architectural
Vision (75).

Most human issues in software development, however, are indepen-
dent of the use of patterns. ‘Applying Patterns’ addresses these in sev-
en of its patterns:

• Piecemeal Growth (43), Step-wise Refinement (53) and Refactor In-
stead of Large Lump Design (59) address, together, four general hu-
man aspects of software design. In particular, that humans usually
cannot define the most optimal design in one pass, that they can
handle only a limited number of design issues simultaneously, that
they may forget to address important design aspects, and that un-
foreseen design problems may arise.

• Architectural Vision (47) addresses the aspect of communication:
what are the key design ideas and concepts of the system.

• Stable Design Center (63) and Plan for Growth (67) address the fact
that in the beginning of a development project humans, in this case
the customers of the system, often have only vague ideas of what
specific requirements the system must fulfil. During development,
and even more while the system is in use, they tend to come up
with ‘add-this-feature-immediately’ requests.

• Component-Oriented Legacy Integration (71) deals with another hu-
man factor: protecting existing investment into education and soft-
ware artifacts. In the first place this sound like a business or eco-
nomic factor. On the other hand, it has a strong human aspect too.
The more people are skilled in using a certain technique, for exam-
ple a relational database, the less they tend to be open for moving
towards a new technique, such as using an object-oriented data-
base instead. When specifying a software architecture by using
techniques that do not match with what people know, such as
object technology and relational databases, Component-Oriented
Legacy Integration (71) helps to them to walk on safe ground.

Within our language both technical and human issues of construct-
ing software systems with patterns are tightly interwoven. For exam-
ple, Architectural Vision (47) addresses how to define a fundamental

92 Building Software with Patterns

© Siemens AG 1998, all rights reserved

system structure and how to support communication of key design
concepts. The goal of Merge Similar Responsibilities (85) is to avoid
structural complexity and to help with understanding the system.

The tight interconnection between human and technical aspects is
not accidental. Most activities in real-world software development ex-
pose both a technical and a human side. Only if we consider this in-
herent coupling explicitly we can achieve the original goal: construct-
ing a software architecture that meets its functional and non-func-
tional requirements, and in which architects, designers, and
programmers feel habitable.

Integration With Methods and Processes

The main pre-condition for our pattern language for pattern-based
software development is that we use an evolutionary software devel-
opment process, in which we can adjust the given architecture when-
ever necessary. That our language does not work otherwise, for exam-
ple when using a waterfall-like process model, is obvious. Neither Re-
factor Instead of Large Lump Design (59) for itself, nor its interplay
with Step-wise Refinement (53) would be applicable. Both patterns,
however, describe fundamental aspects of the process of piecemeal
growth.

But how do the patterns of the language integrate with existing
evolutionary process models, such as the fountain approach [HE95]?
A close look onto such models reveals that they only define between
which phases of software development we can jump back and forth.
They do not specify in detail how this step should look like, and how
bottom-up, top-down, refactoring and growth aspects are interwoven.
This, however, is subject of our patterns for pattern-based software
development. From a pragmatic view the languages defines how
evolution happens. It does not re-define any concrete process step
and the connections between them.

There is only one add-on that our pattern language for pattern-based
software development suggests to existing process models. The lan-
guage stresses the importance of specifying a base-line architecture
for the system right at the beginning of its development, directly after
the requirement analysis. This is manifested by the pattern Architec-
tural Vision (47). The base-line architecture is defined even before the

Discussion 93

© Siemens AG 1998, all rights reserved

detailed specification of the domain model, which is usually the first
development activity in most popular processes. With respect to inte-
grating the pattern language with these processes, we can simply add
an architecture specification phase right after the requirement anal-
ysis phase. After that, we proceed with following the original process,
for example with specifying the domain specific parts. The patterns
are then used to support the steps as defined by that process, and in-
tegrating the results into the Architectural Vision (47).

With this discussion another question arises. Does the pattern lan-
guage for pattern-based software development define a new software
development process or method? A process or method that may re-
place exiting approaches, such as Booch [Boo94], Coad/Yourdon
[CY91], Object Modeling Technique [RBPEL91] or even the Unified
Software Development Process that completes the UML [JBR98]. This
is, however, not the case.

Instead, the pattern language complements existing approaches with
respect to using patterns for software architecture. One Pattern at a
Time (78), Design Integration Precedes Implementation (81), Merge
Similar Responsibilities (85) and Enforce the Architectural Vision (75)
define specific activities and principles for selecting, integrating, re-
fining, and coding patterns for software architecture. Architectural Vi-
sion (47), Step-wise Refinement (53) and Refactor Instead of Large
Lump Design (59) specify how to use patterns within general design
activities that are defined by existing methods. The same holds for
Stable Design Center (63), Plan for Growth (67), and Component-Ori-
ented Legacy Integration (71) which define a general design goals, but
under consideration of using patterns to achieve it. Piecemeal Growth
(43), finally, details the idea of evolutionary development, as we dis-
cussed above.

In summary, our patterns for pattern-based software development
help with using existing process and methods effectively when con-
structing systems with patterns.

The Need for a Software Architect

The second pre-condition for ‘Applying Patterns’ is that a software ar-
chitect or a team of architects is in control and charge of the system’s
design.

94 Building Software with Patterns

© Siemens AG 1998, all rights reserved

This requirement is reflected most obviously in Architectural Vision
(47). An architectural vision usually cannot be defined by all develop-
ers of the system in a committee-like procedure. Rather it has to be
created by a single person from the project team, or by a small group
of key persons. All who are defining the architectural vision must be
experienced developers. They must have an overview of the system as
a whole, and its specific needs and requirements. They must define a
fundamental design structure for the system and must communicate
this structure to those who develop specific parts of it. And finally,
they must integrate individually developed subsystems or parts to a
coherent whole again. In other words, persons who develop an archi-
tectural vision need to be software architects.

Other patterns in our language also define activities that call for a
software architect. For example, Enforce the Architectural Vision (75).
If problems that are similar to each other arise in different parts of the
system, and if these parts are implemented by different developers,
the developers must agree on the same mechanisms and patterns to
resolve the problems. It is the responsibility of a software architect to
establish, supervise, and coach this coordination.

The pattern language for pattern-based software development is
certainly useful even when there is no software architect in place.
However, the larger that a software development team is, and the
more that work is distributed among developers, the greater is the
need for a software architect in order to use it successfully. How the
‘architect role’ can be defined and integrated into a project organiza-
tion is beyond the scope of the pattern language for pattern-based
software development. Jim Coplien’s organizational patterns
[PLoP94], however, address this aspect extensively.

Selecting Patterns

Several patterns of the pattern language require to selection of con-
crete analysis, architectural, design, and programming patterns that
help with resolving the design problem at hand. However, we only ref-
erence the general pattern selection guidelines described in the first
volume of the Pattern-Oriented Software Architecture [POSA1] series
rather then specifying this process in detail. We thus want to give a
short overview of the selection guidelines we have defined. They are

Discussion 95

© Siemens AG 1998, all rights reserved

building upon the pattern system concept we have developed
[POSA1]. For details, please see their original specification [POSA1].
There are seven pattern selection guidelines:

1 Specify the problem. To be able to find a pattern that helps you solve
a concrete problem, you must first specify the problem precisely:
what is the general problem, and what are its forces?

2 Select the pattern category that corresponds to the design activity you
are performing.

3 Select the problem category that corresponds to the general nature of
the design problem.

4 Compare the problem descriptions. Each pattern in your selected
problem category may address a particular aspect of your concrete
problem, and either a single pattern or a combination of several can
help to solve it.

5 Compare benefits and liabilities. This step investigates the
consequences of applying the patterns selected so far. Pick the
pattern that provides the benefits you need and whose liabilities are
of least concern to you.

6 Select the variant that best resolves your design problem.

7 Select an alternative problem category. If there is no appropriate
problem category, or if the selected problem category does not include
patterns you can use, try to select a problem category that further
generalizes your design problem.

Summary

Our pattern language for pattern-based software development helps
us to use patterns for software architecture effectively for two rea-
sons. First it considers both human and technical aspects of software
development and using patterns. Second, it complements and com-
pletes existing software development processes and methods with
pattern-specific steps and aspects. Thus, as concrete patterns for
software architecture are a pragmatic approach to resolve concrete
design problems, this pattern language provides a pragmatic
approach for integrating the use of patterns with existing software en-
gineering practise.

96 Building Software with Patterns

© Siemens AG 1998, all rights reserved

Credits

We like to thank Dirk Riehle for providing us with many insights and
suggestions, which helped us shaping, improving, and polishing our
pattern language for applying patterns. We also owe thanks to an
anonymous reviewer of an earlier version of the pattern language who
convinced us to use a running example from our industrial
experience rather than the design of yet another MVC-based user
interface.

