
20.08.1999 Extension-Interface.doc

Extension Interface 1

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Extension Interface

The Extension Interface design pattern1 prevents bloating of interfac-
es and breaking of client code when developers add or modify func-
tionality to existing components. Multiple extensions can be attached
to the same component, each defining a contract between the compo-
nent and its clients.

Example Suppose, you are developing a telecommunications management net-
work system to monitor and control remote network elements such as
routers or switches. The system must evolve to support new require-
ments and use cases, therefore each network element is modeled as
a separate component. As you are applying the Model-View-Control-
ler pattern, a component is partitioned into two parts: view and con-
trol are located on the management console and are responsible to
draw the current state of the network element on the screen as well
as to interact with the user. The model resides on the network ele-
ment. It communicates with the view and control to receive com-
mands and send state information. Clients are not aware of this func-
tional partitioning. To separate concerns, generic functionality, such
as drawing the network element, is provided by a common base class
that all concrete components in the management framework must in-
herit from.

1. If you ever had some experience with programming Microsoft’s Component
Object Model, then this pattern will strongly remind you of COM and COM+. The
pattern tries to capture the basic ideas behind these technologies at a more general
level. As you will see in the Known Uses section, the pattern was also applied to other
software systems.

View Control Help
public class UniversalComponentBaseClass  {

public void print (){ ... }
public void render () { ... }
public int getState (){ ... }
public long getPermissions (){ ... }
public Enumeration getNeighbors (){ ... }
public void lock (){ ... }
public void unlock (){ ... }
public Object GetData  (String key ) { ... }
public void setData (String key , Object v ) { ... }
... many other methods ...

}

N2

N1

N3



2

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

20.08.1999 Extension-Interface.doc

After the project is finished, developers using the framework request
that new methods, such as dump()  and print() , should be added to
the generic component base class. Over time, incorporating these
user requests bloats the component base class with additional func-
tionality not anticipated in the initial design. Unfortunately, each time
new methods is added to the base class implementation, all user code
must be updated and recompiled, as well.

Context Building flexible, stable, and extensible components.

Problem It is hard to anticipate how software components will be used or how
they will interact. User demands frequently require modifications
and/or extensions to component functionality. However, these
changes often happen after components have been delivered and in-
tegrated into applications. Thus, changes may affect existing user
code that is based on the modified components. In addition, the ar-
chitecture of a component may be destabilized by changing or adding
functionality. Consequently, deploying and (re)using components be-
comes tedious and error-prone.

To avoid these problems, the following forces must be considered
when building components:

• Components should support inevitable evolution. In particular,
when component interfaces remain unchanged, modifications to
their implementation should not impact clients.

• Existing client code must never break when developers add new
functionality to a component. In the best case it should not even be
necessary to re-compile the client code.

• Changing or extending component functionality should be
relatively straightforward and should not bloat existing interfaces.

• Remoting of components should be supported. If components and
their clients are distributed across network nodes, interfaces and
implementation of a component must be physically separated.

Solution Export component functionality to clients via extension interfaces.
Group each semantically related functionality of a component into a
separate extension interface. Provide common and generic
functionality in a root interface, especially the functionality required
to retrieve a particular extension interface. The root interface is a



20.08.1999 Extension-Interface.doc

Extension Interface 3

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

special extension interface all components must support and all other
extension interfaces must derive from. To ‘derive from an interface’
means to syntactically inherit all of its declarations. A component
class implements at least one extension interface.

➥ In our example, the functionality necessary for setting and
getting the properties of a particular network element is a candidate
for an extension interface. ❏

Clients access only interfaces but never component implementations.
Hence, clients only see the different roles of a component. A role in
this context describes a semantic grouping of functionality that a
client can treat as a separate and cohesive unit.2

To add new functionality or change existing functionality, integrate
new extension interfaces rather than modifying existing ones.

To separate usage aspects of a particular component type from
creation aspects, introduce an additional indirection layer: for each
component type an associated factory is responsible for creating
component instances and returning interface references to the client.
The factory is used to instantiate a particular component type on
behalf of a client. After instantiating it returns an initial interface to
the newly created component. With this interface, the client is able to
retrieve all other extension interfaces.

Structure Clients use functionality provided by components. Sometimes they
also act as containers3 where these components live. They access
component functionality via interfaces. Initially, clients can only
interact with the factory associated with a particular component type.
Once they got the first extension interface from the factory, they may

2. For example, an object-oriented class defines a single role that all of its instances
support. Another example is an interface which defines a role all implementations
support. If a component needs to support a given role, its implementation class must
provide an implementation of the interface defining the role. Components expose
different roles by implementing different interfaces. Different components may expose
the same role by implementing the same interface which allows clients to treat them
polymorphically with respect to that particular role.

3. Typically, a component is loaded into the address space of a surrounding run-
time environment that provides resources to all of its components. This run-time
environment is often denoted as container. Containers shield components from the
details of the underlying infrastructure. In a non-distributed scenario the client itself
contains the component and therefore acts as a container.



4

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

20.08.1999 Extension-Interface.doc

access the extension interface functionality to retrieve any other
extension interface.

Components aggregate different kinds of functionality. They present
different roles to their clients. Each role, that is each semantically re-
lated group of functionality, is offered by a separate extension inter-
face. In contrast to a pure object-oriented approach, a component
may provide multiple extension interfaces. However, it must at least
provide one extension interface. Note, that modern object-oriented
languages such as Java or Delphi already support the concept of in-
terfaces.

The root interface provides three different kinds of functionality:

• Generic functionality which all extension interfaces are required to
support. For example, functionality that allows clients to retrieve
the interfaces they request.

• Domain-independent functionality such as methods for the life-cy-
cle management of components.

• Domain-specific functionality that should be provided by all
components within the domain.

While the root interface must implement generic functionality, the
provision of further Domain-independent and Domain-specific func-
tionality is optional.

Each role a component presents to its clients is implemented by a
separate extension interface. All extension interfaces must implement
the root interface functionality. Therefore each of them can take the
role of the root interface. Thus, it is guaranteed that each extension

Class
Component

Responsibility
• Comprises different

roles
• Implements

extension
interfaces

• Returns initial
interface to factory

CollaboratorClass
Client

Responsibility
• Implements

application-
functionality

• Accesses factories
to create new
components

• Accesses
component
interfaces

Collaborator
• Extension

Interface(s)
• Root Interface
• Factory



20.08.1999 Extension-Interface.doc

Extension Interface 5

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

interface is capable of returning any other extension interface on be-
half of a client request.

An extension interface specifies a contract between the client and the
component, such that a component guarantees to provide
functionality precisely as it is described by the extension interface.
Clients must follow the rules for how the interface methods are used,
for instance, the correct type of parameters and the order in which
methods must be called.

To enable clients to create new components, a factory is associated
with each component type. A factory is responsible for separating
creation and initialization functionality of components from usage
aspects. Whenever a client needs to create a new component, it asks
the factory to perform this task. The factory might offer the client
options, such as allowing it to specify the initial extension interface to
be returned after the component has been created. In addition,
factories could provide functionality for finding existing components.

Class
Extension Interface

Responsibility
• Provides specific

and possibly
generic
functionality

CollaboratorClass
Root Interface

Responsibility
• Provides generic

functionality each
extension interface
must provide

Collaborator

Class
Factory

Responsibility
• Defines

functionality for
creating
components

• (Optionally)
contains further
functionality, e.g.,
for finding
components

Collaborator
• Component



6

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

20.08.1999 Extension-Interface.doc

The UML class diagram below presents the concept of the extension
interface pattern:

Note, that this diagram shows the logical relationships among com-
ponents, rather than the physical relationships. For example, exten-
sion interfaces could be implemented using multiple inheritance or
nested classes. This should be considered as a mere implementation
detail transparent to clients. More information will be provided in the
implementation section.

Dynamics Two scenarios are important for the Extension Interface pattern.

Scenario I describes how clients create new components and retrieve
an initial extension interface:

• The client asks the factory to create a new component and to return
a particular extension interface.4

• The factory creates a new component and retrieves an extension
interface as a result.

• The factory asks the root interface for the requested extension
interface and then returns the extension interface to the client.

4. Instead of retrieving a specific extension interface, the factory could also return
any extension interface to the client. This, however, leads to additional roundtrips in
the distributed case.

Factory

create()
find()

Extension
Interface

service()

Root Interface

getExtension()

<<invoke>>

<<instantiate>>

<<new>>

Client

*

Component

service()
implementation()



20.08.1999 Extension-Interface.doc

Extension Interface 7

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Scenario II demonstrates the collaboration between clients and
extension interfaces. The component implementation itself is not
visible to the client: it only deals with extension interfaces:

• The client calls a method on Extension Interface 1 .

• Being called by the client, the implementation of Extension
Interface 1  within the component executes the requested
method and returns results, if any, back to the client.

• The client calls the getExtension()  method of Extension
Interface 1 . It passes a parameter specifying which extension
interface it is interested in. The getExtension()  denotes a generic
method derived from the root interface, therefore it is implemented
by all extension interfaces. The implementation of Extension
Interface 1 within the component locates the requested
Extension Interface 2  and returns it to the client.

• The client calls a method on Extension Interface 2  which is
then executed.

Interface

: Client : Factory

Interface
ID

create()

: Component

getExtension()

: Impl. Ext.
Interface

Interface
ID

Interface

: Client : Impl. Extension
Interface 1

: Impl. Extension
Interface 2

service1()

getExtension()

service2()
Extension

2

Interface
ID 2



8

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

20.08.1999 Extension-Interface.doc

Implementation For an instantiation of the Extension Interface pattern, iterate
through the following steps:

1 Analyze your domain. If your applications and components are re-
stricted to one single application domain or a small set of related
domains, the first step consists of a requirements and domain analy-
sis phase. As a result you will get a domain model that serves as a
base for identifying generic functionality to be implemented by each
component.

➥ For the management console every type of entity that can be
controlled is implemented as a separate object. These objects, called
managed objects, may represent hardware units such as routers,
computers, bridges, or switches. They may also represent software
elements such as applications, ports, or connections. They support
functionality such as controlling and monitoring their state and
behavior, displaying debug information, or visualizing them on the
console. ❏

If your applications apply to multiple domains, consider to use an
existing component technology such as Microsoft COM+ or OMG
CORBA components before trying to invent a ubiquitous component
model.

2 Specify the functionality provided by the root interface. Add only func-
tionality to the root interface that makes sense to be provided by all
extension interfaces. Thus, check carefully for each kind of function-
ality whether it should be part of the root interface or separated into
an extension interface. Keeping this in mind, iterate through the fol-
lowing three substeps:

2.1 Decide which kind of generic functionality should be part of the root
interface. The root interface must at least include a method for
returning extension interfaces to clients. It depends on the
programming language which representation suits best for the return
type of the method. While Java clients expect to retrieve an object
reference, in C++ interface pointers would be an appropriate choice.
In this context, you also need to decide how to uniquely produce and
identify extension interfaces. For example, you could use numbers or
strings. Strings are easily readable by humans, but numbers are
much faster to handle for machines. In large systems, it is necessary
to prevent name clashes. Thus, interface identifiers could be



20.08.1999 Extension-Interface.doc

Extension Interface 9

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

generated by some kind of ‘smart’ algorithm. For instance, Microsoft
COM/COM+ uses 128 bit wide bitfields as identifiers. A special
generator takes the MAC address of the available ethernet card as
well as date and time information to produce identifiers that are
unique over space and time.

Error handling must be addressed as well. For instance, what is a
component supposed to do when the client requests an extension
interface that is not supported by the component. In this case, the
method may either return an error value or raise an exception.

2.2 In addition to generic functionality, the root interface might also offer
methods for housekeeping tasks or other commonly used domain-
independent services. For example, in programming languages such
as C++ that do not provide garbage collection, only the clients
themselves can inform components when they no longer need
particular extension interfaces. Components could support this by
implementing some kind of reference counting methods. Use the
Counted Pointer idiom [POSA1] for this purpose .

Another example for domain-independent services is the integration
of run-time reflection mechanisms. Such mechanisms allow clients to
ask components what concrete functionality they provide. Clients
may query components at run-time for the methods they implement.
Using this knowledge, clients might construct and send method
invocations dynamically. This way, you can support builder tools and
scripting environments to (visually) integrate components into
existing client applications. In order to support reflection
mechanisms you could instantiate the Reflection architectural
pattern [POSA1].

2.3 Domain-specific functionality of your application domain could also
become part of the root interface. For instance, in our management
console example drawing functionality could be moved to the root
interface. However, you can defer this decision to a later point. First,
try to place all domain-specific functionality in separate extension
interfaces. If it turns out that all components have to implement a
particular extension interface, you may refactor your solution and
move the methods of that particular extension interface to the root
interface [Fow97], [Opd92].



10

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

20.08.1999 Extension-Interface.doc

➥ In our example we are using Java as the implementation
language. Java eases the burden of memory management issues.
Thus, the only generic functionality required is a method that allows
to retrieve any interface we need.

// File UnknownEx.java:
public class UnknownEx extends Exception  {

protected int ID;
public UnknownEx(int ID) {

this.ID = ID;
}
public int getID () {

return ID;
}

}
// File IRoot.java:
public interface IRoot  {

IRoot getExtension (int ID) throws UnknownEx;
}

The interface IRoot serves as a generic base interface all (extension)
interfaces must derive from. Extension interfaces are uniquely
identified by integer constants. If a component does not support a
particular interface, it throws an exception of type UnknownEx. In the
error case the identifier of the requested interface is passed as an
argument to the UnknownEx constructor, so that the client can
determine which interface caused the exception.

Persistence mechanisms seem also to be a potential candidate for
inclusion into the root interface. However, there is a whole bunch of
different strategies and policies for handling persistence issues such
as managing component state in databases or files. We are not able
to anticipate all possible usage scenarios. Thus, we decide to provide
persistence mechanisms by separate extension interfaces.
Components then have the choice to support whatever persistence
mechanism they consider appropriate by implementing specific
extension interfaces. ❏

3 Introduce general purpose Extension Interfaces. Group together all
semantically related methods that implement general purpose
functionality which is not included in the root interface. Each of these
groups should become an extension interface of its own. For example,
you could introduce extension interfaces for dealing with persistence
aspects of components as we have discussed above. If you need to



20.08.1999 Extension-Interface.doc

Extension Interface 11

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

support different kind of persistence algorithms, consider the use of
the Strategy pattern [GHJV95].

➥ The management console helps to control and monitor remote
network entities, the managed objects. Managed objects send infor-
mation to the management console and receive commands from it.
Therefore, every managed object must implement the interface IMan-
agedObject .

// File IManagedObject.java:
import java.util.*;

public interface IManagedObject  extends IRoot  {
public void setValue ( String  key, Object  value);
public Object getValue ( String  key) throws WrongKeyEx;
public void setMultipleValues

( Vector  keys, Vector  values);
public Vector getMultipleValues

( Vector  keys) throws WrongKeyEx;
public long addNotificationListener

( INotificationSink  sink);
public void removeNotificationListener (long handle);
public void setFilter ( String  expr);

}

It is important to mention that a component may provide interfaces
such as IManagedObject  that are accessed locally by the client, while
their actual implementation resides on a remote network node. Cli-
ents can be oblivious of this fact when proxies are used. For the sake
of clarity, we are assuming that all interfaces have local implementa-
tions. For the details of introducing proxies to support distributed en-
vironments refer to the Distributed Extension Interface variant.

We deal with managed objects that are visualized on a management
console. Therefore we are introducing two additional extension
interfaces, IDump and IRender . All components that need to print
debug information on the screen or to draw themselves implement
these interfaces.

// File IDump.java:
public interface IDump extends IRoot  {

public String dump ();
}

// File IDraw.java:
public interface IRender  extends IRoot  {

public void render() ;
} ❏



12

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

20.08.1999 Extension-Interface.doc

4 Define component-specific functionality. Some of the extension
interfaces necessary to cover this functionality were already specified
in step 2. Now, you might define additional interfaces that are specific
to the component under construction or that are only applicable to a
small range of components.

➥ We specify the extension interfaces IPort  and IConnection .
Managed objects that represent ports on a specific host implement
IPort . Objects that represent a physical connection between two
ports implement IConnection :

// File IPort.java:
public interface IPort  extends IRoot  {

public void setHost ( String host );
public String getHost ();
public void setPort (long port );
public long getPort ();

}

// File IConnection.java:
public interface IConnection  extends IRoot  {

public void setPort1 ( IPort p1 );
public IPort getPort1 ();
public void setPort2 ( IPort p2 );
public IPort getPort2 ();
public void openConnection () throws CommErrorEx;
public void closeConnection () throws CommErrorEx;

} ❏

5 Implement the components. For this purpose, the following substeps
are required:

5.1 The first activity is to decide how the extension interfaces should be
linked together in the implementation:

• You could provide a component class that inherits from all of its
extension interfaces.

• Extension interfaces could be implemented as nested classes of
your component class. The component class instantiates one
instance of each nested class per extension interface. In addition,
it implements the root interface. Whenever the client asks for a
particular extension interface, the implementation of
getExtension()  returns the appropriate nested class object.

For the client there is no difference which strategy you are actually
using because it only sees extension interfaces.



20.08.1999 Extension-Interface.doc

Extension Interface 13

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

5.2 Implement the extension interfaces. To do so, you first have to provide
the functionality of the root interface. When you are going to
implement the query method for the retrieval of extension interfaces
be aware that the method implementation should conform to three
rules. It must be reflexive: when clients ask the extension interface A
for the very same extension interface A this should work as expected.
The method must be symmetric. If you can get extension interface B
from extension interface A, you should also be able to retrieve
extension interface A from extension interface B. Last but not least,
the implementation should be transitive. If you can get extension
interface B from extension interface A and extension interface C from
extension interface B, it must be possible to get extension interface C
directly from extension interface A.

➥ To uniquely identify different extension interfaces we provide a
class interfaceID  where all interface identifiers are globally stored.
In more sophisticated implementations specific repositories would be
a better choice. In this case, unique identifiers could be automatically
generated by tools so that name clashes are prevented when different
providers provide different interfaces.

// File interfaceID.java:
public class interfaceID  {

public final static int ID_ROOT = 0;
public final static int ID_MANAGEDOBJECT = 1;
public final static int ID_DUMP = 2;
public final static int ID_RENDER = 3;
public final static int ID_PORT = 4;
public final static int ID_CONNECTION = 5;

}

In the management console a component type is available that
represents a connection between two ports. The component supports
the extension interfaces IManagedObject , IRender , IConnection ,
and IDump. We decide to implement all extension interfaces using
interface inheritance:

// File ConnectionComponent.java:
public class ConnectionComponent  implements
IManagedObject , IRender , IDump, IConnection  {

// <table> contains all properties:
private Hashtable  table = new Hashtable ();



14

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

20.08.1999 Extension-Interface.doc

// <listener> contains event sinks:
private Hashtable  listeners = new Hashtable ();
long nListeners = 0;
private IPort  port1, port2;
private String  filterExpression;

// IRoot methods:
public IRoot getExtension (int ID) throws UnknownEx {

switch(ID) {
case interfaceID.ID_ROOT:
case interfaceID.ID_MANAGEDOBJECT:
case interfaceID.ID_DUMP:
case interfaceID.ID_RENDER:
case interfaceID.ID_CONNECTION:

return this;
default:

throw new UnknownEx(ID);
}

}

// IManagedObject methods:
public void setValue ( String  key, Object  value) {

table.put(key, value);
}

public Object getValue ( String  key)
throws WrongKeyEx {
WrongKeyEx  wkEx = new WrongKeyEx ();
if (!table.containsKey(key)) {

wkEx.addKey(key);
throw wkEx;

}
return table.get(key);

}

public void setMultipleValues
( Vector  keys, Vector  values) {
// assure keys.size() == values.size()
for (int i  = 0; i < keys.size(); i++) {

table.put(keys.elementAt(i),
values.elementAt(i));

}
}

public Vector getMultipleValues ( Vector  keys)
throws WrongKeyEx {
boolean wrongKeyDetected  = false;
Vector  result = new Vector ();
WrongKeyEx  wkEx = new WrongKeyEx ();



20.08.1999 Extension-Interface.doc

Extension Interface 15

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

for (int i = 0; i < keys.size(); i++) {
if(!table.containsKey(keys.elementAt(i))) {

wkEx.addKey((String)keys.elementAt(i));
wrongKeyDetected = true;

}
result.addElement(

table.get(keys.elementAt(i))
);

}
if (wrongKeyDetected) throw wkEx;
return result;

}

public long addNotificationListener
( INotificationSink  sink) {

listeners.put(new Long(++nListeners), sink);
return nListeners;

}

public void removeNotificationListener (long handle) {
listeners.remove(new Long(handle));

}

public void setFilter ( String  expr) {
this.filterExpression = expr;

}

// IDump methods:
public String  dump() {

return “Connection between “ + port1.getHost()
+ “ on port “ + port1.getPort() + “ and “
+ port2.getHost() + “ on port “
+ port2.getPort();

}

// IRenderer methods:
public void render () {

System.out.println(“ connection ”);
/* ... */

}

// IConnection methods:
public void setPort1 ( IPort  p1) { port1 = p1; }
public IPort getPort1 () { return port1; }
public void setPort2 ( IPort  p2) { port2 = p2; }
public IPort getPort2 () { return port2; }
public void openConnection () throws CommErrorEx {

System.out.println(“Connecting”); }
public void closeConnection () throws CommErrorEx {

System.out.println(“Disconnecting”); }
} ❏



16

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

20.08.1999 Extension-Interface.doc

6 Provide factories. Iterate through the following substeps:

6.1 Define the factory interface. Each component type might provide its
own factory interface. In this case, however, clients need to cope with
lots of different factory interfaces. For instance, one component type
could offer a factory interface with a single method create() , while
another component type could offer a broad selection of different
methods for creating components. Clients must cope with all of these
different factory interfaces. Thus, consider to provide only one generic
factory interface which all component factories must implement. This
will significantly help clients to handle different components in a
uniform way. Whenever a client is going to create a new component,
the only thing it will need to know is how to deal with the generic
factory interface. The Abstract Factory design pattern [GHJV95]
describes how to handle these issues.

6.2 Decide which functionality the factory is expected to comprise:

• There could be one or more different methods for creating new
components.

• In addition, methods could be available for finding existing
components.

• You might supply functionality to specify policies for component
usage. For instance, the policy to provide a singleton
implementation for a particular component type. Another example
for a policy is whether a specific component is expected to keep its
state persistent or not.

• Life-cycle management support for components is also a candidate
for the factory interface.

It is up to you and your domain what functionality a factory interface
will support. There is one factory for each component type, therefore
use the Singleton pattern for implementing component factories
[GHJV95].

➥ For every managed object a separate factory is provided, which
is implemented as a singleton. The interface IFactory  is introduced
as a generic interface to be supported by all concrete factory
implementations. It contains the method create()  that is used to
instantiate a new component and to return the IRoot  interface to the
caller:



20.08.1999 Extension-Interface.doc

Extension Interface 17

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

// File Factory.java:
public interface Factory  {

IRoot create ();
}

Every concrete factory must implement the factory interface. For
instance, in the connection factory:

// File ConnectionFactory.java:
public class ConnectionFactory  implements Factory  {

// code for using the Singleton pattern:
private static ConnectionFactory theInstance ;
private ConnectionFactory () {
}
public static ConnectionFactory getInstance () {

if (theInstance == null)
theInstance = new ConnectionFactory();

return theInstance;
}

// component creation method:
public IRoot create () {

return new ConnectionComponent ();
}

} ❏

6.3 Introduce a factory finder. If the number of component types
increases, you will have to tackle another problem: how to find the
associated factories. For this purpose, you could provide a global
factory finder that maintains associations between component types
and their factories. In this context, components have to be uniquely
identified. To ease the burden of clients use the same identifier type
as you did for the extension interfaces (see step 2). When you want to
instantiate a particular component type, ask the global factory finder
for the component type. You will then get the factory interface of the
associated component factory. With this interface you are able to
instantiate all the components you need. There is only one global
factory finder in the system, therefore use the Singleton pattern
[GHJV95] for its implementation.

The factory finder might optionally provide some kind of trading
mechanism. In this case, the client does not pass a concrete
component type. Instead, it specifies conditions used by the factory
finder to retrieve an appropriate component factory. For example, the
client might define a set of extension interfaces it is interested in. It
is then the responsibility of the factory finder to locate a component
type that implements all of the requested interfaces.



18

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

20.08.1999 Extension-Interface.doc

➥ The client should not need to know all component factories.
Therefore a factory finder is introduced that is responsible for
managing a hash table with component-to-factory associations.
Thus, clients only must know where the single factory finder is
located. To uniquely identify components we use the same strategy as
we did for interfaces. A class componentID  is introduced that
contains integer values, each associated with a single component
factory:

// File componentID.java:
public class componentID  {

public final static int CID_PORT = 0;
public final static int CID_CONNECTION = 1;

}

The factory finder is implemented as a singleton. It contains two
methods that are publicly accessible: registerFactory()  must be
called—either by clients or by components—to register factories with
the factory finder; findFactory()  is used to search for existing
component factories.

// File FactoryFinder.java:
import java.util.*;

public class FactoryFinder  {
// ID/factory associations are stored in a hash table:
Hashtable  table = null;

// we are using the Singleton pattern:
private static FactoryFinder  theInstance;

public static FactoryFinder getInstance () {
if (theInstance == null) {

theInstance = new FactoryFinder ();
}
return theInstance;

}

private FactoryFinder () {
table = new Hashtable ();

}

// component factory is registered with the finder:
public void registerFactory (int ID, Factory  f) {

table.put(new Integer(ID), f);
}



20.08.1999 Extension-Interface.doc

Extension Interface 19

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

// finder is asked for a specific component factory:
public Factory findFactory (int ID) throws UnknownEx {

Factory  f = (Factory) table.get(new Integer(ID));
if (f == null)

   throw new UnknownEx(ID);
else
   return f;

}
} ❏

7 Implement the clients. Analyze which functionality is necessary to
develop the component-based clients. Use a top-down approach for
this task: Are there any components available that cover some of the
functionality you are expected to provide? Which components should
be composed together? Is there any subsystem within your client
application that is reusable throughout other applications and
should be separated into a new component type? Note, that
components themselves might use other components. When you have
finished separating concerns plug the client application together in a
bottom-up approach.

➥ In the example we provide a class ComponentInstaller  within
the client code that is responsible for creating all necessary
component factories and registering them with the factory finder:

class ComponentInstaller  {
static public void install () {

// first, get the global factory finder instance:
FactoryFinder  finder =

FactoryFinder.getInstance();
// ask the factory finder for the port factory:
PortFactory  pFactory = PortFactory.getInstance();
// ask the factor finder for the conn. factory:
ConnectionFactory  cFactory =

ConnectionFactory.getInstance();
// register both component factories:
finder.registerFactory

(componentID.CID_PORT, pFactory);
finder.registerFactory

(componentID.CID_CONNECTION, cFactory);
}

}

The main class of the client application provides the methods dump-
All()  and drawAll() . Both of them take an array of components as
a parameter. Both iterate through the array asking each component
for the extension interface IDump and IRender,  respectively, and
then call the methods dump()  and render() . This approach shows



20

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

20.08.1999 Extension-Interface.doc

that polymorphism can be supported without requiring implementa-
tion inheritance, but using interface inheritance instead.

// This client instantiates three components:
// two ports and a connection between them:
public class Client  {

private static void dumpAll ( IRoot  components[])
throws UnknownEx {
for (int i = 0; i < components.length; i++) {

IDump d = ( IDump)components[i].getExtension
(interfaceID.ID_DUMP);

  System.out.println(d.dump());
}

}

private static void drawAll ( IRoot components [])
throws UnknownEx {
for (int i = 0; i < components.length; i++) {

IRender  r = ( IRender )components[i].getExtension
(interfaceID.ID_RENDER);

 r.render();
}

}

public static void main ( String args []) {
Factory  pFactory = null;
Factory  cFactory = null;
// register the components to the factory finder:
ComponentInstaller.install();
// access factory finder:
FactoryFinder  finder =

FactoryFinder.getInstance();
try {
   // get factories:
   pFactory = finder.findFactory

(componentID.CID_PORT);
   cFactory = finder.findFactory

(componentID.CID_CONNECTION);
}
catch (UnknownEx ex) {
   System.out.println(“ex.getID() +

“ not found!”);
   System.exit(1);
}

// create two ports:
IRoot  port1Root = pFactory.create();
IRoot  port2Root = pFactory.create();
// create a connection:
IRoot  connectionRoot = cFactory.create();



20.08.1999 Extension-Interface.doc

Extension Interface 21

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

try {
   // initialize ports 1 and 2:

IPort  p1 = ( IPort ) port1Root.getExtension
(interfaceID.ID_PORT);

   p1.setHost(“Machine A”);
   p1.setPort(1111L);

IPort  p2 = ( IPort ) port2Root.getExtension
(interfaceID.ID_PORT);

   p2.setHost(“Machine B”);
   p2.setPort(2222L);
   // initialize connection:

IConnection  c = ( IConnection ) connectionRoot.
getExtension(interfaceID.ID_CONNECTION);

   c.setPort1(p1); // connecting p1 and p2
   c.setPort2(p2);
   // build array of components:

IRoot  components[] = {c, p1, p2};
   // dump all components:
   dumpAll(components);
   // draw all components:
   drawAll(components);
   // open and close the connection:
   c.openConnection();
   c.closeConnection();
}
catch ( UnknownEx error) {
   System.out.println(“Interface “+error.getID()

+ “ not supported!”);
}
catch ( CommErrorEx  commError) {
   System.out.println(“Connection problem”);
}

}
}

Note, that in our example the client could also apply type casting
instead of calling the getExtension() method, because the compo-
nents use interface inheritance for implementing the extension inter-
faces. This, however, introduces a tight connection between the client
implementation and the component implementation. If we later re-
structure the components to leverage the concept of inner classes in-
stead of multiple interface inheritance, all client code would inevita-
bly break. ❏

Variants The following variants of the Extension Interface design pattern
change the indirection layer between components and clients:

In the Extension Object variant [PLoP96] the component itself is
responsible for returning interface references to the client. This



22

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

20.08.1999 Extension-Interface.doc

variant suits well for components that are built using only one single
object-oriented programming language such as C++ or Java. Here,
components derive from all interfaces they are going to implement.
Type casting may be used as a convenient way to retrieve component
interfaces. In language-specific implementations there is no need for
implementing factories, because component classes themselves are
responsible for instance creation.

In the Distributed Extension Interface variant there is an additional
type of participants: Servers host the implementations of
components. They contain the factory as well as the implementation
of all supported extension interfaces. A single server can implement
more than one component type.

In distributed systems, clients and servers do not share the same
address space. Thus, it is the task of the server to register and
unregister its components to a central lookup service, so that clients
or factory finders are capable of retrieving remote components using
the lookup database.

There is a physical separation of interface and implementation in
these systems. Therefore client proxies [POSA1] are introduced to
transparently attach clients to remote extension interfaces. Client
proxies implement exactly the same interfaces as the components
they represent. They hide all communication details from the client
by transparently forwarding method invocations over the network to
the remote component. The proxy could even behave in such a way
that clients are able to leverage the Extension Object variant (see
above). For optimization reasons, client proxies sometimes provide
local implementations of general-purpose extension interfaces to
reduce network traffic.

On the server side, proxies shield components and extension
interfaces from distribution issues. They represent the clients within
the address space of the server.

Proxies may also help to tightly integrate the component model with
the object model of the programming language being used to
implement components and their clients.

If components and clients are implemented in different programming
languages, a high-level definition language might be introduced. This



20.08.1999 Extension-Interface.doc

Extension Interface 23

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

language is mapped to the corresponding constructs of the used
programming language.

In this context, the question arises who is in charge to create proxies
and to translate high-level definition language specifications. Doing
this manually, is tedious and error-prone. Thus, compilers are
provided which automatically generate the proxies as well as
additional plumbing code. The compiler parses through the
component declaration and identifies all available component
interfaces. From this information, it is able to generate the necessary
proxy classes.

To guarantee this kind of distribution and location transparency the
underlying component infrastructure often instantiates the Broker
architectural pattern [POSA1].

In the Extension Interface with Access Control variant the client has to
authenticate itself to the extension interface. Access to an extension
interface might then be restricted to particular clients. For instance,
an administrator might access all interfaces of a client while a regular
client should only be allowed to call interfaces that provide the
business logic.

In the Asymmetric Extension Interface variant one distinguished
interface is responsible for providing access to all other interfaces.
This interface may be provided by the component itself, thus leading
to the Extension Object variant.

Example
Resolved

A few months after the company delivered the component-based
management console to its customers, two update requests have been
issued. Each component is expected to store and load its state using
a database system. In addition, a new component with a star-like
connection configuration is required.

• To solve the first problem, we introduce a new extension interface
IPersistence  that contains methods for storing and retrieving
component state. Every existing component is enhanced to
implement this interface:

public interface IPersistence  extends IRoot {
public long store ();
public load (long persistenceId );

}



24

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

20.08.1999 Extension-Interface.doc

• To support star-like connections we first add the new interface
IConnectionStar . The new component must implement the
interfaces IConnectionStar , IManagedObject , IRender , IDump,
and IPersistence :

public interface IConnectionStar extends IRoot {
public void setAllPorts (IPort ports []);
public void setPort (long whichPort , IPort port );
public IPort getPort (long whichPort );

}

In addition, the class interfaceID is extended with identifiers for the
new interfaces.

Known Uses Microsoft’s COM/COM+ technology is based upon Extension Inter-
faces [Box97]. In COM each COM class implementation must provide
a factory interface called IClassFactory  that defines the functional-
ity for instantiating new instances of that class. When the COM run-
time activates the component implementation it receives a pointer to
the associated factory interface. With this interface clients are able to
create new component instances.

Each COM class implements one or more interfaces that are derived
from a common base interface called IUnknown . IUnknown  contains
the method QueryInterface(REFIID, void**) that allows to
retrieve particular extension interfaces of the component. In the first
parameter clients pass an identifier that uniquely determines which
extension interface is to be returned. If the component implements
the requested interface, it returns an interface pointer in the second
parameter. Otherwise, an error is returned. This is called Interface
Negotiation, because clients are able to interrogate components
whether they support particular extension interfaces.

COM/COM+ implements the Distributed Extension Interface variant
and allows clients as well as components to be developed in any
programming language of choice.

CORBA 3 [OMG98c] introduces a CORBA based component model
where each component may provide more than one interface. A client
may retrieve a particular interface either using a specific provide-
method or by navigating through all interfaces of a component using
one distinguished interface. Thus, CORBA components use the
Asymmetric Extension Interface variant.



20.08.1999 Extension-Interface.doc

Extension Interface 25

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

OpenDoc [OHE96] introduces the concept of adding functionality to
objects using extensions. In the root interface functionality is
provided for retrieving extensions as well as for reference counting. In
OpenDoc the Extension Object variant is implemented.

Consequences Whenever the Extension Interface pattern is instantiated you will
obtain the following benefits:

Extensibility of components: extending the functionality of a compo-
nent only requires to add new extension interfaces while existing
interfaces remain unchanged. Thus, there will be no impact on exist-
ing clients, because they will not recognize any difference. Moreover,
developers can prevent interface bloating by using multiple extension
interfaces instead of placing all methods in one single interface.

Separation of concerns with respect to a component’s functionality is
supported, because semantically related functionality can be grouped
together in separate extension interfaces. A component may play dif-
ferent roles to the same client. For each role there is a separate exten-
sion interface.

Polymorphism is supported without requiring subclassing. If two
components implement the same extension interface, it will be
transparent to a client of that particular extension interface which
component does actually provide the functionality. Due to the same
reason multiple components may implement the same set of
interfaces, thus allowing to exchange component implementations.

Decoupling of components and their clients: clients use extension
interfaces but not the component implementation directly. Hence,
there is no (tight) coupling between the component implementation
and its clients. New implementations of extension interfaces might be
provided without any impact on existing client code. It is even
possible to separate the implementation of a component from its
interfaces using proxies.

Support for interface aggregation and delegation. Components can
aggregate other components in such a way that they can offer the
aggregated interfaces as their own. The aggregate delegates all client
requests to the aggregated component that implements the interface.
This allows the aggregate to take over the identity of every aggregated
component, as well as to re-use their code. Pre-condition for such a
design is, however, that the aggregate component and its constituent



26

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

20.08.1999 Extension-Interface.doc

aggregated components collaborate with respect to the
getExtension()  method.

On the other hand you should be aware of the following liabilities:

Performance might be restricted. Clients can never access
components directly, thus there will be a slightly reduced run-time
efficiency which can be neglected in most cases.

The complexity of developing and deploying components as well as
implementing clients is much more difficult to cope with. This
especially holds when the extension interface paradigm can not be
tightly integrated into the object model of the programming language
used. For example, it is very easy to instantiate the pattern using
Java or C++, while implementing it in C is a complex task.

See Also Sometimes, components and clients do not share the same address
space or are provided in binary form. Thus, the problem arises how
to connect clients and components that are developed using different
programming languages or where components are delivered as binary
entities. In this context, the Proxy pattern [POSA1] might be instanti-
ated to separate a component’s interface from its implementation. For
even more sophisticated and flexible solutions, the Broker pattern
[POSA1] might be used. Components act as servers and the broker
represents a globally available factory finder.

In [PLoP96] the Extension Object variant of the Extension Interface
pattern is introduced.

Credits We were pleased to cooperate with Erich Gamma for this pattern
description. Erich published the Extension Object variant in the PLoP
3 proceedings [PLoP96] which we were able to use as a base for
specifying this more general Extension Interface pattern. In addition,
we like to give credits to Don Box also known as the ‘COM guy’. He
helped us to gain some interesting insights into the paradigm behind
Microsoft COM.


