
PLUGGABLE FACTORY
An Object-Creational Compound Pattern

� 1999 by John Vlissides. All rights reserved

Intent
Specify and change product types dynamically without replacing the factory instance.

Motivation
Suppose you’re using ABSTRACT FACTORY to provide multiple look-and-feel standards as described in that
pattern’s Motivation section. Also suppose that applications in your environment should be able to handle
changes in screen resolution on-the-fly, as might be required when the user docks or undocks a notebook
computer. Undocked, the notebook’s display resolution is, say, 800 by 600 pixels, while the monitor
attached to the docking station is set for 1280 by 1024 pixels (see Figure 1).

800 by 600 display

�

1280 by 1024 display

Figure 1

To remain legible, text must be proportionately larger on the monitor than on the notebook. User interface
“widgets” that incorporate text, such as buttons and menus, should adopt a larger font, but their look and
feel is otherwise unchanged. Similarly, widgets that incorporate a bitmap should use a larger bitmap at
higher resolutions. (Compare the icons in the lower right of each display in Figure 1.)

Since widget instances are created using a factory, you could effect these changes in appearance in two
steps: Replace the factory instance with one that produces widgets with bigger fonts and bitmaps, and then
reconstruct the user interface from scratch. But that’s unsatisfactory for two reasons. First, objects that
maintain references to the old factory must be updated to refer to the new one. That may be difficult to do,
especially if the system was not designed with dynamic updating in mind.

The second reason poses a more fundamental problem. In ABSTRACT FACTORY, you vary the types of
products by defining ConcreteFactory subclasses. The pattern’s motivating example defines
MotifWidgetFactory and PMWidgetFactory in support of two look-and-feel standards. That’s fine if
you’re supporting a small set of standards. Here, however, we are effectively expanding the set of
standards when we target multiple display sizes. Clearly we don’t want to define a different class of
ConcreteFactory for every possible display resolution, any more than we would subclass a button to give it

2 PLUGGABLE FACTORY John Vlissides

a different text label. Instead, buttons are parameterized with the label to display. That approach supports
an infinite variety of labels with just one subclass. Parameterization can also let us change the label at run-
time without replacing the whole button.

You can use parameterization to lend similar flexibility to ABSTRACT FACTORY. Instead of varying product
types by subclassing an AbstractFactory, you define a single ConcreteFactory class—WidgetFactory in this
case—and parameterize it with product prototypes that follow the PROTOTYPE pattern. Whenever a client
requests a product from the factory, the factory returns a copy of a prototypical instance (Figure 2).

return button.copy()

WidgetFactory Button

copy()

Client

ScrollBar

copy()

button

scrollbar

MotifButton

copy()

PMButton

copy()

MotifScrollBar

copy()

PMScrollBar

copy()

setButtonPrototype()
getButtonPrototype()
setScrollBarPrototype()
getScrollBarPrototype()

createButton()
createScrollBar()

return scrollbar.copy()

Figure 2

Clients can affect the products that the factory creates in two ways. A client can use a ��� operation to
obtain the prototype, which can then be modified directly. For example, an application can change the font
of the prototypical button by calling ����������	����
�� to obtain the prototype and then calling
������ on that prototype. Alternatively, a client can replace a prototype with a more suitable one. To
replace the button prototype, just call ����������	����
�� with the new button as a parameter. Either
way, a pluggable factory gives you finer-grained control over products than a conventional abstract factory.

Applicability
Use PLUGGABLE FACTORY when ABSTRACT FACTORY is applicable and any of the following are true:

� Products may vary independently during the factory’s lifetime.

� Ad hoc parameterization techniques, such as supplying a class name to a factory operation,* are
not flexible, expressive, or extensible enough.

� You want to avoid a proliferation of ConcreteFactory subclasses.

* See item 3 under ABSTRACT FACTORY’s Implementation section.

John Vlissides PLUGGABLE FACTORY 3

Structure

ConcreteFactory

createProductA()
createProductB()

ProductA1

copy()

AbstractProductA

copy()

ProductA2

copy()

return
productB.copy()

Client

return
productA.copy()

ProductB1

copy()

AbstractProductB

copy()

ProductB2

copy()

productA

productB

Participants
ConcreteFactory (WidgetFactory)

� keeps references to prototypical ConcreteProduct instances, each of which conforms to an
AbstractProduct interface.

� for each AbstractProduct class, implements an operation that creates a ConcreteProduct object by
copying a corresponding prototype.

� may include ��� and ��� operations for each prototype.

AbstractProduct (Button, Scrollbar)

� declares an interface for a type of product object.

ConcreteProduct (MotifButton, MotifScrollbar)

� defines a product object to be created by the concrete factory.

� implements an AbstractProduct interface

Client

� uses only interfaces declared by ConcreteFactory and AbstractProduct classes.

Collaborations
� Normally, a single instance of a ConcreteFactory class is created at run-time. This concrete

factory creates product objects of related concrete types.

� To change one of the types of concrete product that will be created, replace the corresponding
prototype with another type of product. If a client may do the replacement (as opposed to the
factory itself), then the ConcreteFactory class must provide a public operation for setting the
prototype.

� If it’s ever necessary to change all concrete product types at once, it may be easier to replace the
ConcreteFactory instance with an entirely new one containing a different set of prototypes.

4 PLUGGABLE FACTORY John Vlissides

Consequences
PLUGGABLE FACTORY shares some benefits and liabilities with ABSTRACT FACTORY. Both patterns insulate
clients from concrete classes and their instantiation. Client code needn’t change to create different types of
products, as long as they’re compatible types. And supporting new AbstractProduct types remains difficult.

Beyond these commonalities, however, the consequences of the two patterns diverge.

1. PLUGGABLE FACTORY’s class structure is simpler than ABSTRACT FACTORY’s. In PLUGGABLE

FACTORY, changing the lone ConcreteFactory’s prototypes changes the kinds of products that get
created. ABSTRACT FACTORY needs a whole hierarchy of abstract and concrete factory classes to
achieve comparable versatility. PLUGGABLE FACTORY gives you the flexibility of ABSTRACT

FACTORY with fewer classes.

2. The factory interface tends to be more complex in PLUGGABLE FACTORY. ConcreteFactory must let
clients specify the prototypes to use. Most simply, it can define constructors that take prototypes
as parameters. If clients may update or replace the prototypes after construction (which is likely
given this pattern’s intent), then ConcreteFactory should also provide getter and setter operations
for the prototypes. AbstractFactory classes are generally less flexible by comparison. They don’t
offer parameterized constructors, getters, or setters; so their interfaces tend to be simpler.

3. Changing individual product types is easy. Getter and setter operations provide access to the
factory’s product prototypes and let clients change them independently. A client can modify the
prototype—to update its internal state, for example—or replace it with another instance of any
compatible product type.

With ABSTRACT FACTORY, changing the product type requires a new and different
ConcreteFactory instance. That can be a more disruptive and error-prone operation because of the
potential for dangling references to the old ConcreteFactory instance. And a conventional
AbstractFactory interface provides no way to fine-tune product state.

4. Consistency among products is hard to enforce statically. Products are often designed to work as a
family, which is a key assumption of ABSTRACT FACTORY. Buttons conforming to one look-and-
feel standard, for example, shouldn’t be mixed with menus conforming to another. ABSTRACT

FACTORY can offer a compile-time guarantee that applications will use products from only one
family at a time. The pattern keeps clients from creating products from different families by
associating each family with a concrete class.

PLUGGABLE FACTORY is weaker in its support of the “product family” concept. The pattern
doesn’t group related products under a static type and can therefore make no static guarantees
about product consistency. Instead, a pluggable factory that detects illegal combinations of
products must do so at run-time, as discussed in the Implementation and Sample Code sections.

5. Exchanging families of product types is more difficult compared to ABSTRACT FACTORY. Both
patterns let you change the family of product classes in one fell swoop simply by replacing the
factory instance. However, constructing a pluggable factory is often more involved than a
conventional factory, because you have to supply prototypes to the pluggable factory's constructor.
To compensate, you can provide parameterless constructors that configure the pluggable factory
with default prototypes—assuming there are reasonable defaults.

Implementation
Here are three issues to consider when implementing a pluggable factory.

1. Providing default prototypes. Suppose that, by default, the WidgetFactory in the Motivation
section should create widgets comforming to the Windows look-and-feel standard. Thus if a client
creates a WidgetFactory without prototypes, it will return WindowsButton and WindowsScrollBar
instances. In C++ we can define a single constructor to support these defaults, using default
parameters:

John Vlissides PLUGGABLE FACTORY 5

����������	
 �������� ����	��� � �� ��	�����	� ���	��� � �� �

������������	��� � ����	��� � �� ����� ���������

���	�����	����	��� � ���	��� � �� ����� ���	�����	� ! "

Java, lacking default parameters, requires three constructors to achieve the same effect:

����������	
 �� !

������� � �� ����� ���������#

���	�����	 � �� ����� ���	�����	��#

"

����������	
 ������� ����	���� !

������� � ����	���#

���	�����	 � �� ����� ���	�����	��#

"

����������	
 ������� ����	���� ��	�����	 ���	���� !

������� � ����	���#

���	�����	 � ���	���#

"

While more verbose, the Java implementation is marginally more efficient because it lacks run-
time tests for null—the appropriate default behavior is determined statically. Of course, a C++
implementation may use overloaded constructors too if run-time overhead is an issue.

2. Checking for illegal product type combinations. The ����������	
 constructors in the
preceding item do nothing to prevent a client from pairing a button from one look and feel with a
scrollbar from another. It can happen easily enough—by supplying a MotifButton prototype as the
sole parameter, for example. We can reduce this particular risk by forcing clients to supply either
two parameters or none. But mixing look and feels remains a distinct possibility.

PLUGGABLE FACTORY makes it all but impossible to prevent this problem statically. If mixing is a
concern, the factory should implement run-time tests that throw exceptions when mixing occurs.
Such tests require a way to identify the look-and-feel family to which a widget belongs. The
Sample Code section shows a couple approaches to implementing these tests.

The factory should also force a client to specify a full set of prototypes, even if the client only
cares to specify one prototype. But that may be awkward if there are many kinds of products. For
example, say WidgetFactory produces only two kinds of widgets, buttons and scrollbars. Then it
should define two constructors: a parameterless one that creates default prototypes, and a two-
parameter one that takes a button and a scrollbar and checks their compatibility:

����������	
��#

����������	
�������� ����	���� ��	�����	� ���	����#

If clients are allowed to change the prototypes, then there should also be a single, two-parameter
setter operation:

$��� ����	����
����������� ����	���� ��	�����	� ���	����#

Supplying the prototypes in pairs lets the constructor and setter operations check the prototypes
for consistency. Specifying the prototypes individually is unsatisfactory because it could leave the
factory in an inconsistent state, however briefly.

To see why, suppose WidgetFactory offered individual setter operations for the button and
scrollbar prototypes. Both operations check to make sure the prototypes in the factory are from the
same look-and-feel standard. Now suppose a client wants to use these operations to switch from
the default Windows look and feel to Motif:

����������	
 %����	
#

&& '''

6 PLUGGABLE FACTORY John Vlissides

%����	
'����������	����
����� (���%�������# && ������������ ��)

&& ��		���

&& ����� ���	�����	#

&& �)	� � �*�������

%����	
'�����	�����	��� (���%�������# && ����������
 ����)�$� ����

&& 	����	��)�	�

A combined ����	����
��� operation can avoid this problem. However, that’s a viable option
only when there aren’t a lot of prototypes to set—and that’s probably not the case for
WidgetFactory. In reality it would also offer pull-down and pop-up menus, text fields, and a host
of other common widgets. It would be clumsy and inconvenient to specify prototypes for all
widgets in ����	����
���.

The bottom line: If your ConcreteFactory produces many kinds of products, and you are
concerned about mixing products from different families, then choose ABSTRACT FACTORY over
PLUGGABLE FACTORY.

3. Class names or objects as alternatives to prototypes. Instead of specifying the types to instantiate
with prototypes, Smalltalk and Java implementations can use class objects or strings identifying
class names, as suggested in item 2 of ABSTRACT FACTORY’s Implementation section. Strings and
class names are good alternatives when you’re coding in these languages and either of the
following are true:

� Products do not maintain internal state that can vary across initializations (for example, the
font of a widget changes after docking a notebook computer, as described in the Motivation
section).

� The prototypes are too large to keep instantiated continuously, or copying them is
unacceptably expensive compared to conventional instantiation.

Sample Code
The simplest implementation of the WidgetFactory example looks like this in C++:

����� ����������	
 !

�������

����������	
�������� ����	���� ��	�����	� ���	����#

������� �	���������� �� ! 	���	� �������+,���
��# "

��	�����	� �	������	�����	 �� ! 	���	� ���	�����	+,���
��# "

�	�$����

������� �������#

��	�����	� ���	�����	#

"#

where the constructor is implemented as shown in Implementation item 1. The Button and ScrollBar
classes implement ���
 according to the PROTOTYPE pattern, normally as a deep copy. If clients are
allowed to change the prototypes after the widget factory’s construction, then you’ll need to provide getter
and setter operations. Here’s a getter/setter pair for the button prototype:

������� ����������	
������������	����
�� �� ! 	���	� �������# "

$��� ����������	
������������	����
�� �������� �� �	���� !

�% ��� �	��� -� �������� ������ �������#

������� � �� �	���#

"

Note the ������ operation in ����������	����
��. We’re assuming that the factory owns its
prototypes, as the aggregation diamonds in the Structure diagram suggest. Therefore the setter operation is
responsible for deleting the old prototype before adopting the new one—assuming they’re not one and the
same object. You can ignore this issue in Java, which will reclaim the old prototype automatically.

John Vlissides PLUGGABLE FACTORY 7

If you want to avoid mixing prototypes from different product families, then define a single setter operation
that checks for type consistency at run-time (it’s still okay to provide a getter operation for every product
type):

$��� ����������	
������	����
��� �������� ����	���� ��	�����	� ���	���� !

�% �����.������������	���� ���	����� !

�)	� /���.��������	����
�����)��� ����	���� ���	����#

"

�% �����	��� -� �������� ������ �������#

�% ����	��� -� ���	�����	� ������ ���	�����	#

������� � ����	���#

���	�����	 � ���	���#

"

����.������� is a boolean-returning operation that abstracts the process of checking for compatibility
among the prototypes. Before we look at implementations of this operation, consider a couple of other
things about ����	����
��’s implementation. First, it throws an exception when ����.������� detects
an incompatibility. The type of exception is entirely up to you; here is a simple class that bundles the
factory with the prototypes deemed incompatible:

����� /���.��������	����
��� !

�������

/���.��������	����
��� �

����������	
� %����	
� ������� ������� ��	�����	� ��

�#

����������	
� �������	
 �� ! 	���	� �%����	
"

������� ��������� �� ! 	���	� �������# "

��	�����	� �����	�����	 �� ! 	���	� ���	�����	# "

�	�$����

����������	
� �%����	
#

������� �������#

��	�����	� ���	�����	#

"#

Clients that catch the exception may access the prototypes, fix the incompatibility, and retry the
����	����
��� operation on the factory.

The second thing to note about ����	����
��� is that it too deletes old prototypes, still under the
assumption that the factory owns them. The checks for identity are crucial, because there will be times
when a client wants to change just one of the prototypes. The current interface forces the client to supply a
prototype even if the client doesn’t want it changed. So if the client specifies an existing prototype, the
identity check will avert a misguided deletion.

If it’s common for clients to change just one prototype at a time, then supplying the unchanged prototypes
will be inconvenient. You can make things easier by letting a null value signify no change:

$��� ����������	
������	����
��� �������� ����	���� ��	�����	� ���	���� !

����	��� � ����	��� � ����	��� � �������#

���	��� � ���	��� � ���	��� � ���	�����	#

&& 	�.������ �.���.�������� �� ��%�	�

"

Now let’s look at how we might implement ����.�������. The main challenge lies in determining which
widget classes belong to which look-and-feel family. It’s challenging because the mapping of classes to
look and feel isn’t explicit in the code. ABSTRACT FACTORY defines such a mapping explicitly in the form
of a ConcreteFactory subclass for each family. PLUGGABLE FACTORY defines just one ConcreteFactory,
leaving no other place to define the mapping.

8 PLUGGABLE FACTORY John Vlissides

How do you define the mapping? One way is with a map of class names to look and feels:

����� ����������	
 !

�������

&& '''

������ $��� .������������ ��	���0 �����1�.�� ����� ��	���0 ���23������#

������ $��� ��.�������� ��	���0 �����1�.��#

������ ����� ��	���0 ���4��23����������� ��	���0 �����1�.��#

�	�$����

.��5��	���� ��	���, �.������#

"#

.������ puts the given (�����1�.�, ���23�����) pair into the map, and ��.�� erases the mapping for
the given class name. ���4��23����� returns the look and feel mapped to the given class name, if it has
been mapped; otherwise it returns an empty string.

����.������� uses the �
���� operator to get the class name of each prototype. Then it compares the
look and feels mapped to these names:

���� ����������	
������.������� �������� ������� ��	�����	� ��	�����	� !

��	��� ���1�.� � �
������������'��.���#

��	��� ��1�.� � �
�������	�����	�'��.���#

	���	� ���4��23���������1�.�� -� ���4��23��������1�.��#

"

���4��23����� simply looks the class name up in the map:

����� ��	���0 ����������	
�����4��23����� ������ ��	���0 �����1�.�� !

.��5��	���� ��	���,�����������	���	 � � �.������'%���������1�.��#

	���	� �� �� �.������'������ � 66 � ��#

"

Of course, this assumes someone has mapped widget class names to their appropriate look and feels. In
other words, someone, somewhere must have said:

����������	
��.�������6(���%������6� 6(���%6�#

����������	
��.�������6(���%��	�����	6� 6(���%6�#

����������	
��.�������6�(������6� 6�(6�#

����������	
��.�������6�(��	�����	6� 6�(6�#

����������	
��.�������6����� �������6� 6����� �6�#

����������	
��.�������6����� ���	�����	6� 6����� �6�#

&& ���'

That begs the question of where this code lives. There are at least three choices:

1. In the WidgetFactory, perhaps in its constructor. However, you’ll have to change that constructor
if and when new widget types get defined, or when you target a new look and feel.

2. In a client of WidgetFactory, say, in a global initialization routine. That may be more extensible
than putting the code in WidgetFactory, but it’s still less automatic than we might like.

3. In the widgets themselves. Widgets can do the registration in their constructor. The trick is doing it
just once; repeated registration of the same mapping is unnecessary and promotes inefficiency. A
simple approach to one-time registration tests a static variable:

(���%��������(���%������ �� !

������ ���� ��.����� � �	��#

�% ���.������ !

����������	
��.�������6(���%������6� 6(���%6�#

John Vlissides PLUGGABLE FACTORY 9

��.����� � %����#

"

&& '''

"

There is an entirely different approach to mapping widget types to look-and-feel standards that doesn’t
require explicit mapping code. It relies on a simple widget naming convention wherein a widget’s class
name concatenates the look-and-feel’s name with the generic name for the widget. For example, if we use
“����� �” to denote the Windows look and feel, then the conventional name for the Windows button class
is “����� �������.”

This naming convention lets us eschew explicit mapping code by implementing ����.������� like this:

���� ����������	
������.������� �������� ������� ��	�����	� ��	�����	� !

��	��� ���1�.� � �
������������'��.���#

��	��� ��1�.� � �
�������	�����	�'��.���#

��	��� ���4��23����� � ���1�.�'�����	��� ���1�.�'%����6������6�+7�#

��	��� ��4��23����� � ��1�.�'�����	��� ��1�.�'%����6��	�����	6�+7�#

&& ��	�� �%% ����	�� ����� ��.� �� ������ ���2+���+%��� ��.�

	���	� ���4��23����� -� ��4��23�����#

"

Notice there’s no longer a need for a ���4��23����� operation.

Here’s the same approach implemented in its entirety in Java:

����� ����������	
 !

������ ����������	
 ������� ����	���� ��	�����	 ���	���� !

������� � ����	���#

���	�����	 � ���	���#

"

������ ������ �	���������� �� ! 	���	� �������'���
��# "

������ ��	�����	 �	������	�����	 �� ! 	���	� ���	�����	'���
��# "

������ ������ ����������	����
�� �� ! 	���	� �������# "

������ ��	�����	 �����	�����	�	����
�� �� ! 	���	� ���	�����	# "

������ $��� ����	����
��� ������� ����	���� ��	�����	 ���	���� !

�% �����.������������	���� ���	����� !

�)	� �� /���.��������	����
�����)��� ����	���� ���	����#

"

������� � ����	���#

���	�����	 � ���	���#

"

�	������� ������� ����.������� ������� ������� ��	�����	 ��	�����	� !

��	��� ���1�.� � ������'���8������'���1�.���#

��	��� ��1�.� � ��	�����	'���8������'���1�.���#

��	��� ���4��23����� �

���1�.�'�����	��� ���1�.�'����*9%�6������6�+7�#

��	��� ��4��23����� �

��1�.�'�����	��� ��1�.�'����*9%�6��	�����	6�+7�#

	���	� ���4��23�����'��.��	�:����4��23������#

"

�	�$��� ������ �������#

�	�$��� ��	�����	 ���	�����	#

"

10 PLUGGABLE FACTORY John Vlissides

Known Uses
I have good news and bad news about this section. First the good news: Lacking citable examples of
PLUGGABLE FACTORY, I posted a request for some to the Gang of Four mailing list† and received many
responses. Here are two representative examples, both refreshingly non-GUI-oriented. The first is from
Anthony Lauder:1

I used a prototype-based abstract factory extensively. It was a central
component in a large securities clearance system developed for an
international bank in Luxembourg. The basic idea was that new classes
were loaded at run-time via a dynamic linker and registered a
prototype of themselves along with a symbolic name to a common
abstract factory. New classes could then be developed without
modifying the common framework. Applications would read in from a
configuration file the symbolic name of classes they should be using
and pass the symbolic names of classes to the abstract factory when
object were to be created. If a named class was not known to the
abstract factory, it would use the dynamic linker to look it up, link it in,
and generate a prototype, which was then stored against the symbolic
name for subsequent cloning.

Peter Shillan’s examples were on a more systems-y (not to say “lower”) level:2

As for [PLUGGABLE FACTORY], I’m using it now in a Client/Server
System to provide plug-in components.

One use I make is a network system. The abstraction of an EndPoint is
chosen and various kinds of EndPoint (client, server, serverclient) can
be used. The actual network mechanism (UDP, TCP/IP, MSMQ) is
hidden in the lower levels. A Comms “service” gives the user the
correct type of EndPoint.

I have found this useful in other areas too, such as implementing
application services on a server differently depending on the
underlying OS.

These and other examples I received left no doubt in my mind that PLUGGABLE FACTORY is indeed a real
pattern, not something synthetic. That’s the good news. The bad news is that even though I specifically
asked for citable examples, not one of those I received is published in archival form. And yet, I can hardly
point the finger here—my own examples have the very same problem.

Why is this? Is it because PLUGGABLE FACTORY is too new, too specialized, or too … too … embarrassing
to write up? Surely not. People arrived at it independently, didn’t they? It has proved useful time and again,
hasn’t it? Maybe I haven’t been looking hard enough.

Or maybe people just haven’t been good about writing up their experiences. If so, let me encourage you to
amend your New Year’s resolutions with a promise to disclose one use of PLUGGABLE FACTORY—or any
other combination of existing patterns—by year’s end. I bet someone ends up thanking you for it. In the
meantime, if you have a published known use of PLUGGABLE FACTORY, I’d love to hear about it. I’ll even
throw in a little gift (very little—don’t get excited).

Related Patterns
Dirks Bäumer and Riehle have written extensively on creational patterns that discriminate product types
using abstract specifications—prototypes being the simplest example. In particular, their PRODUCT TRADER

pattern3 offers several variants of and alternatives to PLUGGABLE FACTORY.

† To subscribe, send a note to gang-of-4-patterns-request@cs.uiuc.edu with the subject “subscribe”.

John Vlissides PLUGGABLE FACTORY 11

Acknowledgments
Erich Gamma, Richard Helm, and Dirk Riehle gave me lots of good feedback.

References
1 Lauder, A. E-mail communication, Nov. 2, 1998.
2 Shillan, P. E-mail communication, Nov. 2, 1998.
3 Bäumer, D. and D. Riehle. Product Trader, in Pattern Languages of Program Design 3, Addison–Wesley,
Reading, MA, 1998.

