
29.09.1999 Proactor.doc

Proactor 1

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Proactor

The Proactor architecture pattern demultiplexes and dispatches
service requests that are triggered by the completion of asynchronous
operations.

Example Consider a networking application that must perform multiple oper-
ations simultaneously. For example, a high-performance Web server
must concurrently process HTTP requests sent from multiple remote
client Web browsers [HPS99]. When a user wants to download content
from a URL, the browser establishes a connection to the Web server
and sends an HTTP GET request. The Web server subsequently re-
ceives the browser’s CONNECTindication event, accepts the connec-
tion, and reads the request. It then parses and validates the request,
sends the specified file(s) back to the Web, and closes the connection.

One way to implement a Web server is to use a reactive event demul-
tiplexing model in accordance with the Reactor pattern (75). When a
Web browser connects to a Web server, a new event handler is created
and registered with a reactor, which coordinates the synchronous de-
multiplexing and dispatching of indication events. After the browser’s
HTTP GET request arrives, the reactor demultiplexes the associated
indication event and calls back to the event handler. The handler then
reads, parses, and processes the request and transfers the file back
to the browser. Although this model is straightforward to program,
however, it does not scale up to support many simultaneous users
and/or long-duration user requests because it serializes all HTTP
processing at the event demultiplexing layer.

A more scalable way to implement a concurrent Web server is to use
synchronous multi-threading. In this model, a new server thread is

Web
Browser

File
System

Web
Server

1: HTTP
request

2: parse request

3: read
file

4: send file

2

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

29.09.1999 Proactor.doc

spawned to process each browser’s HTTP GETrequest [HS98], for ex-
ample, one thread for each request. Each thread performs connection
establishment, HTTP request reading, request parsing, and file trans-
fer operations synchronously, that is, server processing operations
block until they complete. Although this is a common concurrency
model, however, the same efficiency, programming complexity, and
portability drawbacks with synchronous multi-threading arise as dis-
cussed in the Reactor pattern (75).

As a result of the drawbacks outlined above, using reactive event
demultiplexing or synchronous multi-threading can lead to
unnecessarily complex and inefficient concurrent Web servers. Yet
Web servers must handle multiple requests concurrently to ensure
adequate quality of service for their users.

Context An event-driven application that processes multiple service requests
simultaneously.

Problem Event-driven applications, particularly servers, in a distributed sys-
tem must handle multiple service requests asynchronously, as well
as invoke requests themselves that execute asynchronously.

➥ For example, our Web server can be programmed to receive com-
pletion events when TCP CONNECT and HTTP GET requests arrive
asynchronously. Likewise, the Web server can invoke read and write
operations asynchronously to transmit a requested file back to a Web
browser. When these asynchronous operations complete, the operat-
ing system delivers READ and WRITE completion events, respectively,
to the Web server. ❏

Before it invokes a specific service to process a completion event, an
application must demultiplex and dispatch each event to its corre-
sponding service handler. Addressing this problem effectively re-
quires the resolution of the following four forces:

• To maximize performance, an application must be able to process
multiple completion events simultaneously without having long-
duration operations postpone the processing of other operations
for an excessive amount of time.

• An application must minimize latency, maximize throughput, and
avoid utilizing the CPU(s) unnecessarily.

29.09.1999 Proactor.doc

Proactor 3

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

• The design of an application should simplify its use of suitable
concurrency strategies.

• Integrating new or improved services should incur minimal
modifications to the generic event demultiplexing and dispatching
mechanisms used by an application.

Solution Invoke operations asynchronously and integrate the demultiplexing
of asynchronously delivered completion events resulting from these
operations with their dispatching to service handlers that process
these events. In addition, decouple these general-purpose event de-
multiplexing and dispatching mechanisms from application-specific
processing of completion events within the service handlers.

For every service offered by an application, introduce an asynchro-
nous operation to perform the associated service requests asynchro-
nously, together with a completion handler to process completion
events containing the results of each asynchronous operation. An
asynchronous operation is invoked by a client and performed by an
asynchronous operation processor. When the operation finishes
executing a completion event is generated by the asynchronous oper-
ation processor. In addition, the asynchronous operation processor
notifies a proactor, which dispatches to the application-specific con-
crete completion handler associated with the asynchronous operation.
This completion handler then processes the results of the asynchro-
nous operation.

Structure The key participants in the Proactor pattern include the following:

Handles identify operating system resources that can generate and
queue completion events, such as network connections, open files,
timers, synchronization objects, and I/O completion ports.

Class
Handle

Responsibility
• Identifies an

operating system
resource

• Generates and
queues completion
events

Collaborator

4

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

29.09.1999 Proactor.doc

➥ The Web server creates a separate socket handle for each client
connection. Completion events occur on these handles when
asynchronous connect, read, and write operations finish executing.❏

Asynchronous operations are used to execute service requests, such
as writing and writing data through a socket handle, asynchronously.
After an asynchronous operation is invoked, the operation is executed
without borrowing the caller's thread of control. Thus, from the
caller's perspective, the operations execute asynchronously.

➥ The types of asynchronous operations that can be used in a Web
server include connect, read, and write operations. ❏

A completion handler specifies an interface consisting of one or more
hook methods [Pree95] that abstractly represent the application- or
service-specific processing for completion events generated when
asynchronous operations finish execution.

Concrete completion handlers derive from the abstract completion
handler. Each implements the methods for a specific service that the
application offers. In addition, concrete event handlers implement the
inherited hook method that is responsible for processing completion
events from external sources, such as data sent to the service from
remote clients, or completion events an application generates
internally, such as timeouts. When these completion events arrive,
the proactor dispatches the hook method of the appropriate concrete
completion handler.

➥ There are two concrete completion handlers in the Web server,
HTTP handler and HTTP acceptor, that perform completion process-
ing on these asynchronous operations. The HTTP handler is respon-
sible for receiving, processing, and replying to HTTP GET requests.

Class
Asynchronous
Operation

Responsibility
• Defines a service

that can be
executed
asynchronously

Collaborator

29.09.1999 Proactor.doc

Proactor 5

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

The HTTP acceptor creates and connects HTTP handlers that process
subsequent requests from remote clients asynchronously. ❏

Asynchronous operations are run to completion by an asynchronous
operation processor, which is typically implemented by the operating
system kernel. When an asynchronous operation finishes executing,
the asynchronous operation processor delegates the subsequent
completion dispatching to the appropriate proactor.

The proactor is a completion dispatcher that calls back to the desig-
nated concrete completion handler in an application after the corre-
sponding asynchronous operation has finished executing. To en-
hance reuse and to separate concerns, the proactor decouples its
higher-level completion handler dispatching strategies from the low-
er-level operation execution mechanisms provided by the asynchro-
nous operation processor.

A client is any entity in an application that initiates an asynchronous
operation. Note that the term ‘client’ refers to any programming entity
that initiates an asynchronous operation, which may or may not cor-
respond to the notion of a ‘remote client’ in a two-tier client/server

Class
Concrete Comple-
tion Handler

Responsibility
• Processes results of

asynchronous
operations in a
specific manner

CollaboratorClass
Completion
Handler

Responsibility
• Defines an

interface for
processing results
of asynchronous
operations

Collaborator
• Handle

Class
Asynchronous Op-
eration Processor

Responsibility
• Executes asynchro-

nous operations
• Delegates to a

proactor when
asynchronous op-
erations complete

Collaborator
• Asynchronous

Operation
• Proactor

Class
Proactor

Responsibility
• Dispatches

Completion
Handlers

Collaborator
• Completion

Handlers

6

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

29.09.1999 Proactor.doc

architecture. In particular, a server can play the role of a client when
it initiates an asynchronous operation. When invoking an asynchro-
nous operation, the client also registers a completion handler and a
proactor with an asynchronous operation processor.

➥ In the Web server, the ‘client’ for asynchronous operations is its
thread(s) of control. These thread(s) initiate asynchronous accept and
read/write operations on HTTP acceptors and HTTP handlers,
respectively, to process HTTP GET requests from Web browsers, which
play the role of ‘remote clients.’ ❏

The structure of the participants in the Proactor pattern is illustrated
in the following UML class diagram:

Class
Client

Responsibility
• Invokes asynchro-

nous operations
• Configures the

asynchronous op-
eration processor
for executing spe-
cific asynchronous
operations

Collaborator
• Asynchronous

Operation
Processor

• Asynchronous
Operation

• Proactor
• Completion

Handler

Completion
Handler

handle_event()

 Proactor

handle_events()

Asynchronous
Operation Processor

register()

Concrete
Completion
Handler A

Handle<<execute>>

dispatches
*

Concrete
Completion
Handler B

 Asynchronous
Operation

execute() <<dispatch
notification>>

Client

<<specify>> <<specify>> <<specify>>

<<delegate>>

owns

notifies

29.09.1999 Proactor.doc

Proactor 7

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Dynamics The following collaborations occur in the Proactor pattern:

• To execute a service asynchronously, an application playing the
role of a client initiates an asynchronous operation by passing it to
the asynchronous operation processor. In addition, the client must
specify to the asynchronous operation processor which proactor
should dispatch the callback on a particular completion handler
when the asynchronous operation completes.

➥ For instance, the HTTP handler in a Web server may instruct
the operating system to read an new HTTP GET request via an
asynchronous operation on a particular socket handle. To request
the operation, the Web server must specify which connected socket
handle to use, as well as which completion handler the designated
proactor should dispatch when the asynchronous read operation
completes. ❏

• After a client invokes an operation on the asynchronous operation
processor, the operation and client can run concurrently with
respect to other asynchronous operations invoked by the
application.

• When an operation finishes executing, the asynchronous operation
processor retrieves the completion handler and proactor that were
specified by the client when the operation was initiated. The
asynchronous operation processor then passes the proactor both
the result of the asynchronous operation and the completion
handler it should dispatch.

➥ For example, if an HTTP handler reads an HTTP GET request
asynchronously, the asynchronous operation processor may report
to the appropriate proactor the completion status, such as success
or failure, along with the number of bytes read. ❏

• The proactor dispatches the hook method on the completion
handler, passing it any completion data specified by the server.

➥ For instance, a Web server might instruct the operating system
to transmit a large file asynchronously across a network one chunk
at a time. After the operating system completes each asynchronous
write operation successfully, the proactor will pass the hook
method on the associated completion handler the number of bytes

8

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

29.09.1999 Proactor.doc

transferred so that it can invoke the next asynchronous write
operation at the appropriate offset in the file. . ❏

Implementation The participants in the Proactor pattern can be decomposed into two
layers: demultiplexing/dispatching infrastructure and application com-
ponents. The demultiplexing/dispatching infrastructure layer per-
forms generic, application-independent strategies for executing asyn-
chronous operations, as well as demultiplexing and dispatching com-
pletion events from these asynchronous operations to their
associated completion handlers. Components in the application layer
define asynchronous operations and concrete completion handlers
that perform application-specific service processing. The implemen-
tation steps in this section start at the bottom with the demultiplex-
ing/dispatching infrastructure layer and work upwards to the appli-
cation layer.

1 Implement the asynchronous operation processor. An asynchronous
operation processor is responsible for executing operations asynchro-
nously on behalf of clients. Thus, its two primary responsibilities are
defining the asynchronous operation APIs and implementing a mech-
anism to execute operations asynchronously.

1.1 Define the asynchronous operation APIs. The asynchronous operation
processor provides a facade [GHJV95] that allows clients to invoke

Con. Compl.
Handler

Proactor

Async.
Operation

: Asynchronous
Operation

: Proactor : Concrete
Completion

Handler

register ()

handle_event()

handle_events()

Result

service()

: Asynchronous
Operation
Processor

: Client

execute ()

Result

Result

29.09.1999 Proactor.doc

Proactor 9

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

asynchronous operations. Several forces must be considered when
designing an API for the asynchronous operation processor facade:

• Portability: The APIs should not tightly couple applications to a
particular platform.

• Flexibility: Asynchronous APIs can be shared by many types of
operations. For instance, asynchronous I/O operations often can
be used to read and write data on multiple I/O devices, such as
network and files. It may be beneficial to design APIs that support
such reuse.

• Callbacks: A client registers a callback when it invokes an
asynchronous operation so its proactor can dispatch the
appropriate completion handler when the operation finishes
executing. A common callback implementation is to have the client
export an interface known by the callee. In this case, clients must
inform the asynchronous operation processor which completion
handler to call back when an operation finishes executing and a
completion event is generated.

• Proactor: Applications can use multiple proactors simultaneously.
Therefore, a client must indicate which proactor should dispatch
completion handler callbacks for each asynchronous operation.

➥ Consider the following class used in our Web server example.

class Asynch_Stream {
// A Factory for initiating reads and writes
// asynchronously.

public:
// Initializes the factory with information that will
// be used with each asynchronous call. <handler> is
// notified when the operation completes. The async.
// operations are performed on the <handle>. Results
// of the operations are sent to the <Proactor>.
Asynch_Stream (Completion_Handler *handler,

HANDLE handle,
Proactor *);

// This starts off an asynchronous read.
// Upto <bytes_to_read> will be read and
// stored in the <message_block>.
int read (Message_Block &message_block,

 u_long bytes_to_read,
 const void *act = 0);

10

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

29.09.1999 Proactor.doc

// This starts off an asynchronous write.
// Upto <bytes_to_write> will be written
// from the <message_block>.
int write (Message_Block &message_block,

 u_long bytes_to_write,
 const void *act = 0);

class Asynch_Result {
// Bytes transferred by asynchronous operation.
u_long bytes_transferred ();

// Error value if operation failed.
u_long error ();

// Asynchronous Completion Token (ACT)
// associated with the operation.
const void * act ();

};

class Read_Result : public Asynch_Result {
// Read-specific information.

};
class Write_Result : public Asynch_Result {

// Write-specific information
};

};

The Asynch_Stream class is a general-purpose factory that can be
used to initiate multiple read() and write() operations asynchro-
nously. When an asynchronous read() operation completes, the
associated proactor will create an Asynch_Stream::Read_Result
and pass it to the completion handler. Likewise, when the asynchro-
nous write() operation completes, the associated proactor will cre-
ate and pass an Asynch_Stream::Write_Result to the completion
handler. These result classes contain information that allows the cli-
ent application to unambiguously identify which asynchronous oper-
ation completed. In addition, the result classes indicate the success
or failure of each operation, as well as conveying operation-specific
information, such as how many bytes were transferred successfully.

1.2 Implement the Asynchronous Operation Processing Mechanism. The
asynchronous operation processor contains a mechanism that exe-
cutes operations asynchronously. Thus, when a client invokes an
asynchronous operation, the operation must be performed without
borrowing the client’s thread of control. Many operating systems pro-
vide asynchronous operation execution mechanisms, such as POSIX

29.09.1999 Proactor.doc

Proactor 11

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

asynchronous I/O and WinNT overlapped I/O. When this is the case,
implementing this part of the pattern simply requires mapping the
platform APIs to the asynchronous operation APIs described above.

If the operating system platform does not support asynchronous op-
erations, however, several implementation techniques can be used to
build an asynchronous operation processor. Perhaps the most intui-
tive solution is to use dedicated threads to perform asynchronous op-
erations. There are three steps involved with implementing a thread-
ed asynchronous operation processor:

• Operation invocation: The operation will be performed in a different
thread of control than the invoking client thread. Therefore, some
type of thread synchronization must occur. One approach is to
spawn a thread for each operation. A more efficient approach,
however, is for the asynchronous operation processor to maintain
a pool of dedicated threads. This approach requires the client
thread to queue the operation request before continuing with other
client computations.

• Operation execution: Each operation will be performed in a
dedicated thread. Thus, operations can ‘block’ without impeding
progress of the client directly. For instance, when providing a
mechanism for asynchronous I/O reads, the dedicated thread can
block while reading from socket or file handles.

• Operation completion: When the operation completes, the client
must be notified. For example, a dedicated asynchronous operation
processor thread can be used to delegate application-specific
completion events to the appropriate proactor. This requires
additional synchronization between threads.

2 Implement the Proactor. When the proactor receives operation
completions from the asynchronous operation processor, it calls back
to the completion handler that is associated with original client
invocation. A Proactor is often implemented as a Singleton [GHJV95],
which is useful for centralizing the demultiplexing and dispatching of
asynchronous operation completion events into a single location
within an application.

➥ For example, the following is an interface for the Proactor used
in our Web server example:

12

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

29.09.1999 Proactor.doc

class Proactor {
public:

// Entry point into the proactive event loop.
int handle_events (Time_Value *wait_time = 0);

// Singleton access point.
static Proactor *instance (void);

private:
}; ❏

The handle_events() method is the entry point into a Proactor's
event loop and is typically called by one or more server threads.1 This
method blocks the caller until it dispatches a single callback to a
completion handler. The instance() method is the singleton access
point.

In the following discussion, we describe four issues involved with
implementing the proactor: demultiplexing completion notifications
to the appropriate concrete completion handler, implementing a
completion handler dispatching mechanism, defining the
concurrency strategy used to perform the callbacks, and finally
defining a preemptive policy.

2.1 Determine how to demultiplex completion notifications to completion
handlers. When an asynchronous operation completes, the associat-
ed proactor may need more information than simply the completion
event itself to dispatch the appropriate completion handler efficiently.
A common solution is to use the Asynchronous Completion Token
pattern (127).

In the Proactor pattern, when an asynchronous operation is invoked,
the associated proactor uses the Asynchronous Completion Token
pattern to associate state with the operation. This state typically
involves a reference to the completion handler and an asynchronous
completion token (ACT) provided by the client. An object containing
this state is then passed as an ACT to the asynchronous operation
processor, which plays the role of the service in the Asynchronous
Completion Token pattern.

When the asynchronous operation completes, the asynchronous
operation processor returns the ACT unchanged to the designated

1. Multiple threads can be organized into a thread pool and call handle_events()
on the same Proactor simultaneously. This design is well-suited for I/O bound
applications [HPS99]

29.09.1999 Proactor.doc

Proactor 13

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

proactor, along with information about the completed operation. The
proactor uses this ACT to find the completion handler and to recover
the client's ACT. It then calls back the completion handler, passing it
information about the completed operation and the ACT that was
provided by the client during its original asynchronous invocation.

The proactor's ACT contains a reference to the completion handler.
Therefore, no additional lookups are necessary for the proactor to
dispatch the completion to the completion handler. Thus, the ACT
pattern enables the proactor to dispatch to the appropriate
completion handler in constant time, regardless of the number of
operations that have been invoked asynchronously.

2.2 Implement the completion handler dispatching mechanism. The
proactor must implement a mechanism through which concrete
completion handlers are invoked. This requires clients to specify a
callback when initiating operations. The following are common
callback alternatives:

• Callback class. The completion handler exports an interface known
by the proactor. The proactor calls back on a method in this
interface when the operation completes and passes it information
about the completed operation.

• Function pointer. The proactor invokes the completion handler via
a callback function pointer. This approach reduces the dependency
between the proactor and the completion handler to a function
prototype rather than an interface. The primary benefit is that the
completion handler is not forced to export a specific class interface.

• Rendezvous. The client can establish a synchronization object,
such as a condition variable, which serves as a rendezvous
between the proactor and the completion handler. This approach is
most common when the completion handler is the client. While the
asynchronous operation runs to completion, the completion
handler processes other activity. Periodically, the completion
handler will check the rendezvous point for completion status.

2.3 Define the proactor concurrency strategy. When operations complete,
the asynchronous operation processor will notify the appropriate
proactor. At this point, the proactor can utilize one of the following
concurrency strategies to perform its dispatching:

14

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

29.09.1999 Proactor.doc

• Dynamic-thread dispatching. A proactor can dynamically allocate a
thread for each completion handler. Dynamic-thread dispatching
can be implemented with most multi-threaded operating systems.
On some platforms, however, this may be inefficient due to the
overhead of creating and destroying threads.

• Event demultiplexer dispatching. A synchronization object, such as
a condition variable, established by the client can be signaled by a
proactor when a completion event is pending. Although polling and
spawning a child thread that blocks on a condition variable are
potential approaches, it may be more efficient to use event
demultiplexer dispatching. This technique requires the client to
register completion events with some type of event demultiplexer.
For instance, event demultiplexer dispatching can be implemented
with aio_suspend() in POSIX real-time environments, with
WaitForMultipleObjects() in Win32 environments, or even with
a Reactor (75).

• Call-through dispatching. In this model, the thread of control
blocked in a synchronous operation is borrowed by the asynchro-
nous operation processor to execute a completion handler via the
proactor. This ‘cycle stealing’ strategy can increase performance by
decreasing the incidence of idle threads. This is particularly useful
when a single-threaded application wants to perform proactive I/O
while still occasionally executing synchronous operations.

One way to implement call-through dispatching in Windows NT is
via the Win32 functions ReadFileEx() and WaitForSingleOb-
jectEx() . A thread of control can initiate an asynchronous read
operation via ReadFileEx() passing a completion handler as a pa-
rameter. After the read operation is initiated, the same thread
might call the WaitForSingleObjectEx() function to wait
synchronously for an unrelated event to be signaled. When Wait-
ForSingleObjectEx() is called, the thread informs the operating
system that it is entering into a special state known as an ‘alertable
wait state.’ Therefore, when the read operation completes, the
operating system can borrow the thread blocked in WaitForSing-
leObjectEx() to dispatch the completion handler registered when
ReadFileEx() was called. In this case, the Windows NT operating
system is both the asynchronous operation processor and the
proactor.

29.09.1999 Proactor.doc

Proactor 15

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

• Thread pool dispatching. A pool of threads owned by the proactor
can be used for completion handler execution. Each thread of
control in the pool has been dynamically allocated to an available
CPU. Thread pool dispatching can be implemented with Windows
NT's I/O Completion Ports.

The applicability of the four proactor concurrency techniques
described above depends largely on the possible combinations of
operating system environments and physical hardware.

• If your operating system only supports synchronous I/O and does
not support threads, then refer to the Reactor (75) pattern.
However, most modern operating systems support alternative
forms of asynchronous I/O, such as POSIX asynchronous I/O and
Windows NT overlapped I/O, as well as threads.

• For single-threaded applications on either single-processor or
multi-processor hardware, the correct concurrency strategy
depends on the type of operations that will be performed. If an
application will only perform proactive asynchronous operations
then a single thread can be used. If an application will be
performing both reactive synchronous operations and proactive
asynchronous operations, then event demultiplexer dispatching
should be used. Lastly, if the single-threaded application needs to
perform long-blocking synchronous operations occasionally, call-
through dispatching should be used.

• For multi-threaded applications on either single-processor or
multi-processor hardware, any of the dispatching techniques can
be appropriate. Often, systematic empirical measurements are the
best way to make a selection. For instance, multi-threaded
solutions running on single-processor systems can decrease
performance for compute-bound applications by increasing
context switching overhead. In contrast, a single-processor, multi-
threaded solution can sometimes increase performance for I/O-
bound applications by allowing the operating system and threading
package to overlap computation and communication.

2.4 Define the proactor preemptive policy. The type of the proactor deter-
mines if a completion handler can be preempted while executing.
When attached to dynamic-thread and thread pool dispatchers, com-
pletion handlers are naturally preemptive. When tied to a proactor

16

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

29.09.1999 Proactor.doc

implemented using event demultiplexer dispatching, however, com-
pletion handlers are not preemptive with respect to each other. When
driven by a call-through dispatcher, the completion handlers are not
preemptive with respect to the thread-of-control that is in the alert-
able wait state.

In general, a completion handler should not perform long-duration
synchronous operations unless multiple completion threads are used
because this will significantly decrease the overall responsiveness of
the application. This risk can be alleviated by following particular
programming conventions. For instance, all completion handlers
might be required to act as clients instead of executing synchronous
operations.

3 Implement completion handlers. Completion handlers specify an
interface consisting of one or more hook methods that abstractly
represent the asynchronous operation completion handling for
service-specific notifications. Application programmers define
concrete completion handlers that process service-specific
completion events generated when asynchronous operations finish
executing. The implementation of both abstract and concrete
completion handlers contains the following two substeps.

3.1 Define the completion handler interface. The concrete implementation
of the completion handler interface depends on the type of completion
handler dispatching mechanism selected for the proactor: callback
class, function pointer, or rendevouz. In case of implementing a
callback class there are two approaches for designing the completion
handler interface.

• A single-method interface. The UML class diagram in the Structure
section illustrates an implementation of the Completion_Handler
base class interface that contains a single method with a signature
handle_event() . This method is used by the proactor to dispatch
events. In this case, the type of the event that has occurred is
passed as a parameter to the method. The second parameter is the
base class for all asynchronous results, which can be further
downcast to the correct type, depending on the completed event.

➥ The following C++ abstract base class illustrates the single-
method interface:

29.09.1999 Proactor.doc

Proactor 17

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

class Completion_Handler {
public:

// Hook method that is called back by the
// Proactor to handle events of a particular type. The
// <Async_Result> parameter contains both the
// information about the completed asynchronous
// operation as well as the corresponding ACT.
virtual int handle_event

(Event_Type et,
 const Asynch_Stream :: Asynch_Result &result) = 0;

// Hook method that returns the underlying I/O Handle.
virtual Handle get_handle (void) const = 0;

}; ❏

The advantage of the single-method interface is that it is possible
to add new types of events without changing the method interface.
However, this approach encourages the use of switch statements in
the subclass’s handle_event() method implementation, which
limits its internal extensibility.

• A multi-method interface. Another way to implement the
Event_Handler interface is to define separate virtual hook meth-
ods for each general type of event, such as handle_
read_stream() , handle_write_stream() , or handle_accept()
in our Web server example.

➥ For example, the following C++ abstract base class illustrates
a multi-method interface used by a proactor for networking events:

class Completion_Handler {
public:

// Hook methods that are called back by the Proactor
// to handle particular types of notifications.
// Sets proactor to <p>.
Completion_Handler (Proactor *p);

// Virtual destruction.
virtual ~ Completion_Handler (void);

// This method will be called when an
// asynchronous read completes on a stream.
virtual void handle_read_stream

(const Asynch_Stream :: Read_Result &result) = 0;

// This method will be called when an
// asynchronous write completes on a stream.
virtual void handle_write_stream

(const Asynch_Stream :: Write_Result &result) = 0;

18

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

29.09.1999 Proactor.doc

// This method will be called when an
// asynchronous accept completes.
virtual void handle_accept

(const Asynch_Stream :: Accept_Result &result) = 0;

// This method will be called when an
// asynchronous transmit file completes.
virtual void handle_time_out

(const Time_Value &tv, const void *act) = 0;

// Hook method that returns the underlying I/O Handle.
virtual Handle get_handle (void) const = 0;

}; ❏

The benefit of a multi-method interface is that it is easy to
selectively override methods in the base class and avoid further
demultiplexing via switch or if statements in the hook method
implementation. However, this design requires the framework
developer to anticipate the set of completion handler hook methods
in advance. For instance, the various handle_* hook methods in
the Completion_Handler interface above are tailored for general
networking events. However, this interface is not broad enough to
encompass all the types of events, such as synchronization events,
handled via the Win32 WaitForMultipleObjects() mechanism
[Sch95b].

Both approaches described above are examples of patterns such as
Hook Method [Pree95] and Template Method [GHJV95]. The intent of
these patterns is to provide well-defined hooks that can be specialized
by applications and called back by lower-level dispatching code.

3.2 Determine policies for handling state in concrete completion handlers.
A completion handler may need to maintain state information
associated with a specific request. For instance, an operating system
may notify the Web server that only part of a file was written to a
socket due to the occurrence of transport-level flow control. As a
result, a completion handler may need to issue the remainder of the
request until the file is fully transferred or the connection becomes
invalid. Therefore, it must know the file that was originally specified,
how many bytes are left to write, and what the file pointer position
was at the start of the previous request.

There is no implicit limitation that prevents clients from assigning
multiple asynchronous operation requests to a single completion
handler. As a result, the completion handler must shepherd request-

29.09.1999 Proactor.doc

Proactor 19

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

specific state information throughout the chain of completion
notifications. To do this, completion handlers can utilize the
Asynchronous Completion Token pattern (127).

Example
Resolved

The following discussion illustrates how to apply the Proactor pattern
to develop a Web server that uses proactive event dispatching to
handle multiple service requests concurrently within one or more
threads. As described in the Structure section, the HTTP handler is
responsible for receiving, processing, and replying to requests from
Web browsers. HTTP acceptors create and connect HTTP handlers
that process subsequent requests, which are delivered via completion
events.

The following sequence of steps occur during Web server connection
processing:

• The Web server instructs (1) the acceptor, acting in the role of a
client, to initiate an asynchronous accept operation.

• The acceptor invokes an asynchronous accept operation (2) on the
operating system and passes itself as a completion handler and a
reference to the proactor that will be used to dispatch completion
events back to the acceptor after the asynchronous accept
operation is finished.

• The Web server invokes the event loop of the proactor (3).

• The Web browser connects to the Web server (4).

• After the asynchronous accept operation completes, the operating
system generates a completion event and notifies the proactor (5),
which dispatches the completion event to the acceptor (6).

• The acceptor creates an HTTP handler (7) to process the completion
event.

• The HTTP handler parses the completion event and then initiates
an asynchronous read operation (8) to obtain the GET request data
from the Web browser. The HTTP handler passes itself as the
completion handler and also passes a reference to the proactor that
will be used to notify the HTTP handler when the asynchronous
read operation finishes executing.

• Control of the Web server then returns to the event loop of the
Proactor (9).

20

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

29.09.1999 Proactor.doc

Once the connection is established and the HTTP handler created, the
following scenario is used by a proactive Web server to service an
HTTP GET request:

• The Web browser sends (1) an HTTP GET request.

• The asynchronous read operation initiated in the previous scenario
completes and the operating system generates a completion event
and notifies the proactor (2). The proactor then dispatches to the
HTTP handler (3).

• The HTTP handler parses the request (4). Steps (2) through (4) will
repeat until the entire request has been received asynchronously.

• The HTTP handler memory-maps the requested file (5).

• HTTP Handle initiates an asynchronous write operation (6) to
transfer the file data via the connection and passes itself as a
completion handler and a reference to the proactor that will be
used to notify the HTTP handler upon completion of the
asynchronous write operation.

• When the asynchronous write operation completes, the operating
system generates another completion event and notifies the
proactor (7), which dispatches to the completion handler (8). Steps
(6) through (8) continue asynchronously until the entire file has
been delivered.

Web

4: connect()

connections
1: accept

3,9: handle
5: accept

Server

: Proactor
: Operating

System

Web
Browser : Acceptor

: HTTP
Handler

2: accept
(Acceptor, Proactor)

complete

8: read
(Handler, Proactor)

complete
6: accept

events

7: create

29.09.1999 Proactor.doc

Proactor 21

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

The following C++ code illustrates how the HTTP handler for our Web
server example can be written using the Connection_Handler class
defined in the Implementation section.

class HTTP_Handler : public Completion_Handler {
// Implements the HTTP protocol asynchronously.

public:
// Constructor.
HTTP_Handler (Proactor *);

// Initialization hook called by an Acceptor when a
// connection completes asynchronously.
void open (SOCK_Stream *sock);

// This is called by the Proactor
// when the asynch read completes.
void handle_read_stream

(const Asynch_Stream :: Read_Result &result);

// This is called by the Proactor
// when the asynch write completes.
void handle_write_stream

(const Asynch_Stream :: Write_Result &result);

private:
// Parse the incoming request
void parse_request (void);

// Set by the constructor.
Proactor *proactor_;

Web
1: GET

2: read

Server

: Proactor
: Operating

System

Web
Browser

: HTTP
Handler

complete

complete
3: read

4: parse request

File
System

/etc/passwd

6: write
(File, Handler, Proactor)

5: read (File)

complete
8: write

7: write
complete

22

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

29.09.1999 Proactor.doc

// Memory-mapped file_;
Mem_Map file_;

// Socket endpoint.
SOCK_Stream *sock_;

// HTTP Request holder
HTTP_Request request_;

// Used for asynchronous socket I/O .
Asynch_Stream stream_;

};

When a Web browser connects to the Web server, the HTTP_Handler 's
following open() method is called by an acceptor:

void HTTP_Handler :: open (SOCK_Stream *sock) {
// Initialize state for request.
request_.state_ = INCOMPLETE;

// Store reference to the socket.
sock_ = sock;

// Initialize asynch read stream.
stream_.open (this, // Completion Handler.

sock_->handle (),
proactor_);

// Start socket read asynchronously.
stream_.read (request_.buffer (),

 request_.buffer_size ());
}

In this method, the HTTP_Handler initializes the asynchronous
stream object with the completion handler and proactor to use when
the asynchronous operation completes. The read operation is then
invoked asynchronously and the Web server returns to its event loop,
which calls the Proactor::handle_events() method, as follows:

while (web_server_not_shutdown)
proactor->handle_events ();

When the asynchronous read operation completes, the following
handle_read_stream() method is called back by the proactor on the
HTTP_Handler completion handler:

void HTTP_Handler :: handle_read_stream
(const Asynch_Stream :: Read_Result &result) {
if (request_.enough_data

(result.bytes_transferred ()))
parse_request ();

29.09.1999 Proactor.doc

Proactor 23

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

else
// Start reading asynchronously.
stream_.read (request_.buffer (),

 request_.buffer_size ());
}

If there is enough data, the Web browser’s service request is then
parsed. If the entire request has not arrived yet, another read
operation is initiated asynchronously and the Web server returns to
its event loop. Once a GET request has been received from a Web
browser, the parse_request() method maps the requested file into
memory and writes the file data asynchronously to the Web browser,
as follows:.

void HTTP_Handler :: parse_request (void) {
// Switch on the HTTP command type.
switch (request_.command ()) {
// Web browser is requesting a file.
case HTTP_Request ::GET:

// Memory map the requested file.
file_.map (request_.filename ());

// Start writing asynchronously.
stream_.write (file_.buffer (),

 file_.buffer_size ());
break;

// Web browser is storing a file at the Web server.
case HTTP_Request ::PUT:

// ...
}

}

When the write operation completes, the proactor calls back on the
HTTP handler’s handle_write_stream() method:

void HTTP_Handler :: handle_write_stream
(const Asynch_Stream :: Write_Result &result) {
if (file_.enough_data (result.bytes_transferred ()))

// Success, so cleanup resources.
else
// Start another asynchronous write

stream_.write (file_.buffer (),
file_.buffer_size ());

}

When all the data has been received, the HTTP handler frees up all
resources that were allocated dynamically.

24

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

29.09.1999 Proactor.doc

Known uses I/O Completion Ports in Windows NT. The Windows NT operating
system implements the Proactor pattern. Various asynchronous
operations such as accepting new network connections, reading and
writing to files and sockets, and transmission of files across a network
connection are supported by Windows NT. The operating system is
the asynchronous operation processor. Results of the operations are
queued up at the I/O completion port, which plays the role of the
proactor.

The UNIX AIO Family of Asynchronous I/O Operations. On some
real-time POSIX platforms, the Proactor pattern is implemented by
the aio family of APIs [POSIX95]. These operating system features are
very similar to the ones described above for Windows NT. One differ-
ence is that UNIX signals can be used to implement an truly asyn-
chronous proactor, the Windows NT API is not truly asynchronous.

ACE Proactor. The Adaptive Communications Environment (ACE)
[Sch97] implements a Proactor component that encapsulates I/O
Completion Ports on Windows NT and the aio APIs on POSIX
platforms. The ACE Proactor abstraction provides an OO interface to
the standard C APIs supported by Windows NT and POSIX platforms.

Asynchronous Procedure Calls in Windows NT. Some systems,
such as Windows NT, support Asynchronous Procedure Calls (APC)s.
An APC is a function that executes asynchronously in the context of
a particular thread. When an APC is queued to a thread, the system
issues a software interrupt. The next time the thread is scheduled, it
will run the APC. APCs made by operating system are called kernel-
mode APCs. APCs made by an application are called user-mode APCs.

Consequences The Proactor pattern offers the following benefits:

Separation of concerns. The Proactor pattern decouples application-
independent asynchrony mechanisms from application-specific
functionality. The application-independent mechanisms become
reusable components that know how to demultiplex the completion
events associated with asynchronous operations and dispatch the
appropriate callback methods defined in completion handlers.
Likewise, the application-specific functionality knows how to perform
a particular type of service, such as HTTP processing.

Portability. The Proactor pattern improves application portability by
allowing its interface to be reused independently of the underlying

29.09.1999 Proactor.doc

Proactor 25

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

operating system calls that perform event demultiplexing. These
system calls detect and report the events that may occur
simultaneously on multiple event sources. Event sources may
include I/O ports, timers, synchronization objects, signals, etc. For
instance, on real-time POSIX platforms, the asynchronous I/O
functions are provided by the aio family of APIs [POSIX95]. Likewise,
on Windows NT, I/O completion ports and overlapped I/O are used to
implement asynchronous I/O [MDS96].

Encapsulation of concurrency mechanisms. A benefit of decoupling the
proactor from the asynchronous operation processor is that
applications can configure proactors with various concurrency
strategies without affecting other application components and
services. As discussed in the Implementation section, the proactor can
be configured to use various concurrency strategies, including single-
threaded and thread pools.

Decoupling of threading from concurrency. The asynchronous opera-
tion processor executes potentially long-running operations on behalf
of clients. Therefore, applications need not spawn many threads to in-
crease concurrency. This allows an application to vary its concurren-
cy policy independently of its threading policy. For instance, a Web
server may only want to have one thread per CPU, but may want to
service a higher number of clients simultaneously.

Performance. Multi-threaded operating systems perform context
switches to cycle through multiple threads of control. While the time
to perform a context switch remains fairly constant, the total time to
cycle through a large number of threads can degrade application per-
formance significantly if the operating system context switches to an
idle thread.2 For instance, threads may poll the operating system for
completion status, which is inefficient. The Proactor pattern can
avoid the cost of context switching by activating only those logical
threads of control that have events to process. For instance, a Web
server need not activate an HTTP Handler if no GET request is pend-
ing.

Simplification of application synchronization. As long as completion
handlers do not spawn additional threads of control, application logic

2. Some older operating system exhibit this behavior, though most modern
operating systems do not.

26

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

29.09.1999 Proactor.doc

can be written with little or no concern for synchronization issues.
Completion handlers can be written as if they existed in a convention-
al single-threaded environment. For instance, a Web server's HTTP
GET Handler can access the disk through an asynchronous read op-
eration, such as the Windows NT TransmitFile() function [HPS97],
and hence no additional threads need be spawned.

The Proactor pattern has the following liabilities:

Hard to debug. Applications written with the Proactor pattern can be
hard to debug because the inverted flow of control oscillates between
the framework infrastructure and the method callbacks on
application-specific handlers. This increases the difficulty of ‘single-
stepping’ through the run-time behavior of a framework within a
debugger because application developers may not understand or have
access to the framework code. This is similar to the problems
encountered trying to debug a compiler’s lexical analyzer and parser
written with LEX and YACC. In these applications, debugging is
straightforward when the thread of control is within user-defined
semantic action routines. Once the thread of control returns to the
generated Deterministic Finite Automata (DFA) skeleton, however, it
is hard to follow the program logic.

Scheduling and controlling outstanding operations. Clients may not be
able to control the order in which asynchronous operations are exe-
cuted by an asynchronous operation processor. Therefore, an asyn-
chronous operation processor should be designed to support prioriti-
zation and cancellation of asynchronous operations.

See Also The Proactor pattern is related to the Observer [GHJV95] and
Publisher-Subscriber [POSA1] patterns, where all dependents are
informed when a single subject changes. In the Proactor pattern,
however, handlers are informed automatically when events from
multiple sources occur. In general, the Proactor pattern is used to
demultiplex multiple sources of asynchronously delivered completion
events to their associated completion handlers, whereas an observer
or subscriber is usually associated with only a single source of events.

The Proactor pattern can be considered an asynchronous variant of
the synchronous Reactor pattern (75). The Reactor pattern is
responsible for demultiplexing and dispatching of multiple event
handlers that are triggered when it is possible to initiate an operation

29.09.1999 Proactor.doc

Proactor 27

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

synchronously without blocking. In contrast, the Proactor supports
the demultiplexing and dispatching of multiple event handlers that
are triggered by the completion of asynchronous operations.

The Active Object pattern (239) decouples method execution from
method invocation. The Proactor pattern is similar because
asynchronous operation processors perform operations on behalf of
clients. That is, both patterns can be used to implement
asynchronous operations. The Proactor pattern is often used in place
of the Active Object pattern to decouple the systems concurrency
policy from the threading model.

The Chain of Responsibility [GHJV95] pattern decouples event
handlers from event sources. The Proactor pattern is similar in its
segregation of clients and completion handlers. However, in COR, the
event source has no prior knowledge of which handler will be
executed, if any. In Proactor, clients have full disclosure of the target
handler. However, the two patterns can be combined by establishing
a completion handler that is the entry point into a responsibility
chain dynamically configured by an external factory.

Credits Tim Harrison, Thomas D. Jordan, and Irfan Pyarali are co-authors of
the original version of the Proactor pattern.

28

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

29.09.1999 Proactor.doc

