
15.03.1999 Reactor.pub.doc

Reactor 1

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Reactor

The Reactor design pattern handles service requests that are deliv-
ered concurrently to an application by one or more clients.

Also known as Dispatcher, Notifier

Example Consider an event-driven server for a distributed logging service. Cli-
ent applications use the logging service to record information about
their status in a distributed environment. This status information
commonly includes error notifications, debugging traces, and perfor-
mance diagnostics. Logging records are sent to a central logging serv-
er, which can write the records to various output devices, such as a
console, a printer, a file, or a network management database.

Clients communicate with the logging server using a connection-ori-
ented protocol, such as TCP [Ste90]: clients and the logging service
are bound to a connection endpoint designated by an IP address and
a TCP port number on the clients and logging server. The port number
uniquely identifies the clients and the logging service, respectively.
The logging service is typically used by multiple clients, each main-
taining its own connection with the logging server. Thus the logging
records and connection requests which these clients issue can arrive
concurrently at the logging server.

Socket Handles

Logging
Server

Client

Client

Client

Network

Console

Database

Printer

logging
records

logging
records

connection
request

2

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

15.03.1999 Reactor.pub.doc

However, using multi-threading, to implement the processing of
logging records in the server in a ‘thread-per-connection’ fashion fails
to resolve the following aspects:

• Efficiency. Threading may lead to poor performance due to context
switching, synchronization, and data movement [Sch94].

• Programming simplicity. Threading may require complex concur-
rency control schemes.

• Portability. Threading is not available on all OS platforms.

As a result of these drawbacks, multi-threading is often neither the
most efficient nor the least complex solution to develop a concurrent
logging server. Yet we must handle client requests concurrently.

Context A server application in a distributed system that receives service
requests from one or more clients concurrently.

Problem Server applications in a distributed system must handle one or more
clients that send them service requests. Each such request is typical-
ly associated with a specific operating system event. For instance, in
our logging server example, the request for processing logging records
within the logging service is indicated by a READ event. Before invok-
ing a specific service, the server application must therefore demulti-
plex and dispatch each incoming event to its corresponding service
provider. Resolving this problem effectively requires the resolution of
the following five forces:

• The server must be available to handle input events even if it is
waiting for other events to occur. In particular, a server must not
block indefinitely handling any single source of events at the
exclusion of other event sources since this may significantly delay
its responsiveness to other clients.

• A server must minimize latency, maximize throughput, and avoid
utilizing the CPU(s) unnecessarily.

• The design of a server should simplify the use of suitable concur-
rency strategies.

• Integrating new or improved services, such as changing message
formats or adding server-side caching, should incur minimal
modifications and maintenance costs for existing code. For
instance, implementing application services should not require

15.03.1999 Reactor.pub.doc

Reactor 3

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

modifications to the generic event demultiplexing and dispatching
mechanisms.

• Porting a server to a new operating system platform should not
require significant effort.

Solution Integrate the synchronous demultiplexing of events with their
dispatching to the service providers that handle these events. In ad-
dition, decouple these general-purpose event demultiplexing and
dispatching mechanisms from the application-specific dispatching of
events to services within the service providers.

For each service the application offers, introduce a separate event
handler that processes certain types of events. Event handlers
register with an initiation dispatcher, which uses a synchronous event
demultiplexer to wait for events to occur. When events occur, the
synchronous event demultiplexer notifies the initiation dispatcher,
which synchronously calls back to the event handler associated with
the event. The event handler then dispatches the event to the method
that implements the requested service.

Structure The key participants in the Reactor pattern include the following:

Handles identify resources that are managed by an operating system.
These resources commonly include, among others, network connec-
tions, open files, timers, and synchronization objects.

➥ Handles are used in the logging server to identify socket end-
points so that a synchronous event demultiplexer can wait for events
to occur on them. The two types of events the logging server is inter-
ested in are connection events and read events, which represent in-
coming client connections and logging data, respectively. The logging
server maintains a separate connection for each client. Every connec-
tion is represented in the server by a socket handle. ❏

A synchronous event demultiplexer blocks awaiting events to occur on
a set of handles. The blocking does not impede the progress of the
process in which the synchronous event demultiplexer resides, since
it only blocks when no events are queued at the handles. It returns
when it is possible to initiate an operation on a handle without block-
ing. A common demultiplexer for I/O events is select [Ste90], which
is an event demultiplexing system call provided by the UNIX and

4

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

15.03.1999 Reactor.pub.doc

Win32 OS platforms. The select call indicates which handles can
have operations invoked on them synchronously without blocking.

An initiation dispatcher defines an interface for registering, removing,
and dispatching event handler objects. Ultimately, the synchronous
event demultiplexer is responsible for waiting until events occur.
When it detects new events, it informs the initiation dispatcher to call
back application-specific event handlers. Common events include
connection acceptance events, data input and output events, and
timeout events.

An event handler specifies an interface consisting of a hook method
[Pree95] that abstractly represents the dispatching operation for
service-specific events.

Concrete event handlers derive from the abstract event handler. Each
implements the methods for a specific service that the application
offers. In addition, concrete event handlers implement the inherited
event dispatching hook method, which is responsible for processing
incoming events sent to the service from clients. Applications register

Class
Initiation
Dispatcher

Responsibility
• Registers Event

Handlers
• Dispatches Event

Handlers

Collaborator
• Concrete Event

Handlers
• Synchronous

Event
Demultiplexer

Class
Handle

Responsibility
• Identifies operating

system resources

Collaborator Class
Synchronous Event
Demultiplexer

Responsibility
• Listens for events
• Indicates

possibility to
initiate an
operation on a
handle

Collaborator
• Handle
• Initiation

Dispatcher

15.03.1999 Reactor.pub.doc

Reactor 5

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

concrete event handlers with the initiation dispatcher to process
certain types of events. When these events arrive, the initiation
dispatcher calls back the hook method of the appropriate concrete
event handler.

➥ There are two concrete event handlers in the logging server: log-
ging handler and logging acceptor. The logging handler is responsible
for receiving and processing logging records. The logging acceptor
uses the Acceptor-Connector pattern (129) to create and connect log-
ging handlers that process subsequent logging records from clients.❏

The structure of the participants in the Reactor pattern is illustrated
in the following UML class diagram:

Dynamics The following collaborations occur in the Reactor pattern:

• An application registers a concrete event handler with the initiation
dispatcher. At this point, the application indicates the type of
event(s) this event handler wants the initiation dispatcher to notify
it about when the event(s) occur on the associated handle.

Class
Event Handler

Responsibility
• Defines an

interface for
processing events

Collaborator
• Handle

Class
Concrete Event
Handler

Responsibility
• Processes events in

a specific manner

Collaborator

Event Handler

handle_event()
get_handle()

 Initiation
Dispatcher

handle_events()
register_handler()
remove_handler()

 Synchronous Event
Demultiplexer

select()

Concrete Event
Handler A

handle_event()
get_handle()

Concrete Event
Handler B

handle_event()
get_handle()

Handle

<<use>>

notifies

owns

dispatches
*

6

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

15.03.1999 Reactor.pub.doc

• The initiation dispatcher requests each event handler to pass back
its internal handle. This handle identifies the event handler to the
operating system.

• After all event handlers are registered, the main program calls
handle_events() to start the initiation dispatcher’s event loop. At
this point, the initiation dispatcher combines the handles from
each registered event handler and uses the synchronous event
demultiplexer to wait for events to occur on these handles. For
instance, the TCP protocol layer uses the select synchronous
event demultiplexing operation to wait for client logging record
events to arrive on connected socket handles.

• The synchronous event demultiplexer notifies the initiation dis-
patcher when a handle corresponding to an event source becomes
‘ready,’ for example, that a TCP socket is ‘ready for reading.’

• The initiation dispatcher triggers the event handler hook method in
response to events on the ready handles. When events occur, the
initiation dispatcher uses the handles activated by the event sourc-
es as ‘keys’ to locate and dispatch the appropriate event handler’s
hook method. The type of event that occurred can be passed as a
parameter to the method and used internally by this method to
perform additional service-specific demultiplexing and dispatch-
ing. An alternative dispatching approach is described in the Imple-
mentation section.

➥ The collaborations within the Reactor pattern for the logging
server can be illustrated with two scenarios. In general, clients that

: Main Program : Concrete
Event Handler

: Initiation
Dispatcher

: Synchr. Event
Demultiplexer

register_handler()

get_handle()

handle_events() select()

handle_event()

Handle

Handles

Handles

Con. Event
Handler Events

service()

15.03.1999 Reactor.pub.doc

Reactor 7

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

want to log data must first send a connection request to the server.
The server waits for these connection requests using a handle factory,
called logging acceptor, that listens on an address known to clients.
When a connection request arrives, the handle factory creates a new
logging server to serve this client's requests and establishes a socket
connection between the client and the server. Once clients are
connected, they can send logging records concurrently to the server
using the created socket connection.

The first scenario shows the steps taken when a client connects to the
logging server:

• The logging server (1) registers the logging acceptor with the initia-
tion dispatcher to handle connection requests.

• The logging server invokes the handle_events() method (2) of the
initiation dispatcher.

• The initiation dispatcher invokes the synchronous event demulti-
plexing select() (3) operation to wait for connection requests or
logging data to arrive.

• A client connects (4) to the logging server.

• The logging acceptor is notified by the initiation dispatcher (5) of
the new connection request.

• The logging acceptor accepts (6) the new connection and creates (7)
a logging handler to service the new client.

• The logging handler registers (8) its socket handle with the
initiation dispatcher and instructs the dispatcher to notify it when
the socket becomes ‘ready for reading.’

Client

Server

Logging

4: connect()

handler()
1: register

2: handle_events()
3: select()

5: handle
event()

6: accept()
7: create()

8: register
handler()

Server

: Initiation
Dispatcher

: Logging
Handler

: Logging
Acceptor

8

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

15.03.1999 Reactor.pub.doc

The second scenario shows the sequence of steps that the reactive
logging server takes to service a logging record:

• A client sends (1) a logging record.

• The initiation dispatcher notifies (2) the associated logging handler
when a client logging record is queued on its socket handle by the
operating system.

• The record is read from the socket (3) in a non-blocking manner.
Steps 2 and 3 repeat until the logging record has been received
completely.

• The logging handler processes the logging record and writes (4) it
to the standard output.

• The logging handler returns (5) control to the initiation dispatcher’s
event loop.

Implementation This section describes how to implement the Reactor pattern in C++.
The implementation described below is influenced by the reusable
components provided in the ACE communication software framework
[Sch94].

1 Select the synchronous event demultiplexer mechanism. The initiation
dispatcher of the Reactor pattern uses a synchronous event demulti-
plexer to wait synchronously until one or more events occur. This is
commonly implemented using an operating system event demulti-
plexing system call like select . The select call indicates which
handles are ready to perform I/O operations without blocking the
operating system process in which the application-specific service
handlers reside. In general, the synchronous event demultiplexer is

Client

Server

1: send()
event()

2: handle

5: return

3: recv()
4: write()

A

Client
B

Logging
Server

❏

: Logging
Handler A

: Initiation
Dispatcher

: Logging
Handler B

15.03.1999 Reactor.pub.doc

Reactor 9

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

based upon existing operating system mechanisms, rather than de-
veloped by implementers of the Reactor pattern.

2 Develop an initiation dispatcher, according to the following steps:

2.1 Implement the event handler table. An initiation dispatcher maintains
a table of concrete event handlers. The data stored in this table con-
sists of a set of <handle, event handler, event registrations> tuples.
The handles are keys that identify their associated event handlers by
indexing into the table entries. Note that the ‘type of event(s)’ each
event handler is registered for is also stored in the table. The table can
be implemented in various ways, such as using hashing or linear
search. If handles are represented as a contiguous range of small in-
tegral values, they can be used to directly index into the table.

2.2 Implement the event handler registration functionality. The initiation
dispatcher provides methods to register and remove event handlers
from event handler table at run-time. The registration method usually
expects two parameters: one that identifies the event handler and
another that indicates the type of event(s) that the event handler can
handle. The registration method calls back to the event handler to
obtain its associated handle. With this information, the registration
method creates a new entry into the event handler table. Once the
registration method terminates, the event handler that called it is
registered with the initiation dipatcher's event demultiplexing and
dispatching mechanism. The method for removing an event handler
from the initiation dipatcher's event demultiplexing and dispatching
mechanism removes the corresponding entry in the event handler
table when it is no longer registered for any events.

2.3 Implement the event loop entry point. The initiation disptacher pro-
vides a method that represents the entry point into its event loop. This
method, which we call handle_events() , controls the handle demul-
tiplexing provided by the synchronous event demultiplexer, as well as
performing event handler dispatching. Often, the main event loop of
the entire application is controlled by this entry point.

When events occur, the initiation dispatcher returns from the
synchronous event demultiplexing call and ‘reacts’ by dispatching the
event handlers that are represented by each handle that is now ready.

➥ The following C++ class illustrates the core methods on the
initiation dispatcher’s public interface:

10

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

15.03.1999 Reactor.pub.doc

enum Event_Type {
// Types of events handled by the
// Initiation_Dispatcher. These values are powers of
// two so their bits can be efficiently “or’d”
// together to form composite values
ACCEPT_EVENT = 01,
READ_EVENT = 02,
WRITE_EVENT = 04,
TIMEOUT_EVENT = 010,
SIGNAL_EVENT = 020,
CLOSE_EVENT = 040

};

class Initiation_Dispatcher {
// Demultiplex and dispatch Event_Handlers
// in response to client requests.

public:
// Register an Event_Handler of a particular
// Event_Type.
int register_handler (Event_Handler *eh,

Event_Type et);

// Remove an Event_Handler of a particular
// Event_Type.
int remove_handler (Event_Handler *eh,

Event_Type et);

// Entry point into the reactive event loop.
int handle_events (Time_Value *timeout = 0);

}; ❏

2.4 Implement the necessary synchronization mechanisms. If the Reactor
pattern is used in an application with only one thread of control it is
possible to eliminate all synchronization. In this case, the initiation
dispatcher serializes the dispatching of event handler handle_
event() hooks within the application’s process.

However, the initiation dispatcher can also serve as a central event
dispatcher in multi-threaded applications. In this case, critical sec-
tions within the initiation dispatcher must be serialized to prevent
race conditions when modifying or activating shared state, such as
the table holding the event handlers. A common technique for pre-
venting race conditions uses mutual exclusion mechanisms like sem-
aphores or mutex variables.

To prevent self-deadlock, mutual exclusion mechanisms can use re-
cursive locks [Sch95a]. Recursive locks help prevent deadlock when
locks are held by the same thread across event handler hook methods

15.03.1999 Reactor.pub.doc

Reactor 11

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

within the initiation dispatcher. A recursive lock may be re-acquired
by the thread that owns the lock without blocking the thread. This
property is important since the Reactor’s handle_events() method
calls back on application-specific concrete event handlers. Applica-
tion hook method code may subsequently re-enter the initiation dis-
patcher via its register_handler() and remove_handler() meth-
ods.

3 Determine the type of the dispatching target. Two types of event han-
dlers can be associated with a handle to serve as the target of an
initiation dispatcher’s dispatching logic. Implementations of the
Reactor pattern can select either one or both of the following dis-
patching alternatives:

Event handler objects. A common way to associate an event handler
with a handle is to make the event handler an object. For instance,
the Reactor pattern implementation shown in the Structure section
registers concrete event handler objects with an initiation dispatcher.
Using an object as the dispatching target makes it convenient to
subclass event handlers in order to reuse and extend existing compo-
nents. In addition, objects integrate the state and methods of a ser-
vice into a single component.

Event handler functions. Another way to associate an event handler
with a handle that was not described in earlier sections is to register
a function with the initiation dispatcher. Using functions as the dis-
patching target makes it convenient to register callbacks without hav-
ing to define a new class that inherits from Event_Handler .

The Adapter pattern [GHJV95] can be employed to support both
objects and functions simultaneously. For instance, an adapter could
be defined using an event handler object that holds a pointer to an
event handler function. When the handle_event () method was
invoked on the event handler adapter object, it could automatically
forward the call to the event handler function that it holds.

4 Define the event handling interface. Assuming that we use event han-
dler objects rather than functions, the next step is to define the inter-
face of the event handler. There are two approaches:

A single-method interface. The OMT diagram in the Structure section
illustrates an implementation of the Event_Handler base class
interface that contains a single method, known as handle_event() ,

12

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

15.03.1999 Reactor.pub.doc

which is used by the initiation dispatcher to dispatch events. In this
case, the type of the event that has occurred is passed as a parameter
to the method.

➥ The following C++ abstract base class illustrates the single-
method interface:

class Event_Handler {
// Abstract base class that serves as the
// target of the Initiation_Dispatcher.

public:
// Hook method that is called back by the
// Initiation_Dispatcher to handle events.
virtual int handle_event (Event_Type et) = 0;

// Hook method that returns the underlying
// I/O Handle.
virtual Handle get_handle (void) const = 0;

}; ❏

The advantage of the single-method interface is that it is possible to
add new types of events without changing the interface. However, this
approach encourages the use of switch statements in the subclass’s
handle_event() method, which limits its extensibility.

A multi-method interface. Another way to implement the
Event_Handler interface is to define separate virtual hook methods
for each type of event, such as handle_input() , handle_output() ,
or handle_timeout() .

➥ The following C++ abstract base class illustrates the multi-
method interface:

class Event_Handler {
public:

// Hook methods that are called back by the Initiation
// Dispatcher to handle particular types of events.
virtual int handle_accept (void) = 0;
virtual int handle_input (void) = 0;
virtual int handle_output (void) = 0;
virtual int handle_timeout (void) = 0;
virtual int handle_close (void) = 0;

// Hook method that returns the underlying
// I/O Handle.
virtual Handle get_handle (void) const = 0;

}; ❏

15.03.1999 Reactor.pub.doc

Reactor 13

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

The benefit of a multi-method interface is that it is easy to selectively
override methods in the base class and avoid further demultiplexing
via switch or if statements in the hook method. However, it requires
the framework developer to anticipate the set of event handler meth-
ods in advance. For instance, the various handle_* methods in the
Event_Handler interface above are tailored for I/O events available
through the UNIX select mechanism. However, this interface is not
broad enough to encompass all the types of events handled via the
Win32 WaitForMultipleObjects mechanism [Sch95b].

Both approaches described above are examples of the Hook Method
pattern described in [Pree95] and Steve Berczuk’s Factory Callback
pattern described in [PLoP94]. The intent of these patterns is to
provide well-defined hooks that can be specialized by applications
and called back by lower-level dispatching code.

5 Determine the number of initiation dispatchers in an application. Many
applications can be structured using just one instance of the Reactor
pattern. In this case, the initiation dispatcher can be implemented as
a Singleton [GHJV95]. This design is useful for centralizing event
demultiplexing and dispatching into a single location within an appli-
cation.

However, some operating systems limit the number of handles that
can be waited for within a single thread of control. For instance,
Win32 allows select and WaitForMultipleObjects to wait for no
more than 64 handles in a single thread. In this case, it may be nec-
essary to create multiple threads, each of which runs its own instance
of the Reactor pattern.

Note that event handlers are only serialized within an instance of the
Reactor pattern. Therefore, multiple event handlers in multiple
threads can run in parallel. This configuration may necessitate the
use of additional synchronization mechanisms if event handlers in
different threads access shared state.

6 Implement the concrete event handlers. The concrete event handlers
are typically created by application developers to perform specific
services in response to particular events. The developers must
determine what processing to perform when the corresponding hook
method is invoked by the initiation dispatcher.

14

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

15.03.1999 Reactor.pub.doc

➥ The following code implements the concrete event handlers for
our logging server example. The logging acceptor provides passive
connection establishment, and the logging handler provides data re-
ception.

The Logging_Acceptor class is an example of the acceptor compo-
nent in the Acceptor-Connector pattern (129). This pattern decouples
the task of service initialization from the tasks performed after a ser-
vice is initialized. The pattern enables the application-specific portion
of a service, such as the Logging_Handler , to vary independently of
the mechanism used to establish the connection.

A logging acceptor passively accepts connection requests from client
applications and creates client-specific logging handler objects, which
receive and process logging records from clients.

The key methods and data members in the logging acceptor class are
defined below:

class Logging_Acceptor : public Event_Handler {
// Handles client connection requests.

public:
// Initialize the acceptor_ endpoint and
// register with the Initiation_Dispatcher.
Logging_Acceptor (const INET_Addr &addr);

// Factory method that accepts a new
// SOCK_Stream connection and creates a
// Logging_Handler object to handle logging
// records sent using the connection.
virtual void handle_event (Event_Type et);

// Get the I/O Handle (called by the
// Initiation Dispatcher when
// Logging_Acceptor is registered).
virtual HANDLE get_handle (void) const {

return acceptor_.get_handle ();
}
private:

// Socket factory that accepts client
// connections.
SOCK_Acceptor acceptor_;

};

The Logging_Acceptor class inherits from the Event_Handler base
class. This enables an application to register the logging acceptor with
an initiation dispatcher.

15.03.1999 Reactor.pub.doc

Reactor 15

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

The logging acceptor also contains an instance of SOCK_Acceptor .
This is a concrete factory that enables the logging acceptor to accept
connection requests on a passive mode socket that is listening to a
communication port. When a connection arrives from a client, the
SOCK_Acceptor accepts the connection and produces a
SOCK_Stream object. Henceforth, the SOCK_Stream object is used to
transfer data reliably between the client and the logging server.

The SOCK_Acceptor and SOCK_Stream classes used to implement the
logging server are Wrapper Facades (15) from the C++ socket wrapper
library provided by the ACE communication framework [Sch97]. They
encapsulate the SOCK_Stream semantics of the socket interface
within a portable and type-secure object-oriented interface. In the In-
ternet domain, SOCK_Stream sockets are implemented using TCP.

The constructor for the logging acceptor registers itself with the
initiation dispatcher singleton [GHJV95] for ACCEPT events, as
follows:

Logging_Acceptor::Logging_Acceptor
(const INET_Addr &addr) : acceptor_ (addr) {
// Register acceptor with the Initiation
// Dispatcher, which “double dispatches” the
// Logging_Acceptor::get_handle() method to
// obtain the HANDLE.
Initiation_Dispatcher::instance ()->

register_handler (this, ACCEPT_EVENT);
}

Henceforth, whenever a client connection arrives, the initiation
dispatcher calls back to the logging acceptor’s handle_event()
method.

void Logging_Acceptor::handle_event (Event_Type et) {
// Can only be called for an ACCEPT event.
assert (et == ACCEPT_EVENT);

SOCK_Stream new_connection;

// Accept the connection.
acceptor_.accept (new_connection);

// Create a new Logging Handler.
Logging_Handler *handler = new Logging_Handler

(new_connection);
}

16

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

15.03.1999 Reactor.pub.doc

The handle_event() method invokes the accept() method of the
SOCK_Acceptor object to passively establish a SOCK_Stream object.
Once the SOCK_Stream object is connected with the new client, a log-
ging handler is allocated dynamically on the logging server to process
the logging requests:

class Logging_Handler : public Event_Handler {
// Receive and process logging records
// sent by a client application.

public:
// Initialize the client stream.
Logging_Handler (SOCK_Stream &cs);

// Hook method that handles the reception
// of logging records from clients.
virtual void handle_event (Event_Type et);

// Get the I/O Handle (called by the Initiation
// Dispatcher when Logging_Handler is registered).
virtual HANDLE get_handle (void) const {

return this->peer_stream_.get_handle ();
}

private:
// Receives logging records from a client.
SOCK_Stream peer_stream_;

};

Class Logging_Handler inherits from Event_Handler , which en-
ables it to be registered with the initiation dispatcher:

Logging_Handler::Logging_Handler (SOCK_Stream &cs)
: peer_stream_ (cs) {

// Register with the dispatcher for READ events.
Initiation_Dispatcher::instance ()->

register_handler (this, READ_EVENT);
}

Once it’s created, a logging handler registers with the initiation dis-
patcher singleton to receive READ_EVENTs. Henceforth, when a log-
ging record arrives, the initiation dispatcher automatically dispatches
the handle_event() method of the associated logging handler:

void Logging_Handler::handle_event (Event_Type et) {
if (et == READ_EVENT) {

Log_Record log_record;

this->peer_stream_.recv ((void *) log_record,
 sizeof log_record);

15.03.1999 Reactor.pub.doc

Reactor 17

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

// Write logging record to standard output.
log_record.write (STDOUT);

}
else if (et == CLOSE_EVENT) {

this->peer_stream_.close ();
delete (void *) this;

}
}

When a READ_EVENToccurs, the initiation dispatcher calls back to
the logging handler’s handle_event() hook method. This method
receives, processes, and writes the logging record to the standard
output (STDOUT). Likewise, when the client closes down the
connection the initiation dispatcher passes a CLOSE_EVENT, which
informs the logging handler to shut down its SOCK_Stream and delete
itself. ❏

7 Implement the server.

➥ The logging server contains a single main function. This function
implements a single-threaded concurrent logging server that waits in
the initiation dispatcher’s handle_events() event loop. As requests
arrive from clients, the initiation dispatcher invokes the appropriate
concrete event handler hook methods, which accept connections and
receive and process logging records. The main entry point into the log-
ging server is defined as follows:

// Server port number.
const u_short PORT = 10000;

int main (void) {
// Logging server port number.
INET_Addr server_addr (PORT);

// Initialize logging server endpoint and register
// with the Initiation_Dispatcher.
Logging_Acceptor la (server_addr);

// Main event loop that handles client
// logging records and connection requests.
for (;;)

Initiation_Dispatcher::instance ()->
handle_events ();

/* NOTREACHED */ return 0;
}

18

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

15.03.1999 Reactor.pub.doc

Example
Resolved

The following interaction diagram illustrates the collaboration
between the objects participating in the logging server example:

The main program creates a logging acceptor, whose constructor ini-
tializes it with the port number of the logging server. The program
then enters its main event-loop. Subsequently, the initiation dis-
patcher singleton uses the select event demultiplexing system call
to synchronously wait for connection requests and logging records to
arrive from clients.

Once the initiation dispatcher object is initialized, it becomes the
primary focus of the control flow within the logging server. All subse-
quent activity is triggered by hook methods on the logging acceptor

Handle

la: Logging
Acceptor)

lh: Logging
Handler)

: Initiation
Dispatcher

: Sync. Event
Demultiplexer

get_handle()

handle_events()
select()

: Logging
Server

register_handler()

handle_event()

register_

get_handle()

handle_event()
❏

la

Handle

ACCEPT_
EVENT

Handles

Handles
ACCEPT_
EVENT

lh
READ
EVENT handler()

READ
EVENT

select()

Handles

Handles

<<create>>

15.03.1999 Reactor.pub.doc

Reactor 19

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

and logging handler objects registered with, and controlled by, the
initiation dispatcher.

When a connection request arrives on the network connection, the
initiation dispatcher calls back the logging acceptor, which accepts
the network connection and creates a logging handler. This logging
handler then registers with the initiation dispatcher for
READ_EVENTs. Thus, when a client sends a logging record, the initia-
tion dispatcher calls back to the client’s logging handler to process
the incoming record from that client connection in the logging server’s
single thread of control.

Known uses InterViews [LC87]. The Reactor pattern is implemented by the
InterViews window system distribution, where it is known as the Dis-
patcher. The InterViews Dispatcher is used to define an application’s
main event loop and to manage connections to one or more physical
GUI displays.

ACE Framework [Sch97]. The ACE framework uses the Reactor
pattern as its central event demultiplexer and dispatcher.

The ORB Core layer in many single-threaded implementations of
CORBA [OMG98b], such as VisiBroker, Orbix, and TAO [POSA3], use
the Reactor pattern to demultiplex and dispatch ORB requests to ser-
vants.

Ericsson EOS Call Center Management System. This system uses
the Reactor pattern to manage events routed by Event Servers
[SchSu94] between PBXs and supervisors in Call Center Management
system.

Project Spectrum. The high-speed medical image transfer
subsystem of project Spectrum [PHS96] uses the Reactor pattern in
a medical imaging system.

Consequences The Reactor pattern offers the following benefits:

Separation of concerns. The Reactor pattern decouples application-
independent demultiplexing and dispatching mechanisms from
application-specific hook method functionality. The application-
independent mechanisms become reusable components that know
how to demultiplex events and dispatch the appropriate hook
methods defined by event handlers. In contrast, the application-

20

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

15.03.1999 Reactor.pub.doc

specific functionality in a hook method knows how to perform a
particular type of service.

Modularity, reusability, and configurability of event-driven applica-
tions. The pattern decouples application functionality into several
classes. For instance, there are two separate classes in the logging
server: one for establishing connections and another for receiving and
processing logging records. This decoupling enables the development
of generic event handler components, such as acceptors or connec-
tors (129), that are loosely coupled together through a Reactor. This
separation of concerns helps promote greater software reuse. For in-
stance, the logging server's Acceptor class can establish connections
for many different connection-oriented services, such as file transfer,
remote login, and video-on-demand. As a result modifying or extend-
ing the functionality of the logging server only affects the implemen-
tation of the logging handler class.

Portability. The initiation dispatcher’s interface can be reused inde-
pendently of the operating system calls that perform event demulti-
plexing. These system calls detect and report the occurrence of one or
more events that may occur simultaneously on multiple sources of
events. Common sources of events may include I/O handles, timers,
and synchronization objects. On UNIX platforms, the event demulti-
plexing system calls are called select and poll [Ste90]. In the Win32
API, event demultiplexing is performed by the WaitForMultipleOb-
jects system [Cus93].

Coarse-grained concurrency control. The Reactor pattern serializes the
invocation of event handlers at the level of event demultiplexing and
dispatching within a process or thread. Serialization at the initiation
dispatcher level often eliminates the need for more complicated
synchronization or locking within an application process.

The Reactor pattern has the following liabilities:

Restricted applicability. The Reactor pattern can only be applied effi-
ciently if the operating system supports handles. It is possible to
emulate the semantics of the Reactor pattern using multiple threads
within the initiation dispatcher, for example, one thread for each han-
dle. Whenever there are events available on a handle, its associated
thread will read the event and place it on a queue that is processed
sequentially by the initiation dispatcher. However, this design is typ-

15.03.1999 Reactor.pub.doc

Reactor 21

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

ically very inefficient since it serializes all the event handlers, thereby
increasing synchronization and context switching overhead without
enhancing parallelism.

Non-preemptive. In a single-threaded application process, event
handlers are not preempted while they are executing. This implies
that an event handler should not perform blocking I/O on an
individual handle since this will block the entire process and impede
the responsiveness for clients connected to other handles. Therefore,
for long-duration operations, such as transferring multi-megabyte
medical images [PHS96], the Active Object pattern (89) may be more
effective. An Active Object uses multi-threading or multi-processing
to complete its tasks in parallel with the initiation dispatcher’s main
event-loop.

Hard to debug. Applications written with the Reactor pattern can be
hard to debug since the inverted flow of control oscillates between the
framework infrastructure and the method callbacks on application-
specific handlers. This increases the difficulty of ‘single-stepping’
through the run-time behavior of a framework within a debugger
since application developers may not understand or have access to
the framework code. This is similar to the problems encountered
trying to debug a compiler lexical analyzer and parser written with
LEX and YACC. In these applications, debugging is straightforward
when the thread of control is within the user-defined action routines.
Once the thread of control returns to the generated Deterministic
Finite Automata (DFA) skeleton, however, it is hard to follow the
program logic.

See Also The Reactor pattern is related to the Observer pattern [GHJV95],
where all dependents are informed when a single subject changes. In
the Reactor pattern, a single handler is informed when an event of
interest to the handler occurs on a source of events. The Reactor
pattern is generally used to demultiplex events from multiple sources
to their associated event handlers, whereas an Observer is often
associated with only a single source of events.

The Reactor pattern is related to the Chain of Responsibility pattern
[GHJV95], where a request is delegated to the responsible service
provider. The Reactor pattern differs from the Chain of Responsibility
since the Reactor associates a specific event handler with a particular

22

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

15.03.1999 Reactor.pub.doc

source of events, whereas the Chain of Responsibility pattern
searches the chain to locate the first matching event handler.

The Reactor pattern can be considered a synchronous variant of the
asynchronous Proactor pattern (85). The Proactor supports the
demultiplexing and dispatching of multiple event handlers that are
triggered by the completion of asynchronous events. In contrast, the
Reactor pattern is responsible for demultiplexing and dispatching of
multiple event handlers that are triggered when it is possible to
initiate an operation synchronously without blocking.

The Active Object pattern (89) decouples method execution from
method invocation to simplify synchronized access to a shared
resource by methods invoked in different threads of control. The
Reactor pattern is often used in place of the Active Object pattern
when threads are not available or when the overhead and complexity
of threading is undesirable.

An implementation of the Reactor pattern provides a Facade for event
demultiplexing. A Facade [GHJV95] is an interface that shields
applications from complex object relationships within a subsystem

Credits John Vlissides, the shepherd of the [PLoP94] version of Reactor, and
Doug Lea provided many useful suggestions for documenting the
original Reactor concept in pattern form..

