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Service Configurator

The Service Configurator architecture pattern decouples the behavior
of services from the point in time at which service implementations
are configured into application processes.

Example A distributed time service [OMG97] provides accurate, fault-tolerant
clock synchronization for computers collaborating in networks. A
synchronized time service is important for distributed systems where
hosts must maintain accurate global time across a network. For
instance, large-scale distributed electronic medical imaging systems
[PHS96] require globally synchronized clocks that can ensure patient
exams are accurately timestamped and analyzed expeditiously by
radiologists throughout a distributed health-care delivery system.
The architecture of the distributed time service contains the following
components:

• Time servers answer clerk queries about the current time.

• Clerks query one or more time servers to sample their notion of the
current time, calculate the approximate correct time using one of
several distributed time algorithms [GZ89] [Cris89], and update
their own local system time.

• Clients use the global time information maintained by their clerks
to provide consistent notion of time used by clients on other hosts.

A common way to implement such a distributed time service is to con-
figure the functionality of time servers, clerks, and clients statically

Time
Server

Clerk

ClientClientClerkClient

Time
Server

Time Update

Time

Time
Update

Update



2

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

20.08.1999 Service-Configurator.doc

into separate monolithic processes. In this design, one or more hosts
would run time server processes that service time update requests
from clerk processes. A clerk process is run on each host that re-
quires global time synchronization. Clerks periodically update their
local system time based on values received from one or more time
servers. Client processes use the synchronized time reported by their
local clerk. To minimize communication overhead, the current time
can be stored in shared memory that is mapped into the address
space of the clerk and all of its clients on the same host.

The architecture described above has been used in production dis-
tributed systems. However, this statically configured, overly process-
centric design yields an inflexible, and often time/space inefficient,
solution. The main problem with static configuration is that it tightly
couples at compile-time the implementation of a particular service
with the configuration of the service with respect to other services in
application processes. This tight coupling makes it hard to change
service implementations and configurations without having to modi-
fy, recompile, and relink existing application processes, as well as
shutdown, reconfigure, and restart running processes.

Context An application or system where component-based services must be
initiated, suspended, resumed, and terminated flexibly.

Problem Applications that are composed of component-based services must
provide a mechanism to configure these services into one or more
processes. The solution to this problem is influenced by the following
forces:

• It should be possible to make service configuration decisions at any
point in the application development cycle. For instance, it should
be straightforward to collocate selected services into a single
process for particular application use cases, as well as partition
them into separate processes—and even separate hosts—to
support different use cases. Statically binding service
implementations to service configurations reduces this flexibility,
however. The problem is that developers often do not know a priori
the most effective way to collocate or distribute multiple service
components into processes and hosts. Improper service
configurations can significantly reduce overall system performance
and functionality.
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➥ The lack of memory resources in wireless computing environ-
ments may require client and clerk service implementations to be
split into two independent processes running on separate hosts.
Conversely, in a real-time avionics environment it may be neces-
sary to collocate the clerk and time server service implementations
into one process to reduce communication latency.1 ❏

In general, forcing developers to commit prematurely to a particu-
lar configuration of service implementations impedes flexibility and
can reduce overall system performance and functionality.

• It should be possible to make service implementation decisions at
any point in the development cycle. This degree of flexibility is often
necessary because changes to service functionality or
implementation are common in many systems and applications. In
general, modifications to a particular service implementation
should have minimal impact on the implementation of applications
or other components that use the service.

➥ In the real-time avionics environment mentioned in the
previous force, client and clerk service implementations might be
collocated into one process to reduce latency. If the distributed
time algorithm implemented by the clerk changes, however, other
clerks and client components that use the clerk should not be
affected by these implementation changes. ❏

• It should be possible to change services configurations and imple-
mentations at any point in the development cycle. For instance, ini-
tial choices may not be optimal over time because better algorithms
or architectures be discovered. Likewise, in large-scale systems it
may be necessary to distribute services to other processes and
hosts because a collocated configuration may not scale efficiently.
In addition, platform upgrades for highly available systems, such
as telecommunication switches or call centers [SchSu94] may re-
quire service reconfiguration without disrupting running services.

➥ If we change the clerk’s implementation of the time
synchronization algorithm, it may be undesirable to recompile,

1. If the clerk and the server are collocated in the same process, the clerk can
optimize communication by eliminating the need to set up a transport connection with
the server and directly accessing the server’s notion of time via shared memory
[PRSW+99].
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relink, and restart the whole application that contains the clerk.
Therefore, it should be possible to initiate, suspend, resume, and
terminate the clerk dynamically at run-time, without affecting
other currently executing services. ❏

• Performing common service administrative tasks, such as their
configuration, initiation, and control, should be straightforward
and service-independent. Often, these administrative tasks can be
managed more effectively from a central location, rather than being
scattered throughout an application or system.

➥ The administrative code for initializing and terminating clerks
and time servers within server processes should be localized in a
set of generic library components that can be linked with applica-
tion code and invoked a uniform manner, such as via a standard
set of hook methods or messages. Likewise, the application code
that implements these hook methods or messages should be local-
ized within designated factories in an application. ❏

Solution Decouple the behavior of services from the point in time at which
these services are configured into application processes. A service
provides a standard interface for configuring and controlling service
components. Applications can use this interface to initiate, suspend,
resume, and terminate their services dynamically, as well as to obtain
run-time information about each configured service. The services
themselves reside within a service repository and can be added and
removed to and from the service repository under control of a service
configurator.

Structure The Service Configurator pattern includes four participants:

A service defines an interface to control a service. Common control
operations include initializing, suspending, resuming, and terminat-
ing a service.

Concrete services implement the service control interface and other
service-specific functionality, such communicating with peers.

A service repository maintains a repository of all the concrete services
offered by a Service Configurator-enabled application. This allows
administrative entities to manage and control the behavior of
configured concrete services via a central administrative unit.
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A service configurator is responsible for coordinating the
(re)configuration of concrete services via the service repository.

The UML class diagram for the Service Configurator pattern is as
follows

➥ Two concrete services, time server and clerk, appear in the
distributed time service. Each concrete service provides specific

Class
Service Repository

Responsibility
• Maintains the

configurated
services

Collaborator
• Concrete

Services

Class
Service
Configurator

Responsibility
• Configures

services into an
application process

Collaborator
• Concrete

Services
• Service

Repository

Class
Service

Responsibility
• Defines an

interface for
configurable
components

Collaborator Class
Concrete Service

Responsibility
• Implements an

application service
that should by
dynamically
configurable

Collaborator

Service

init()
fini()
suspend()
resume()
info()

Service
Repository

Service
Configurator

Concrete
Service A

Concrete
Service B

<<contains>>

services
*



6

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

20.08.1999 Service-Configurator.doc

functionality to the distributed time service. The time server service
receives and processes requests for time updates from clerks. The
clerk service queries one or more time servers to determine the
approximate correct time and to update its own local system time. ❏

Dynamics The canonical behavior of the Service Configurator pattern includes
three phases:

• Service initialization. Services is initialized by the service configu-
rator, which dynamically links the service into an application or
launches a process to execute the service if necessary.2 Once a ser-
vice has been initialized successfully, the service configurator adds
it to the service repository and then manages and controls all con-
figured services at run-time.

• Service processing. After being configured into an application, a
service performs its processing tasks, such as servicing client
requests or exchanging messages with peers. While service
processing is occurring, the service configurator can suspend and
resume existing services, as well as (re)configure new services.

• Service termination. A service configurator shuts down services
once they are no longer needed, allowing them an opportunity to
clean up their resources before terminating. Once a service is
terminated, the service configurator removes it from the service
repository. If the service was dynamically linked into an application
process the service configurator can unlink it. Likewise, if the
service was launched in a separate process the service configurator
can terminate the process.

2. The Implementation section describes how parameters can be passed into the
service, as well as how the service can be activated.
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The following state diagram further illustrates how a service
configurator controls the life-cycle of a service.

Implementation The participants in the Service Configurator pattern can be decom-
posed into two layers: configuration management infrastructure and
application components. Components in the configuration manage-
ment layer perform general, application-independent strategies for
installing, initializing, controlling, and terminating services. Compo-
nents in the application layer implement service-specific processing.
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The implementation guidelines in this section start at the bottom with
the configuration management layer and work upwards to the appli-
cation layer.

1 Define the service control interface. The following is the interface that
services should support so the service configurator can configure and
control a service:

• Service initialization: provide an entry point to initialize the service.

• Service finalization: shutdown a service and cleanup its resources.

• Service suspension: temporarily suspend service execution.

• Service resumption: resume execution of a suspended service.

• Service information: report information that describes the static or
dynamic attributes of a service.

A service control interface can be based on inheritance or message
passing.

Inheritance-based interface. In this strategy, each service inherits
from a common base class that contains pure virtual hook methods
for each service control operation.

➥ For instance, the following abstract Service  class is defined in
ACE [Sch94]:

class Service  {
public:

// = Initialization and termination hooks.
virtual int init  (int argc, char *argv[]) = 0;
virtual int fini  (void) = 0;

// = Scheduling hooks.
virtual int suspend  (void);
virtual int resume  (void);

// = Informational hook.
virtual int info  (char **status, size_t len) = 0;

}; ❏

Message-based interface. Another way to control communication
services is to program each service to respond to a specific set of
messages, such as INIT, SUSPEND, RESUME, and FINI, which are sent to
the service by the service configurator framework. Service developers
must write code to process these messages, for instance to initialize,
suspend, resume, and terminate a service, respectively. Using
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messages, rather than inheritance, makes it possible to implement
the Service Configurator pattern in non-OO programming languages,
such as C or Ada83, that lack inheritance.

2 Implement a service repository. All concrete service implementations,
such as objects, executable programs, or dynamically linked library
(DLLs), are maintained by a service repository. A service configurator
uses the service repository to access a service when it is configured
into or removed from an application or system. Each service’s current
status, such as whether it is active or suspended, is maintained in the
repository, as well. A service repository can be implemented as a
collection maintained according to the Manager pattern [PLoP96].
This collection can be stored in main memory, the file system, or
shared memory and controlled by a separate process or linked into
the application’s process.

➥ The methods of Service_Repository  class defined in ACE
[Sch94] are:

class Service_Repository  {
public:

// = Initialization and termination operations.
// Initialize the repository.
Service_Repository  (void);
// Close down the repository and free up
// dynamically allocated resources.
~Service_Repository  (void);

// = Container operations.
// Insert a new <Service> with <service_name>.
int insert  (const char service_name[],

const Service  *);
// Locate <service_name>.
int find  (const char service_name[],

const Service **service);
// Remove <service_name>.
int remove  (const char service_name[]);

// = Liveness control.
// Suspend <service_name>.
int suspend  (const char service_name[]);
// Resume <service_name>.
int resume  (const char service_name[]);

private:
// ...

}; ❏
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3 Implement the service configuration infrastructure. The service
configurator integrates the other participants in the pattern in order
to manage the static and/or dynamic configuration of services into
application processes. For instance, it is responsible for coordinating
the (re)configuration of services via the service repository. The
implementation of a service configurator involves the following steps:

3.1 Define the service configurator interface. The service configurator is
typically implemented as a Facade [GHJV95] that mediates access to
other service configurator pattern components, such as the service
repository and the per-service attribute API and interpreter.

➥ The following C++ interface is the facade used for our distributed
time server example:

class Service_Configurator  {
public:

Service_Configurator  (const char svc_conf_file[]);
// Perform the directives specified in the
// <svc_conf_file>.

Service_Repository  *service_repository (void);
// Accessor to the <Service_Repository>.

};

All processing of configuration directives is performed in the
constructor of Service_Configurator .

3.2 Define the service (re)configuration mechanism. A service must be
configured before it can be executed.  Thus, the service configuration
mechanism should support the following features:

• An API for specifying per-service attributes. Service attributes
supply parameters needed to locate a service’s implementation and
initialize the service at run-time. Service implementations typically
reside in statically linked objects, DLLs, or executable programs.
Per-service attributes can be specified in various ways, such as on
the command-line, via environment variables, through a graphical
user interface, or in a configuration file.

• A mechanism for interpreting service configuration attributes.
Regardless of how or where the per-service attributes are specified,
an interpreter is needed to parse and process the attributes
specified to configure each service. This interpreter helps to
decouple the configuration-related aspects of a service from its
run-time behavior. A per-service attribute interpreter can be
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developed using the Interpreter pattern [GHJV95] or standard
parser-generator tools like LEX and YACC [SchSu94].

• A reconfiguration mechanism. A reconfiguration mechanism allows
service implementations and service configurations to evolve
dynamically without affecting the execution of other services in an
application process. Reconfiguration can be triggered in various
ways, such as generating an external event, such as the UNIX
SIGHUP signal, or sending an notification via an IPC channel, such
as a socket connection or a CORBA operation invocation. On
receipt of a reconfiguration event, the service configurator
reinterprets any modified service configuration attributes.

➥ To simplify installation and administration, the service configu-
rator in our distributed time server example uses the mechanism pro-
vided by ACE [Sch94]. It is based on a configuration file, referred to
as svc.conf . This file consolidates service attributes and initializa-
tion parameters into a single location that can be managed centrally
by developers or administrators. Every service to be (re)configured is
specified by a directive in the svc.conf  file using a simple configura-
tion scripting language defined with the following BNF grammar:

<entry>   ::= <dynamic> | <static> | <suspend>
     | <resume> | <remove>

<dynamic> ::= dynamic <svc-location> [ <parameters-opt> ]
<static>  ::= static <svc-name> [ <parameters-opt> ]
<suspend> ::= suspend <svc-name>
<resume>  ::= resume <svc-name>
<remove>  ::= remove <svc-name>
<svc-location> ::= <svc-name> <type> <function-name>
<type>    ::= Service ’*’ | NULL
<function-name>  ::= PATHNAME ’:’ IDENT ’(’ ’)’
<parameters-opt> ::= STRING | NULL

The entries in a svc.conf  file are processed by the service configura-
tor’s per-service attribute interpreter described above. Each entry
starts with a directive that instructs the interpreter which configura-
tion-related operation to perform during service configuration or
reconfiguration. The following table outlines the purpose of these di-
rectives.

Directive Description

dynamic dynamically link and enable a servive
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The following svc.conf file illustrates how to configure a time server
into a Service Configurator-enabled application:

# Configure a Time Server.
dynamic Time_Server Service *

netsvcs.dll:make_Time_Server()
"-p $TIME_SERVER_PORT"

This entry in the svc.conf  file contains one dynamic directive that
instructs the interpreter to dynamically link the netsvcs.dll  DLL
into the application’s address space and automatically invoke the
make_Time_Server()  factory function. This function dynamically
allocates a new time server instance, as follows:

extern "C"
Service  * make_Time_Server  (void) {

// Time_Server inherits from the
// Service class.
return new Time_Server ;

}

The string parameter at the end of the entry specifies an environment
variable containing a port number upon which the time server will
accept clerk connections. The service configurator converts this
string into an ‘argc/argv ’-style vector and passes it to the init()
hook of the time server. If the init()  method successfully initializes
the service, a pointer to the service is stored in the service repository
under the name Time_Server . This name identifies the dynamically
configured service so that it can be controlled dynamically via the
service configurator. ❏

4 Implement the concrete services and service execution mechanism. In
this step, implement the concrete services and determine the service
execution model. For instance, a service that has been configured by
a service configurator can be executed using various concurrency
models based on the Reactor (71) and Active Object (183) patterns:

static Enable a statically linked service

remove Completely remove a service

suspend Suspend a service withot removing it

resume Resume a previously suspended service

Directive Description
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• Reactive execution. A single thread of control can be used for
service configuration processing, as well as the execution of all the
services configured by the service configurator.

• Multi-threaded Active Objects. In this approach, the configured
services execute in their own threads of control within a service
sonfigurator-enabled process. For instance, services can spawn
new threads ‘on-demand’ or execute them within a pre-spawned
pool of threads.

• Multi-process Active Objects. In this approach, the configured
services execute in their own processes. For instance, services can
spawn new processes ‘on-demand’ or execute within a pre-
spawned pool of processes.

Example
Resolved

The Service Configurator-enabled component model for our
distributed time server example is defined as follows:

This design uses an inheritance-based strategy for service control.
The concrete service participants of the pattern are represented by
the Time_Server  and Clerk  components, which inherit from the
Service  class. The Time_Server  service is responsible for receiving
and processing requests for time updates from Clerk s. The Clerk
service is a connector factory that is designed according to the
Acceptor-Connector pattern (99). It is responsible for creating new
connections to time servers, dynamically allocating handlers to send
time update requests to connected time servers, receiving these
server replies, and then updating the local system time.
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Our example implementation uses a configuration mechanism based
on explicit dynamic linking [SchSu94] and a svc.conf  configuration
file. This configuration mechanism supports the dynamic
configuration of Clerk  and Time_Server  components into the
distributed time service via scripting. Moreover, these features allow
Clerk  components to change how their algorithms compute local
system time without affecting the execution of other components
controlled by the service configurator. Once an algorithm has been
modified, the Service_Configurator  can dynamically reconfigure
the Clerk  component. The service execution mechanism is based on
a reactive event handling model within a single thread of control, as
described by the Reactor pattern (71).

The time server and clerk implementations. Our initial Time_Server
implementation is based on Cristian’s algorithm [Cris89]. In this
algorithm, each Time_Server  is a passive entity that responds to
queries made by Clerks . In particular, a Time_Server  does not
actively query other machines to determine its own notion of time.

The Time_Server  class inherits from the Service  class, which
enables the Service_Configurator  to dynamically link and unlink
Time_Server  objects. This design decouples the implementation of
the Time Server from its configuration, allowing developers to change
the implementation of the Time_Server ’s algorithm independently
from the time or context where it is configured:

class Time_Server  : public Service  {
public:

// Initialize the service when linked dynamically.
virtual int init  (int argc, char *argv[]);

// Terminate the service when dynamically unlinked.
virtual int fini  (void);

// Other methods (e.g., <info>, <suspend>, and
// <resume>) omitted.

private:
// ...

};

Before storing the Time_Server  service in the Service_Repository ,
the Service_Configurator  invokes its init()  hook automatically
to perform Time_Server -specific initialization code. Likewise, the
Service_Configurator  calls the Time_Server ’s fini()  hook
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method to shutdown and cleanup the service when it is no longer
needed.

Our Clerk  implementation establishes and maintains connections
with Time_Servers  and periodically queries them to calculate the
current time:

class Clerk  : public Service  {
public:

// Initialize the service when linked dynamically.
virtual int init  (int argc, char *argv[]);

// Terminate the service when dynamically unlinked.
virtual int fini  (void);

// <info>, <suspend>, and <resume> methods omitted.
// Implements Cristian’s clock synchronization
// algorithm that computes local system time.
int handle_timeout  (void);

private:
// ...

};

The Clerk  class inherits from the Service  class. Therefore, like the
Time_Server  above, the Clerk  can be linked and unlinked
dynamically by the Service_Configurator . Likewise, the
Service_Configurator  can control Clerks  by calling their init() ,
suspend() , resume() , and fini()  hooks.

Once the Clerk  receives responses from all its connected
Time_Server s, it recalculates its notion of the local system time.
Thus, when Client s ask the Clerk  for the current time, they receive
a locally cached time value that has been synchronized with the
global notion of time.

Configuring an application dynamically. There are two general
strategies for configuration a distributed time service application:
collocated and distributed. We outline each strategy to illustrate how
a Service Configurator-enabled application can be dynamic
(re)configured and run.

Collocated configuration. This configuration uses a svc.conf  file to
collocate the Time_Server  and the Clerk  within the same process.
The following generic main()  program configures services
dynamically within the constructor of the Service_Configurator



16

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

20.08.1999 Service-Configurator.doc

object and then runs the application’s event loop, which in our
example is based on the Reactor pattern (71).

int main (int argc, char *argv[]) {
// Configure services into the server process.
// Each service registers itself with the
// Singleton Reactor.
Service_Configurator  server (argc, argv);

// Perform service processing and any
// reconfiguration updates using a Reactor.
for (;;)

Reactor::instance ()->handle_events ();
/* NOTREACHED */

}

The constructor for Service_Configurator  interprets the following
svc.conf  configuration file:

# Configure a Time Server.
dynamic Time_Server Service *

netsvcs.dll:make_Time_Server()
"-p $TIME_SERVER_PORT"

# Configure a Clerk.
dynamic Clerk Service *

netsvcs.dll:make_Clerk()
"-h tango.cs:$TIME_SERVER_PORT"
"-h perdita.wuerl:$TIME_SERVER_PORT"
"-h atomic-clock.lanl.gov:$TIME_SERVER_PORT"
"-P 10" # polling frequency

The entries in this svc.conf file specify to the Service_Configurator
how to dynamically configure a collocated Time_Server  and Clerk  in
the same application process. The Service_Configurator  dynami-
cally links netsvcs.dll DLL into the application’s address space
and invokes the appropriate factory function to create new service in-
stances. In our example the factory functions are
make_Time_Server()  or make_Clerk(), which are defined as
follows:
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Service  *make_Time_Server (void) {
// Time_Server must inherit from Service.
return new Time_Server ;

}

Service  *make_Clerk (void) {
// Clerk must inherit from Service.
return new Clerk ;

}

Once each factory function returns the new allocated service, the
designated initialization parameters in the svc.conf  file are passed
to the respective init()  hook methods, which perform service-
specific initialization.

Distributed configuration. To reduce the memory footprint of an
application, we may want to collocate the Time_Server  and the
Clerk  in different processes. Due to the flexibility of the Service
Configurator pattern, all that is needed to distribute these services is
to split the svc.conf  file into two parts and run them in separate
processes or hosts. One process would contain the Time_Server
entry and the other process would contain the Clerk  entry.

The figure below shows what the configuration looks like with the
Time_Server  and Clerk  collocated in the same process, as well as
the new configuration after the reconfiguration split. Note that the
services themselves need not change by virtue of the fact that the
Service Configurator pattern decouples their processing behavior
from their configuration.
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Reconfiguring an application’s services. Now consider what happens if
we must change algorithms that implement components in the
distributed time service. For example, we may decide to switch from
Cristian’s algorithm [Cris89] to the Berkeley algorithm [GZ89].  In the
Berkeley algorithm, the Time_Server  is an active component that
polls every machine in the network periodically to determine what
time it is there. Based on the responses it receives, it computes an
aggregate notion of the correct time and instructs all the machines to
adjust their clocks accordingly.

Such a change may be necessary to leverage new features in the
environment. For instance, if the machine on which the Time_Server
resides has a WWV receiver3 the Time_Server  can act as a passive
entity and Cristian algorithm would be appropriate. Conversely, if the
machine on which the Time_Server  resides does not have a WWV
receiver then an implementation of the Berkeley algorithm would be
more appropriate.

Ideally, we should be able to change Time_Server  algorithm imple-
mentations without affecting the execution of other services or other
components of the time service. Accomplishing this using the Service
Configurator pattern requires the following minor modifications to
our distributed time service:

1 Modify the existing svc.conf file. We start by making the following
change to the svc.conf  file:

# Shutdown Time_Server
remove Time_Server

This directive instructs the Service_Configurator  to shutdown the
Time_Server  service and remove it from the configurator’s
Service_Repository .

2 Notify the Service_Configurator to reinterpret the svc.conf file. The next
step is to get the Service_Configurator  to process this directive in
the updated svc.conf  file. This can be done by generating an exter-
nal event, such as the UNIX SIGHUP signal, a socket, a CORBA event
callback, or a Windows NT Registry event. On receipt of this event, the
Service_Configurator  consults its svc.conf  file again and shut-
downs the Time_Server  service by calling its fini()  method. Note

3. A WWV receiver intercepts the short pulses broadcasted by the National Institute
of Standard Time (NIST) to provide Universal Coordinated Time (UTC) to the public.
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that the execution of other services should be unaffected during this
step.

3 Update the service implementation. Once the Time_Server  service
has been shutdown, it can be modified to implement a different
algorithm, such as the Berkeley algorithm. The new code can be
recompiled and relinked to form a new_netsvcs  DLL.

4 Initiate reconfiguration. We can now repeat steps 1 and 2 to configure
the modified Time_Server service back into an application. The
svc.conf  file must be modified with a new directive specifying that
the Time_Server  be linked dynamically, as follows:

# Configure a Time Server.
dynamic Time_Server Service *

new_netsvcs.dll:make_Time_Server()
"-p $TIME_SERVER_PORT"

An external event would then be generated, causing the
Service_Configurator  in the process to reread the configuration
file and add the updated Time_Server  service component to the
repository. This component would start executing once its init()
method was called by the Service_Configurator .

While the Service_Configurator  is shutting down, removing, and
reconfiguring the Time_Server  service, no other active services
should be affected. The ease with which new service implementations
can be substituted dynamically exemplifies the flexibility offered by
the Service Configurator pattern.

Known Uses Modern operating system device drivers. Most modern operating
systems, such as Solaris, Linux, and Windows NT, provide support
for dynamically configurable kernel-level device drivers. These drivers
can be linked into and unlinked out of the system dynamically via
hooks, such as the init() , fini() , and info()  functions defined in
SVR4 UNIX. These operating systems use the Service Configurator
pattern to allow administrators to reconfigure the OS kernel without
having to shut it down, recompile and statically relink new drivers,
and restart the operating system.

Network server management. The Service Configurator pattern has
been used in ‘superservers’ that manage network servers. Two widely
available network server management frameworks are inetd  [Ste90]
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and listen  [Rago93]. Both frameworks consult configuration files
that specify the following information:

• Service names, such as standard Internet  services like ftp ,
telnet , daytime , and echo ,

• Port numbers to listen on for clients to connect with these services,
and

• An executable file to invoke and perform the service when a client
connects.

Both inetd  and listen  contain a master acceptor (99) process that
monitors a set of port numbers associated with the services. When a
client connection occurs on a monitored port, the acceptor process
accepts the connection and demultiplexes the request to the
appropriate pre-registered service handler. This handler performs the
service, either reactively (71) or as an active object (183), and returns
any results to the client.

The Windows NT Service Control Manager (SCM). The SCM allows a
master SCM process to automatically initiate and control
administrator-installed services using the message-based strategy
described in the Implementation section. The master SCM process
automatically initiates and manages system services by passing them
various control messages, such as PAUSE, RESUME, and TERMINATE,
which must be handled by each service. SCM-based services run as
separate threads within either a single-service or a multi-service
server process. Each installed service is individually responsible for
configuring itself and monitoring any communication endpoints,
which can be more general than socket ports.  For instance, the SCM
can control named pipes and shared memory.

The ADAPTIVE Communication Environment (ACE) framework
[Sch97]. ACE provides a set of C++ mechanisms for configuring and
controlling communication services dynamically using the
inheritance-based strategy described in the Implementation section.
The ACE Service Configurator framework extends the mechanisms
provided by inetd , listen , and SCM to automatically support
dynamic linking and unlinking of communication services. The
mechanisms provided by ACE were influenced by the strategies used
to configure and control device drivers in modern operating systems.
Rather than targeting kernel-level device drivers, however, the ACE
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Service Configurator framework focuses on dynamic configuration
and control of application-level service objects.

Java applets. The applet mechanism in Java uses the Service
Configurator pattern. Java supports downloading, initializing,
starting, suspending, resuming, and terminating applets. It uses the
inheritance-based strategy described in the Implementation section
by providing virtual methods, such as start()  and stop() , that can
be overridden by applications to initiate and terminate threads. A
method in a Java applet can access the thread it is running under
using Thread.currentThread() , and then invoke control methods,
such as suspend() , resume() , and stop() , to manage the applet’s
behavior. An illustration of how the Service Configurator pattern is
used for Java applets is presented in the original version of this
pattern [JS97b].

Consequences The Service Configurator pattern offers the following benefits:

Uniform configuration and control interfaces. The Service Configurator
pattern imposes a uniform configuration and control interface for
services. This uniformity allows services to be treated as building
blocks that can be integrated as components into a larger application.
Enforcing a common interface across all services makes them ’look
and feel’ the same with respect to their configuration activities, which
simplifies application development by promoting the ‘principle of least
surprise.’

Centralized administration. The pattern consolidates one or more
services into a single administrative unit. This simplifies development
by enabling common service initialization and termination activities,
such as opening/closing files and acquiring/releasing locks, to be
performed automatically. In addition, it centralizes the
administration of communication services by ensuring that each
service supports the same configuration management operations,
such as init() , suspend() , resume() , and fini() .

Increased modularity, testability, and reuse. The pattern improves
application modularity and reusability by decoupling the
implementation of services from manner in which the services are
configured into processes. Because all services have a uniform
configuration and control interface, monolithic applications can be
decomposed more easily into reusable component-based serivices
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that can be developed and tested independently. This separation of
concerns encourages greater reuse and simplifies development of
subsequent services.

Increased configuration dynamism and control. The pattern enables a
service to be dynamically reconfigured without modifying,
recompiling, or statically relinking existing code. In addition,
(re)configuration of a service often can be performed without
restarting the service or other active services with which it is
collocated.4 These features help create an infrastructure for user-
defined application service configuration frameworks.

Increased opportunity for tuning and optimization. The pattern
increases the range of service configuration alternatives available to
developers by decoupling service functionality from service execution
mechanisms. For instance, developers can tune server concurrency
strategies adaptively to match client demands and available operating
system processing resources. Common execution alternatives
include spawning a thread or process upon the arrival of a client
request or pre-spawning a thread or process at service creation time.

The Service Configurator pattern has the following liabilities:

Lack of determinism and ordering dependencies. The pattern makes it
hard to determine the behavior of an application until its services are
configured at run-time. This can be problematic for certain types of
systems, particularly real-time systems, because a dynamically
configured service may not behave predictably when run with certain
other services. For example, a newly configured service may consume
excessive CPU cycles, thereby starving out other services and causing
them to miss their deadlines.

Reduced security or reliability. An application that uses the Service
Configurator pattern may be less secure or reliable than an
equivalent statically configured application. It may be less secure
because impostors can masquerade as services in DLLs. It may be
less reliable because a particular configuration of services may
adversely affect the execution of the services.  For instance, a faulty

4. It is beyond the scope of the Service Configurator pattern to ensure robust
dynamic service reconfiguration. Supporting robust reconfiguration is primarily a
matter of protocols and policies, whereas the Service Configurator pattern primarily
addresses (re)configuration mechanisms.
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service may crash, thereby corrupting state information it shares
with other services configured into the same process.

Increased run-time overhead and infrastructure complexity. The
pattern adds extra levels of abstraction and indirection in order to
execute services. For instance, the service configurator first initializes
services and then loads them into the service repository. This may
incur excessive overhead in time-critical applications.  In addition,
when dynamic linking is used to implement services many compilers
adds extra levels of indirection to method invocations and global
variable accesses [GLDW87].

Overly narrow common interfaces. The initialization or termination of
a service may be too complicated or too tightly coupled with its
context to be performed in a uniform manner via common service
control interfaces, such as init()  and fini() .

See Also The intent of the Service Configurator pattern is similar to the
Configuration pattern [CMP95]. The Configuration pattern decouples
structural issues related to configuring services in distributed
applications from the execution of the services themselves. The
Configuration pattern has been used in frameworks for configuring
distributed systems to support the construction of a distributed
system from a set of components. In a similar way, the Service
Configurator pattern decouples service initialization from service
processing. The primary difference is that the Configuration pattern
focuses more on the active composition of a chain of related services,
whereas the Service Configurator pattern focuses on the dynamic
initialization of service handlers at a particular endpoint.
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