
23.04.1999 Wrapper-Facade.pub.doc

Wrapper Facade 1

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Wrapper Facade

The Wrapper Facade design pattern encapsulates low-level functions
and data structures within more concise, robust, portable, and
maintainable object-oriented class interfaces.

Example Consider you are developing a server for a distributed logging service
that can handle multiple clients concurrently using a connection-ori-
ented protocol like TCP [Ste90]. When a client wants to log data, it
must first send a connection request. The logging server accepts con-
nection requests using an acceptor factory, which listens on a net-
work address known to clients.

When a connection request arrives from a client, the acceptor factory
accepts the client's connection and creates a socket handle that rep-
resents this client's connection endpoint. This handle is passed up to
the logging server, which spawns a thread and waits in this thread for
logging requests to arrive on the connected socket handle. Once a cli-
ent is connected, it can send logging requests to the server. The server
receives these requests via the connected socket handles, processes
the logging requests, and writes the requests to a log file.

A common way to develop the logging server is to use low-level C lan-
guage functions and data structures for threading, synchronization
and network communication, for example by using Solaris threads
[EKBF+92] and the socket [Ste97] network programming API.

However, if the logging server is expected to run on multiple plat-
forms, such as Solaris and Win32, the data structures you need may
differ in type, and the functions may differ in their syntax and seman-

Client : Logging
Handler

: Acceptor

1: socket()
2: bind()
3: listen()
5: accept()

4: connect()
6: thr_create()

8: recv()
9: write()

7: send()

Server
Server

Factory

2

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

23.04.1999 Wrapper-Facade.pub.doc

tics. As a result, the implementation will contain code that handles
the differences in the Solaris and Win32 operating system APIs for
sockets, mutexes, and threads. For example, if written with C APIs,
the logging server implementation and the logging handler function,
which runs in its own thread, will likely contain many #ifdef s:

#if defined (_WIN32)
#include <windows.h>
typedef int ssize_t;

#else
// The following typedef is platform-specific.
typedef unsigned int UINT32;
#include <thread.h>
#include <unistd.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <memory.h>

#endif /* _WIN32 */

// Keep track of number of logging requests.
static int request_count;

// Lock to protect request_count.
#if defined (_WIN32)

static CRITICAL_SECTION lock;
#else

static mutex_t lock;
#endif /* _WIN32 */

// Maximum size of a logging record.
static const int LOG_RECORD_MAX = 1024;

// Port number to listen on for requests.
static const int logging_port = 10000;

// Entry point that writes logging records.
int write_record (char log_record[], int len) {

/* ... */
return 0;

}

// Entry point that processes logging records for
// one client connection.
#if defined (_WIN32)

u_long
#else

void *
#endif /* _WIN32 */
logging_handler (void *arg) {

// Handle UNIX/Win32 portability.
#if defined (_WIN32)

SOCKET h = reinterpret_cast <SOCKET> (arg);
#else

int h = reinterpret_cast <int> (arg);
#endif /* _WIN32 */

for (;;) {
#if defined (_WIN32)
 ULONG len;
#else
 UINT32 len;
#endif /* _WIN32 */

// Ensure a 32-bit quantity.
char log_record[LOG_RECORD_MAX];

// The first <recv> reads the length
// (stored as a 32-bit integer) of
// adjacent logging record. This code
// does not handle "short-<recv>s".
ssize_t n = recv (h,

 reinterpret_cast <char *> (&len),
 sizeof len, 0);

// Bail out if we're shutdown or
// errors occur unexpectedly.
if (n <= sizeof len) break;
len = ntohl (len);
if (len > LOG_RECORD_MAX) break;

// The second <recv> then reads <len>
// bytes to obtain the actual record.
// This code handles "short-<recv>s".
for (ssize_t nread = 0; nread < len; nread += n) {

n = recv (h, log_record + nread,
len - nread, 0);

// Bail out if an error occurs.
if (n <= 0) return 0;

}

#if defined (_WIN32)
EnterCriticalSection (&lock);

#else
mutex_lock (&lock);

#endif /* _WIN32 */
// Execute following two statements
// in a critical section to avoid
// race conditions and scrambled
// output, respectively.
// Count # of requests
++request_count;
if (write_record (log_record, len) == -1)

break;

#if defined (_WIN32)
LeaveCriticalSection (&lock);

#else
mutex_unlock (&lock);

#endif /* _WIN32 */
}

#if defined (_WIN32)
closesocket (h);

#else
close (h);

#endif /* _WIN32 */
return 0;

}

// Main driver function for the server.
int main (int argc, char *argv[]) {

struct sockaddr_in sock_addr;

// Handle UNIX/Win32 portability.
#if defined (_WIN32)

SOCKET acceptor;
#else

int acceptor;
#endif /* _WIN32 */

// Create a local endpoint of communication.
acceptor = socket (PF_INET, SOCK_STREAM, 0);
// Set up the address to become a server.
memset (reinterpret_cast<void *> (&sock_addr),

0, sizeof sock_addr);
sock_addr.sin_family = AF_INET;
sock_addr.sin_port = htons (logging_port);
sock_addr.sin_addr.s_addr = htonl (INADDR_ANY);
// Associate address with endpoint.
bind (acceptor, reinterpret_cast<struct sockaddr *>

(&sock_addr), sizeof sock_addr);
// Make endpoint listen for connections.
listen (acceptor, 5);

// Main server event loop.
for (;;) {

// Handle UNIX/Win32 portability.
#if defined (_WIN32)

SOCKET h;
DWORD t_id;

#else
int h;
thread_t t_id;

#endif /* _WIN32 */
// Block waiting for clients to connect.
h = accept (acceptor, 0, 0);
// Spawn a new thread that runs the <server>
// entry point.

#if defined (_WIN32)
CreateThread (0, 0,

 LPTHREAD_START_ROUTINE(&logging_handler),
 reinterpret_cast <void *> (h), 0, &t_id);

#else
thr_create

(0, 0, logging_handler,
 reinterpret_cast <void *> (h),
 THR_DETACHED, &t_id);

#endif /* _WIN32 */
}
return 0;

}

23.04.1999 Wrapper-Facade.pub.doc

Wrapper Facade 3

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Even moving platform-specific declarations into separate configura-
tion header files does not resolve the problems. For example, #ifdef s
that separate the use of platform-specific APIs, such as the thread
creation calls, still pollute application code. Likewise, #ifdef s may
also be required to work around compiler bugs or lack of features in
certain compilers. The problems with different semantics of these
APIs also remain. Moreover, adding a new platform still requires ap-
plication developers to modify and update the platform-specific dec-
larations, whether they are included directly into application code or
separated into configuration files.

Context Applications that access services provided by low-level functions and
data structures.

Problem Applications are often written using low-level operating system func-
tions and data structures, such as for networking and threading, or
other libraries, such as for user interface or database programming.
Although this is common practice, it causes problems for application
developers by failing to resolve the following problems:

• Verbose, non-robust programs. Application developers who program
directly to low-level functions and data structures must repeatedly
rewrite a great deal of tedious software logic. In general, code that
is tedious to write and maintain often contains subtle and perni-
cious errors.

➥ The code for creating and initializing an acceptor socket in the
main() function of our logging server example is prone to errors.
Common errors include failing to zero-out the sock_addr or not
using htons on the logging_port number [Sch92]. In particular,
note how the lock will not be released if the write_record()
function returns -1 . ❏

• Lack of portability. Software written using low-level functions and
data structures is often non-portable between different operating
systems and compilers. Moreover, it is often not even portable to
program to low-level functions across different versions of the same
operating system or compiler due to the lack of release-to-release
compatibility [Box97].

➥ Our logging server implementation has hard-coded dependen-
cies on several non-portable native operating system threading and

4

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

23.04.1999 Wrapper-Facade.pub.doc

network programming C APIs. For instance, thr_create() ,
mutex_lock() and mutex_unlock() are not portable to Win32
platforms. Although the code is designed to be quasi-portable—it
also compiles and runs on Win32 platforms—there are various
subtle portability problems. In particular, there will be resource
leaks on Win32 platforms since there is no equivalent to the Solaris
THR_DETACHED feature, which spawns a ‘detached’ thread whose
exit status is not stored by the threading library. ❏

• High maintenance effort. C and C++ developers typically achieve
portability by explicitly adding conditional compilation directives
into their application source code using #ifdef s. However, using
conditional compilation to address platform-specific variations at
all points of use makes it hard to maintain and extend the applica-
tion. In particular, the physical design complexity [Lak95] of the
application software becomes very high since platform-specific im-
plementation details are scattered throughout the application
source files.

➥ The readability and maintainability of the code in our logging
server example is impeded by the #ifdef s that handle Win32 and
Solaris portability. For instance, several #ifdef s are required to
handle differences in the type of a socket on Win32 and Solaris. In
general, developers who program to low-level C APIs like these
must have intimate knowledge of many operating system
idiosyncrasies to write and maintain their code. ❏

• Lack of cohesion. Low-level functions and data structures are not
encapsulated into cohesive modules supported by programming
language features, such as classes, namespaces, or packages. This
lack of cohesion makes it unnecessarily hard to understand the
‘scope’ of the low-level APIs, which increases the effort required to
learn the underlying abstraction.

➥ The Socket API is particularly hard to learn since the several
dozen functions in the Socket library lack a uniform naming con-
vention. Non-uniform naming makes it hard to determine the
scope of the Socket API. In particular, it is not immediately obvious
that socket() , bind() , listen() , connect() , and accept() are
related. Other low-level network programming APIs address this
problem by prepending a common prefix before each function,
such as the t_ prefixed before each function in the TLI API. ❏

23.04.1999 Wrapper-Facade.pub.doc

Wrapper Facade 5

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

As a result of these drawbacks, developing applications by program-
ming directly to low-level functions and data structures is rarely an
effective design choice for non-trivial application or system software.

Solution Avoid accessing low-level functions and data structures directly. For
each set of related low-level functions and data structures, create one
or more wrapper facade classes that encapsulate these functions and
data structures within more concise, robust, portable, and maintain-
able methods provided by the wrapper facade interface.

Structure There are two participants in the Wrapper Facade pattern.

Functions are existing low-level functions and data structures that
provide a cohesive service.

A wrapper facade is a set of one or more classes that encapsulate the
functions and their associated data structures. These class(es) export
a cohesive abstraction, that is they provide a specific kind of function-
ality, with each class representing a specific role in this abstraction.
Application code can use the wrapper facade class(es) to access low-
level functions and data structures correctly and uniformly.

The methods in the wrapper facade class(es) generally forward client
invocations to one or more of the low-level functions, passing the data
structures as parameters. The data structures are typically hidden
within the private portion of the wrapper facade and are not accessi-
ble to application code. The encapsulation of data types within
strongly typed wrapper facade interfaces allows compilers to enforce
type-safety.

Class
Function

Responsibility
• Provides a single

low-level service

CollaboratorClass
Wrapper Facade

Responsibility
• Encapsulates low-

level functions and
data-structures
into a cohesive
abstraction

Collaborator
• Functions

6

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

23.04.1999 Wrapper-Facade.pub.doc

The following UML class diagram illustrates the structure of Wrapper
Facade.

Dynamics Collaborations in the Wrapper Facade pattern are straightforward:

• The application code invokes a method via an instance of the
wrapper facade.

• The wrapper facade method forwards the request to one or more of
the underlying functions that it encapsulates, passing along any
internal data structures needed by the function(s).

Implementation This section describes how to implement the Wrapper Facade pattern
in C++. The implementation described below is influenced by the re-
usable wrapper facade components provided in the ACE communica-
tion software framework [Sch97]. The Wrapper Facade pattern can be
implemented in four steps:

1 Identify the cohesive abstractions and relationships among existing
functions. Conventional APIs like Win32, POSIX, or X Windows that
are implemented as individual functions and data structures provide
many cohesive abstractions, such as mechanisms for network
programming, synchronization and threading, and GUI event loop
management. Due to the lack of data abstraction support in low-level
languages like C, however, it is often not immediately obvious how
these existing functions and data structures are related to each other.

The first step in applying the Wrapper Facade pattern, therefore, is to
identify the cohesive abstractions and relationships among the lower

Application

WrapperFacade

data

method1()
...
methodN()

calls methods

calls
FunctionA

calls
FunctionB

calls
FunctionC

: Application

method()

: Wrapper
Facade

: FunctionA

functionA()

: FunctionB

functionB()

23.04.1999 Wrapper-Facade.pub.doc

Wrapper Facade 7

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

level functions and data structures in an existing API. In other words,
we first define an ‘object model’ by clustering the existing low-level
API functions and data structures into one or more classes, which
hide the data representation from clients.

➥ In our logging server example, we start by carefully examining
our original implementation. This implementation uses many low-lev-
el functions that actually provide several cohesive services, such as
synchronization and network communication. For instance, the So-
laris mutex_lock() and mutex_unlock() functions are associated
with a mutex synchronization abstraction. Likewise, the socket() ,
bind() , listen() , and accept() functions play various roles in a
network programming abstraction. ❏

2 Cluster cohesive groups of functions into wrapper facade classes and
methods. This step can be decomposed into the following substeps:

2.1 Create cohesive classes. We start by defining one or more wrapper
facade classes for each group of functions and data structures that
are related to a particular abstraction. Several common criteria used
to create cohesive classes include the following:

• Coalesce functions and data structures with high cohesion into
individual classes, while minimizing unnecessary coupling between
classes. Common examples of cohesive functions are ones that
manipulate a common data structure, such as a socket, a file, or a
signal set [Ste97].

• Determine the common and variable aspects [Cope98] in the under-
lying functions and data structures. Common variable aspects
include synchronization mechanisms, memory managers, ad-
dressing formats, and operating system platform APIs. Whenever
possible, variation in functions and data structures should be ab-
stracted into classes that isolate the variation behind a uniform
interface.

In general, if the original API contains a wide range of related func-
tions it may be necessary to create several wrapper facade classes to
properly separate concerns.

2.2 Coalesce multiple individual functions into methods defined together in
a class. In addition to grouping existing functions into classes, it is
often beneficial to combine multiple individual functions into a small-

8

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

23.04.1999 Wrapper-Facade.pub.doc

er number of methods in each wrapper facade class. This coalescing
can be used to ensure that a group of low-level functions are called in
the appropriate order.

2.3 Select the level of indirection. Most wrapper facade classes simply
forward their method calls directly to the underlying low-level
functions. Thus, if the wrapper facade methods are inlined there may
be no indirection overhead compared to invoking the low-level
functions directly. To enhance extensibility, it is also possible to add
another level of indirection by dispatching wrapper facade method
implementations dynamically using virtual functions or some other
form of polymorphism. In this case, the wrapper facade classes play
the role of the abstraction class in the Bridge pattern [GHJV95].

2.4 Determine where to encapsulate platform-specific variation. Minimiz-
ing platform-specific application code is an important benefit of using
the Wrapper Facade pattern. Thus, although wrapper facade class
method implementations may differ across different operating system
platforms they should provide uniform, platform-independent
interfaces. There are two general strategies for determining how to en-
capsulate platform-specific implementation variation:

• One is to use conditional compilation to #ifdef the wrapper facade
class method implementations. The use of #ifdef s is inelegant
and tedious when littered throughout application code. It may be
appropriate, however, if it’s localized to a small number of platform-
specific wrapper facade classes or files that are not visible to
application developers. Moreover, when conditional compilation is
used in conjunction with auto-configuration tools, such as GNU
autoconf , platform-independent wrapper facades can be created
with a single source file. As long as the number of variations
supported in this file does not become unwieldy, the #ifdef
strategy actually helps to localize the maintenance effort.

• A strategy for avoiding or minimizing #ifdef s altogether is to
factor out different wrapper facade class implementations into
separate directories, for example, one per platform. Language pro-
cessing tools then can be configured to include the appropriate
wrapper facade class into applications at compile-time. For exam-
ple, each operating system platform can have its own directory
containing implementations of platform-specific wrapper facades.
To obtain a different implementation, a different include path could

23.04.1999 Wrapper-Facade.pub.doc

Wrapper Facade 9

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

be provided to the compiler. This strategy avoids the problems with
#ifdef s described above because it physically decouples the vari-
ous alternative implementations into separate directories.

Choosing a particular strategy depends largely on how frequently the
wrapper facade interfaces and implementations change. For
instance, if changes occur frequently, it is tedious to update the
#ifdef s for each platform. Likewise, all files that depend on this file
may need to be recompiled, even if the change is only necessary for
one platform. Therefore, the larger the number of different APIs that
must be supported, the less desirable the use of condition
compilation.

Regardless of which strategy is selected, the burden of maintaining
the wrapper facade implementations becomes the responsibility of
the wrapper facade developers, rather than the application
developers.

➥ For our logging server example, we define wrapper facade classes
for mutexes, sockets, and threads to illustrate how each of the issues
outlined above can be addressed.

Mutex wrapper facades. We first define a Thread_Mutex abstraction
that encapsulates the Solaris mutex functions in a uniform and
portable class interface:

class Thread_Mutex {
public:

Thread_Mutex (void) { mutex_init (&mutex_, 0, 0); }
~Thread_Mutex (void) { mutex_destroy (&mutex_); }
int acquire (void) { return mutex_lock (&mutex_); }
int release (void) { return mutex_unlock (&mutex_); }

private:
// Solaris-specific Mutex mechanism.
mutex_t mutex_;

// Disallow copying and assignment.
Thread_Mutex (const Thread_Mutex &);
void operator= (const Thread_Mutex &);

};

By defining a Thread_Mutex class interface, and then writing appli-
cations to use it, rather than the low-level native operating system C
APIs, we can easily port our wrapper facade to other platforms. For

10

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

23.04.1999 Wrapper-Facade.pub.doc

instance, the following Thread_Mutex implementation works on
Win32:

class Thread_Mutex {
public:

Thread_Mutex (void) { InitializeCriticalSection
(&mutex_); }

~Thread_Mutex (void) { DeleteCriticalSection
(&mutex_); }

int acquire (void) {
EnterCriticalSection (&mutex_);
return 0;

}
int release (void) {

LeaveCriticalSection (&mutex_);
return 0;

}
private:

// Win32-specific Mutex mechanism.
CRITICAL_SECTION mutex_;

// Disallow copying and assignment.
Thread_Mutex (const Thread_Mutex &);
void operator= (const Thread_Mutex &);

};

As described earlier, we can support multiple operating system plat-
forms simultaneously by using conditional compilation and #ifdef s
in the Thread_Mutex method implementations. If conditional compi-
lation is unwieldy due to the number of platforms that must be sup-
ported, one alternative is to factor out the different Thread_Mutex
implementations into separate directories. In this case, language pro-
cessing tools, like compilers and preprocessors, can be instructed to
include the appropriate platform variant into our application at com-
pile-time.

In addition to improving portability, our Thread_Mutex wrapper
facade provides a mutex interface that is less error-prone than
programming directly to the low-level Solaris and Win32 functions
and data structures. For instance, we can use the C++ private
access control specifier to disallow copying and assignment of
mutexes, which is an erroneous use case that the less strongly-typed
C programming API does not prevent.

Socket wrapper facades. Our next wrapper facade encapsulates the
Socket API. This API is much larger and more expressive than the So-
laris mutex API [Sch92]. Thus, we must define a group of related

23.04.1999 Wrapper-Facade.pub.doc

Wrapper Facade 11

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

wrapper facade classes to encapsulate sockets. We start by defining a
typedef that handles UNIX/Win32 portability differences:

typedef int SOCKET;
#define INVALID_HANDLE_VALUE -1

Both SOCKET and INVALID_HANDLE_VALUE are defined in the Win32
API already. Naturally, we would either integrate this using #ifdef s
or using separate platform-specific directories, as discussed earlier.

Next, we define an INET_Addr class that encapsulates the Internet
domain address struct :

class INET_Addr {
public:

INET_Addr (u_short port, long addr) {
// Set up the address to become a server.
memset (reinterpret_cast <void *> (&addr_),

0, sizeof addr_);
addr_.sin_family = AF_INET;
addr_.sin_port = htons (port);
addr_.sin_addr.s_addr = htonl (addr);

}
u_short get_port (void) const { return

addr_.sin_port; }
long get_ip_addr (void) const { return

addr_.sin_addr.s_addr; }
sockaddr * addr (void) const {

return reinterpret_cast <sockaddr *> (&addr_); }
size_t size (void) const {return sizeof (addr_); }
// ...

private:
sockaddr_in addr_;

};

Note how the INET_Addr constructor eliminates several common
socket programming errors. For instance, it zeros-out the
sockaddr_in field and ensures the port and IP address are converted
into network byte order by automatically applying the ntons() and
ntonl() macros [Ste97].

The next wrapper facade class, SOCK_Stream, encapsulates the I/O
operations, such as recv() and send() , that an application can
invoke on a connected socket handle:

class SOCK_Stream {
public:

// Default constructor.
SOCK_Stream (void) : handle_ (INVALID_HANDLE_VALUE){}

12

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

23.04.1999 Wrapper-Facade.pub.doc

// Initialize from an existing HANDLE.
SOCK_Stream (SOCKET h): handle_ (h) {}
// Automatically close the handle on destruction.
~SOCK_Stream (void) {close (handle_); }
void set_handle (SOCKET h) {handle_ = h; }
SOCKET get_handle (void) const {return handle_; }
// I/O operations.
int recv (char *buf, size_t len, int flags = 0);
int send (const char *buf, size_t len, int flags = 0);

// ...
private:

// Handle for exchanging socket data.
SOCKET handle_;

};

Note how this class ensures that a socket handle is automatically
closed when a SOCK_Stream object goes out of scope.

SOCK_Stream objects can be created by a connection factory,
SOCK_Acceptor , which encapsulates passive connection establish-
ment. The constructor of SOCK_Acceptor initializes the passive-mode
acceptor socket to listen at the sock_addr address. Likewise,
SOCK_Acceptor::accept() is a factory that initializes the
SOCK_Stream parameter with the newly accepted connection:

class SOCK_Acceptor {
public:

SOCK_Acceptor (const INET_Addr &sock_addr) {
// Create a local endpoint of communication.
handle_ = socket (PF_INET , SOCK_STREAM, 0);
// Associate address with endpoint.
bind (handle_, sock_addr.addr (),

sock_addr.size ());
// Make endpoint listen for connections.
listen (handle_, 5);

};

// Accept a connection and initialize the <stream>.
int accept (SOCK_Stream &s) {

s.set_handle (accept (handle_, 0, 0));
if (s.get_handle () == INVALID_HANDLE_VALUE)

return -1;
else

return 0;
}

private:
// Socket handle factory.
SOCKET handle_;

};

23.04.1999 Wrapper-Facade.pub.doc

Wrapper Facade 13

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Note how the constructor for the SOCK_Acceptor ensures that the
low-level socket() , bind() , and listen() functions are always
called together and in the right order.

A complete set of wrapper facades for sockets [Sch97] would also in-
clude a SOCK_Connector , which encapsulates the active connection
establishment logic. Both the SOCK_Acceptor and SOCK_Connector
can be used to configure the generic acceptor and connector classes
described in Acceptor-Connector pattern (145) with concrete IPC
mechanisms for passive and active connection establishment.

Thread wrapper facade. Our final wrapper facade encapsulates the
functions and data structures related to multi-threading. Many
threading APIs are available on different operating system platforms,
including Solaris threads, POSIX Pthreads, and Win32 threads.
These APIs exhibit subtle syntactic and semantic differences, for ex-
ample, Solaris and POSIX threads can be spawned in ‘detached’
mode, whereas Win32 threads cannot. It is possible, however, to pro-
vide a Thread_Manager wrapper facade that encapsulates these dif-
ferences within a uniform API.

The following Thread_Manager wrapper facade illustrates the spawn
method implemented for Solaris threads:

class Thread_Manager {
public:

int spawn (void *(*entry_point) (void *),
void *arg,
long flags,
long stack_size = 0,
void *stack_pointer = 0,
thread_t *t_id = 0) {

thread_t t;
if (t_id == 0)

t_id = &t;
return thr_create (stack_size,

 stack_pointer,
 entry_point,
 arg,
 flags,
 t_id);

}
// ...

};

14

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

23.04.1999 Wrapper-Facade.pub.doc

The Thread_Manager can also provide methods for joining and
canceling threads, as well. All these methods can be ported to many
other operating system platforms. ❏

3 Determine an error handling mechanism. Low-level C function APIs
typically use return values and integer codes, such as errno , that use
thread-specific storage (119) to communicate errors back to their
callers. This technique can be error-prone, however, if callers neglect
to check the return status of their function calls. A more elegant way
of reporting errors is to use exception handling. Many programming
languages, such as C++ and Java, use exception handling as an error
reporting mechanism. It is also used in some operating systems, such
as Win32 [Cus93].

There are several benefits to using exception handling as the error
handling mechanism for wrapper facade classes:

• It is extensible. Modern programming languages allow the exten-
sion of exception handling policies and mechanisms via features
that have minimal intrusion on existing interfaces and usage. For
instance, C++ and Java use inheritance to define hierarchies of ex-
ception classes.

• It cleanly decouples error handling from normal processing. For
example, error handling information is not passed explicitly to an
operation. Moreover, an application cannot accidentally ignore an
exception by failing to check function return values.

• It can be type-safe. In languages like C++ and Java exceptions are
thrown and caught in a strongly-typed manner to enhance the
organization and correctness of error handling code. In contrast to
checking a thread-specific error value like errno explicitly, the
compiler ensures that the correct handler is executed for each type
of exception.

However, there are several drawbacks to the use of exception
handling for wrapper facade classes:

• It is not universally available. Not all languages provide exception
handling. For instance, some C++ compilers do not implement
exceptions. Likewise, operating systems like Windows NT that
provide proprietary exception handling services [Cus93] that must
be supported by language extensions, which can reduce the
portability of applications that use these extensions.

23.04.1999 Wrapper-Facade.pub.doc

Wrapper Facade 15

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

• It complicates the use of multiple languages. Since languages
implement exceptions in different ways, or do not implement
exceptions at all, it can be hard to integrate components written in
different languages when they throw exceptions. In contrast,
reporting error information using integer values or structures
provides a more universal solution.

• It complicates resource management. Resource management can
be complicated if there are multiple exit paths from a block of C++
or Java code [Mue96]. Thus, if garbage collection is not supported
by the language or programming environment, care must be taken
to ensure that dynamically allocated objects are deleted when an
exception is thrown.

• It is potentially time and/or space inefficient. Poor implements of
exception handling incur time and/or space overhead even when
exceptions are not thrown [Mue96]. This overhead can be particu-
larly problematic for embedded systems that must be efficient and
have small memory footprints.

The drawbacks of exception handling are particularly problematic for
wrapper facades that encapsulate kernel-level device drivers or low-
level native operating system APIs, such as the mutex, socket, and
thread wrapper facades described above, that must run portably on
many platforms [Sch92]. For these types of wrapper facades, a more
portable, efficient, and thread-safe way to handle errors is to define
an error handler abstraction that maintains information about the
success or failure of operations explicitly.

One widely used error handling mechanism for the system-level
wrapper facades is to use the Thread-Specific Storage pattern (119).
in conjunction with errno . This solution is efficient and portable,
which is why we use this approach for most of the wrapper facade use
cases in this book.

4 Define related helper classes (optional). Once low-level functions and
data structures are encapsulated within cohesive wrapper facade
classes, it often becomes possible to create other helper classes that
further simplify application development. The benefits of these helper
classes is usually apparent only after the Wrapper Facade pattern has
been applied to cluster low-level functions and their associated data
into classes.

16

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

23.04.1999 Wrapper-Facade.pub.doc

➥ In our example, for instance, we can leverage the following Guard
class that implements the C++ Scoped Locking idiom (141) [Str98],
which ensures that a Thread_Mutex is released properly, regardless
of how the methods’s flow of control exits a scope:

template <class LOCK> class Guard {
public:

Guard (LOCK &lock): lock_ (lock) { lock_.acquire (); }
~Guard (void) { lock_.release (); }
// Other methods omitted...

private:
// Hold the lock by reference to avoid
// the use of the copy constructor...
LOCK &lock_;

}

The Guard class applies the C++ Scoped Locking idiom whereby a
constructor acquires resources and the destructor releases them
within a scope, as follows:

{
// Constructor of <mon> automatically
// acquires the <mutex> lock.
Guard <Thread_Mutex > mon (mutex);
// ... operations that must be serialized.

// Destructor of <mon> automatically
// releases the <mutex> lock.

}

Since we use a class as the Thread_Mutex wrapper facade, we can
easily substitute a different type of locking mechanism, while still
reusing the Guard ’s automatic locking/unlocking protocol. For
instance, we can replace the Thread_Mutex class with a
Process_Mutex class:

// Acquire a process-wide mutex.
Guard <Process_Mutex > mon (mutex);

It is much harder to achieve this degree of ‘pluggability’ if C functions
and data structures are used instead of C++ classes. ❏

Example
Resolved

The code below illustrates the logging_handler() function of the
logging server after it has been rewritten to use our wrapper facades
for mutexes, sockets, and threads described in Implementation sec-
tion. For comparison with the original code we present it in a two-col-

23.04.1999 Wrapper-Facade.pub.doc

Wrapper Facade 17

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

umn table with the original code from the example section in the left
column, and the new code in the right column:

#if defined (_WIN32)
#include <windows.h>
typedef int ssize_t;

#else
// The following typedef is platform-specific.
typedef unsigned int UINT32;
#include <thread.h>
#include <unistd.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <memory.h>

#endif /* _WIN32 */

// Keep track of number of logging requests.
static int request_count;

// Lock to protect request_count.
#if defined (_WIN32)

static CRITICAL_SECTION lock;
#else

static mutex_t lock;
#endif /* _WIN32 */

// Maximum size of a logging record.
static const int LOG_RECORD_MAX = 1024;

// Port number to listen on for requests.
static const int logging_port = 10000;

// Entry point that writes logging records.
int write_record (char log_record[], int len) {

/* ... */
return 0;

}

// Entry point that processes logging records for
// one client connection.
#if defined (_WIN32)

u_long
#else

void *
#endif /* _WIN32 */
logging_handler (void *arg) {

// Handle UNIX/Win32 portability.
#if defined (_WIN32)

SOCKET h = reinterpret_cast <SOCKET> (arg);
#else

int h = reinterpret_cast <int> (arg);
#endif /* _WIN32 */

for (;;) {
#if defined (_WIN32)
 ULONG len;
#else
 UINT32 len;
#endif /* _WIN32 */

// Ensure a 32-bit quantity.
char log_record[LOG_RECORD_MAX];

// The first <recv> reads the length
// (stored as a 32-bit integer) of
// adjacent logging record. This code
// does not handle "short-<recv>s".
ssize_t n = recv (h,

 reinterpret_cast <char *> (&len),
 sizeof len, 0);

// Bail out if we're shutdown or
// errors occur unexpectedly.
if (n <= sizeof len) break;
len = ntohl (len);
if (len > LOG_RECORD_MAX) break;

// The second <recv> then reads <len>
// bytes to obtain the actual record.
// This code handles "short-<recv>s".
for (ssize_t nread = 0; nread < len; nread += n) {

n = recv (h, log_record + nread,
len - nread, 0);

// Bail out if an error occurs.
if (n <= 0) return 0;

}

#include “ThreadManager.h”
#include “ThreadMutex.h”
#include “Guard.h”
#include “INET_Addr.h”
#include “SOCKET.h”
#include “SOCK_Acceptor.h”
#include “SOCK_Stream.h”

// Keep track of number of logging requests.
static int request_count;

// Maximum size of a logging record.
static const int LOG_RECORD_MAX = 1024;

// Port number to listen on for requests.
static const int logging_port = 10000;

// Entry point that writes logging records.
int write_record (char log_record[], int len) {

/* ... */
return 0;

}

// Entry point that processes logging records for
// one client connection.

void *logging_handler (void *arg) {

SOCKET h = reinterpret_cast < SOCKET> (arg);

// Create a <SOCK_Stream> object.
SOCK_Stream stream (h);

for (;;) {
UINT_32 len;

// Ensure a 32-bit quantity.
char log_record[LOG_RECORD_MAX];

// The first <recv_n> reads the length
// (stored as a 32-bit integer) of
// adjacent logging record. This code
// handles "short-<recv>s".
ssize_t n = stream.recv_n

(reinterpret_cast <char *> (&len),
 sizeof len);

// Bail out if we’re shutdown or
// errors occur unexpectedly.
if (n <= 0) break;
len = ntohl (len);
if (len > LOG_RECORD_MAX) break;

// The second <recv_n> then reads <len>
// bytes to obtain the actual record.
// This code handles "short-<recv>s".
n = stream.recv_n (log_record, len);

// Bail out if an error occurs
if (n <= 0) break;

18

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

23.04.1999 Wrapper-Facade.pub.doc

Analogously to the logging_handler() function, we present a two-
column table that compares the original code for the main() function
with the new code using wrapper facades:

#if defined (_WIN32)
EnterCriticalSection (&lock);

#else
mutex_lock (&lock);

#endif /* _WIN32 */
// Execute following two statements
// in a critical section to avoid
// race conditions and scrambled
// output, respectively.
// Count # of requests
++request_count;
if (write_record (log_record, len) == -1)

break;

#if defined (_WIN32)
LeaveCriticalSection (&lock);

#else
mutex_unlock (&lock);

#endif /* _WIN32 */
}

#if defined (_WIN32)
closesocket (h);

#else
close (h);

#endif /* _WIN32 */
return 0;

}

{
// Constructor of Guard auto-
// matically acquires the lock.
Guard <Thread_Mutex > mon (lock);

// Execute following two statements
// in a critical section to avoid
// race conditions and scrambled
// output, respectively.
// Count # of requests
++request_count;
if (write_record (log_record, len)

== -1)
break;

// Destructor of Guard
// automatically
// releases the lock, regardless of
// how we exit this block!

}
}

// Destructor of <stream> automatically
// closes down <h>.

return 0;
}

// Main driver function for the server.
int main (int argc, char *argv[]) {

struct sockaddr_in sock_addr;

// Handle UNIX/Win32 portability.
#if defined (_WIN32)

SOCKET acceptor;
#else

int acceptor;
#endif /* _WIN32 */

// Create a local endpoint of communication.
acceptor = socket (PF_INET, SOCK_STREAM, 0);
// Set up the address to become a server.
memset (reinterpret_cast<void *> (&sock_addr),

0, sizeof sock_addr);
sock_addr.sin_family = AF_INET;
sock_addr.sin_port = htons (logging_port);
sock_addr.sin_addr.s_addr = htonl (INADDR_ANY);
// Associate address with endpoint.
bind (acceptor, reinterpret_cast<struct sockaddr *>

(&sock_addr), sizeof sock_addr);
// Make endpoint listen for connections.
listen (acceptor, 5);

// Main server event loop.
for (;;) {

// Handle UNIX/Win32 portability.
#if defined (_WIN32)

SOCKET h;
DWORD t_id;

#else
int h;
thread_t t_id;

#endif /* _WIN32 */
// Block waiting for clients to connect.
h = accept (acceptor, 0, 0);

// Spawn a new thread that runs the <server>
// entry point.

#if defined (_WIN32)
CreateThread (0, 0,

 LPTHREAD_START_ROUTINE(&logging_handler),
 reinterpret_cast <void *> (h), 0, &t_id);

#else
thr_create

(0, 0, logging_handler,
 reinterpret_cast <void *> (h),
 THR_DETACHED, &t_id);

#endif /* _WIN32 */
}
return 0;

}

// Main driver function for the server.
int main (int argc, char *argv[]) {

INET_Addr addr (port);

// Passive-mode acceptor object.
SOCK_Acceptor server (addr);
SOCK_Stream new_stream;

// Main server event loop.
for (;;) {

// Accept a connection from a client.
server.accept (new_stream);

// Get the underlying handle.
SOCKET h = new_stream.get_handle ();

// Spawn off a thread-per-connection.
thr_mgr.spawn

(logging_handler
 reinterpret_cast <void *> (h),
 THR_DETACHED);

}

return 0;
}

23.04.1999 Wrapper-Facade.pub.doc

Wrapper Facade 19

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Note how the code in the right column fixes the various problems with
the code shown in the left column. For instance, the destructors of
SOCK_Stream and Guard will close down the socket handle and
release the Thread_Mutex , respectively, regardless of how the blocks
of code are exited. Likewise, this code is easier to understand,
maintain, and port since it is much more concise and uses no
platform-specific APIs.

Known Uses Microsoft Foundation Classes (MFC). MFC provides a set of wrapper
facades that encapsulate most of the low-level C Win32 APIs, focusing
largely on providing GUI components that implement the Microsoft
Document/Template architecture, which is a synonym for the
Document-View architecture described in [POSA1].

The ACE framework. The mutex, thread, and socket wrapper
facades described in the implementation section are based on
components in the ACE framework [Sch97], such as the
ACE_Thread_Mutex , ACE_Thread_Manager , and ACE_SOCK* classes,
respectively.

Rogue Wave class libraries. Rogue Wave’s Net.h++ and
Threads.h++ class libraries implement wrapper facades for sockets,
threads, and synchronization mechanisms on a number of operating
system platforms.

ObjectSpace System<Toolkit>. Wrapper facades for sockets,
threads, and synchronization mechanisms are also provided by the
ObjectSpace System<Toolkit>.

Java Virtual Machine and Java class libraries. The Java Virtual
Machine (JVM) and various Java class libraries, such as AWT and
Swing, provide a set of wrapper facades that encapsulate many low-
level native operating system calls and GUI APIs.

Siemens REFORM framework. The REFORM framework for hot
rolling mill process automation [BGHS98] uses the Wrapper Facade
pattern to shield the object-oriented parts of the system, such as
material tracking and setpoint transmission, from a neural network
for the actual process control. This neural network is programmed in
C due to its algorithmic nature: it contains mathematical models
which describe the physics of the automation process. The wrapper
facades provide the views that the object-oriented parts of the
framework need onto these functional models.

20

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

23.04.1999 Wrapper-Facade.pub.doc

Consequences The Wrapper Facade pattern provides the following benefits:

Concise, cohesive, and robust programming interfaces. The Wrapper
Facade pattern encapsulates many low-level functions and data
structures within a more concise and cohesive set of object-oriented
class methods. This reduces the tedium of developing applications,
thereby decreasing the potential for programming errors. The use of
encapsulation also eliminates a class of programming errors that
occur when using untyped data structures, such as socket or file
handles, incorrectly

Portability and maintainability. Wrapper facade classes can be
implemented to shield application developers from non-portable
aspects of low-level functions and data structures. Moreover, the
Wrapper Facade pattern improves software structure by replacing an
application configuration strategy based on physical design entities,
such as files and #ifdef s, with logical design entities, such as base
classes, subclasses, and their relationships [Lak95]. It is generally
easier to understand and maintain applications in terms of their
logical design rather than their physical design.

Modularity, reusability, and configurability. The Wrapper Facade
pattern creates cohesive reusable class components that can be
‘plugged’ in and out of other components in a wholesale fashion using
object-oriented language features like inheritance and parameterized
types. In contrast, it is much harder to replace groups of functions
without resorting to coarse-grained operating system utilities, such
as linkers or file systems.

The Wrapper Facade pattern has the following liability:

Additional indirection. The Wrapper Facade pattern can incur
additional indirection compared with using low-level functions and
data structures directly. However, languages that support inlining,
such as C++, can implement this pattern with no significant overhead
since compilers can inline the method calls used to implement the
wrapper facades. Thus, the overhead is often the same as calling the
low-level functions directly

See Also The Wrapper Facade pattern is similar to the Facade pattern
[GHJV95]. The intent of the Facade pattern is to simplify the interface
for a subsystem. The intent of the Wrapper Facade pattern is more
specific: it provides concise, robust, portable, maintainable, and

23.04.1999 Wrapper-Facade.pub.doc

Wrapper Facade 21

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

cohesive class interfaces that encapsulate low-level functions and
data structures, such as the native operating system mutex, socket,
thread, and GUI C language APIs. In general, facades hide complex
class relationships behind a simpler API, whereas wrapper facades
hide complex function and data structure relationships behind a
richer class API. Moreover, wrapper facades provide building block
components that can be ‘plugged’ into higher-level components.

The Wrapper Facade pattern can be implemented with the Bridge
pattern [GHJV95] if dynamic dispatching is used to implement
wrapper facade methods that play the role of the abstraction
participant in the Bridge pattern.

The Layers pattern [POSA1] helps with organizing multiple wrapper
facades into a separate layer component. This layer resides directly
atop the operating system and shields an application from all low-
level APIs that it uses.

Credits Thanks to Brad Appleton for extensive comments that greatly
improved the form and content of the Wrapper Facade pattern
description.

22

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

23.04.1999 Wrapper-Facade.pub.doc

