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Abstract. Smalltalk-80 is a pure object-oriented language in which messages are 

dispatched according to the class of the receiver, or first argument, of a message. 
Object-oriented languages that support multimethods dispatch messages using all 
their arguments. While Smalltalk does not support multimethods, Smalltalk's 
reflective facilities allow programmers to efficiently add them to the language. This 
paper explores several ways in which this can be done, and the relative efficiency of 
each. Moreover, this paper can be seen as a lens through which the design issues 
raised by multimethods, as well as by using metaobjects to build them, can be more 
closely examined. 

1. Introduction 

The designers of object-oriented languages usually consider multimethods and 
single dispatch to be competing alternatives. This paper describes a variety of ways to 
implement multimethods in single-dispatch languages such as Smalltalk. It is not 
surprising that multimethods can be implemented in Smalltalk, because it is a 
reflective language that has been extended in many ways. However, it is surprising 
how well multimethods can work with single dispatch. This paper develops a simple 
extended syntax that makes it easy to mix multimethods and normal methods. The 
semantics of multimethods are simple, they have no syntactic or performance cost if 
they are not used, they interoperate well with Smalltalk's metaobjects, and they are as 
efficient to execute as comparable hand-written code. 

Our results show that there is no inherent conflict between multi-methods and 
single dispatch, at least for Smalltalk.  

Introducing multimethods into a single-dispatch language like Smalltalk raises a 
range of issues: incorporating multimethods into Smalltalk syntax and the 
programming environment; implementing multimethods using the reflective facilities 
without changing the underlying virtual machine; and ensuring that multimethods 
provide good performance, without incurring additional overhead if they are not used. 

This paper makes the following contributions: 
− A core language design for multimethods in Smalltalk, demonstrating that a 

multimethod facility inspired by the CLOS Metaobject Protocol [Bobrow 1998] 
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can be added to Smalltalk in a seamless, backwards compatible manner within 
the spirit of the language.  

− An extensible implementation of the core language design, written in Smalltalk, 
that uses only the language’s reflective features and requires no changes to the 
Smalltalk virtual machine 

− An analysis of the performance of a range of implementations based on our 
framework, demonstrating that this approach is practical. 

2. Multiple Dispatch 

Like most object-oriented languages, Smalltalk provides single dispatch: a method 
call (in Smalltalk referred to as a message send) considers the dynamic type of one 
argument: the class of the object to which the message is sent. For example, consider 
the classical example of a graphical display system, where GraphicScreen and 
GraphicPrinter classes are subclasses of the abstract GraphicalDisplay 
class. The GraphicalDisplay class can define a number of messages such as 
drawLine, drawRectangle, fillRectangle, drawArc, and so on; then 
each subclass can implement these messages to display on a screen or a printer 
respectively. 

This design has objects for the graphical displays but not for the graphical entities 
themselves. An obvious refinement of this design is then to introduce a further series 
of classes to represent the graphical objects: an abstract GraphicalObject class 
with Line, Rectangle, FilledRectangle, and Arc subclasses. This should 
allow programmers to simply their programs: code such as aScreen draw: 
aRectangle or aPrinter draw: aLine should allow any kind of graphical 
display to draw any kind of object. The problem is that this draw method requires 
multiple dispatch— the method body to be invoked must now depend upon both 
arguments to the message: the graphical display doing the drawing, and the graphical 
object which is being drawn. 

The GraphicalDisplay classes can each provide an implementation of the 
draw method, but these cannot depend on the types of the graphical object arguments: 
a complementary design could swap the methods’ receiver and argument objects (so 
programmers would write GraphicalObjects drawOn: 
GraphicalDisplay) this would allow different messages for each graphical 
object but not for different kinds of graphical displays. This problem is actually more 
common that it may seem in object-oriented designs. The visitor pattern, for example 
has a composite structure that accepts a visitor object embodying an algorithm to 
carry out over the composite (e.g. Composite accept: aVisitor): 
implementations of the accept method must depend upon the types of both composite 
and visitor [Gamma 1995]. 

Overloading in languages like Java or C++ can partially address this problem 
under certain circumstances. For example, Java allows methods to be distinguished 
based on the class of their arguments, so that a ScreenDisplay object can have 
different draw methods for displaying Lines, Rectangles, or Arcs: 
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abstract class GraphicalDisplay { 
 public void draw(Line l) {  
 // draw a line on some kind of display }; 
 public void draw(Rectangle r} {  
  // draw a rectangle on some kind of display }; 
 public void draw(Arc a) {  
  // draw an arc on some kind of display }; 
} 

class ScreenDisplay extends GraphicalDisplay { 
 public void draw(Line l) {  
  // draw a line on a screen }; 
 public void draw(Rectangle r} {  
  // draw a rectangle on a screen }; 
 public void draw(Arc a) {  
  // draw an arc on a screen }; 
} 

The problem here is that overriding is only resolved statically. Java will report an 
error in the following code: 
Display d = new ScreenDisplay(); 
GraphicalObject g = new Line(); 
d.draw(g) 

because the screen display class does not implement a 
draw(GraphicalObject) method.  

The usual solution to this problem, in both Smalltalk and Java, is double dispatch 
[Ingalls 1986, Hebel 1990]: rather than implementing messages directly, method 
bodies send messages back to their arguments so that the correct final method body 
can depend on both classes. In this case, the GraphicalDisplay subclasses would 
each implement the draw methods differently, by asking their argument (the graphical 
object to be drawn) to draw themselves on a screen or on a printer: 
ScreenDisplay>>draw: aGraphicalObject 
 aGraphicalObject drawOnScreen: self 

PrinterDisplay>>draw: aGraphicalObject 
 aGraphicalObject drawOnPrinter: self 

The key idea is that these methods encode the class of the receiver (Screen or 
Printer) into the name of the message that is sent. The GraphicalObject class 
can then implement these messages to actually draw: 
Line>>drawOnScreen: aScreen 
 “draw this line on aScreen” 

Line>>drawOnPrinter: aPrinter 
 “draw this line on aPrinter” 

Each message send — that is, each dispatch — resolves the type of one argument. 
Statically overloaded implementations often generate “mangled” names for statically 
overloaded variants that similarly add type annotations to the names the virtual 
machine sees under the hood for compiled methods. 
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A few object-oriented languages, notably CLOS and Dylan [Bobrow 1998a, Keene 
1989, Feinberg 1996], and various research extensions to Java [Boyland 1997, Clifton 
2000] solve this design problem directly by supporting multimethods. A multimethod 
is simply a method that provides multiple dispatch, that is, the method body that is 
chosen can depend upon the type of more than one argument In this case code very 
similar to the Java code above could provide various different versions of the draw 
methods (one for each kind of GraphicalObject) within the Display classes, 
but the languages will choose the correct method to execute at runtime, based on the 
types of all the arguments in the message. The remainder of this paper describes how 
we implemented efficient multimethods as a seamless extension to Smalltalk.  

3. Multimethods for Smalltalk 

The first issue we faced in designing Smalltalk multimethods is that we wanted 
multimethods to fit in with the style or spirit of Smalltallk. Compared with most 
multimethod languages (especially CLOS) Smalltalk is lightweight, with a minimalist 
language design philosophy. A program is seen as a community of objects that 
communicate via message sends, and even “if” statements are technically 
implemented as messages to objects like true and false. An important aim of our 
design is that it should not change the basis of the language, and that multimethods 
should not affect Smalltalk programmers who choose not to write them.  

The second issue is simply that Smalltalk, like Common Lisp, is a dynamically 
typed language, so that the language syntax does not, by default, include any 
specification of, or notation for, method types. As we’ve seen above, in many other 
object-oriented languages (such as Java and C++) method definitions must include 
type declarations for all their arguments even though the message sends will be 
dispatched in terms of just one distinguished argument.  

Furthermore, in Smalltalk, programmers interact with programs on a per-method 
basis, using Smalltalk browsers. Source descriptions of these method objects are 
edited directly by programmers, and are compiled whenever methods are saved. Even 
when code is saved to files, these files are structured as “chunks” of code [Krasner 
1983] that are written as sends to Smalltalk objects that can in turn, when read, 
reconstitute the code. Because of the way Smalltalk's browsers and files are set up, 
method bodies need not explicitly specify the class to which a method belongs. The 
class is implicitly given the context in which the message is defined. 

Finally, Smalltalk provides reflective access to runtime metaobjects that represent 
the classes and methods of a running program, and allows a program to modify itself 
by manipulating these objects to declare new classes, change existing ones, compile 
or recompile methods, and so on. This arrangement is circular, rather than a simple 
layering, so that, for example, the browsers can be used to change the implementation 
of the metaobjects, even when those metaobjects will then be used to support the 
implementation of the browsers. 

A language design to provide multimethods for Smalltalk must address all four of 
these issues: it must define how multimethods fit into Smalltalk’s language model, it 
must provide a syntax programmers can use to define multimethods, browser support 
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so that programmers can write those methods, and the metaobjects to allow 
programmers to inspect and manipulate multimethods. A key advantage of the 
Smalltalk architecture is that these three levels are not independent: the metaobjects 
can be used to support both the browsers and language syntax. 

Design: Symmetric vs. Encapsulated Multimethods 

There are two dominant designs for multimethods in object-oriented programming 
languages. Languages following CLOS or Dylan [Bobrow 1988, Feinberg 1996] 
provide symmetric multimethods, that is, where every argument of the multimethod is 
treated in the same way. One consequence of this is that multimethods cannot belong 
to particular classes (because object-oriented methods on classes treat the receiver 
(self or this) differently from all the other arguments. Encapsulated or 
asymmetric multimethods [Boyland 1997, Castagna 1995, Bruce 1995] are an 
alternative to symmetric multimethods: as the name implies, these messages belong to 
a class and are in some sense encapsulated within one class, generally the class of the 
receiver. 

We consider that asymmetric multimethods are a better fit for Smalltalk than 
symmetric multimethods. Smalltalk’s existing methods obviously rely on a single 
dispatch with a distinguished receiver object; its syntax and virtual machine support 
are all tied to that programming style. Similarly, Smalltalk being class-based can 
naturally attach encapsulated multimethods to a single class.  

Syntax and Semantics 

A Multimethod will differ from a singly dispatched method in two ways. First, 
specializers that describe the types for which the methods are applicable must be 
specified for their formal arguments. Second, it must be possible to provide multiple 
definitions (generally with different specializers) for a single message name. This is 
similar to the way in which Java allows a single method name to have multiple 
overloaded definitions with different argument types.  

There are two ways this might be done in Smalltalk. The first is to change the 
parser and compiler to recognize a new syntax for multimethod specializers. The 
second is to allow method objects to be changed or converted programmatically using 
runtime messages, perhaps with browser support, such as pull-down specializer lists, 
or, with additional arguments to the metaobjects that create the method object itself. 
The first approach is based on the text-based, linguistic tradition of programming 
language design, while the second is based on a more modern, browser/builder 
approach that supplants the classical notion of syntax with the more contemporary 
approach of direct manipulation of first-class language objects.  

While we used elements of both approaches to build our multimethods, we relied, 
in this case, primarily on the more traditional text-based approach of the sort taken by 
CLOS [Bobrow 1998a], Dylan [Feinberg 1996], and Cecil [Chambers 1992]. In 
CLOS, a type specializer is represented as a two element list: 
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 (defmethod speak ((who animal)) 
 (format t "I'm an animal: ~A~%" who)) 

Dylan, by contrast, uses :: to denote specialization: 
define method main (argv0 :: <byte-string>, #rest noise) 
  puts("Hello, World.\n"); 
end; 

The angle brackets are part of the type name in Dylan. Dylan, as with other languages 
in the Lisp tradition, is permissive about the sorts of characters that may make up 
names. Cecil uses an @ sign to indicate that an argument is constrained (which is 
how they refer to their brand of specializers). 
x@smallInt + y@smallInt  
  { ^primAdd(x,y, {&errorCode | … })} 

As a completely dynamically typed language, Smalltalk does not require type 
declarations for variables or method arguments. However, Smalltalk programmers 
have long used a type syntax using angle brackets, either before or after the qualified 
argument, even though such declarations have no effect on the execution of a program 
using them. The VisualWorks 2.5x Smalltalk compiler can recognize an "extended 
language" syntax in which method arguments are followed by angle-bracketed type 
specifiers. This trailing angle-bracketed type designation notation was first suggested 
for Smalltalk by Borning and Ingalls over twenty years ago [Borning 1982]. A similar 
syntax was used in Typed Smalltalk [Johnson 1988a], and is used in the Visual Works 
documentation as well as the Smalltalk Standard. These specifiers can contain 
Smalltalk literals, symbols, or expressions.  

We have adopted this syntax to support multimethods. The necessary adaptation is 
quite simple, comparable with Boyland and Castagna’s Parasitic Multimethods for 
Java [Boyland 1997]. To declare a multimethod, a programmer simply adds a class 
name within angle brackets after any method argument. This method body will then 
only be called when the message is sent with an argument that is (a subclass of) the 
declared argument type, that is via a multiple dispatch including any argument with a 
type specializer. Here is an example of this syntax for the Graphical Display problem: 
ScreenDisplay>>draw: aGraphicalObject <Line> 
 ”draw a line on a screen” 

ScreenDisplay>>draw: aGraphicalObject <Arc> 
 ”draw an arc on a screen” 

When a draw: message is sent to a ScreenDisplay object, the appropriate draw 
method body will now be invoked at runtime, with the decision of which message to 
invoke depending on the runtime classes of the object receiving the message, and any 
arguments with specializers. If no method matches, the message send will raise an 
exception, in the same way that Smalltalk raises a doesNotUnderstand: 
exception when an object receives a message it does not define.  

These multimethods interoperate well with Smalltalk’s standard methods and with 
inheritance, primarily because they are first sent (asymmetrically) to a receiver 
(self) object so their semantics are a direct extension of Smalltalk’s standard 
method semantics. Multimethods may access instance and class variables based on 
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their receiver, just as with standard Smalltalk methods. A multimethod defined in a 
subclass will be invoked for all arguments that match; otherwise an inherited method 
or multimethod in a superclass will be invoked. A multimethod can use a super send 
to invoke a standard method defined in a superclass, and vice versa. From this 
perspective, a “normal” Smalltalk method is treated exactly the same as a single 
multimethod body, where all arguments (other than the receiver) are specialized to 
Object. Our base multimethod design does not support one multimethod body 
delegating a message to another multimethod body defined in the same class, 
however, such common code can be refactored into a separate method and then called 
normally We have also experimented with a more flexible “call-next-method” scheme 
modeled after CLOS. 

Browser Support 

Languages that support multimethods have long been regarded as needing good 
programming environment support [Rosseau 1993]. Unlike most other programming 
languages, Smalltalk-80 has had an excellent integrated programming environment 
[Goldberg 1984] (and arguably has had one from before the start [Goldberg 1976]). 
Because this environment is itself written in Smalltalk we were able to exploit it to 
support Smalltalk multimethods.  

 

 
Figure 1 – A Smalltalk Browser displaying a multimethod 

In fact, due to the design of the VisualWorks browsers, very few changes were 
required. For instance, while the Smalltalk Parser is selective about method 
selector syntax, the browsers are not. Any Smalltalk Symbol object (and perhaps 
other printable objects as well) can be used to index a method in the browsers. We 
exploited this fact to allow MultiMethod objects to appear with bracketed type 
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specializers where their specialized arguments are to appear. Normal methods appear 
unchanged.  

Metaobjects 

Smalltalk is a computationally reflective language, that is to say, it is implemented in 
itself. The objects and classes that are used to implement Smallltalk are otherwise 
completely normal objects (although a few may be treated specially by the VM) but 
because they are used to implement other objects they are known as metaobjects or 
metaclasses respectively. Smalltalk programs are made up of metaobjects — 
Smalltalk methods are represented by instances of Method or CompiledMethod 
metaobjects, and Smalltalk classes by instances of Class metaobjects. The Smalltalk 
compiler (itself an instance of the Compiler class) basically translates Smalltalk 
language strings into constellations of these metaobjects. To implement multimethods 
in Smalltalk, we installed our own modified version of Compiler that understood 
the multimethod syntax and produced new or specialized metaobjects to implement 
multimethods.  

 

 
Figure 2 – A GenericMethod with its Multimethods 
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Our first implementation of multimethods was based on the CLOS MetaObject 
Protocol [Kiczales 1991]. It consists of the following metaobjects: Multimethods, 
Specializers, GenericMessages, MethodCombinations, and 
DiscriminatingMethods. Fig. 2 shows the way these objects collaborate to 
represent multimethods.  

A GenericMessage (GenericFunction in the figure) contains a 
Dictionary mapping specialized message selectors to their respective 
multimethod bodies. The GenericMessage’s associated 
MethodCombination object orders these multimethod bodies to determine the 
correct method to invoke. A GenericMessage also contains a list of the 
DiscriminatingMethods that intercept method calls and start the multimethod 
dispatch. We describe each of these objects in turn below. 

Multimethods 
A MultiMethod metaobject represents one multimethod body. That is, it represents 
a method that can be dispatched with any or all of its arguments being taken into 
account, instead of just the first one. A multimethod must have one or more argument 
Specializers that determine the kinds of arguments to which the multimethod 
will respond. A multimethod can determine if is applicable to a series of arguments 
(via its specializers) and, if so, can run the code in its body when required. 

Specializers 
Specializers represent the argument to which a particular Multimethod 
applies. When a specializer is invoked, it determines if the argument passed to the 
multimethod matches that multimethod, or not. We currently use two different kinds 
of Specializers: ClassSpecializers, and EqualSpecializers. 
ClassSpecializers indicate that a multimethod applies when the corresponding 
argument is a member of the indicated class, or one of its subclasses. 
EqualSpecializers (which are modeled after CLOS's EQL specializers), match 
when an argument is equal to a particular object. Cecil [Chambers 1992], a prototype-
based dynamic language with multimethods, gets EqualSpecializers for free, 
since all specializers are instances, not classes. 

Generic Messages 
A GenericMessage represents the set of all multimethods with the same name. 
(The name GenericMessage is derived by analogy with the similar Generic 
Function object in CLOS). When a GenericMessage is called, its job is to select, 
from among all its MultiMethods, only those that are consistent with the 
arguments it was called with (the applicable methods). These must also be sorted in 
the correct order, that is, from the most specific multimethod to the least specific 
multimethod. 
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Method Combinations:  
A MethodCombination object defines the order in which methods are called, and 
how different kinds of methods are treated. Again, our MethodCombinations are 
modeled after those in CLOS. Their job is to take the set of applicable methods that 
was determined by the GenericMessage to be "in-play" given the current 
arguments, and execute these in the manner that their qualifiers and the 
MethodCombination itself prescribe. When a generic message finds more than 
one applicable method, these are sorted from most specific to least specific. This 
situation is analogous to a normal message send, where a call finds the most specific 
subclass's version of a method.  

Multiple methods can apply because some will match more precisely, or 
specifically, at one or more argument sites. For example, consider the following two 
multimethods on a Stencil class (that draws multiple copies of an image along a path): 
Stencil>>drawUsingShape: rectangle<Rectangle> 
   OnDisplay: display <GraphicalDisplay> 

Stencil>>drawUsingShape: shape<GraphicalObject> 
   OnDisplay: display <ScreenDisplay> 

Both of these multimethods would match a call where the first (shape) argument 
was a Rectangle and the second (display) argument a ScreenDisplay. In this 
case, the MethodCombination will sort these in the order shown, because the 
specifier on the first multimethods’s first argument is more specific that the specifier 
on the first argument of the second multimethod. 
MethodCombination objects can be thought of as examples of the Strategy 

design pattern [Gamma 1995]. MethodCombination objects represent the rules 
for combining and calling a multimethod's bodies. A GenericMessage can change 
the way that its methods are dispatched by designating a new 
MethodCombination object. Of course, the multimethods themselves must be 
written carefully in order to allow changes in the combination scheme to make sense. 
That is to say, methods are normally written without having to concern themselves 
with the possibility of being combined in exotic, unexpected ways.  

DiscriminatingMethods 
Any message send in a Smalltalk program needs to be able to invoke a multimethod. 
Whether a multimethod or a “normal” Smalltalk method will be invoked depends 
only upon whether any multimethod bodies (i.e. any methods with specializers) have 
been defined for that message name. That is (as with normal Smalltalk methods) the 
implementation of the method is solely the preserve of the receiver of the message 
(or, from another perspective, the classes implementing that method). This design has 
the short-term advantage that no performance overhead will be introduced in 
Smalltalk programs that do not use multimethods, or for sends of “normal” methods 
in programs that also include multimethods; and the longer-term advantage that 
classes can turn their methods into multimethods (by adding specialized versions), or 
vice versa, without any concern for the clients of those classes, or the callers of those 
messages.  
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In practice, this design means that our multimethod dispatch must intercept the 
existing Smalltalk message dispatch. Our last metaobject, the 
DiscriminatingMethod, performs this interception. Smalltalk cannot intercept 
an incoming message until one dispatch, on the first argument, has already been done. 
A DiscriminatingMethod (again named after the analogous discriminating 
functions in CLOS) is a MethodWrapper [Brant 1998] that acts as a decorator 
around the standard Smalltalk CompiledMethod object. 

Fig. 3 shows how the multimethods and DiscriminatingMethods hook into 
standard Smalltalk classes. All standard Smalltalk class metaobjects (including, in this 
figure, the Mouse class) contain a MethodDictionary implemented as two 
parallel arrays. The first array contains method selectors. For our multimethods, as 
well as the standard selectors (#moveThrough in the example in this figure) we 
include specialized selectors (#<Mouse>moveThrough:<Land>). The second 
array normally contains method bodies: in our implementation the standard selector 
(#moveThrough that will actually be sent by program code) maps to a 
DiscriminatingMethod that will invoke the multimethod dispatch, while the 
specialized selector maps to the object representing the MultiMethod body. 
Because this method includes two specializers (<Mouse> and <Land>)it is linked 
to two ClassSpecializer objects. 

 

 
Figure 3 – A Class’s MethodDictionary mapping a DiscriminatingMethod and Multimethods 
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The relationship between MultiMethods, GenericMessages, and 
DiscriminatingMethods is as follows. There is one GenericMessage for 
every message name in the system that has at least one specialized method body. 
Every method body defined with a specializer is represented by a MultiMethod 
object (and its associated Specializers) — all of these are known by their 
GenericMessage, and can be chosen by its MethodCombination. Finally, 
every class that can understand this multimethod name (i.e. that has at least one 
MultiMethod body defined) will have a DiscriminatingMethod stored under 
that name that is again linked to its GenericMessage.  

Invoking Multimethods  
All these metaobjects collaborate to implement the dispatch whenever a program 
sends a message to an object that implements that message using multimethods. First, 
a DiscriminatingMethod is used to gain control. The 
DiscriminatingMethod then forwards the message send and its argument 
values to the GenericMessage object for all multimethods with that name. Next, 
the GenericMessage iterates across each candidate MultiMethod looking for 
all the applicable MultiMethods, that is, all MultiMethods whose 
Specializers match the actual arguments of the message send.  

The GenericMessage then sorts the applicable methods in order of 
applicability, and passes the list to the GenericMessage’s 
MethodCombination object. The MethodCombination then selects and 
executes the body of the chosen MultiMethod. This result is then returned (via the 
GenericMessage) to the DiscriminatingMethod, and thus is returned (as 
normal) to the caller of the multimethod. 

As with CLOS, these objects are designed to allow the caching of partial results. 

4. Examples 

In this section, we present some examples to show how multimethods could be used 
to support the design of Smallltalk programs.  

Eliminating Class tests: Smalltalk methods often use explicit tests on the classes of 
their arguments. For example, the method to add a visual component to a component 
part in the VisualWorks interface framework behaves differently if the argument is a 
BorderedWrapper. This is implemented using an explicit class test: 

ComponentPart>> 
  add: aVisualComponent borderedIn: aLayoutObject 

^(aVisualComponent isKindOf: BorderedWrapper) 
  ifTrue: [aVisualComponent layout: aLayoutObject. 
      self addWrapper: aVisualComponent] 
  ifFalse: [self addWrapper: 
   (self borderedWrapperClass on: aVisualComponent 
                in: aLayoutObject)] 
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With multimethods, this could be refactored to two multimethods, one handling 
BorderWrapper arguments, and another the rest: 

ComponentPart>> 
  add: aVisualComponent <BorderWrapper>  
  borderedIn: aLayoutObject 

  aVisualComponent layout: aLayoutObject. 
  ^self addWrapper: aVisualComponent. 

ComponentPart>> 
  add: aVisualComponent <Object>  
  borderedIn: aLayoutObject 

^self addWrapper: 
  (self borderedWrapperClass on: aVisualComponent  
               in: aLayoutObject) 

 
Visitor: The following example, drawn from [Brant 1998], illustrates the impact of 
multimethods on the Visitor pattern [Gamma 1995]. First, consider a typical Smalltalk 
implementation of Visitor: 
 ParseNode>>acceptVistor: aVisitor 

 ^self subclassResponsibility 
 

 VariableNode>>acceptVistor: aVisitor 
 ^aVisitor visitWithVariableNode: self 
 

 ConstantNode>>acceptVistor: aVisitor 
 ^aVisitor visitWithConstantNode: self 
 

 OptimizingVisitor>>visitWithConstantNode: aNode 
 ^aNode value optimized 
 

 OptimizingVisitor>>visitWithVariableNode: aNode 
 ^aNode lookupIn: self symbolTable 
 

When MultiMethods are available, however, the double-dispatching methods in 
the ParseNodes disappear, since the type information does not need to be hand-
encoded in the selectors of the calls to the Visitor objects. Instead, the Visitor 
correctly dispatches sends of visitWithNode to the correct MultiMethod. 
Thus, adding a Visitor no longer requires changing the ParseNode classes. 

OptimizingVisitor>>visitWithNode: aNode <ConstantNode> 
 ^self value optimized 

OptimizingVisitor>> 
  visitWithNode: aNode <VariableNode> 
 ^aNode lookupIn: self symbolTable 
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5. Implementation 

We have experimented with a number of different implementations for multimethods. 
The first and simplest scheme is just to execute the Smalltalk code for the metaobjects 
directly. While acceptable for simple examples, such a strategy proved unacceptably 
slow, and so we therefore experimented with a number of different optimizations, 
some of which can execute code using multimethod as quickly as handwritten 
Smalltalk code for multiple dispatching. This section describes these 
implementations, and then presents our performance results. 

Metaobjects: Our initial, unoptimized implementation simply executed the Smalltalk 
code in the metaobjects to dispatch multimethods: A method wrapper is used to gain 
control (adding about an order of magnitude to the dispatch process), the generic 
message iterates across each multimethod body and its specialzers, the resulting list is 
sorted, and so on. Even before performance testing, it seemed obvious that this 
approach would be too slow to be practical. Fortunately, there is quite a bit that can be 
done to speed things up.  

Dictionary: Our first optimization uses a Smalltalk Dictionary to map from arrays of 
specializers to target methods. It is, in effect, a simple implementation of the 
hashtable scheme discussed by Kiczales and des Rivieres in [Kiczales 1991]. Our 
scheme relies on the fact that it would be applied in a DiscriminatingMethod, 
and left out the first argument: the other argument classes are cached in a table so that 
the applicable multimethod body can be found directly. 

Case: Our second optimization was to directly test the classes of each argument and 
calls the appropriate method. The idea is that the decision tree itself is inlined as in a 
case statement. We wrote this version by hand, but code to implement these case tree 
dispatchers could be synthesized automatically, should this approach prove practical. 

Multidispatch: Our third optimization is a generalization of the double dispatch 
scheme described by Ingalls [Ingalls 1986]. Instead of merely redispatching once, 
redispatchers are generated so that each argument gets a chance to dispatch. Hence, 
triple dispatch is performed for three argument multimethods, quadruple dispatch for 
four, octuple dispatch for eight, etc. At each step, identified class/type information is 
“mangled” into the selectors, that is, we automatically generate the same code that a 
programmer would write to implement multiple dispatch in Smalltalk . Since this 
approach takes advantage of the highly optimized dispatching code in the Visual 
Works Virtual Machine, we expected its performance to be quite good. The main 
problem with multiway dispatch is that a large number of methods may be generated: 

 
|D| = |S1|  

  + |S2| × |S1| 
  + |S3| × |S2| × |S1| …  
  + |Sn| × ... × |S2| × |S1| 
 

or, alternately, 
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where |Sj| denotes the cardinality of the set of specializers for the indicated argument 
of a particular generic message and |D| is the cardinality of the set of dispatching 
methods which must be generated. 

Our multidispatch code generates all the required multidispatch methods 
automatically. They are all placed in a special Smalltalk protocol category: 
'multidispatch methods'. These methods are named using the compound selector 
syntax inherited from VisualWorks 2.0 that has its roots in the Borning and Ingalls 
multiple inheritance design [Borning & Ingalls 1982]. These selectors allow periods 
to be included as part of the message selector name. The original selector is placed at 
the beginning of each multidispatch selector, with dots replacing the colons. 
Argument specifiers are indicated using 'arg1', followed by the specializer for the 
argument, if one was recognized by a previous multidispatch method. 

Our implementation generates an additional, final dispatch to the initial 
multimethod receiver so that the target multimethod body can be executed as written. 
In one sense, this final dispatch is a concession to the low-level asymmetry inherent in 
our Smalltalk implementation. In effect, this final ricochet closes the multidispatched 
circle. This introduces an additional factor of two into the last term in the formula 
above. Given this, the number of methods we generate becomes: 

 
|D| = |S1|  

  + |S2| × |S1| 
  + |S3| × |S2| × |S1| …  
  + |Sn| × ... × |S2| × |S1| × 2 
 

Note that the class of the recipient of this final dispatch will be pre-determined by 
the time this call is made, hence, virtual machines that employ inline caching 
mechanisms will incur minimal overhead for all but the initial call to such methods. 

We can reduce the number of methods we have to generate by shuffling the order 
in which the arguments are dispatched. Since each Sj introduced is a factor in every 
subsequent term of the formula above, dispatching from the lowest cardinality 
specializer up to the highest will minimize the number generated methods. Of course, 
Smalltalk forces us to start with the first argument, S1, instead of whichever we wish. 
Since leftmost factors are repeated more often, reordering multiway dispatch so that 
the smaller factors are the ones that recur minimizes the number of methods that must 
be generated. 

Two additional optimizations are possible. Were the target method’s body merged 
with the final set of dispatching methods, the final “× 2” factor in the final term of the 
equation above could be elided. Also, only arguments that are actually specialized 
need be redispatched. That is to say, if the cardinality of the set of specializers is one 
(that is, the argument is not specialized), then it can be bypassed. To put it another 
way, only arguments for which more than one specializer is present need be treated as 
members of the set of specializers. 
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While the formula above might suggest to some readers that in the worst case there 
is cause for concern that this generalized multiway dispatch scheme might entail the 
generation of an unacceptably large number of methods, we believe that the potential 
for practical problems with this approach is rather low. Indeed, Kiczales and 
Rodriguez [Kiczales 1990] observed that only four percent of the generic functions in 
a typical CLOS application specialized more than a single argument. We expect that 
multimethods with large numbers of specializers on multiple arguments to be rare 
birds indeed. 

 

Figure 4 – Generated Multidispatch Example 

Performance 

Table 1 compares the performance of the various implementation techniques with the 
cost of performing an Ingalls-style double dispatch. This is shown in row 1. The cost 
for the simplest standard Smalltalk single-dispatched method call that returns the 
called object is shown in row 2. Returning self in Smalltalk is a special case both in 
the bytecode and the compiler, however it is only five times faster than a double 
dispatch that must do significantly more work. Each row in the table shows the results 
of a single implementation (the number in parenthesis in the leftmost column is the 
number of arguments the multimethod dispatched upon). We make multiple runs of 
each benchmark, timing 1,000,000 (multi)method sends, and report the minimum and 
maximum invocation times for each run. 

Row 3 shows the performance of the straight-ahead Smalltalk implementation of 
multimethods, giving the overhead when a target method dispatching on two method 
arguments simply returns itself. That is, we take about 600 microseconds to do 
nothing. Row 4, with full method combination support calling an overridden 
multimethod is extremely slow. This sort of dismal performance is not unheard of 
when reflective facilities are used. For instance [Palsberg 1998] found 300:1 
performance decreases for their reflective implementations of variants on the Visitor 
pattern. Row 5 gives the performance of a simple extension to this scheme, where the 
final multimethod body lookup is cached, giving a fivefold increase in performance 
but still being slow relative to a hand coded implementation. 
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Rows 6 and 7 give the performance of the Dictionary and case-statement lookups 
respectively, dispatching on three specialized arguments. Again, these optimizations 
provide another order of magnitude but are still twenty times as slow as the basic 
multiple dispatch. 

Rows 8 and 9 finally show the performance of the generated multidispatch 
implementation, row 8 again dispatching on three arguments and row 9 on seven. 
Here at last is an implementation that performs at roughly the same speed as the 
standard Smalltalk system, because our generated code is effectively the same as the 
code an experienced Smalltalk programmer would write to implement multiple 
dispatch. This is the implementation we have adopted in our system. 

 
Dispatch Type nanosec min nanosec. max Ratio 

1. Multidispatch (2 args) 521 524 1.00 

2. Tare (^self) (1 arg) 90 120 0.20 

3. Metaobjects (^self) (2 args) 597,000 624,000 1168 

4. Metaobjects (super) (2 args) 679,000 750,000 1367 

5. Metaobjects cached (2 args) 117,000 125,000 231 

6. Dictionary (3 args) 13227 13335 25 

7. Case (inline) ( 3 args) 10654 10764 20 

8. Multidispatch (3 args) 633 779 1.35 

9. Multidispatch (7 args) 1200 1221 2.32 

Table I -- Performance Results 
200MHz Pentium Pro 

1,000,000 calls/multiple runs 
 

There are a variety of trade-offs that must be considered among these approaches. 
The "pure" Smalltalk solution is relatively easy to use, but performs so poorly that it 
is little more than a toy. It is a testament to the power of reflection that the range of 
strategies for improving this performance can be addressed at all from within the 
Smalltalk programming environment itself. Still, these are not without their costs. The 
multidispatch approaches can litter the method dictionaries with dispatching methods. 
These, in turn, beg for improved browsing attention.  

The final performance frontier is the virtual machine itself. While possible, this 
would require a way of controlling the dispatch process "up-front" [Foote 1989], and 
would greatly reduce portability. Given that performance of our multidispatch scheme 
is as quick as standard Smalltalk, we consider that the complexity of changing the 
virtual machine is not justified by the potential increase in dispatching performance. 
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6. Discussion 

In this section we address a number of issues regarding the provision of multimethods 
in Smalltalk. 

Access to Variables: although multimethods are dispatched on multiple arguments, 
they remain encapsulated within a single class as in standard Smalltalk and can only 
access instance variables belonging to self. It is, of course, possible to generate 
accessor methods so that multimethods could access instance variables belonging to 
all arguments. This is, in essence, the approach take by CLOS. Given that we aimed 
to retain as much of Smalltalk’s object model as possible (and Smalltalk’s strong 
variable encapsulation is an important part of that model) we elected not to change 
this part of the language. As in standard Smalltalk, programmers can always choose to 
provide instance variable accessor methods if they are needed by particular 
multimethods. Indeed, such accessors, together with a judicious choice of 
MethodCombination objects, allow multimethods to be programmed in a 
symmetric style. 

Class-based dispatch: as in standard Smalltalk, our multimethods are dispatched 
primarily based upon the classes of arguments. Smalltalk has an implicit notion of 
object type (or protocol), based on the messages implemented by a class, so two 
classes can implement the same interface even if they are completely unrelated by 
inheritance. We considered providing specializers that would somehow select 
methods based on an argument’s interface or signature, but this would require an 
explicit notion of an object’s type signature, which standard Smalltalk does not 
support (although extensions to do so have long been proposed [Borning 1987, 
Lalonde 1986]). One advantage of class-based dispatch, given that Smalltalk supports 
only single inheritance, is that class-based selectors will never be ambiguous, as is 
possible with multiple inheritance or multiple interfaces.  

Our implementation does support instance-based EqualSpecializers as well. 
We have not as yet made a detailed assessment of either their impact on performance, 
or of their overall utility. 

Portability and Compatibility: we have taken care to maximize the portability of 
our multimethod design across different Smalltalk implementations. Our syntax is 
designed so that it is completely backwards compatible with existing Smalltalk syntax 
and to impose no overhead on programmers if multimethods are not used. Similarly, 
our design requires no changes to Smalltalk virtual machines and adds no 
performance penalty if multimethods are unused. The largest portability difficulties 
are with individual Smalltalk compilers and browsers, as these differ the most 
between different language implementations. A final aspect of portability relates to 
the compiled code for optimized implementations. Because the generated 
multidispatch code does not depend on any other part of the system, it can be 
compatible with Smalltalk systems without the remainder of the multimethod system. 

Method Qualifiers — Extending Method Combinations: A great advantage of 
building multimethods by extending Smalltalk’s existing metaobjects is that our 
implementation can itself be extended by specializing our metaobjects. We have 
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implemented a range of extended method combination schemes, modeling those of 
CLOS and Aspect/J, to illustrate this extensibility.  

Our extended method combination scheme allows MultiMethods to be given 
Qualifiers. Qualifiers are symbols such as #Before, #After, or 
#Around. These qualifiers indicate to MethodCombination objects the role 
these methods are to play, and how they should be executed. There are no a priori 
limitations on these qualifiers; they can be any symbols that the 
MethodCombination objects can recognize. As in CLOS and Aspect/J, we 
provide some stock MethodCombination objects that implement before, after, 
and around methods that execute before, after, or before-and-after other methods in 
response to a single message send [Brant 1998, Kiczales 2001]. We also provide a 
MethodCombination that emulates the Beta [Kristensen 1990] convention of 
executing methods from innermost to outermost. We also provide a 
SimpleMethodCombination object that executes its applicable method list in 
the order in which it is passed to the MethodCombination object. 

These extended method combination metaobjects interpret the qualifiers during 
multimethod dispatch. The main change is that more multimethod bodies can match a 
particular method send, because a qualified method can execute in addition to other 
methods that also match the arguments of a message send. For example, as in CLOS, 
all before (or after) multimethods will execute before (or after) the one unqualified 
message chosen by the base multimethod dispatch. 

Our current implementation of extended method combination is experimental. In 
particular, qualifiers must be assigned programmatically to multimethods as we have 
not yet provided syntactic or browser support. 

Our design, as well as the designs of Smalltalk and CLOS, for that matter, is 
distinguished from more recent work based upon Java derivatives [Boyand 1977, 
Kiczales 2001] in that given that each is built out of objects, programmers can extend 
these objects themselves to construct any mechanism they want. It is a testimony to 
the designers of Smalltalk and CLOS [Gabriel 1991, Bobrow 1993] that principled 
architectural extensions, rather than inflexible, immutable preprocessor artifice, can 
be employed to achieve this flexibility.  

Language design, it has been said, is not about what you put in, but about what you 
leave out. A system built of simple, extensible building blocks allows the designer to 
evade such painful triage decisions. The real lesson to be gleaned from the metalevel 
architectures of Smalltalk and CLOS is that if you provide a solid set of building 
blocks, programmers can construct the features they really need themselves, their 
way. This might be thought of as an application of the “end-to-end principle” [Saltzer 
1981] to programming language design. 

Programming languages versus idioms and patterns: Finally, our work raises the 
philosophical question of when programming idioms or design patterns should be 
incorporated into programming languages. From a pragmatic perspective, it is 
unnecessary to add multimethods into Smalltalk because multiple dispatch can be 
programmed quite effectively using idioms such as double dispatch [Ingalls 1986] or 
the Visitor pattern [Gamma 1995]. Our most efficient implementation merely matches 
the performance of these hand-coded idioms — some of our more basic 
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implementations perform significantly worse — so efficiency is not a reason for 
adopting this extension.  

Indeed, our harmonious melding of the CLOS MOP atop Smalltalk’s kernel objects 
(the Smalltalk “MOP”, if you will) suggests that neither single dispatch nor multi-
dispatch is more fundamental that the other. Instead, they can be seen as complements 
or duals of each other. Single dispatch can be seen as merely a predominant, albeit 
prosaic special case of generalize multiway dispatch. Alternately, our results show 
that you can curry your way to multiple dispatch in any polymorphic, single dispatch 
language, one argument at a time.  

In general, we consider that an idiom — such as double dispatch — should be 
incorporated into a language when it becomes very widely used, when a hand coded 
implementation is hard to write or to modify, when it can be implemented routinely, 
and at least as efficiently as handwritten code. The Composite and Proxy patterns, for 
example, may be widely used, but their implementations vary greatly, while 
implementing the Template Method pattern is so straightforward that it requires no 
additional support. On the other hand, the Iterator pattern is also widely used, but its 
implementations are amenable to standardization, and so we find Iterators 
incorporated into CLU, and now Java 1.5 and C#.  

Multimethods are particularly valuable as Mediators. Since, for instance, a binary 
multimethod can be seen as belonging to either both or neither of a pair of class it 
specializes, it can contain glue that ties them together, while leaving each of its 
specializing classes untouched. The promise of clean separation of concerns, however 
admirable, is honored, alas, in many systems mainly in the breach [Foote 2000]. 
Multimethods are ideal in cases where mutual concerns arise among design elements 
that had heretofore been cleanly separated. Multimethods can help when concerns 
converge. 

We believe that multiple dispatch is sufficiently often used; sufficiently routine; 
sufficiently arduous to hand code; and that our (and others) implementations are 
sufficiently efficient for it to be worthwhile to include into object-oriented 
programming languages. 

7. Related Work 

Multiple dispatch in dynamic languages was first supported in the LISP based 
object-oriented systems LOOPS and NewFlavours [Bobrow 1983; 1986]. As an 
amalgam of these systems, the Common Lisp Object System incorporated and 
popularized multiple dispatch based on generic functions [Bobrow 1988a , Keene 
1989]. CLOS also incorporated a range of method combinations, although more 
recently these have also been adopted by aspect-oriented languages, particularly 
Aspect/J [Kiczales 2001]. Dan Ingalls described the now standard double-dispatch 
idiom in Smalltalk in what must be the OOPSLA paper with the all-time highest 
possible power-to-weight ratio [Ingalls 1986]. All these systems had the great 
advantage of dynamic typing, so were able to avoid many of the issues that arise in 
statically typed languages.  
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The first statically typed programming language with object-oriented multiple 
dispatch was the functional language Kea [Mugridge 1991]. While a range of 
statically typed languages provide overloading, (Ada, C++, Haskell, Java) satisfactory 
designs for incorporating dynamically dispatched multimethods into statically typed 
languages proved rather more difficult to develop. Craig Chamber’s Cecil language 
[Chambers 1992] provided a model where multimethods were encapsulated within 
multiple classes to the extent that the multimethods were specialized on those classes. 
Further developments of Cecil demonstrated that statically typed multimethods could 
be integrated into practical languages and module systems with separate compilation. 
Cecil-style multimethods have also been incorporated into Java [Clifton 2000], and 
have the advantages of a solid formal foundation [Bruce 1995, Castagna 1995]. Bjorn 
Freeman-Benson has also proposed extending Self with Multimethods [Chambers 
1992]. Rather than providing multiple dispatch by extending message sends Leavens 
and Millstein have proposed extending Java to dispatch on tuples of objects [Leavens 
1998]. 

Closer to the design in this paper are Boyland and Castangna’s Parasitic 
Multimethods. These provide a type-safe, modular extension to Java by dispatching 
certain methods (marked with a ‘parasitic’ modifier) according to the types of all their 
arguments [Boyland 1997]. As with our system, the parasitic design treats 
multimethods differently from normal (“host”) messages, and then the distinguished 
receiver argument differently from the other arguments of a message. Multimethods 
are contained within their receiver’s class and may access only those variables that are 
members of that class. Boyland and Castagna note that much of the complexity of 
their system comes from their goal of not changing Java’s existing overloading rules, 
and recommend that future languages support only dynamic dispatch — ironically 
perhaps, the resulting language would be quite similar in expressiveness to Smalltalk 
with Multimethods.  

The Visitor pattern is one of the main contexts within which double-dispatch is 
generally applied [Gamma 1995]; as with many patterns, Visitor has spawned a mini-
industry of research on efficient implementation [Palsberg 1998, Grothoff 2003] that 
sometimes go as far as raising the specter of a Visitor-oriented programming 
“paradigm” [Palsberg 2004]. Similarly, incorporating features from Beta into more 
mainline (or at least less syntactically eccentric) object-oriented languages has also 
been of interest of late, with most work focusing on the Beta type system [Thorup 
1997] although “inner-style” method combination has recently been adapted to a 
Java-like language design [Goldberg 2004].  

Our work also draws on a long history of language experimentation, particular in 
Smalltalk. The dot-notation for extended selectors was originally proposed for 
multiple inheritance [Borning 1982] but has been used to navigate part hierarchies 
[Blake 1987]. More recent work on Array-based programming [Mougin 2003] 
employs somewhat similar techniques to extend Smalltalk, although without 
providing an extensible meta-model. Scharli et al. [2004] describe a composable 
encapsulation scheme for Smalltalk that is implemented using method interception 
techniques. This encapsulation model could be extended relatively straightforwardly 
to our multimethods, and would have the advantage that multimethods could thereby 
access private features of their argument objects. 
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This work draws upon many techniques developed over many years for meta-level 
programming [Smith 1983, Maes 1987a,b], both in Smalltalk and other languages. 
Our DiscriminatingMethods are derivations of MethodWrappers [Brant 
1998], and the notion of extending method dispatch by meta-level means goes back at 
leat to CLOS and LOOPS [Bobrow 1983, Kiczales 1991]. Coda [McAffer 1995] 
provides an extended Smalltalk meta-object system that has been used to distribute 
applications across large scale multiprocessors. MetaclassTalk provides a more 
complete CLOS-style metaobject system for Smalltalk, again implemented with 
MethodWrappers, that has been used to implement various aspect-oriented 
programming constructs [Rivard 1997]. 

Finally, Bracha and Ungar [Bracha 2004] have classified the features of reflective 
systems into introspection (self-examination of a program’s own structure); self-
modification (self explanatory); executing dynamically generated code (ditto); and 
intercession (self-modification of a language’s semantics from within). According to 
their taxonomy, Smalltalk scores highly on all categories except intercession. The 
dispatching metalevel we present in this paper can be seen either as a strong argument 
that Smalltalk does, in fact, provide powerful intercession facilities, or, more humbly, 
that straightforward, portable extensions can add these facilities to Smalltalk. 

8. Conclusion 

Though Smalltalk does not support multimethods, they can be built by 
programmers who understand Smalltalk's reflective facilities. There are several ways 
to go about this, and they differ dramatically in terms of power and efficiency. Taken 
together, they demonstrate the power of building programming languages out of 
objects, and opening these objects to programmers, and teach some interesting 
lessons.  

One is that syntax matters. To build multimethods, we needed to be able to modify 
the compiler to support argument specializers.  

A second lesson, however, is that when programs are objects, there are other 
mechanisms besides syntax that an environment can use to change a program. Our 
browsers support multimethods because methods have a uniform interface to these 
tools that allows our multimethod syntax to be readily displayed. Furthermore, since 
multimethods are objects, their attributes are subject to direct manipulation by these 
tools.  

A third lesson is that runtime changes to objects that define how an object is 
executed are an extremely powerful lever. Using method wrappers to change the way 
methods act on-the-fly provides dramatic evidence of this.  

A fourth is that there is a place for synthesized code, or code written by programs 
rather than programmers, in reflective systems. Generative programming [Czarnecki 
2000] approaches have their place. Our efficient multiway dispatch code made use of 
this, allowing our reflective implementation to perform as well as hand-written code, 
without any changes to the Smalltalk virtual machine. 
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Our experience makes a powerful case for building languages out of objects. By 
doing so, we allow to the very objects from which programs are made be a vehicle for 
the language's own evolution, rather than an obstacle to it, as is too often the case. 

To conclude, we have designed and implemented efficient multimethod support for 
Smalltalk. Our multimethods provide a very clean solution: programmers can define 
them using a simple extended syntax, their semantics are quite straightforward, they 
interoperate well with Smalltalk’s metaobjects, they impose no syntactic or runtime 
overhead when they are not used, and they are as efficient to execute as comparable 
hand-written code using sequences of single dispatches. 
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